

000
001
002
003
004
005

REGIONE: ADAPTIVE REGION-AWARE GENERA- TION FOR EFFICIENT IMAGE EDITING

006 **Anonymous authors**
007 Paper under double-blind review

008
009
010 **ABSTRACT**
011

012 Recently, instruction-based image editing (IIE) has received widespread attention.
013 In practice, IIE often modifies only specific regions of an image, while the re-
014 maining areas largely remain unchanged. Although these two types of regions
015 differ significantly in generation difficulty and computational redundancy, existing
016 IIE models do not account for this distinction, instead applying a uniform genera-
017 tion process across the entire image. This motivates us to propose **RegionE**, an
018 adaptive, region-aware generation framework that accelerates IIE tasks without
019 additional training. Specifically, the RegionE framework consists of three main
020 components: **1) Adaptive Region Partition**. We observed that the trajectory of
021 unedited regions is straight, allowing for multi-step denoised predictions to be
022 inferred in a single step. Therefore, in the early denoising stages, we partition
023 the image into edited and unedited regions based on the difference between the
024 final estimated result and the reference image. **2) Region-Aware Generation**.
025 After distinguishing the regions, we replace multi-step denoising with one-step
026 prediction for unedited areas. For edited regions, the trajectory is curved, requiring
027 local iterative denoising. To improve the efficiency and quality of local iterative
028 generation, we propose the Region-Instruction KV Cache, which reduces computa-
029 tional cost while incorporating global information. **3) Adaptive Velocity Decay**
030 **Cache**. Observing that adjacent timesteps in edited regions exhibit strong velocity
031 similarity, we further propose an adaptive velocity decay cache to accelerate the
032 local denoising process. We applied RegionE to state-of-the-art IIE base models, in-
033 cluding Step1X-Edit, FLUX.1 Kontext, and Qwen-Image-Edit. RegionE achieved
034 acceleration factors of 2.57 \times , 2.41 \times , and 2.06 \times , respectively, with minimal quality
035 loss (PSNR: 30.520–32.133). Evaluations by GPT-4o also confirmed that semantic
036 and perceptual fidelity were well preserved. **Code will be open-sourced**.

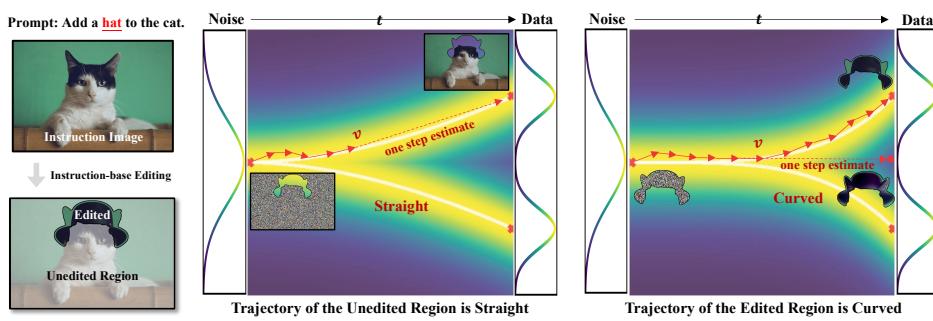
037

1 INTRODUCTION

038

039 In recent years, diffusion models (Rombach et al., 2022) have achieved rapid progress in generative
040 tasks, particularly in visual generation, where state-of-the-art models can synthesize highly realistic
041 images. Within this context, the task of editing existing images according to user requirements
042 has gradually emerged as an important direction (Kawar et al., 2023). Recently, diffusion-based
043 foundation models, such as FLUX.1 Kontext (Labs et al., 2025), Qwen-Image-Edit (Wu et al., 2025),
044 and Step1X-Edit (Liu et al., 2025b), have been developed. These models can perform precise image
045 editing using only textual instructions, offering a novel solution for instruction-based image editing
046 and providing more powerful tools for image post-processing (Choi et al., 2024).

047 Although diffusion-based IIE models can achieve impressive editing results, their high inference
048 latency limits their use in real-time applications. Previous research on efficient diffusion inference
049 has primarily focused on image generation. For instance, some studies reduce model parameters
050 through pruning (Rombach et al., 2022; Castells et al., 2024), others decrease model bit-width
051 via quantization (Shang et al., 2023; Zhao et al., 2025a), and some employ distillation to reduce
052 model size (Kim et al., 2023) and the number of timesteps (Sauer et al., 2024). In the two-stage
053 inversion-based editing paradigm (Pan et al., 2023; Wang et al., 2025), redundancy in the inversion
054 and denoising stages has been analyzed, leading to methods like EEdit (Yan et al., 2025) that



065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: Trajectories of different regions in the IIE task. In unedited regions, the trajectory is nearly linear, allowing early-stage velocity to provide a reliable estimate of the multi-step denoised images, including the final result. In contrast, edited regions exhibit curved trajectories, making the final image harder to predict. Despite this, the velocity between consecutive timesteps remains consistent.

accelerate both stages simultaneously. However, for the emerging denoising-only paradigm of IIE, the redundancy and feasibility of efficient inference remain largely unexplored.

