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ABSTRACT

Recently, instruction-based image editing (IIE) has received widespread attention.
In practice, IIE often modifies only specific regions of an image, while the re-
maining areas largely remain unchanged. Although these two types of regions
differ significantly in generation difficulty and computational redundancy, existing
IIE models do not account for this distinction, instead applying a uniform genera-
tion process across the entire image. This motivates us to propose RegionE, an
adaptive, region-aware generation framework that accelerates IIE tasks without
additional training. Specifically, the RegionE framework consists of three main
components: 1) Adaptive Region Partition. We observed that the trajectory of
unedited regions is straight, allowing for multi-step denoised predictions to be
inferred in a single step. Therefore, in the early denoising stages, we partition
the image into edited and unedited regions based on the difference between the
final estimated result and the reference image. 2) Region-Aware Generation.
After distinguishing the regions, we replace multi-step denoising with one-step
prediction for unedited areas. For edited regions, the trajectory is curved, requiring
local iterative denoising. To improve the efficiency and quality of local iterative
generation, we propose the Region-Instruction KV Cache, which reduces computa-
tional cost while incorporating global information. 3) Adaptive Velocity Decay
Cache. Observing that adjacent timesteps in edited regions exhibit strong velocity
similarity, we further propose an adaptive velocity decay cache to accelerate the
local denoising process. We applied RegionE to state-of-the-art IIE base models, in-
cluding Step1X-Edit, FLUX.1 Kontext, and Qwen-Image-Edit. RegionE achieved
acceleration factors of 2.57×, 2.41×, and 2.06×, respectively, with minimal quality
loss (PSNR: 30.520–32.133). Evaluations by GPT-4o also confirmed that semantic
and perceptual fidelity were well preserved. Code will be open-sourced.

1 INTRODUCTION

In recent years, diffusion models (Rombach et al., 2022) have achieved rapid progress in generative
tasks, particularly in visual generation, where state-of-the-art models can synthesize highly realistic
images. Within this context, the task of editing existing images according to user requirements
has gradually emerged as an important direction (Kawar et al., 2023). Recently, diffusion-based
foundation models, such as FLUX.1 Kontext (Labs et al., 2025), Qwen-Image-Edit (Wu et al., 2025),
and Step1X-Edit (Liu et al., 2025b), have been developed. These models can perform precise image
editing using only textual instructions, offering a novel solution for instruction-based image editing
and providing more powerful tools for image post-processing (Choi et al., 2024).

Although diffusion-based IIE models can achieve impressive editing results, their high inference
latency limits their use in real-time applications. Previous research on efficient diffusion inference
has primarily focused on image generation. For instance, some studies reduce model parameters
through pruning (Rombach et al., 2022; Castells et al., 2024), others decrease model bit-width
via quantization (Shang et al., 2023; Zhao et al., 2025a), and some employ distillation to reduce
model size (Kim et al., 2023) and the number of timesteps (Sauer et al., 2024). In the two-stage
inversion-based editing paradigm (Pan et al., 2023; Wang et al., 2025), redundancy in the inversion
and denoising stages has been analyzed, leading to methods like EEdit (Yan et al., 2025) that
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Figure 1: Trajectories of different regions in the IIE task. In unedited regions, the trajectory is nearly
linear, allowing early-stage velocity to provide a reliable estimate of the multi-step denoised images,
including the final result. In contrast, edited regions exhibit curved trajectories, making the final
image harder to predict. Despite this, the velocity between consecutive timesteps remains consistent.

accelerate both stages simultaneously. However, for the emerging denoising-only paradigm of IIE,
the redundancy and feasibility of efficient inference remain largely unexplored.

Our study reveals that current IIE models exhibit two significant types of redundancy: 1) Spatial
Generation Redundancy. Unlike image generation tasks, which require reconstructing the entire
image, IIE models often need to modify only local regions specified by the instructions, while the
remaining areas remain essentially unchanged. For example, as shown in Figure 1, the model edits
only the region around the hat. Nevertheless, IIE models apply the same computational effort to both
edited and unedited areas, resulting in significant redundancy in the latter. 2) Redundancy across
diffusion timesteps. First, at neighboring timesteps, the key and value within the attention layers at
the same network depth are highly similar. Second, in the middle stages of denoising, the velocity
output by the diffusion transformer (DiT) at adjacent timesteps is also highly similar.

To mitigate spatial and temporal redundancy in IIE models, this paper introduces RegionE, a training-
free, adaptive, and region-aware generative framework that accelerates the current IIE models. Firstly,
we observed that the trajectories of edited regions are often more curved, making it difficult to
accurately predict the final edited results at early timesteps, as shown in Figure 1. In contrast,
unedited regions follow nearly linear trajectories, allowing more reliable predictions from the same
early steps. Based on this observation, RegionE introduces an Adaptive Region Partition (ARP),
which performs a one-step estimation for the final image in the early stage and compares its similarity
with the reference (instruction) image. Regions with high similarity (minimal change after editing) are
classified as unedited, whereas regions with low similarity are classified as edited. Then, we perform
region-aware generation on the two separated parts. Specifically, We replace multi-step denoising
with one-step estimation for the unedited areas and apply region-iterative denoising for edited areas.
During edited region generation, RegionE discards unedited region tokens and instruction image
tokens, and effectively reinjects global context into local generation through our proposed Region-
Instruction KV Cache (RIKVCache), which leverages the similarity of key and value across timesteps.
This process primarily addresses redundancy in spatial. Finally, regarding temporal redundancy,
we find that the velocity outputs of DiT at adjacent timesteps are highly consistent in direction but
decay in magnitude over time, with the decay dependent on the timestep. To exploit this property,
RegionE introduces an Adaptive Velocity Decay Cache (AVDCache), which accurately models this
pattern and further accelerates the region generation process. Experimental results demonstrate that
RegionE achieves speedups of approximately 2.57×, 2.41×, and 2.06× on Step1X-Edit, FLUX.1
Kontext, and Qwen-Image-Edit, respectively, while maintaining PSNR values of 30.520, 32.133, and
31.115 before and after acceleration. Evaluations using GPT-4o further indicate that the perceptual
differences are negligible, confirming that RegionE effectively eliminates redundancy in IIE tasks
without compromising image quality.

The contributions of our paper are as follows:

• We observe that in IIE tasks, unedited regions exhibit nearly linear generation trajectories, allowing
early-stage velocities to provide reliable estimates for multi-step denoised images, including the
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final image. In contrast, edited regions follow more curved trajectories, making the final image
harder to predict. Nevertheless, the velocity remains consistent across consecutive timesteps.

• We propose RegionE, a training-free, efficient IIE method with adaptive, region-aware generation. It
reduces spatial redundancy by performing early adaptive predictions for edited and unedited regions
and generating each region locally in subsequent stages, while mitigating temporal redundancy via
a velocity-decay cache across timesteps.

• RegionE achieves 2.57×, 2.41×, and 2.06× end-to-end speedups on Step1X-Edit, FLUX.1 Kontext,
and Qwen-Image-Edit, while maintaining PSNR (30.520, 32.133, 31.115) and SSIM (0.939, 0.917,
0.937). Evaluations with GPT-4o further confirm that no quality degradation occurs.

2 RELATED WORK

Efficient Diffusion Model. Although few efficient methods have been developed specifically for
IIE models, a variety of acceleration techniques have been proposed for diffusion models more
generally. From the perspective of parameter redundancy, researchers have introduced pruning
methods such as Diff-Pruning Fang et al. (2023) and LD-Pruner (Castells et al., 2024), quantization
methods such as PTQ4DM (Shang et al., 2023) and SVDQuant (Li et al., 2024a), distillation methods
such as BK-SDM (Kim et al., 2023) and CLEAR (Liu et al., 2024), and early-stopping strategies
such as ES-DDPM (Lyu et al., 2022). From the perspective of temporal redundancy, methods
like DeepCache (Ma et al., 2024), ∆-DiT (Chen et al., 2024), FORA (Selvaraju et al., 2024), and
TeaCache (Liu et al., 2025a) reuse intermediate features across timesteps, while approaches such as
LCM (Luo et al., 2023) and ADD (Sauer et al., 2024) reduce the number of timesteps through model
distillation. From the perspective of spatial redundancy, RAS (Liu et al., 2025c) observes that at
each diffusion timestep, the model may focus only on semantically coherent regions; therefore, only
those regions need to be updated, thereby accelerating image generation. Similarly, ToCa (Zou et al.,
2024a) and DuCa (Zou et al., 2024b) note that during denoising, different tokens exhibit varying
sensitivities, and dynamically updating only a subset of tokens at each timestep can further accelerate
image generation. In contrast to the methods above, RegionE leverages the trajectory characteristics
unique to IIE tasks, while simultaneously addressing both spatial and temporal redundancies in
diffusion-based image editing to achieve accelerated generation.

Image Editing. Image editing is an essential task in the field of generative modeling. In the early
U-Net (Ronneberger et al., 2015) era, ControlNet (Zhang et al., 2023b) introduced a robust editing
solution through a repeat-structure design, and InstructPix2Pix (Brooks et al., 2023) introduced an
editing method that involves channel expansion. As research advanced, inversion-based methods (Pan
et al., 2023; Wang et al., 2025) gradually became the dominant approach. These methods apply noise
to the original image in the latent space and then recover the edited result through a denoising process.
However, this paradigm involves both inversion and denoising stages, which increases complexity.
At the same time, IIE models began to emerge. Approaches such as InstructEdit (Wang et al., 2023),
MagicBrush (Zhang et al., 2023a), and BrushEdit (Li et al., 2024b) employed modular pipelines, in
which large language models generate prompts, spatial cues, or synthetic instruction–image pairs
to guide diffusion-based editing. Most of these approaches, however, are task-specific and lack
generality. More recently, a new class of IIE has been developed to improve general-purpose editing.
These models rely solely on textual instructions, without requiring masks or task-specific designs,
and still achieve effective editing performance. Concretely, they leverage MLLMs or advanced text
encoders to provide richer semantic control signals, and feed both the target image and noise into a
DiT (Peebles & Xie, 2023) architecture to enhance image alignment. In this work, we propose an
adaptive, region-aware acceleration method for these emerging IIE models. Although prior work
has explored local editing, these studies primarily aim to enhance editing capability rather than
improve efficiency. Moreover, methods such as (Simsar et al., 2024) and (Guo & Lin, 2023) follow
the InstructPix2Pix paradigm, while (Mo et al., 2024; Couairon et al., 2022; Avrahami et al., 2022;
Yang et al., 2024) operate within inversion-based or mask-dependent editing frameworks. In contrast,
we investigate the problem under the emerging MLLM-assisted IIE paradigm and, for the first time,
identify an early-stage region-partitioning strategy in modern flow-matching models that enables an
effective acceleration mechanism.
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Figure 2: Comparison between traditional DiT and DiT in IIE (a, b). Symbolic visualization of the
denoising process (c). L1 and cosine similarities of velocities between adjacent timesteps during
denoising (d, e). Cosine similarity between velocities after t21 in edited and unedited regions with
v21 (f). Cross-step key similarity (g) and cross-step similarity of instruction-related keys (h).