Our study reveals that current IIE models exhibit two significant types of redundancy: 1) Spatial Generation Redundancy. Unlike image generation tasks, which require reconstructing the entire image, IIE models often need to modify only local regions specified by the instructions, while the remaining areas remain essentially unchanged. For example, as shown in Figure 1, the model edits only the region around the hat. Nevertheless, IIE models apply the same computational effort to both edited and unedited areas, resulting in significant redundancy in the latter. 2) Redundancy across diffusion timesteps. First, at neighboring timesteps, the key and value within the attention layers at the same network depth are highly similar. Second, in the middle stages of denoising, the velocity output by the diffusion transformer (DiT) at adjacent timesteps is also highly similar.

To mitigate spatial and temporal redundancy in IIE models, this paper introduces RegionE, a training-free, adaptive, and region-aware generative framework that accelerates the current IIE models. Firstly, we observed that the trajectories of edited regions are often more curved, making it difficult to accurately predict the final edited results at early timesteps, as shown in Figure 1. In contrast, unedited regions follow nearly linear trajectories, allowing more reliable predictions from the same early steps. Based on this observation, RegionE introduces an Adaptive Region Partition (ARP), which performs a one-step estimation for the final image in the early stage and compares its similarity with the reference (instruction) image. Regions with high similarity (minimal change after editing) are classified as unedited, whereas regions with low similarity are classified as edited. Then, we perform region-aware generation on the two separated parts. Specifically, We replace multi-step denoising with one-step estimation for the unedited areas and apply region-iterative denoising for edited areas. During edited region generation, RegionE discards unedited region tokens and instruction image tokens, and effectively reinjects global context into local generation through our proposed Region-Instruction KV Cache (RIKVCache), which leverages the similarity of key and value across timesteps. This process primarily addresses redundancy in spatial. Finally, regarding temporal redundancy, we find that the velocity outputs of DiT at adjacent timesteps are highly consistent in direction but decay in magnitude over time, with the decay dependent on the timestep. To exploit this property, RegionE introduces an Adaptive Velocity Decay Cache (AVDCache), which accurately models this pattern and further accelerates the region generation process. Experimental results demonstrate that RegionE achieves speedups of approximately 2.57 \times , 2.41 \times , and 2.06 \times on Step1X-Edit, FLUX.1 Kontext, and Qwen-Image-Edit, respectively, while maintaining PSNR values of 30.520, 32.133, and 31.115 before and after acceleration. Evaluations using GPT-4o further indicate that the perceptual differences are negligible, confirming that RegionE effectively eliminates redundancy in IIE tasks without compromising image quality.

The contributions of our paper are as follows:

- We observe that in IIE tasks, unedited regions exhibit nearly linear generation trajectories, allowing early-stage velocities to provide reliable estimates for multi-step denoised images, including the

108 final image. In contrast, edited regions follow more curved trajectories, making the final image
 109 harder to predict. Nevertheless, the velocity remains consistent across consecutive timesteps.
 110

111 • We propose RegionE, a training-free, efficient IIE method with adaptive, region-aware generation. It
 112 reduces spatial redundancy by performing early adaptive predictions for edited and unedited regions
 113 and generating each region locally in subsequent stages, while mitigating temporal redundancy via
 114 a velocity-decay cache across timesteps.
 115

116 • RegionE achieves 2.57 \times , 2.41 \times , and 2.06 \times end-to-end speedups on Step1X-Edit, FLUX.1 Kontext,
 117 and Qwen-Image-Edit, while maintaining PSNR (30.520, 32.133, 31.115) and SSIM (0.939, 0.917,
 118 0.937). Evaluations with GPT-4o further confirm that no quality degradation occurs.
 119

120 **2 RELATED WORK**

121 **Efficient Diffusion Model.** Although few efficient methods have been developed specifically for
 122 IIE models, a variety of acceleration techniques have been proposed for diffusion models more
 123 generally. From the perspective of parameter redundancy, researchers have introduced pruning
 124 methods such as Diff-Pruning Fang et al. (2023) and LD-Pruner (Castells et al., 2024), quantization
 125 methods such as PTQ4DM (Shang et al., 2023) and SVDQuant (Li et al., 2024a), distillation methods
 126 such as BK-SDM (Kim et al., 2023) and CLEAR (Liu et al., 2024), and early-stopping strategies
 127 such as ES-DDPM (Lyu et al., 2022). From the perspective of temporal redundancy, methods
 128 like DeepCache (Ma et al., 2024), Δ -DiT (Chen et al., 2024), FORA (Selvaraju et al., 2024), and
 129 TeaCache (Liu et al., 2025a) reuse intermediate features across timesteps, while approaches such as
 130 LCM (Luo et al., 2023) and ADD (Sauer et al., 2024) reduce the number of timesteps through model
 131 distillation. From the perspective of spatial redundancy, RAS (Liu et al., 2025c) observes that at
 132 each diffusion timestep, the model may focus only on semantically coherent regions; therefore, only
 133 those regions need to be updated, thereby accelerating image generation. Similarly, ToCa (Zou et al.,
 134 2024a) and DuCa (Zou et al., 2024b) note that during denoising, different tokens exhibit varying
 135 sensitivities, and dynamically updating only a subset of tokens at each timestep can further accelerate
 136 image generation. In contrast to the methods above, RegionE leverages the trajectory characteristics
 137 unique to IIE tasks, while simultaneously addressing both spatial and temporal redundancies in
 138 diffusion-based image editing to achieve accelerated generation.
 139

140 **Image Editing.** Image editing is an essential task in the field of generative modeling. In the early
 141 U-Net (Ronneberger et al., 2015) era, ControlNet (Zhang et al., 2023b) introduced a robust editing
 142 solution through a repeat-structure design, and [InstructPix2Pix](#) (Brooks et al., 2023) introduced an
 143 [editing method that involves channel expansion](#). As research advanced, inversion-based methods (Pan
 144 et al., 2023; Wang et al., 2025) gradually became the dominant approach. These methods apply noise
 145 to the original image in the latent space and then recover the edited result through a denoising process.
 146 However, this paradigm involves both inversion and denoising stages, which increases complexity.
 147 At the same time, IIE models began to emerge. Approaches such as InstructEdit (Wang et al., 2023),
 148 MagicBrush (Zhang et al., 2023a), and BrushEdit (Li et al., 2024b) employed modular pipelines, in
 149 which large language models generate prompts, spatial cues, or synthetic instruction–image pairs
 150 to guide diffusion-based editing. Most of these approaches, however, are task-specific and lack
 151 generality. More recently, a new class of IIE has been developed to improve general-purpose editing.
 152 These models rely solely on textual instructions, without requiring masks or task-specific designs,
 153 and still achieve effective editing performance. Concretely, they leverage MLLMs or advanced text
 154 encoders to provide richer semantic control signals, and feed both the target image and noise into a
 155 DiT (Peebles & Xie, 2023) architecture to enhance image alignment. In this work, we propose an
 156 adaptive, region-aware acceleration method for these emerging IIE models. [Although prior work](#)
 157 [has explored local editing, these studies primarily aim to enhance editing capability rather than](#)
 158 [improve efficiency. Moreover, methods such as \(Simsar et al., 2024\) and \(Guo & Lin, 2023\) follow](#)
 159 [the InstructPix2Pix paradigm, while \(Mo et al., 2024; Couairon et al., 2022; Avrahami et al., 2022;](#)
 160 [Yang et al., 2024\) operate within inversion-based or mask-dependent editing frameworks. In contrast,](#)
 161 [we investigate the problem under the emerging MLLM-assisted IIE paradigm and, for the first time,](#)
 162 [identify an early-stage region-partitioning strategy in modern flow-matching models that enables an](#)
 163 [effective acceleration mechanism.](#)

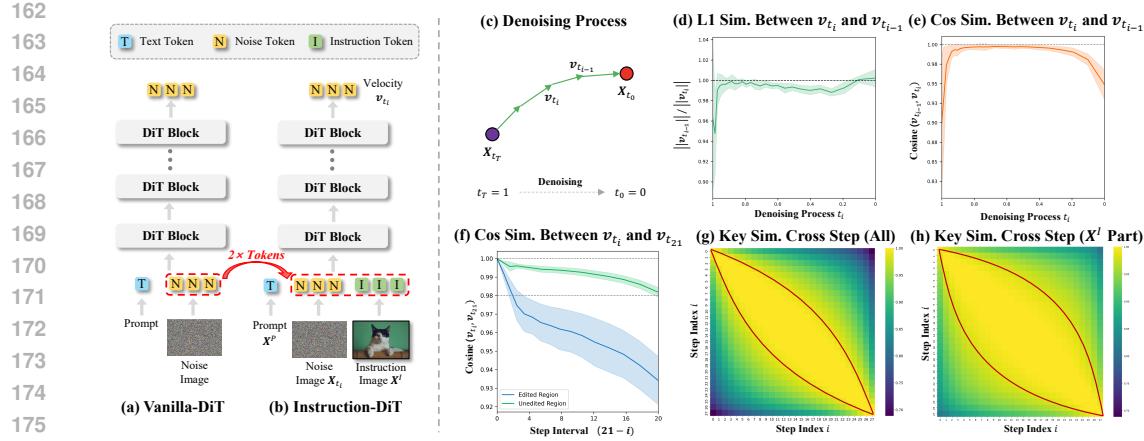


Figure 2: Comparison between traditional DiT and DiT in IIE (a, b). Symbolic visualization of the denoising process (c). L1 and cosine similarities of velocities between adjacent timesteps during denoising (d, e). Cosine similarity between velocities after t_{21} in edited and unedited regions with v_{21} (f). Cross-step key similarity (g) and cross-step similarity of instruction-related keys (h).