3 PRELIMINARY

Flow Matching & Rectified Flow. Flow matching (Lipman et al., 2022) has become a widely
adopted training technique in advanced diffusion models. It facilitates the transfer from a source
distribution π1 to a target distribution π0 by learning a time-dependent velocity field v(x, t). This
velocity field is used to construct the flow through the ordinary differential equation (ODE):

dϕt(x)

dt
= v(ϕt(x), t), ϕ1(x) ∼ π1. (1)

Rectified Flow (Liu et al., 2022) simplifies this process through a linear assumption. Given that X1

follows a noise distribution π1 and X0 follows the target image distribution π0, the equation is
Xt = (1− t)X0 + tX1, t ∈ [0, 1]. (2)

Differentiating both ends with respect to timestep t yields: dXt

dt = X1 −X0. The velocity of the
rectified flow v(Xt, t), always points in the direction of X1 −X0. Therefore, the training loss is
minimized by reducing the deviation between the velocity and X1 −X0:

L = Et

[
||(X1 −X0)− v(Xt, t)||2

]
. (3)

The inference process involves starting from X1 and iteratively solving for X0 in reverse, using the
learned velocity v(Xt, t). In practice, we typically use a discrete Euler sampler, which discretizes
the timestep ti(i ∈ NT , tT = 1, t0 = 0) and approximates:

Xti−1
= Xti −∆ti,i−1 · v(Xti , ti),∆ti,i−1 = ti − ti−1. (4)

After T iterations, the final target image X0 is obtained. This paper, therefore, targets the IIE task
and optimizes the inference process of T iterations in Equation 4.

Instruction-Based Editing Model. Recent IIE models, such as Step1X-Edit (Liu et al., 2025b),
FLUX.1 Kontext (Labs et al., 2025) and Qwen-Image (Wu et al., 2025), follow the same paradigm,
as shown in Figure 2b. In these models, the velocity field is estimated using Instruction-DiT, the
variants of DiT (Peebles & Xie, 2023). The input to Instruction-DiT consists of three types of tokens:
text (prompt) tokens XP , noise tokens Xti , and instruction tokens XI . The noise token corresponds
to the generation of the target image, while the text token carries the instruction information. The
instruction token is specific to the editing task, representing the part of the image to be edited. Notably,
the counts of noise and instruction tokens are roughly comparable and substantially higher than that of
text tokens. Temporally, the text and instruction tokens serve as static control signals throughout the
denoising process, whereas the noise token evolves dynamically at each timestep. Since Instruction-
DiT is designed to predict only the noise component, the model’s output corresponds exclusively to
the portion represented by the noise token. To simplify the expression, the Instruction-DiT mentioned
below will be referred to simply as DiT.
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Figure 3: Overview of the RegionE. RegionE consists of three stages: STS, RAGS, and SMS. In
the STS, no acceleration is applied due to unstable DiT outputs, and all KV values are cached at the
final step. In the RAGS, an Adaptive Region Partition distinguishes between edited and unedited
regions: unedited regions are denoised in one step, while edited regions are generated iteratively. This
iterative generation process leverages RIKVCache for injecting global information and AVDCache
for acceleration. Certain forced-update steps aggregate the full image to refresh RIKVCache with
complete DiT computation. Finally, in the SMS, several full denoising steps are performed to
eliminate artifacts along the boundaries between edited and unedited regions.

4 METHODOLOGY

This section introduces RegionE, a method that accelerates the IIE model without additional training.
The workflow is shown in Figure 3. RegionE consists of three stages: the Stabilization Stage (STS),
the Region-Aware Generation Stage (RAGS), and the Smooth Stage (SMS).

Stabilization Stage. In the early steps of denoising, the input Xti to DiT is close to Gaussian noise
(i.e., the signal-to-noise ratio is low). This leads to oscillations in DiT’s velocity estimation (see
Figure 2d and 2e). Since the estimates at this stage are inherently unstable, it is not suitable for
acceleration. Therefore, we keep the original sampling process unchanged. Additionally, at the last
step of this stage, we save the Key and Value in each attention layer of DiT, denoted as KC and V C .

Region-Aware Generation Stage. This stage is the core component of RegionE and consists of three
parts: adaptive region partition, region-aware generation, and adaptive velocity decay cache. The
first two parts primarily address spatial redundancy in IIE, while the third further reduces temporal
redundancy across timesteps.

Adaptive Region Partition. After the stabilization stage, the output of DiT becomes stable. As
previously observed, the generation trajectories in the edited regions are curved, whereas those in the
unedited regions are straight, as shown in Figure 1 and 2f. Therefore, for the unedited regions XU

ti ,
we can accurately estimate X̂U

tf
at any timestep tf (f < i) using one-step estimation:

X̂U
tf

= XU
ti − vU (XU

ti , ti) ·∆ti,f . (5)

When tf = 0, this corresponds to estimating the final unedited regions X̂U
0 , which is nearly identical

to the true XU
0 . However, using Equation 5 for the edited region does not accurately estimate X̂E

0 .
Based on this difference between the edited and unedited regions, we propose an adaptive region
partition (ARP), as illustrated in the lower-left corner of Figure 3. Given the velocity vti+1

at the
beginning of the region-aware generation stage and the noisy image Xti , the final edited result X̂0

can be estimated in one step using Equation 5. This estimate is reliable in unedited regions but less
accurate in edited ones. Since the unedited region undergoes minimal change before and after editing,
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we can compute the cosine similarity between the estimated image X̂0 and the instruction image XI

along the token dimension. Regions with sufficiently high similarity (> threshold η), that is, small
changes before and after editing, are considered unedited regions, while the remainder is treated as
the edited region. To account for potential segmentation noise, morphological opening and closing
operations are applied to make the two regions more continuous and accurate.

Region-Aware Generation. After identifying the edited and unedited regions, we apply Equation 5
to the unedited region to directly estimate the denoised image XU

tf
at the next timestep tf in one step,

thereby saving computation for the unedited region. For the edited region, our implementation is
as follows: first, the input to DiT is changed from [XP ,Xti ,X

I ] to [XP ,XE
ti ], so that DiT only

estimates the velocity of the edited region vE
ti . However, since DiT contains attention layers that

involve global token interactions, completely discarding the XI and XU
ti inputs can gradually inject

bias into the estimation of vE
ti during global attention. To compensate for this loss of information,

we propose a Region-Instruction KV Cache (RIKVCache). Specifically, the input to DiT remains
[XP ,XE

ti ], but within the attention layers of DiT, it is modified as follows:

softmax(
[QP ,QE ] · [KP ,KE ,K

C
U ,KC

I ]T√
d

) · [VP ,VE ,V
C
U ,V C

I ]. (6)

The lower corner labels P , E, U , and I represent prompt token, edited region token, unedited region
token, and instruction token, respectively. The superscript C in the upper-right corner indicates that
the value is taken from the cache of the previous complete computation. And the middle-lower part
of Figure 3 visualizes this process. The feasibility of this approach is supported by the high similarity
of the KV pairs between consecutive steps, as shown in Figure 2g and 2h.

Adaptive Velocity Decay Cache. As illustrated in the right part of Figure 1, although the trajectory
of the edited region is curved, the velocities between consecutive timesteps are actually similar.
Focusing on the intermediate denoising phase, we observe from Figure 2e that the velocity directions
between adjacent steps are almost identical (cosine similarity approaches 1). At the same time, the
magnitudes exhibit a gradual decay that varies across timesteps (Figure 2d). Based on this observation,
we propose an adaptive velocity decay cache (AVDCache). Specifically, the AVDCache introduces a
decay factor:

||vti ||/||vti+1
|| = (1−∆tti+1,ti) · γti . (7)

Here, (1−∆tti+1,ti) represents the sample-aware component under discrete Euler solver, while γti
represents the timestep-aware component. The solver entirely determines the former, while the latter
is obtained by fitting on a randomly sampled dataset. Since the decay factor in Eq. 7 characterizes the
intrinsic differences between diffusion model timesteps, we introduce the AVDCache criterion:

Criterion = 1−
e∏

i=s

(1−∆tti+1,ti) · γti . (8)

Here,ts and te denote the start and end timesteps of the cache, respectively, while the criterion
measures the cumulative error of this process. The decision of whether to apply the cache is made
using a threshold δ. The complete process is as follows:

vE
ti =

{
DiT (XE

ti ,X
P ) Criterion > δ

vE,C
ts ·

∏i
m=s(1−∆ttm+1,tm) · γtm else.

(9)

The right-lower part of Figure 3 visualizes this process. In fact, AVDCache is an improved version of
the existing residual cache methods, with further details and analysis provided in the supplementary.

After the above process, we obtain the generated results for both the edited and unedited regions. We
then re-gather these results according to their spatial positions to reconstruct the complete image
tokens. It is worth noting that the similarity of the KV Cache decreases as the timestep increases.
To address this issue, we periodically enforce full-image gathering at certain timesteps within the
region-aware generation stage, performing a complete DiT computation to update the RIKVCache.

Smooth Stage. Small gaps may appear at the boundaries between edited and unedited regions after
stitching. Although these gaps are often imperceptible in most cases, to ensure the generality of our
method, we perform several steps of unaccelerated denoising on the merged full image to smooth
these discontinuities. Empirically, two denoising steps are sufficient to eliminate the gaps effectively.
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5 EXPERIMENT

5.1 EXPERIMENTAL SETTINGS

Pretrained Model & Dataset. We evaluate RegionE on three open-source state-of-the-art IIE models:
Step1X-Edit-v1p1 (Liu et al., 2025b), FLUX.1 Kontext (Labs et al., 2025), and Qwen-Image-Edit (Wu
et al., 2025). Step1X-Edit adopts a CFG (classifier-free guidance) (Ho & Salimans, 2022) scale of
6, FLUX.1 Kontext uses a scale of 2.5, and Qwen-Image-Edit applies a scale of 4. All models are
evaluated with 28 sampling steps. For evaluation, we follow the dataset protocols described in the
respective technical reports. Specifically, we use 606 image prompt pairs covering 11 tasks from
GEdit-Bench English (Liu et al., 2025b) for Step1X-Edit and Qwen-Image-Edit, and 1026 image
prompt pairs spanning five tasks from KontextBench (Labs et al., 2025) for FLUX.1 Kontext.