3 PRELIMINARY

Flow Matching & Rectified Flow. Flow matching (Lipman et al., 2022) has become a widely adopted training technique in advanced diffusion models. It facilitates the transfer from a source distribution π_1 to a target distribution π_0 by learning a time-dependent velocity field $\mathbf{v}(\mathbf{x}, t)$. This velocity field is used to construct the flow through the ordinary differential equation (ODE):

$$\frac{d\phi_t(\mathbf{x})}{dt} = \mathbf{v}(\phi_t(\mathbf{x}), t), \phi_1(\mathbf{x}) \sim \pi_1. \quad (1)$$

Rectified Flow (Liu et al., 2022) simplifies this process through a linear assumption. Given that \mathbf{X}_1 follows a noise distribution π_1 and \mathbf{X}_0 follows the target image distribution π_0 , the equation is

$$\mathbf{X}_t = (1 - t)\mathbf{X}_0 + t\mathbf{X}_1, t \in [0, 1]. \quad (2)$$

Differentiating both ends with respect to timestep t yields: $\frac{d\mathbf{X}_t}{dt} = \mathbf{X}_1 - \mathbf{X}_0$. The velocity of the rectified flow $\mathbf{v}(\mathbf{X}_t, t)$, always points in the direction of $\mathbf{X}_1 - \mathbf{X}_0$. Therefore, the training loss is minimized by reducing the deviation between the velocity and $\mathbf{X}_1 - \mathbf{X}_0$:

$$\mathcal{L} = \mathbb{E}_t [||(\mathbf{X}_1 - \mathbf{X}_0) - \mathbf{v}(\mathbf{X}_t, t)||^2]. \quad (3)$$

The inference process involves starting from \mathbf{X}_1 and iteratively solving for \mathbf{X}_0 in reverse, using the learned velocity $\mathbf{v}(\mathbf{X}_t, t)$. In practice, we typically use a discrete Euler sampler, which discretizes the timestep $t_i (i \in \mathbb{N}^T, t_T = 1, t_0 = 0)$ and approximates:

$$\mathbf{X}_{t_{i-1}} = \mathbf{X}_{t_i} - \Delta t_{i,i-1} \cdot \mathbf{v}(\mathbf{X}_{t_i}, t_i), \Delta t_{i,i-1} = t_i - t_{i-1}. \quad (4)$$

After T iterations, the final target image \mathbf{X}_0 is obtained. This paper, therefore, targets the IIE task and optimizes the inference process of T iterations in Equation 4.

Instruction-Based Editing Model. Recent IIE models, such as Step1X-Edit (Liu et al., 2025b), FLUX.1 Kontext (Labs et al., 2025) and Qwen-Image (Wu et al., 2025), follow the same paradigm, as shown in Figure 2b. In these models, the velocity field is estimated using Instruction-DiT, the variants of DiT (Peebles & Xie, 2023). The input to Instruction-DiT consists of three types of tokens: text (prompt) tokens \mathbf{X}^P , noise tokens \mathbf{X}_{t_i} , and instruction tokens \mathbf{X}^I . The noise token corresponds to the generation of the target image, while the text token carries the instruction information. The instruction token is specific to the editing task, representing the part of the image to be edited. Notably, the counts of noise and instruction tokens are roughly comparable and substantially higher than that of text tokens. Temporally, the text and instruction tokens serve as static control signals throughout the denoising process, whereas the noise token evolves dynamically at each timestep. Since Instruction-DiT is designed to predict only the noise component, the model’s output corresponds exclusively to the portion represented by the noise token. To simplify the expression, the Instruction-DiT mentioned below will be referred to simply as DiT.

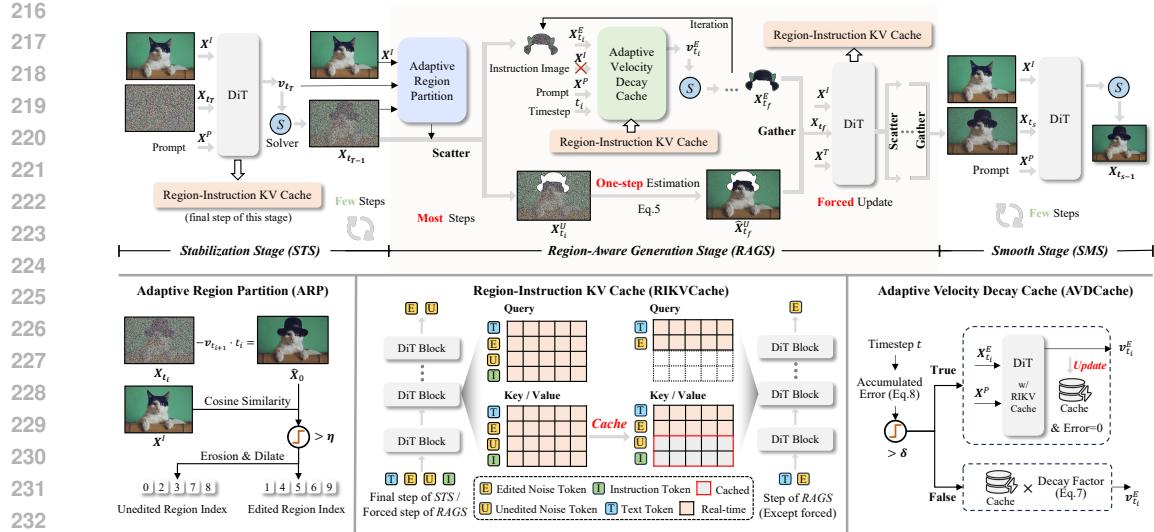


Figure 3: **Overview of the RegionE.** RegionE consists of three stages: STS, RAGS, and SMS. In the STS, no acceleration is applied due to unstable DiT outputs, and all KV values are cached at the final step. In the RAGS, an Adaptive Region Partition distinguishes between edited and unedited regions: unedited regions are denoised in one step, while edited regions are generated iteratively. This iterative generation process leverages RIKVCache for injecting global information and AVDCache for acceleration. Certain forced-update steps aggregate the full image to refresh RIKVCache with complete DiT computation. Finally, in the SMS, several full denoising steps are performed to eliminate artifacts along the boundaries between edited and unedited regions.