Evaluation Metrics. We design a comprehensive evaluation framework to assess both the quality
and efficiency of IIE models. For quality assessment, we adopt two complementary approaches.
First, we evaluate reconstruction quality by measuring deviations before and after acceleration, using
PSNR (Zhao et al., 2024), SSIM (Wang & Bovik, 2002), and LPIPS (Zhang et al., 2018) as metrics.
Second, we conduct an editing evaluation using vision–language models (VLMs), specifically GPT-
4o, to assess image quality, semantic alignment, and overall performance (Ku et al., 2024), as shown
in Table 1. Evaluation dimensions are denoted by the suffixes SC, PQ, and O, consistent with (Liu
et al., 2025b) and (Wu et al., 2025). For efficiency evaluation, we report actual runtime latency as
well as the relative speedup compared to the vanilla pretrained models.

Baseline. Currently, there are no acceleration methods designed explicitly for IIEmodels. Therefore,
we adapt several effective acceleration techniques initially developed for diffusion models as base-
lines, since they are also applicable to diffusion-based IIE tasks. From the perspective of timestep
redundancy, Steoskip performs larger jumps in the sampling steps, FORA (Selvaraju et al., 2024)
employs block-level cache, and ∆-DiT (Chen et al., 2024) and TeaCache (Liu et al., 2025a) use
residual cache. From the perspective of spatial redundancy, RAS (Liu et al., 2025c) and ToCa (Zou
et al., 2024a) perform redundancy-reduction denoising at the token level.

Implementation Details. For all three models, RegionE uses six steps in the stabilization stage,
enforces an update at step 16 in the region-aware generation stage, and adopts two steps in the smooth
stage. For Step1X-Edit, FLUX.1 Kontext, and Qwen-Image-Edit, the segmentation thresholds η of
ARP are 0.88, 0.93, and 0.80, respectively, while the decision thresholds δ of AVDCache are 0.02,
0.04, and 0.03, respectively. Latency is measured on a single NVIDIA H800 GPU.

5.2 EXPERIMENTAL RESULTS ANALYSIS

We evaluate RegionE against several state-of-the-art acceleration methods on three prominent IIE
models: Step1X-Edit, FLUX.1 Kontext, and Qwen-Image-Edit. Our evaluation encompasses quanti-
tative metrics, efficiency measurements, and visualization, demonstrating that RegionE achieves a
superior balance between acceleration and quality preservation. The quantitative results are shown in
Table 1. Since both GEdit-Bench and KontextBench involve multiple editing tasks, the table reports
results averaged over tasks, while the per-task quantitative results are provided in the supplementary.

Deviation Analysis Compared to Pre-trained Models. The Against Vanilla evaluation reveals
RegionE’s exceptional fidelity to original model outputs across all evaluation metrics, significantly
outperforming competing acceleration methods. RegionE achieves the highest PSNR values: 30.520
(Step1X-Edit), 32.133 (FLUX.1 Kontext), and 31.115 (Qwen-Image-Edit), representing substantial
improvements of 2-4 over the next-best methods, indicating minimal pixel-level deviation from the
original outputs. The SSIM scores of 0.939, 0.917, and 0.937 demonstrate superior preservation of
structural coherence across different model architectures. In contrast, the LPIPS scores of 0.054, 0.057,
and 0.046 represent 25-50% improvements over competing methods. This consistent performance
across three diverse model architectures validates RegionE’s architectural agnosticism. RegionE
consistently maintains stable, high-quality results.

GPT-4o Editing Quality Assessment & User Study. The GPT-4o evaluation provides additional
quality validation through automated semantic and perceptual analysis across three dimensions, con-
sistently demonstrating RegionE’s superior performance. For semantic consistency (G-SC), RegionE
achieves scores of 7.552, 7.278, and 8.242, matching or exceeding original models while maintaining
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Table 1: Comparison of editing quality and efficiency between RegionE and the baseline. All the
evaluations are carried out on a single NVIDIA H800 GPU. S denotes the strategy for reducing
spatial redundancy, while T denotes the strategy for reducing temporal redundancy.

Model Type Against Vanilla GPT-4o Score Efficiency
PSNR↑ SSIM ↑ LPIPS ↓ G-SC ↑ G-PQ ↑ G-O ↑ Latency (s) ↓ Speedup ↑

Step1X-Edit (Liu et al., 2025b) - - - 7.479 7.466 6.906 27.945 1.000
+ Stepskip T 26.719 0.898 0.096 7.491 7.343 6.880 12.299 2.272
+ FORA (Selvaraju et al., 2024) T 22.126 0.835 0.178 6.078 7.588 5.863 14.330 1.950
+ ∆-DiT (Chen et al., 2024) T 24.659 0.874 0.122 7.432 7.233 6.795 12.728 2.196
+ TeaCache (Liu et al., 2025a) T 28.262 0.924 0.072 7.455 7.361 6.866 11.212 2.493
+ RAS (Liu et al., 2025c) S 26.819 0.892 0.100 7.339 7.072 6.615 15.239 1.834
+ ToCa (Zou et al., 2024a) S 24.699 0.844 0.152 7.185 6.705 6.350 22.149 1.262
+ Ours (RegionE) T & S 30.520 0.939 0.054 7.552 7.405 6.948 10.865 2.572

FLUX.1 Kontext (Labs et al., 2025) - - - 7.197 6.963 6.497 14.682 1.000
+ Stepskip T 26.199 0.838 0.123 7.126 6.938 6.463 8.512 1.725
+ FORA (Selvaraju et al., 2024) T 24.685 0.809 0.146 7.085 6.897 6.383 7.497 1.958
+ ∆-DiT (Chen et al., 2024) T 20.227 0.723 0.225 7.055 6.918 6.411 6.751 2.175
+ TeaCache (Liu et al., 2025a) T 28.307 0.869 0.097 7.233 6.846 6.455 6.203 2.367
+ RAS (Liu et al., 2025c) S 26.217 0.829 0.132 7.216 6.785 6.460 8.219 1.786
+ ToCa (Zou et al., 2024a) S 23.906 0.767 0.192 6.985 6.589 6.237 11.299 1.299
+ Ours (RegionE) T & S 32.133 0.917 0.057 7.278 6.953 6.538 6.096 2.409

Qwen-Image-Edit (Wu et al., 2025) - - - 8.242 7.948 7.700 32.125 1.000
+ Stepskip T 28.439 0.892 0.077 8.090 7.875 7.572 17.555 1.830
+ FORA (Selvaraju et al., 2024) T 26.508 0.863 0.098 8.032 7.760 7.501 17.815 1.803
+ ∆-DiT (Chen et al., 2024) T 25.020 0.821 0.116 7.964 7.718 7.417 17.470 1.839
+ TeaCache (Liu et al., 2025a) T 28.314 0.900 0.075 8.084 7.841 7.563 16.445 1.954
+ RAS (Liu et al., 2025c) S 27.251 0.879 0.090 8.152 7.680 7.515 22.327 1.439
+ ToCa (Zou et al., 2024a) S OOM OOM OOM OOM OOM OOM OOM OOM
+ Ours (RegionE) T & S 31.115 0.937 0.046 8.242 7.968 7.731 15.604 2.059

FLUX.1 Kontext + RegionE FLUX.1 Kontext

Step1X-Edit + RegionE Step1X-Edit

Qwen-Image-Edit + RegionE Qwen-Image-Edit

Figure 4: User study results for the RegionE.

substantial acceleration, with Qwen-Image-Edit
showing perfect preservation (8.242) despite
2.059× speedup. The perceptual quality (G-PQ)
scores of 7.405, 6.953, and 7.968 consistently
outperform competing acceleration methods by
0.1 to 0.3 points, demonstrating the practical
preservation of visual coherence through region-
aware processing. Overall quality (G-O) scores
of 6.948, 6.538, and 7.731 provide holistic as-
sessment validation, with the alignment between
GPT-4o assessments and quantitative metrics
(PSNR, SSIM, LPIPS) strengthening confidence

in RegionE’s comprehensive quality preservation across multiple evaluation dimensions and provid-
ing additional evidence of the hybrid temporal-spatial optimization approach’s effectiveness. We also
conducted a user study, and the results are shown in Figure 4. The findings indicate that participants
had difficulty discerning whether the edited images were accelerated using RegionE, further validating
the high-fidelity capabilities of RegionE.

Efficiency Analysis. RegionE demonstrates substantial efficiency gains while maintaining superior
quality, achieving an optimal balance between acceleration and performance preservation with
impressive results across all evaluated models. The method achieves speedups of 2.572×, 2.409×,
and 2.059× across Step1X-Edit, FLUX.1 Kontext, and Qwen-Image-Edit respectively, translating to
significant absolute latency reductions: from 27.945s to 10.865s, from 14.682s to 6.096s, and from
32.125s to 15.604s respectively. RegionE occupies the optimal position on the efficiency-quality
curve, maintaining the highest quality metrics while achieving competitive or superior acceleration
compared to methods that sacrifice substantial quality for higher speedups.

Visualization. Figure 5 presents partial visualizations of different acceleration methods on Step1X-
Edit. Among the baselines, RegionE produces edited outputs closest to the vanilla setting at higher
speedups, preserving both details and contours. The last column shows ARP predictions of spatial
regions in RegionE, where unedited regions are masked. These masked regions closely match human
perception. Additional visualizations for other tasks and models are provided in the supplementary.
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Table 2: Ablation study on cache design and stage design in RegionE.

Variant Against Vanilla GPT-4o Score Efficiency
PSNR↑ SSIM ↑ LPIPS ↓ G-SC ↑ G-PQ ↑ G-O ↑ Latency (s) ↓ Speedup ↑

RegionE 30.520 0.939 0.054 7.552 7.405 6.948 10.865 2.572

Cache Design w/o RIKVCache 22.868 0.822 0.207 5.997 5.389 5.191 10.223 2.734
w/o AVDCache 31.139 0.946 0.046 7.570 7.482 7.023 16.122 1.733

Stage Design
w/o STS 21.441 0.814 0.161 7.045 6.758 6.325 7.149 3.909
w/o SMS 28.857 0.904 0.085 7.456 7.207 6.773 9.766 2.862
w/o Forced Step 28.452 0.915 0.080 7.536 7.305 6.925 10.204 2.739

Change the bear’s material to glass.

Change the text 'hotwind' to 'cool breeze’.

Add a potted green plant to the right of the sofa.

Replace the two children with a fire truck.

Input Stepskip FORA △-DiT TeaCache RAS ToCa Ours 
(RegionE)

Edited 
RegionVanilla

Material Alter

Text Change

Subject Add

Subject Replace

Figure 5: Examples of edited images by RegionE and baseline on Step1X-Edit-v1p1.

5.3 ABLATION STUDY

We conduct ablation studies to investigate the contributions of different components in RegionE,
primarily on the Step1X-Edit-v1p1. The quantitative results are summarized in Table 2.

Cache Design. We propose two key components: RIKVCache and AVDCache. Removing RIKV-
Cache, i.e., performing local attention within the edited region without injecting instruction infor-
mation or context from the unedited region, results in a 2.734× speed-up. However, this comes at a
significant cost to editing quality, with PSNR dropping from 30.520 to 22.868 and G-O decreasing
from 6.948 to 5.191. This demonstrates that global context supervision is crucial even during region
generation. In contrast, removing AVDCache results in a slight improvement in editing quality (G-O
increases from 6.948 to 7.023), but without eliminating redundancy across timesteps, the acceleration
is limited to 1.733. This indicates that AVDCache significantly improves inference efficiency with
minimal degradation in quality.

Stage Design. We introduce two auxiliary stages: Stabilization Stage (STS) and Smooth Stage
(SMS), as well as a forced step in the region-aware generation stage (RAGS). Removing STS causes
substantial drops in editing quality (PSNR: 30.520 → 21.441, LPIPS: 0.054 → 0.161, G-O: 6.948 →
6.325). As discussed in Section 4, STS addresses the instability in speed estimation, and skipping it
results in degraded performance. Removing SMS leads to smaller declines in both pixel-level (PSNR:
30.520 → 28.857, SSIM: 0.939 → 0.904) and perceptual metrics (G-O: 6.948 → 6.773), reflecting
its role in bridging the gap between edited and unedited regions. Finally, when the forced step in
RAGS was removed, since its role was to mitigate the decay of KV similarity over time, its removal
led to a 2-point drop in PSNR, further validating its necessity.

Sensitivity of Parameters δ and η. The parameter δ controls the proportion of cached timesteps.
The parameter η is used to distinguish between edited and unedited regions. We evaluate 25 different
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Figure 6: Sensitivity analysis of hyperparameters δ and η performed on Step1X-Edit-v1p1.
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+ RegionEStep1X-EditFLUX.1 Kontext + RegionE Qwen-Image-Edit + RegionE

Vanilla: 36.94G (≈ 6.7% Memory overhead) Vanilla: 47.63G (≈ 10.2% Memory overhead) Vanilla: 63.39G (≈ 9.2% Memory overhead)

Figure 7: Speedup and GPU memory usage at different levels of spatiotemporal redundancy.

combinations of δ and η on the Step1X-Edit, and the quantitative results of editing quality are shown
in Figure 6. The results indicate that: (1) as δ increases, more timesteps are skipped and editing
quality deteriorates; and (2) as η increases, a larger portion of the image is considered edited, resulting
in slower generation due to the increased area requiring local synthesis, but improved editing quality.

Speedup and GPU Memory Across Redundancy Levels. Figure 7 summarizes the speedup and
memory consumption of RegionE under varying redundancy levels. The horizontal axis represents
the number of cached timesteps, and the vertical axis denotes the proportion of unedited regions,
evaluated on 1024×1024 images. As the edited region shrinks and more timesteps are skipped,
RegionE yields higher speedups, reaching up to 3.15×, 3.39×, and 2.55× on FLUX.1 Kontext, Step1X-
Edit, and Qwen-Image, respectively. Memory usage remains largely unaffected across redundancy
levels, with RegionE incurring only 6%–10% additional overhead compared to the vanilla setting.

6 CONCLUSION

Inspired by temporal and spatial redundancy in IIE, we propose RegionE, an adaptive, region-aware
generation framework that accelerates the IIE process. Specifically, we perform early prediction
on spatial regions using ARP and combine it with RIKVCache for region-wise editing to reduce
spatial redundancy. We also use AVDCache to minimize temporal redundancy. Experiments show
that RegionE achieves 2.57×, 2.41×, and 2.06× end-to-end speedups on Step1X-Edit and FLUX.1
Kontext, and Qwen-Image-Edit, respectively, while maintaining minimal bias (PSNR 30.52–32.13)
and negligible quality loss (GPT-4o evaluation results remain comparable). These results demonstrate
the effectiveness of RegionE in reducing redundancy in IIE.
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RegionE: Adaptive Region-Aware Generation for Efficient Image Editing

Supplementary Material

We organize the supplementary material as follows:

• Section A: Pseudocode of RegionE

• Section B: Analysis of Adaptive Velocity Decay Cache

• Section C: Discussion on Using AVDCache During the Stabilization Stage

• Section D: Discussion on High-Resolution Image Editing

• Section E: Discussion on Editing Boundaries

• Section F: Discussion on Multi-Region Editing

• Section G: Discussion on Global Editing

• Section H: Discussion on Bad Cases

• Section I: Experimental Setup of the User Study

• Section J: Per-Task Visualization Results in the Benchmark

• Section K: Per-Task Quantitative Results in the Benchmark

• Section L: Statement on LLM Usage
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A PSEUDOCODE OF REGIONE

Algorithm 1 RegionE: Adaptive Region-Aware Generation for Efficient Image Editing

Input: Diffusion transformer Φ(·), sampling step T , insturction image XI , text tokens XP , random
noise XT , total steps in stabilization stage tst, total steps in smooth stage tsm, threshold of
adaptive region partition η, threshold of adaptive velocity decay cache δ, sorted forced steps list
tf list.

1: // Initialization
2: RIKVCache CKV = None, RIKVCache flag f = (False, False); AVDCache CA=None;
3: Accumulative Error e = 0; tf list.insert(0, T − tst); tf list.insert(−1, tsm − 1);
4: // Stabilization Stage
5: for i← T to T − tst do
6: if i == T − tst then
7: f [0] = True ▷ first dimension represents storing, second dimension represents retrieving
8: end if
9: vti , CKV = Φ([XP ,Xti ,X

I ], CKV , f)
10: Xti−1

= Xti − (ti − ti−1) · vti
11: end for
12: // Region-Aware Generation Stage
13: ▷ Adaptive Region Partition
14: X̂0 = XtT−tst

− vT−tst+1 · tT−tst

15: Eindex, Uindex = Erosion & Dilate(cos(X̂0,X
I) > η)

16: ▷ Region-Aware Generation
17: for i← 0 to len(tf list)− 2 do
18: prev = tf list[i]; next = tf list[i+ 1]
19: XE

tprev = Xtprev [Eindex];X
U
tprev = Xtprev [Uindex]

20: X̂U
tnext+1

= XU
tprev − vU

tprev+1 · (tprev − tnext+1) ▷ one-step estimation for unedited region
21: f [0] = False, f [1] = True ▷ iteritive denoising for edited region
22: for j ← prev to next+ 1 do
23: ▷ Adaptive Velocity Decay Cache
24: Calculate e according to Eq.8
25: if e > δ then
26: vE

tj , CKV = Φ([XP ,XE
tj ,X

I ], CKV , f)

27: CA = vE
tj

28: XE
tj−1

= XE
tj − (tj − tj−1) · vE

tj
29: else
30: vE

tj = CA∗decay factor according to Eq.7
31: end if
32: end for
33: Xtnext+1 = gather(XU

tnext
,XE

tnext+1
)

34: f [0] = True, f [1] = False
35: vtnext+1

, CKV = Φ([XP ,Xtnext+1
,XI ], CKV , f)

36: Xtnext
= Xtnext+1

− (tnext − tnext+1) · vtnext+1

37: end for
38: // Smooth Stage
39: f [0] = False, f [1] = False
40: for i← tsm − 1 to 1 do
41: vti , CKV = Φ(Xti , CKV , f)
42: Xti−1 = Xti − (ti − ti−1) · vti
43: end for
Output: Target image after editing X0
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B ANALYSIS OF ADAPTIVE VELOCITY DECAY CACHE
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Figure 8: Pipeline Based on Residual Cache.

In current research on diffusion model caching, many studies focus on residual-based caches (Chen
et al., 2024; Liu et al., 2025a; Zhou et al., 2025; Bu et al., 2025), which store the ∆ shown in
Figure 8. Based on the sampling formula in Equation 4 and the definition of caching, we can derive
the following expression: 

Xti−1
= Xti − (ti − ti−1) · vti

∆ = vti −Xti

vti−1
= Xti−1

+∆

. (10)

It can be solved as:
vti−1

= [1− (ti − ti−1)] · vti . (11)

Similarly, for the timestep ti−2, we have:

vti−2 = [1− (ti−1 − ti−2)] · vti−1 . (12)

Therefore, if we perform N steps of residual caching, as illustrated in Figure 8, we can obtain:

vti−N
=

N∏
m=1

[1− (ti−m+1 − ti−m)] · vti

=

N∏
m=1

[1−∆ti−m+1,i−m]︸ ︷︷ ︸
Determined by Solver

·vti . (13)

This further indicates that the current residual cache and the velocity cache are equivalent. Since
∆ti−m+1,i−m is a minimal value approaching zero, the coefficient before vti is less than one.
Therefore, it can be seen that the current residual cache is essentially a decayed form of the velocity
cache. Furthermore, we observe that the solver determines the decay coefficient in Equation 13.
However, as shown in Figure 2d, the decay of velocity exhibits a timestep-dependent behavior. To
account for this, we introduce an external timestep correction coefficient γti . Notably, the AVDCache
proposed in this paper reduces to Equation 13 when the correction coefficient γti equals 1.

C DISCUSSION ON USING AVDCACHE DURING THE STABILIZATION STAGE

In RegionE, AVDCache is used exclusively in the Region-Aware Generation Stage. This design
choice is motivated by the following considerations:

The first stage of RegionE is the Stabilization Stage. We do not apply caching in this stage for
four reasons. (a) As discussed in Section 4 of the manuscript, the input in this stage has a low
signal-to-noise ratio, and the DiT predictions are inherently unstable, making it unsuitable for
acceleration techniques such as caching. (b) Velocity similarity between consecutive steps is very
low at the beginning, and since this stage is responsible for shaping the coarse structure of the image,

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

introducing caching would harm generation quality. (c) This stage concludes with the separation of
edited and unedited regions; thus, avoiding any loss during this stage is crucial. (d) Prior studies
have also emphasized avoiding efficient methods at early timesteps, such as SVG (Xi et al., 2025),
ViDiT-Q (Zhao et al., 2025b), and others.