4 METHODOLOGY

This section introduces RegionE, a method that accelerates the IIE model without additional training. The workflow is shown in Figure 3. RegionE consists of three stages: the Stabilization Stage (STS), the Region-Aware Generation Stage (RAGS), and the Smooth Stage (SMS).

Stabilization Stage. In the early steps of denoising, the input \mathbf{X}_{t_i} to DiT is close to Gaussian noise (i.e., the signal-to-noise ratio is low). This leads to oscillations in DiT’s velocity estimation (see Figure 2d and 2e). Since the estimates at this stage are inherently unstable, it is not suitable for acceleration. Therefore, we keep the original sampling process unchanged. Additionally, at the last step of this stage, we save the Key and Value in each attention layer of DiT, denoted as \mathbf{K}^C and \mathbf{V}^C .

Region-Aware Generation Stage. This stage is the core component of RegionE and consists of three parts: adaptive region partition, region-aware generation, and adaptive velocity decay cache. The first two parts primarily address spatial redundancy in IIE, while the third further reduces temporal redundancy across timesteps.

Adaptive Region Partition. After the stabilization stage, the output of DiT becomes stable. As previously observed, the generation trajectories in the edited regions are curved, whereas those in the unedited regions are straight, as shown in Figure 1 and 2f. Therefore, for the unedited regions $\mathbf{X}_{t_i}^U$, we can accurately estimate $\hat{\mathbf{X}}_{t_f}^U$ at any timestep $t_f (f < i)$ using one-step estimation:

$$\hat{\mathbf{X}}_{t_f}^U = \mathbf{X}_{t_i}^U - \mathbf{v}^U(\mathbf{X}_{t_i}^U, t_i) \cdot \Delta t_{i,f}. \quad (5)$$

When $t_f = 0$, this corresponds to estimating the final unedited regions $\hat{\mathbf{X}}_0^U$, which is nearly identical to the true \mathbf{X}_0^U . However, using Equation 5 for the edited region does not accurately estimate $\hat{\mathbf{X}}_0^E$. Based on this difference between the edited and unedited regions, we propose an adaptive region partition (ARP), as illustrated in the lower-left corner of Figure 3. Given the velocity $\mathbf{v}_{t_{i+1}}$ at the beginning of the region-aware generation stage and the noisy image \mathbf{X}_{t_i} , the final edited result $\hat{\mathbf{X}}_0^E$ can be estimated in one step using Equation 5. This estimate is reliable in unedited regions but less accurate in edited ones. Since the unedited region undergoes minimal change before and after editing,

270 we can compute the cosine similarity between the estimated image $\hat{\mathbf{X}}_0$ and the instruction image \mathbf{X}^I along the token dimension. Regions with sufficiently high similarity ($>$ threshold η), that is, small changes before and after editing, are considered unedited regions, while the remainder is treated as the edited region. To account for potential segmentation noise, morphological opening and closing operations are applied to make the two regions more continuous and accurate.

275 **Region-Aware Generation.** After identifying the edited and unedited regions, we apply Equation 5 to the unedited region to directly estimate the denoised image $\mathbf{X}_{t_f}^U$ at the next timestep t_f in one step, thereby saving computation for the unedited region. For the edited region, our implementation is as follows: first, the input to DiT is changed from $[\mathbf{X}^P, \mathbf{X}_{t_i}, \mathbf{X}^I]$ to $[\mathbf{X}^P, \mathbf{X}_{t_i}^E]$, so that DiT only estimates the velocity of the edited region $\mathbf{v}_{t_i}^E$. However, since DiT contains attention layers that involve global token interactions, completely discarding the \mathbf{X}^I and $\mathbf{X}_{t_i}^U$ inputs can gradually inject bias into the estimation of $\mathbf{v}_{t_i}^E$ during global attention. To compensate for this loss of information, we propose a Region-Instruction KV Cache (RIKVCache). Specifically, the input to DiT remains $[\mathbf{X}^P, \mathbf{X}_{t_i}^E]$, but within the attention layers of DiT, it is modified as follows:

$$285 \quad \text{softmax}\left(\frac{[\mathbf{Q}_P, \mathbf{Q}_E] \cdot [\mathbf{K}_P, \mathbf{K}_E, \mathbf{K}_U^C, \mathbf{K}_I^C]^T}{\sqrt{d}}\right) \cdot [\mathbf{V}_P, \mathbf{V}_E, \mathbf{V}_U^C, \mathbf{V}_I^C]. \quad (6)$$

287 The lower corner labels P , E , U , and I represent prompt token, edited region token, unedited region token, and instruction token, respectively. The superscript C in the upper-right corner indicates that the value is taken from the cache of the previous complete computation. And the middle-lower part of Figure 3 visualizes this process. The feasibility of this approach is supported by the high similarity of the KV pairs between consecutive steps, as shown in Figure 2g and 2h.

292 **Adaptive Velocity Decay Cache.** As illustrated in the right part of Figure 1, although the trajectory of the edited region is curved, the velocities between consecutive timesteps are actually similar. Focusing on the intermediate denoising phase, we observe from Figure 2e that the velocity directions between adjacent steps are almost identical (cosine similarity approaches 1). At the same time, the magnitudes exhibit a gradual decay that varies across timesteps (Figure 2d). Based on this observation, we propose an adaptive velocity decay cache (AVDCache). Specifically, the AVDCache introduces a decay factor:

$$299 \quad \|\mathbf{v}_{t_i}\| / \|\mathbf{v}_{t_{i+1}}\| = (1 - \Delta t_{t_{i+1}, t_i}) \cdot \gamma_{t_i}. \quad (7)$$

300 Here, $(1 - \Delta t_{t_{i+1}, t_i})$ represents the sample-aware component under discrete Euler solver, while γ_{t_i} 301 represents the timestep-aware component. The solver entirely determines the former, while the latter 302 is obtained by fitting on a randomly sampled dataset. Since the decay factor in Eq. 7 characterizes the 303 intrinsic differences between diffusion model timesteps, we introduce the AVDCache criterion:

$$304 \quad \text{Criterion} = 1 - \prod_{i=s}^e (1 - \Delta t_{t_{i+1}, t_i}) \cdot \gamma_{t_i}. \quad (8)$$

307 Here, t_s and t_e denote the start and end timesteps of the cache, respectively, while the criterion 308 measures the cumulative error of this process. The decision of whether to apply the cache is made 309 using a threshold δ . The complete process is as follows:

$$311 \quad \mathbf{v}_{t_i}^E = \begin{cases} \text{DiT}(\mathbf{X}_{t_i}^E, \mathbf{X}^P) & \text{Criterion} > \delta \\ \mathbf{v}_{t_s}^{E,C} \cdot \prod_{m=s}^i (1 - \Delta t_{t_{m+1}, t_m}) \cdot \gamma_{t_m} & \text{else.} \end{cases} \quad (9)$$

314 The right-lower part of Figure 3 visualizes this process. In fact, AVDCache is an improved version of 315 the existing residual cache methods, with further details and analysis provided in the supplementary.

316 After the above process, we obtain the generated results for both the edited and unedited regions. We 317 then re-gather these results according to their spatial positions to reconstruct the complete image 318 tokens. It is worth noting that the similarity of the KV Cache decreases as the timestep increases. 319 To address this issue, we periodically enforce full-image gathering at certain timesteps within the 320 region-aware generation stage, performing a complete DiT computation to update the RIKVCache.

321 **Smooth Stage.** Small gaps may appear at the boundaries between edited and unedited regions after 322 stitching. Although these gaps are often imperceptible in most cases, to ensure the generality of our 323 method, we perform several steps of unaccelerated denoising on the merged full image to smooth 324 these discontinuities. Empirically, two denoising steps are sufficient to eliminate the gaps effectively.

324

5 EXPERIMENT

325

5.1 EXPERIMENTAL SETTINGS

326 **Pretrained Model & Dataset.** We evaluate RegionE on three open-source state-of-the-art IIE models:
 327 Step1X-Edit-v1p1 (Liu et al., 2025b), FLUX.1 Kontext (Labs et al., 2025), and Qwen-Image-Edit (Wu
 328 et al., 2025). Step1X-Edit adopts a CFG (classifier-free guidance) (Ho & Salimans, 2022) scale of
 329 6, FLUX.1 Kontext uses a scale of 2.5, and Qwen-Image-Edit applies a scale of 4. All models are
 330 evaluated with 28 sampling steps. For evaluation, we follow the dataset protocols described in the
 331 respective technical reports. Specifically, we use 606 image prompt pairs covering 11 tasks from
 332 GEdit-Bench English (Liu et al., 2025b) for Step1X-Edit and Qwen-Image-Edit, and 1026 image
 333 prompt pairs spanning five tasks from KontextBench (Labs et al., 2025) for FLUX.1 Kontext.
 334

335 **Evaluation Metrics.** We design a comprehensive evaluation framework to assess both the quality
 336 and efficiency of IIE models. For quality assessment, we adopt two complementary approaches.
 337 First, we evaluate reconstruction quality by measuring deviations before and after acceleration, using
 338 PSNR (Zhao et al., 2024), SSIM (Wang & Bovik, 2002), and LPIPS (Zhang et al., 2018) as metrics.
 339 Second, we conduct an editing evaluation using vision–language models (VLMs), specifically GPT-
 340 4o, to assess image quality, semantic alignment, and overall performance (Ku et al., 2024), as shown
 341 in Table 1. Evaluation dimensions are denoted by the suffixes SC, PQ, and O, consistent with (Liu
 342 et al., 2025b) and (Wu et al., 2025). For efficiency evaluation, we report actual runtime latency as
 343 well as the relative speedup compared to the vanilla pretrained models.
 344