For completeness, we also applied AVDCache to the Stabilization Stage, and the quantitative results
are shown in Table 3. We observe that applying AVDCache in the STS yields higher speedups but
also leads to a noticeable degradation in editing quality. Specifically, PSNR largely drops by 1.91,
SSIM decreases by 0.013, LPIPS worsens by 0.16, and G-O declines by 0.066. To achieve a better
balance between generation quality and efficiency, we therefore choose not to apply AVDCache in
the STS.

Table 3: Quantitative impact of applying AVDCache in the Stabilization Stage (STS).

Model Against Vanilla GPT-4o Score Efficiency
PSNR↑ SSIM ↑ LPIPS ↓ G-SC ↑ G-PQ ↑ G-O ↑ Latency (s) ↓ Speedup ↑

Step1X-Edit - - - 7.479 7.466 6.906 27.945 1.000
+ Ours wo STS Cache 30.520 0.939 0.054 7.552 7.405 6.948 10.865 2.572
+ Ours w STS Cache 28.610 0.926 0.070 7.455 7.395 6.882 8.583 3.256

D DISCUSSION ON HIGH-RESOLUTION IMAGE EDITING

In the main experiments, we focus on 1k-resolution reference images since Step1X-Edit, FLUX.1
Kontext, and Qwen-Image-Edit are all native 1k-resolution editing models. Here, we provide a
preliminary evaluation of RegionE on high-resolution image editing, as shown in Figure 9. High-
resolution images contain more tokens after tokenization, resulting in greater spatial redundancy,
which allows RegionE to achieve higher acceleration. The results in Figure 9 demonstrate both high
fidelity and increased speedup, further validating this observation. Since there is currently no suitable
benchmark for high-resolution image editing, we do not report quantitative results on a dataset.

Prompt: Remove the moon.

Prompt: Remove the word ‘am’.

Reference Image Step1X-Edit Step1X-Edit + RegionE

Resolution: 1874×1248

Resolution: 1328×1760

80.55s

80.24s

30.32s [     ×2.66]

29.89s [     ×2.69]

🚀

🚀

Figure 9: Visualization results in high-resolution image editing scenarios.
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E DISCUSSION ON EDITING BOUNDARIES

Image editing with RegionE does not introduce boundary artifacts. This can be attributed to the
following reasons: a) During local generation in the edited region, RegionE uses RIKVCache, which
allows the Attention computation to access global key-value information. As a result, the edited
region maintains awareness of the entire image, and only extremely minor boundary artifacts may
occur at this stage. b) The final stage in RegionE is the Smooth Stage, which effectively eliminates any
subtle boundary artifacts between edited and unedited regions. Two randomly selected visualization
examples are shown in Figure 10, where the boundaries between edited and unedited regions are
imperceptible.

Reference Image Step1X-Edit Step1X-Edit + RegionE Edited Mask

Prompt: remove the peanuts

Prompt: remove the freight train

Figure 10: Visualization of image editing boundaries.

Reference Image Step1X-Edit Step1X-Edit + RegionE Edited Mask

Prompt: Alter the color of the mirror frame to orange.

Prompt: Retouch this photo, making the hair platinum blonde, improving the hairstyle at the ends, and 
making the fireworks more brilliant and colorful.

Figure 11: Visualization in multi-region image editing scenarios.
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F DISCUSSION ON MULTI-REGION EDITING

In Figure 5, we show generation results when the edited region is contiguous. In practice, whether
the edited region is contiguous or dispersed does not affect RegionE’s performance. This is because
RegionE leverages RIKVCache, where the local query (Q) accesses global key-value (KV) informa-
tion during Attention computation. Consequently, even dispersed edited regions attend to the same
global context, avoiding significant computational bias. Figure 11 visualizes several examples with
dispersed edited regions, demonstrating that RegionE achieves accelerated editing while maintaining
high fidelity.

G DISCUSSION ON GLOBAL EDITING

In practical applications, fully global editing scenarios also occur. In such cases, the spatial redun-
dancy in the editing task is low, and RegionE primarily exploits redundancy across timesteps to
accelerate the editing process. Figure 12 shows an example of this type of task, demonstrating that
RegionE can still achieve high-fidelity generation.

Reference Image Step1X-Edit Step1X-Edit + RegionE Edited Mask

Prompt: Adjust the image style to an oil painting with bold brushstrokes.

Prompt: Add vintage film grain and faded effects.

Figure 12: Visualization results in global image editing scenarios.

H DISCUSSION ON BAD CASES

At higher speedup, RegionE may produce some rare bad cases. Upon reviewing the entire dataset,
we found that these few instances typically involve minor generation deviations that do not affect
instruction adherence. As shown in Figure 13, in the first example, the color of the top corner slightly
deviates, and in the second example, the shape of the ceramic shows a small discrepancy. However,
these deviations do not compromise the overall adherence to the editing instructions.

I EXPERIMENTAL SETUP OF THE USER STUDY

In this section, we provide a detailed description of the user study setup. For evaluating RegionE
on Step1X-Edit and Qwen-Image-Edit, we selected a total of 11 tasks from GEdit-Bench, randomly
sampling 5 image–instruction pairs per task, resulting in 55 samples. For FLUX.1 Kontext, we
selected 5 tasks from Kontext Bench, randomly sampling 11 image–instruction pairs per task, also
totaling 55 samples.

After constructing the evaluation sets, we generated edited images using the base models both
with and without RegionE, and saved the corresponding outputs. We then collected votes from 10
participants, who were asked to choose the image with higher quality and better instruction adherence.
The order of the images was randomized, and participants were unaware of which method was used
for each image. If the two images were similar, participants could select a neutral option. Finally, the
scores for the two methods were aggregated. The layout of the questionnaire is shown in Figure 14.
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Reference Image Step1X-Edit Step1X-Edit + RegionE Edited Mask

Prompt: alter the color of doughnut to silver

Prompt: Change the cup in hand to ceramic.

Figure 13: Visualization of failure cases.

User Study on Image Editing

We are evaluating two image-editing models. You will be presented with 165 items, each containing five components: the
original image, the editing instruction, the output from Model A, the output from Model B, and evaluation options (Model
A, Model B, Neutral).
Please compare the two edited images in terms of output quality and adherence to the instruction, and select the model
that performs better overall. If their results are comparable, select “Neutral.” Thank you for your participation and
cooperation. (Model A and Model B are randomized for each item to ensure objectivity.)

Instruction

Change this bag to red.

Original Image

Output from Model A Output from Model B

Q1.

Preference.

Model A Model B Neutral🔘

Figure 14: Thumbnails from the user study questionnaire.
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J PER-TASK VISUALIZATION RESULTS IN THE BENCHMARK

Due to space limitations, we put the visualization results of some tasks in the manuscript. Here,
we provide a visual comparison of additional tasks and models. Figure 15 and Figure 16 show the
visualization results of 11 tasks on Step1X-Edit. Figure 18 and Figure 19 show the visualization
results of 11 tasks on Qwen-Image-Edit. Figure 17 show the visualization results of 5 tasks on
FLUX.1 Kontext.
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Please change the background wall to a green forest with high.

Change the background to an indoor setting.

Change the bed sheet color to sky blue.

Alter the color of doughnut to silver.

Change the bear’s material to glass.

Change the plane's material to feathers.

Change the expression to a crying face.

Make the expression more sorrowful.

Without altering or beautifying anything else, just shape my eyebrows to suit me.

Remove his abs and add more fat to his body.
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Figure 15: Examples of edited images by RegionE and baseline on Step1X-Edit-v1p1.
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Generate a cyberpunk-style photo.

Convert this image into an anime style.

Add a potted green plant to the right of the sofa.

Add a flying baseball coming towards the player.

Remove the umbrella.

Remove the freight train.

Replace the two children with a fire truck.

Replace the cat on the laptop with a robot.

Change the text 'hotwind' to 'cool breeze’.

Change the time to nighttime.

Change the weather to snow.
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Replace the text 'PROJECT' with 'PROMPT’.

Figure 16: Examples of edited images by RegionE and baseline on Step1X-Edit-v1p1.
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The same man is now sitting on a throne.

Place this logo on the homescreen of an iphone as an app icon.

Its now spring season with flowers blooming on the sidewalk.

Make this a real photo.

Remove the text.

The man is now standing on the skis and riding away.

Make a photo of a cat smelling a flower in the style of this image.

Using this style make art of a castle made of ice cream on top of a cone.

Change the text from "Black Forest Labs" to "Make Pixels Beautiful“.

Replace all the text with "Black Forest Labs"
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Figure 17: Examples of edited images by RegionE and baseline on FLUX.1 Kontext.
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Change the background to a starry sky.

Change the background to a green grassland.

Turn the color of dog to pink.

Change the color of suit cases to silver.

Replace the bench’s material with marble.

Replace the doctor's coat with a Merino wool sweater.

Change the action of cat to sleeping.

Make the action of the man to cheering.

Make his beard longer.

Make him look sad.

Adjust the image style to a bubble-like aesthetic.

Edit this image into a bright and sunny style for use as an avatar.
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Figure 18: Examples of edited images by RegionE and baseline on Qwen-Image-Edit.
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Add a chair in the background.

Add a poolside lounge chair.

Please remove the woman outside the car while keeping everything 
else intact, then re-output the image for me.

Remove the black railing.

Give me long hair—shoulder-length or waist-length.

Replace the laptop in front of the girl with a book.

Little Yue, can you replace the character "曹" with "叶" inside?

Change the text 'SCHOOL' to 'COLLEGE’.

Change the nighttime scene in the image to daytime.

Change the weather to foggy.
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Figure 19: Examples of edited images by RegionE and baseline on Qwen-Image-Edit.
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K PER-TASK QUANTITATIVE RESULTS IN THE BENCHMARK

In this section, we present the performance of RegionE and the baseline methods on each task in
the benchmark. Table 4-Table 14 show the performance on the 11 tasks: motion-change, ps-human,
color-alter, material-alter, subject-add, subject-remove, style-change, tone-transfer, subject-replace,
text-change, and background-change. Table 15-Table19 show the performance on the five tasks:
Character Reference, Style Reference, Text Editing, Instruction Editing-Global, and Instruction
Editing-Local.