345 **Baseline.** Currently, there are no acceleration methods designed explicitly for IIE models. Therefore,
 346 we adapt several effective acceleration techniques initially developed for diffusion models as base-
 347 lines, since they are also applicable to diffusion-based IIE tasks. From the perspective of timestep
 348 redundancy, Steoskip performs larger jumps in the sampling steps, FORA (Selvaraju et al., 2024)
 349 employs block-level cache, and Δ -DiT (Chen et al., 2024) and TeaCache (Liu et al., 2025a) use
 350 residual cache. From the perspective of spatial redundancy, RAS (Liu et al., 2025c) and ToCa (Zou
 351 et al., 2024a) perform redundancy-reduction denoising at the token level.
 352

353 **Implementation Details.** For all three models, RegionE uses six steps in the stabilization stage,
 354 enforces an update at step 16 in the region-aware generation stage, and adopts two steps in the smooth
 355 stage. For Step1X-Edit, FLUX.1 Kontext, and Qwen-Image-Edit, the segmentation thresholds η of
 356 ARP are 0.88, 0.93, and 0.80, respectively, while the decision thresholds δ of AVDCache are 0.02,
 357 0.04, and 0.03, respectively. Latency is measured on a single NVIDIA H800 GPU.
 358

359

5.2 EXPERIMENTAL RESULTS ANALYSIS

360 We evaluate RegionE against several state-of-the-art acceleration methods on three prominent IIE
 361 models: Step1X-Edit, FLUX.1 Kontext, and Qwen-Image-Edit. Our evaluation encompasses quanti-
 362 tative metrics, efficiency measurements, and visualization, demonstrating that RegionE achieves a
 363 superior balance between acceleration and quality preservation. The quantitative results are shown in
 364 Table 1. Since both GEdit-Bench and KontextBench involve multiple editing tasks, the table reports
 365 results averaged over tasks, while the per-task quantitative results are provided in the supplementary.
 366

367 **Deviation Analysis Compared to Pre-trained Models.** The Against Vanilla evaluation reveals
 368 RegionE’s exceptional fidelity to original model outputs across all evaluation metrics, significantly
 369 outperforming competing acceleration methods. RegionE achieves the highest PSNR values: 30.520
 370 (Step1X-Edit), 32.133 (FLUX.1 Kontext), and 31.115 (Qwen-Image-Edit), representing substantial
 371 improvements of 2-4 over the next-best methods, indicating minimal pixel-level deviation from the
 372 original outputs. The SSIM scores of 0.939, 0.917, and 0.937 demonstrate superior preservation of
 373 structural coherence across different model architectures. In contrast, the LPIPS scores of 0.054, 0.057,
 374 and 0.046 represent 25-50% improvements over competing methods. This consistent performance
 375 across three diverse model architectures validates RegionE’s architectural agnosticism. RegionE
 376 consistently maintains stable, high-quality results.
 377

378 **GPT-4o Editing Quality Assessment & User Study.** The GPT-4o evaluation provides additional
 379 quality validation through automated semantic and perceptual analysis across three dimensions, con-
 380 sistent demonstrating RegionE’s superior performance. For semantic consistency (G-SC), RegionE
 381 achieves scores of 7.552, 7.278, and 8.242, matching or exceeding original models while maintaining
 382

378
379
380
381
382
383
384 Table 1: Comparison of editing quality and efficiency between RegionE and the baseline. All the
385 evaluations are carried out on a single NVIDIA H800 GPU. S denotes the strategy for reducing
386 spatial redundancy, while T denotes the strategy for reducing temporal redundancy.