Table 4: Comparison of RegionE and other baselines on the motion[-change task of GEdit-Bench,
evaluated in terms of quality and efficiency.

Model Against Vanilla GPT-4o Score Efficiency
PSNR↑ SSIM ↑ LPIPS ↓ G-SC ↑ G-PQ ↑ G-O ↑ Latency (s) ↓ Speedup ↑

Step1X-Edit (Liu et al., 2025b) - - - 4.350 7.950 4.444 27.950 1.000
+ Stepskip 25.887 0.902 0.093 4.350 8.100 4.562 12.306 2.271
+ FORA (Selvaraju et al., 2024) 20.935 0.818 0.189 2.175 7.575 2.385 14.339 1.949
+ ∆-DiT (Chen et al., 2024) 24.549 0.876 0.121 4.350 7.975 4.445 12.730 2.196
+ TeaCache (Liu et al., 2025a) 26.926 0.925 0.068 4.475 8.050 4.524 11.218 2.492
+ RAS (Liu et al., 2025c) 25.888 0.889 0.109 4.025 7.375 4.012 15.253 1.832
+ ToCa (Zou et al., 2024a) 24.428 0.843 0.165 3.775 6.975 3.578 22.225 1.258
+ Ours (RegionE) 29.633 0.937 0.053 4.625 7.775 4.763 10.739 2.603

Qwen-Image-Edit (Wu et al., 2025) - - - 4.850 8.550 5.112 32.140 1.000
+ Stepskip 27.791 0.905 0.066 4.725 8.625 5.029 17.566 1.830
+ FORA (Selvaraju et al., 2024) 26.744 0.889 0.079 4.825 8.325 4.995 17.827 1.803
+ ∆-DiT (Chen et al., 2024) 25.756 0.848 0.095 4.675 8.575 4.921 17.481 1.839
+ TeaCache (Liu et al., 2025a) 26.776 0.911 0.070 5.025 8.500 5.251 16.389 1.961
+ RAS (Liu et al., 2025c) 26.585 0.882 0.096 5.000 8.625 5.262 22.300 1.441
+ ToCa (Zou et al., 2024a) OOM OOM OOM OOM OOM OOM OOM OOM
+ Ours (RegionE) 29.416 0.932 0.057 4.825 8.550 5.164 15.695 2.048

Table 5: Comparison of RegionE and other baselines on the ps-human task of GEdit-Bench, evaluated
in terms of quality and efficiency.

Model Against Vanilla GPT-4o Score Efficiency
PSNR↑ SSIM ↑ LPIPS ↓ G-SC ↑ G-PQ ↑ G-O ↑ Latency (s) ↓ Speedup ↑

Step1X-Edit (Liu et al., 2025b) - - - 4.614 8.086 4.649 27.927 1.000
+ Stepskip 29.220 0.916 0.069 4.600 8.086 4.728 12.296 2.271
+ FORA (Selvaraju et al., 2024) 23.596 0.863 0.142 3.414 8.529 3.920 14.323 1.950
+ ∆-DiT (Chen et al., 2024) 26.348 0.884 0.099 4.800 8.086 4.893 12.728 2.194
+ TeaCache (Liu et al., 2025a) 31.428 0.942 0.047 5.114 7.929 5.191 11.208 2.492
+ RAS (Liu et al., 2025c) 29.077 0.921 0.072 4.400 7.886 4.486 15.237 1.833
+ ToCa (Zou et al., 2024a) 26.716 0.878 0.125 4.786 7.914 4.838 22.073 1.265
+ Ours (RegionE) 32.985 0.957 0.037 4.629 8.114 4.731 10.813 2.583

Qwen-Image-Edit (Wu et al., 2025) - - - 5.814 8.500 5.972 32.100 1.000
+ Stepskip 32.080 0.936 0.040 5.757 8.414 5.904 17.553 1.829
+ FORA (Selvaraju et al., 2024) 30.120 0.920 0.049 5.700 8.443 5.933 17.816 1.802
+ ∆-DiT (Chen et al., 2024) 28.323 0.887 0.062 5.743 8.500 5.911 17.462 1.838
+ TeaCache (Liu et al., 2025a) 32.347 0.948 0.038 5.714 8.400 5.833 16.360 1.962
+ RAS (Liu et al., 2025c) 29.857 0.917 0.061 5.843 8.271 5.884 22.340 1.437
+ ToCa (Zou et al., 2024a) OOM OOM OOM OOM OOM OOM OOM OOM
+ Ours (RegionE) 33.550 0.963 0.029 6.086 8.486 6.227 15.473 2.075
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Table 6: Comparison of RegionE and other baselines on the color-alter task of GEdit-Bench, evaluated
in terms of quality and efficiency.

Model Against Vanilla GPT-4o Score Efficiency
PSNR↑ SSIM ↑ LPIPS ↓ G-SC ↑ G-PQ ↑ G-O ↑ Latency (s) ↓ Speedup ↑

Step1X-Edit (Liu et al., 2025b) - - - 8.750 6.875 7.395 28.019 1.000
+ Stepskip 27.291 0.919 0.080 8.325 6.975 7.349 12.330 2.273
+ FORA (Selvaraju et al., 2024) 21.871 0.838 0.132 8.800 7.525 7.889 14.356 1.952
+ ∆-DiT (Chen et al., 2024) 24.942 0.901 0.107 8.075 6.600 6.968 12.770 2.194
+ TeaCache (Liu et al., 2025a) 28.084 0.938 0.050 8.525 6.950 7.345 11.242 2.492
+ RAS (Liu et al., 2025c) 28.800 0.909 0.069 8.700 6.925 7.432 15.274 1.834
+ ToCa (Zou et al., 2024a) 25.917 0.864 0.118 8.600 6.725 7.232 21.996 1.274
+ Ours (RegionE) 32.739 0.956 0.032 8.850 7.250 7.747 11.188 2.504

Qwen-Image-Edit (Wu et al., 2025) inf 1.000 0.000 9.250 7.525 8.170 32.082 1.000
+ Stepskip 29.795 0.896 0.064 9.050 7.450 8.084 17.527 1.830
+ FORA (Selvaraju et al., 2024) 28.035 0.879 0.078 8.875 7.350 7.872 17.795 1.803
+ ∆-DiT (Chen et al., 2024) 25.892 0.835 0.094 9.025 7.375 8.021 17.479 1.835
+ TeaCache (Liu et al., 2025a) 30.757 0.922 0.057 8.775 7.250 7.840 16.566 1.937
+ RAS (Liu et al., 2025c) 29.132 0.909 0.060 9.150 7.050 7.860 22.356 1.435
+ ToCa (Zou et al., 2024a) OOM OOM OOM OOM OOM OOM OOM OOM
+ Ours (RegionE) 33.144 0.951 0.032 9.225 7.475 8.172 15.527 2.066

Table 7: Comparison of RegionE and other baselines on the material-alter task of GEdit-Bench,
evaluated in terms of quality and efficiency.

Model Against Vanilla GPT-4o Score Efficiency
PSNR↑ SSIM ↑ LPIPS ↓ G-SC ↑ G-PQ ↑ G-O ↑ Latency (s) ↓ Speedup ↑

Step1X-Edit (Liu et al., 2025b) - - - 8.300 6.575 7.226 27.880 1.000
+ Stepskip 24.377 0.858 0.117 8.050 5.900 6.676 12.260 2.274
+ FORA (Selvaraju et al., 2024) 20.406 0.763 0.224 7.175 6.875 6.579 14.286 1.952
+ ∆-DiT (Chen et al., 2024) 21.995 0.829 0.154 8.025 5.975 6.695 12.685 2.198
+ TeaCache (Liu et al., 2025a) 25.630 0.875 0.099 8.175 6.000 6.796 11.163 2.498
+ RAS (Liu et al., 2025c) 24.302 0.844 0.141 8.275 5.700 6.633 15.202 1.834
+ ToCa (Zou et al., 2024a) 22.503 0.793 0.186 7.850 5.450 6.352 22.306 1.250
+ Ours (RegionE) 27.248 0.897 0.080 8.475 6.200 6.997 11.251 2.478

Qwen-Image-Edit (Wu et al., 2025) - - - 8.725 7.150 7.629 32.156 1.000
+ Stepskip 26.300 0.870 0.093 8.650 6.875 7.557 17.578 1.829
+ FORA (Selvaraju et al., 2024) 24.699 0.841 0.116 8.525 6.675 7.389 17.839 1.803
+ ∆-DiT (Chen et al., 2024) 23.827 0.799 0.133 8.425 6.475 7.205 17.472 1.840
+ TeaCache (Liu et al., 2025a) 26.788 0.876 0.092 8.725 6.775 7.564 16.485 1.951
+ RAS (Liu et al., 2025c) 26.927 0.862 0.098 8.400 6.625 7.192 22.357 1.438
+ ToCa (Zou et al., 2024a) OOM OOM OOM OOM OOM OOM OOM OOM
+ Ours (RegionE) 30.024 0.917 0.060 8.550 6.900 7.415 15.671 2.052

Table 8: Comparison of RegionE and other baselines on the subject-add task of GEdit-Bench,
evaluated in terms of quality and efficiency.

Model Against Vanilla GPT-4o Score Efficiency
PSNR↑ SSIM ↑ LPIPS ↓ G-SC ↑ G-PQ ↑ G-O ↑ Latency (s) ↓ Speedup ↑

Step1X-Edit (Liu et al., 2025b) - - - 8.283 7.950 7.905 27.912 1.000
+ Stepskip 25.692 0.892 0.085 8.583 8.083 8.142 12.290 2.271
+ FORA (Selvaraju et al., 2024) 21.717 0.848 0.150 6.400 8.083 6.131 14.322 1.949
+ ∆-DiT (Chen et al., 2024) 24.203 0.868 0.099 8.017 8.050 7.655 12.727 2.193
+ TeaCache (Liu et al., 2025a) 26.413 0.914 0.073 8.600 8.067 8.177 11.204 2.491
+ RAS (Liu et al., 2025c) 25.008 0.880 0.101 8.100 7.517 7.532 15.232 1.832
+ ToCa (Zou et al., 2024a) 23.524 0.820 0.159 7.650 6.950 6.939 22.062 1.265
+ Ours (RegionE) 28.514 0.923 0.058 8.383 7.950 7.858 10.528 2.651

Qwen-Image-Edit (Wu et al., 2025) - - - 9.117 8.017 8.381 32.081 1.000
+ Stepskip 27.666 0.890 0.092 8.767 7.950 8.146 17.532 1.830
+ FORA (Selvaraju et al., 2024) 26.871 0.879 0.093 9.017 7.933 8.313 17.810 1.801
+ ∆-DiT (Chen et al., 2024) 25.559 0.849 0.108 8.617 7.817 7.967 17.452 1.838
+ TeaCache (Liu et al., 2025a) 28.672 0.903 0.066 8.783 7.933 8.099 16.422 1.954
+ RAS (Liu et al., 2025c) 27.398 0.891 0.081 9.100 7.933 8.267 22.278 1.440
+ ToCa (Zou et al., 2024a) OOM OOM OOM OOM OOM OOM OOM OOM
+ Ours (RegionE) 30.763 0.938 0.050 8.983 8.233 8.441 15.295 2.097
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Table 9: Comparison of RegionE and other baselines on the subject-remove task of GEdit-Bench,
evaluated in terms of quality and efficiency.

Model Against Vanilla GPT-4o Score Efficiency
PSNR↑ SSIM ↑ LPIPS ↓ G-SC ↑ G-PQ ↑ G-O ↑ Latency (s) ↓ Speedup ↑

Step1X-Edit (Liu et al., 2025b) - - - 7.351 7.947 6.973 27.954 1.000
+ Stepskip 33.649 0.954 0.038 7.579 7.684 6.969 12.300 2.273
+ FORA (Selvaraju et al., 2024) 30.330 0.943 0.062 5.474 7.895 5.285 14.330 1.951
+ ∆-DiT (Chen et al., 2024) 31.847 0.948 0.047 7.930 7.684 7.319 12.724 2.197
+ TeaCache (Liu et al., 2025a) 36.735 0.973 0.024 7.281 7.737 6.841 11.213 2.493
+ RAS (Liu et al., 2025c) 32.966 0.936 0.052 7.211 7.860 6.861 15.236 1.835
+ ToCa (Zou et al., 2024a) 29.806 0.894 0.095 7.175 7.088 6.481 22.378 1.249
+ Ours (RegionE) 35.772 0.963 0.028 7.719 7.737 7.182 10.453 2.674

Qwen-Image-Edit (Wu et al., 2025) - - - 8.965 8.246 8.477 32.170 1.000
+ Stepskip 32.187 0.913 0.048 9.035 8.298 8.558 17.572 1.831
+ FORA (Selvaraju et al., 2024) 29.288 0.865 0.072 9.175 7.930 8.475 17.820 1.805
+ ∆-DiT (Chen et al., 2024) 27.056 0.826 0.090 8.895 7.947 8.348 17.486 1.840
+ TeaCache (Liu et al., 2025a) 31.687 0.899 0.051 8.895 8.228 8.441 16.434 1.958
+ RAS (Liu et al., 2025c) 28.440 0.876 0.080 8.842 8.035 8.371 22.331 1.441
+ ToCa (Zou et al., 2024a) OOM OOM OOM OOM OOM OOM OOM OOM
+ Ours (RegionE) 32.122 0.925 0.052 9.333 8.351 8.787 15.349 2.096

Table 10: Comparison of RegionE and other baselines on the style-change task of GEdit-Bench,
evaluated in terms of quality and efficiency.

Model Against Vanilla GPT-4o Score Efficiency
PSNR↑ SSIM ↑ LPIPS ↓ G-SC ↑ G-PQ ↑ G-O ↑ Latency (s) ↓ Speedup ↑

Step1X-Edit (Liu et al., 2025b) - - - 8.150 6.917 7.359 27.898 1.000
+ Stepskip 21.064 0.828 0.185 8.183 6.583 7.199 12.277 2.272
+ FORA (Selvaraju et al., 2024) 15.851 0.680 0.372 7.183 7.017 6.883 14.300 1.951
+ ∆-DiT (Chen et al., 2024) 18.893 0.791 0.233 8.167 6.367 7.066 12.684 2.200
+ TeaCache (Liu et al., 2025a) 21.695 0.857 0.156 8.000 6.733 7.213 11.187 2.494
+ RAS (Liu et al., 2025c) 21.355 0.814 0.193 8.217 6.400 7.108 15.217 1.833
+ ToCa (Zou et al., 2024a) 19.819 0.760 0.250 8.283 6.000 6.927 22.327 1.250
+ Ours (RegionE) 25.449 0.900 0.102 8.267 6.617 7.251 11.797 2.365

Qwen-Image-Edit (Wu et al., 2025) - - - 8.267 7.133 7.526 32.115 1.000
+ Stepskip 23.954 0.805 0.139 8.067 7.083 7.355 17.560 1.829
+ FORA (Selvaraju et al., 2024) 21.784 0.745 0.185 8.017 7.100 7.385 17.807 1.804
+ ∆-DiT (Chen et al., 2024) 20.552 0.662 0.219 8.117 7.033 7.395 17.455 1.840
+ TeaCache (Liu et al., 2025a) 23.137 0.816 0.152 8.300 7.133 7.544 16.414 1.957
+ RAS (Liu et al., 2025c) 24.073 0.772 0.169 7.983 7.000 7.348 22.275 1.442
+ ToCa (Zou et al., 2024a) OOM OOM OOM OOM OOM OOM OOM OOM
+ Ours (RegionE) 27.980 0.897 0.073 8.233 7.250 7.583 16.822 1.909

Table 11: Comparison of RegionE and other baselines on the tone-transfer task of GEdit-Bench,
evaluated in terms of quality and efficiency.

Model Against Vanilla GPT-4o Score Efficiency
PSNR↑ SSIM ↑ LPIPS ↓ G-SC ↑ G-PQ ↑ G-O ↑ Latency (s) ↓ Speedup ↑

Step1X-Edit (Liu et al., 2025b) - - - 6.950 7.325 6.679 27.874 1.000
+ Stepskip 24.744 0.899 0.122 7.200 7.325 6.917 12.260 2.274
+ FORA (Selvaraju et al., 2024) 19.078 0.786 0.251 6.900 8.125 7.088 14.293 1.950
+ ∆-DiT (Chen et al., 2024) 22.104 0.862 0.164 7.000 7.250 6.852 12.678 2.199
+ TeaCache (Liu et al., 2025a) 27.915 0.933 0.072 6.825 7.400 6.600 11.171 2.495
+ RAS (Liu et al., 2025c) 26.455 0.895 0.111 7.200 7.000 6.688 15.187 1.835
+ ToCa (Zou et al., 2024a) 23.954 0.840 0.159 6.500 6.550 5.991 22.408 1.244
+ Ours (RegionE) 30.860 0.945 0.064 6.900 7.275 6.641 11.496 2.425

Qwen-Image-Edit (Wu et al., 2025) - - - 8.475 8.025 8.084 32.160 1.000
+ Stepskip 29.715 0.862 0.092 8.150 8.000 7.820 17.562 1.831
+ FORA (Selvaraju et al., 2024) 27.514 0.839 0.117 8.025 7.875 7.771 17.841 1.803
+ ∆-DiT (Chen et al., 2024) 25.471 0.792 0.139 7.950 7.725 7.592 17.462 1.842
+ TeaCache (Liu et al., 2025a) 30.064 0.910 0.061 8.375 8.125 8.033 16.381 1.963
+ RAS (Liu et al., 2025c) 29.142 0.880 0.089 8.500 8.075 8.142 22.372 1.437
+ ToCa (Zou et al., 2024a) OOM OOM OOM OOM OOM OOM OOM OOM
+ Ours (RegionE) 34.051 0.948 0.034 8.450 8.275 8.199 15.851 2.029
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Table 12: Comparison of RegionE and other baselines on the subject-replace task of GEdit-Bench,
evaluated in terms of quality and efficiency.

Model Against Vanilla GPT-4o Score Efficiency
PSNR↑ SSIM ↑ LPIPS ↓ G-SC ↑ G-PQ ↑ G-O ↑ Latency (s) ↓ Speedup ↑

Step1X-Edit (Liu et al., 2025b) - - - 8.650 7.233 7.718 27.983 1.000
+ Stepskip 25.233 0.875 0.111 8.683 6.867 7.548 12.325 2.270
+ FORA (Selvaraju et al., 2024) 20.594 0.831 0.189 5.833 6.817 5.306 14.359 1.949
+ ∆-DiT (Chen et al., 2024) 22.927 0.835 0.141 8.500 6.733 7.345 12.766 2.192
+ TeaCache (Liu et al., 2025a) 25.856 0.915 0.088 8.417 7.183 7.536 11.245 2.488
+ RAS (Liu et al., 2025c) 25.072 0.888 0.116 8.250 6.433 6.996 15.268 1.833
+ ToCa (Zou et al., 2024a) 23.407 0.840 0.168 8.267 6.217 6.909 22.080 1.267
+ Ours (RegionE) 28.654 0.935 0.064 8.517 7.167 7.585 10.647 2.628

Qwen-Image-Edit (Wu et al., 2025) inf 1.000 0.000 8.883 7.683 8.136 32.161 1.000
+ Stepskip 26.344 0.897 0.076 8.783 7.733 8.128 17.575 1.830
+ FORA (Selvaraju et al., 2024) 24.578 0.864 0.104 8.600 7.550 7.930 17.836 1.803
+ ∆-DiT (Chen et al., 2024) 23.745 0.829 0.120 8.450 7.267 7.687 17.496 1.838
+ TeaCache (Liu et al., 2025a) 25.993 0.891 0.084 8.700 7.733 8.120 16.391 1.962
+ RAS (Liu et al., 2025c) 25.579 0.881 0.095 8.867 7.400 7.996 22.341 1.440
+ ToCa (Zou et al., 2024a) OOM OOM OOM OOM OOM OOM OOM OOM
+ Ours (RegionE) 29.388 0.938 0.047 8.967 7.767 8.242 15.446 2.082

Table 13: Comparison of RegionE and other baselines on the text-change task of GEdit-Bench,
evaluated in terms of quality and efficiency.

Model Against Vanilla GPT-4o Score Efficiency
PSNR↑ SSIM ↑ LPIPS ↓ G-SC ↑ G-PQ ↑ G-O ↑ Latency (s) ↓ Speedup ↑

Step1X-Edit (Liu et al., 2025b) - - - 8.293 8.091 7.900 28.027 1.000
+ Stepskip 30.069 0.955 0.032 8.222 8.192 7.951 12.331 2.273
+ FORA (Selvaraju et al., 2024) 26.368 0.941 0.049 7.000 7.899 6.926 14.375 1.950
+ ∆-DiT (Chen et al., 2024) 28.615 0.953 0.032 8.515 8.222 8.171 12.768 2.195
+ TeaCache (Liu et al., 2025a) 31.420 0.967 0.023 8.222 8.192 7.925 11.254 2.491
+ RAS (Liu et al., 2025c) 28.434 0.939 0.042 7.929 7.970 7.649 15.270 1.835
+ ToCa (Zou et al., 2024a) 26.305 0.902 0.078 7.949 7.707 7.609 21.723 1.290
+ Ours (RegionE) 32.404 0.968 0.020 8.212 8.242 8.002 10.237 2.738

Qwen-Image-Edit (Wu et al., 2025) - - - 9.192 8.394 8.606 32.071 1.000
+ Stepskip 29.577 0.929 0.047 8.828 8.222 8.202 17.519 1.831
+ FORA (Selvaraju et al., 2024) 27.408 0.909 0.061 8.818 8.303 8.192 17.790 1.803
+ ∆-DiT (Chen et al., 2024) 25.837 0.881 0.072 8.879 8.333 8.259 17.432 1.840
+ TeaCache (Liu et al., 2025a) 29.126 0.932 0.047 8.778 8.222 8.184 16.539 1.939
+ RAS (Liu et al., 2025c) 26.732 0.912 0.061 8.889 8.010 8.187 22.302 1.438
+ ToCa (Zou et al., 2024a) OOM OOM OOM OOM OOM OOM OOM OOM
+ Ours (RegionE) 31.357 0.950 0.033 8.838 8.313 8.260 14.813 2.165

Table 14: Comparison of RegionE and other baselines on the background-change task of GEdit-
Bench, evaluated in terms of quality and efficiency.

Model Against Vanilla GPT-4o Score Efficiency
PSNR↑ SSIM ↑ LPIPS ↓ G-SC ↑ G-PQ ↑ G-O ↑ Latency (s) ↓ Speedup ↑

Step1X-Edit (Liu et al., 2025b) - - - 8.575 7.175 7.722 27.886 1.000
+ Stepskip 21.011 0.812 0.218 8.625 6.975 7.635 12.267 2.273
+ FORA (Selvaraju et al., 2024) 15.897 0.719 0.372 6.500 7.125 6.104 14.285 1.952
+ ∆-DiT (Chen et al., 2024) 18.641 0.781 0.271 8.375 6.625 7.338 12.687 2.198
+ TeaCache (Liu et al., 2025a) 23.549 0.866 0.151 8.375 6.725 7.379 11.163 2.498
+ RAS (Liu et al., 2025c) 25.468 0.840 0.169 8.425 6.725 7.372 15.206 1.834
+ ToCa (Zou et al., 2024a) 22.925 0.768 0.255 8.200 6.175 6.995 22.631 1.232
+ Ours (RegionE) 29.076 0.917 0.091 8.500 7.125 7.675 11.324 2.463

Qwen-Image-Edit (Wu et al., 2025) - - - 9.125 8.200 8.603 32.221 1.000
+ Stepskip 25.088 0.854 0.133 9.175 7.975 8.511 17.603 1.830
+ FORA (Selvaraju et al., 2024) 22.473 0.802 0.184 8.775 7.875 8.252 17.815 1.809
+ ∆-DiT (Chen et al., 2024) 21.263 0.750 0.210 8.825 7.850 8.281 17.552 1.836
+ TeaCache (Liu et al., 2025a) 24.016 0.852 0.147 8.850 7.950 8.281 16.492 1.954
+ RAS (Liu et al., 2025c) 26.550 0.858 0.128 9.100 7.450 8.153 22.411 1.438
+ ToCa (Zou et al., 2024a) OOM OOM OOM OOM OOM OOM OOM OOM
+ Ours (RegionE) 30.462 0.939 0.053 9.175 8.050 8.547 16.694 1.930
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Table 15: Comparison of RegionE and other baselines on the Character Reference task of Kon-
textBench, evaluated in terms of quality and efficiency.

Model Against Vanilla GPT-4o Score Efficiency
PSNR↑ SSIM ↑ LPIPS ↓ G-SC ↑ G-PQ ↑ G-O ↑ Latency (s) ↓ Speedup ↑

FLUX.1 Kontext (Labs et al., 2025) - - - 7.549 6.642 6.664 14.677 1.000
+ Stepskip 18.793 0.730 0.238 7.741 6.803 6.917 8.502 1.726
+ FORA (Selvaraju et al., 2024) 17.898 0.697 0.275 7.617 6.788 6.813 7.494 1.958
+ ∆-DiT (Chen et al., 2024) 15.560 0.604 0.387 7.668 6.451 6.704 6.737 2.178
+ TeaCache (Liu et al., 2025a) 20.313 0.770 0.197 7.865 6.565 6.842 6.271 2.341
+ RAS (Liu et al., 2025c) 21.320 0.752 0.214 7.632 6.352 6.657 8.211 1.788
+ ToCa (Zou et al., 2024a) 19.596 0.679 0.298 7.570 6.047 6.454 11.279 1.301
+ Ours (RegionE) 26.980 0.880 0.086 7.637 6.611 6.715 6.406 2.291

Table 16: Comparison of RegionE and other baselines on the Instruction Editing-Global task of
KontextBench, evaluated in terms of quality and efficiency.

Model Against Vanilla GPT-4o Score Efficiency
PSNR↑ SSIM ↑ LPIPS ↓ G-SC ↑ G-PQ ↑ G-O ↑ Latency (s) ↓ Speedup ↑

FLUX.1 Kontext (Labs et al., 2025) - - - 7.023 6.798 6.380 14.688 1.000
+ Stepskip 23.957 0.797 0.132 7.000 6.870 6.435 8.516 1.725
+ FORA (Selvaraju et al., 2024) 22.611 0.760 0.159 7.092 6.840 6.497 7.506 1.957
+ ∆-DiT (Chen et al., 2024) 18.687 0.659 0.252 7.073 6.882 6.574 6.754 2.175
+ TeaCache (Liu et al., 2025a) 27.206 0.842 0.101 7.294 6.885 6.626 6.251 2.350
+ RAS (Liu et al., 2025c) 24.845 0.778 0.157 7.302 6.866 6.668 8.221 1.787
+ ToCa (Zou et al., 2024a) 23.030 0.711 0.218 7.179 6.588 6.483 11.412 1.287
+ Ours (RegionE) 30.403 0.886 0.071 7.126 6.943 6.572 6.379 2.303

Table 17: Comparison of RegionE and other baselines on the Instruction Editing-Local task of
KontextBench, evaluated in terms of quality and efficiency.

Model Against Vanilla GPT-4o Score Efficiency
PSNR↑ SSIM ↑ LPIPS ↓ G-SC ↑ G-PQ ↑ G-O ↑ Latency (s) ↓ Speedup ↑

FLUX.1 Kontext (Labs et al., 2025) - - - 6.779 6.909 5.817 14.677 1.000
+ Stepskip 31.147 0.913 0.058 6.839 6.887 5.872 8.510 1.725
+ FORA (Selvaraju et al., 2024) 29.279 0.895 0.072 6.800 6.901 5.873 7.491 1.959
+ ∆-DiT (Chen et al., 2024) 23.390 0.824 0.130 6.822 6.829 5.846 6.751 2.174
+ TeaCache (Liu et al., 2025a) 33.341 0.938 0.040 6.942 6.800 5.896 6.113 2.401
+ RAS (Liu et al., 2025c) 30.088 0.907 0.063 6.945 6.921 5.972 8.219 1.786
+ ToCa (Zou et al., 2024a) 26.996 0.855 0.112 6.851 6.635 5.790 11.231 1.307
+ Ours (RegionE) 36.334 0.959 0.025 6.889 6.880 5.917 5.799 2.531

Table 18: Comparison of RegionE and other baselines on the Style Reference task of KontextBench,
evaluated in terms of quality and efficiency.

Model Against Vanilla GPT-4o Score Efficiency
PSNR↑ SSIM ↑ LPIPS ↓ G-SC ↑ G-PQ ↑ G-O ↑ Latency (s) ↓ Speedup ↑

FLUX.1 Kontext (Labs et al., 2025) - - - 6.810 6.556 6.331 14.684 1.000
+ Stepskip 18.606 0.678 0.290 6.333 6.381 5.947 8.501 1.727
+ FORA (Selvaraju et al., 2024) 17.508 0.631 0.329 6.222 6.413 5.667 7.476 1.964
+ ∆-DiT (Chen et al., 2024) 14.639 0.525 0.450 6.397 6.873 6.108 6.731 2.182
+ TeaCache (Liu et al., 2025a) 19.781 0.712 0.264 6.444 6.286 5.832 6.261 2.345
+ RAS (Liu et al., 2025c) 19.481 0.638 0.343 6.603 6.381 6.031 8.202 1.790
+ ToCa (Zou et al., 2024a) 18.245 0.553 0.439 6.000 6.175 5.668 11.480 1.279
+ Ours (RegionE) 24.433 0.811 0.165 6.921 6.571 6.277 6.411 2.291

Table 19: Comparison of RegionE and other baselines on the Text Editing task of KontextBench,
evaluated in terms of quality and efficiency.

Model Against Vanilla GPT-4o Score Efficiency
PSNR↑ SSIM ↑ LPIPS ↓ G-SC ↑ G-PQ ↑ G-O ↑ Latency (s) ↓ Speedup ↑

FLUX.1 Kontext (Labs et al., 2025) - - - 7.826 7.913 7.295 14.697 1.000
+ Stepskip 30.950 0.943 0.033 7.717 7.750 7.142 8.535 1.722
+ FORA (Selvaraju et al., 2024) 28.976 0.915 0.044 7.696 7.543 7.067 7.520 1.954
+ ∆-DiT (Chen et al., 2024) 23.931 0.839 0.085 7.315 7.554 6.823 6.779 2.168
+ TeaCache (Liu et al., 2025a) 31.283 0.955 0.026 7.620 7.696 7.076 6.290 2.336
+ RAS (Liu et al., 2025c) 27.504 0.913 0.048 7.598 7.402 6.971 8.238 1.784
+ ToCa (Zou et al., 2024a) 25.342 0.857 0.093 7.326 7.500 6.791 11.206 1.312
+ Ours (RegionE) 34.141 0.962 0.018 7.815 7.761 7.211 5.767 2.548
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L STATEMENT ON LLM USAGE

We declare that large language models (LLMs) were used to assist in polishing the writing of this
paper. All ideas, methods, and experimental results are original contributions of the authors. The
authors take full responsibility for the content of this work.
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