Model	Type	Against Vanilla			GPT-4o Score			Efficiency	
		PSNR↑	SSIM↑	LPIPS↓	G-SC↑	G-PQ↑	G-O↑	Latency (s)↓	Speedup ↑
Step1X-Edit (Liu et al., 2025b)		-	-	-	7.479	7.466	6.906	27.945	1.000
+ Stepskip	T	26.719	0.898	0.096	7.491	7.343	6.880	12.299	2.272
+ FORA (Selvaraju et al., 2024)	T	22.126	0.835	0.178	6.078	7.588	5.863	14.330	1.950
+ Δ -DiT (Chen et al., 2024)	T	24.659	0.874	0.122	7.432	7.233	6.795	12.728	2.196
+ TeaCache (Liu et al., 2025a)	T	28.262	0.924	0.072	7.455	7.361	6.866	11.212	2.493
+ RAS (Liu et al., 2025c)	S	26.819	0.892	0.100	7.339	7.072	6.615	15.239	1.834
+ ToCa (Zou et al., 2024a)	S	24.699	0.844	0.152	7.185	6.705	6.350	22.149	1.262
+ Ours (RegionE)	T & S	30.520	0.939	0.054	7.552	7.405	6.948	10.865	2.572
FLUX.1 Kontext (Labs et al., 2025)		-	-	-	7.197	6.963	6.497	14.682	1.000
+ Stepskip	T	26.199	0.838	0.123	7.126	6.938	6.463	8.512	1.725
+ FORA (Selvaraju et al., 2024)	T	24.685	0.809	0.146	7.085	6.897	6.383	7.497	1.958
+ Δ -DiT (Chen et al., 2024)	T	20.227	0.723	0.225	7.055	6.918	6.411	6.751	2.175
+ TeaCache (Liu et al., 2025a)	T	28.307	0.869	0.097	7.233	6.846	6.455	6.203	2.367
+ RAS (Liu et al., 2025c)	S	26.217	0.829	0.132	7.216	6.785	6.460	8.219	1.786
+ ToCa (Zou et al., 2024a)	S	23.906	0.767	0.192	6.985	6.589	6.237	11.299	1.299
+ Ours (RegionE)	T & S	32.133	0.917	0.057	7.278	6.953	6.538	6.096	2.409
Qwen-Image-Edit (Wu et al., 2025)		-	-	-	8.242	7.948	7.700	32.125	1.000
+ Stepskip	T	28.439	0.892	0.077	8.090	7.875	7.572	17.555	1.830
+ FORA (Selvaraju et al., 2024)	T	26.508	0.863	0.098	8.032	7.760	7.501	17.815	1.803
+ Δ -DiT (Chen et al., 2024)	T	25.020	0.821	0.116	7.964	7.718	7.417	17.470	1.839
+ TeaCache (Liu et al., 2025a)	T	28.314	0.900	0.075	8.084	7.841	7.563	16.445	1.954
+ RAS (Liu et al., 2025c)	S	27.251	0.879	0.090	8.152	7.680	7.515	22.327	1.439
+ ToCa (Zou et al., 2024a)	S	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM
+ Ours (RegionE)	T & S	31.115	0.937	0.046	8.242	7.968	7.731	15.604	2.059

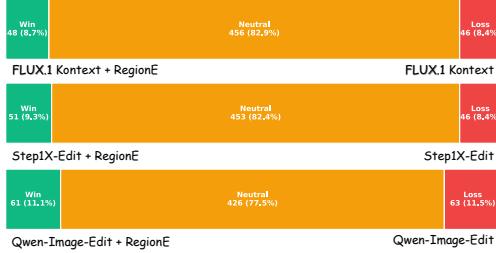


Figure 4: User study results for the RegionE.

substantial acceleration, with Qwen-Image-Edit showing perfect preservation (8.242) despite 2.059 \times speedup. The perceptual quality (G-PQ) scores of 7.405, 6.953, and 7.968 consistently outperform competing acceleration methods by 0.1 to 0.3 points, demonstrating the practical preservation of visual coherence through region-aware processing. Overall quality (G-O) scores of 6.948, 6.538, and 7.731 provide holistic assessment validation, with the alignment between GPT-4o assessments and quantitative metrics (PSNR, SSIM, LPIPS) strengthening confidence

in RegionE’s comprehensive quality preservation across multiple evaluation dimensions and providing additional evidence of the hybrid temporal-spatial optimization approach’s effectiveness. We also conducted a user study, and the results are shown in Figure 4. The findings indicate that participants had difficulty discerning whether the edited images were accelerated using RegionE, further validating the high-fidelity capabilities of RegionE.

Efficiency Analysis. RegionE demonstrates substantial efficiency gains while maintaining superior quality, achieving an optimal balance between acceleration and performance preservation with impressive results across all evaluated models. The method achieves speedups of 2.572 \times , 2.409 \times , and 2.059 \times across Step1X-Edit, FLUX.1 Kontext, and Qwen-Image-Edit respectively, translating to significant absolute latency reductions: from 27.945s to 10.865s, from 14.682s to 6.096s, and from 32.125s to 15.604s respectively. RegionE occupies the optimal position on the efficiency-quality curve, maintaining the highest quality metrics while achieving competitive or superior acceleration compared to methods that sacrifice substantial quality for higher speedups.

Visualization. Figure 5 presents partial visualizations of different acceleration methods on Step1X-Edit. Among the baselines, RegionE produces edited outputs closest to the vanilla setting at higher speedups, preserving both details and contours. The last column shows ARP predictions of spatial regions in RegionE, where unedited regions are masked. These masked regions closely match human perception. Additional visualizations for other tasks and models are provided in the supplementary.

Table 2: Ablation study on cache design and stage design in RegionE.

Variant	Against Vanilla			GPT-4o Score			Efficiency	
	PSNR↑	SSIM ↑	LPIPS ↓	G-SC ↑	G-PQ ↑	G-O ↑	Latency (s) ↓	Speedup ↑
RegionE	30.520	0.939	0.054	7.552	7.405	6.948	10.865	2.572
Cache Design	w/o RIKVCache	22.868	0.822	0.207	5.997	5.389	5.191	10.223
	w/o AVDCache	31.139	0.946	0.046	7.570	7.482	7.023	16.122
Stage Design	w/o STS	21.441	0.814	0.161	7.045	6.758	6.325	7.149
	w/o SMS	28.857	0.904	0.085	7.456	7.207	6.773	9.766
	w/o Forced Step	28.452	0.915	0.080	7.536	7.305	6.925	10.204



Figure 5: Examples of edited images by RegionE and baseline on Step1X-Edit-v1p1.

5.3 ABLATION STUDY

We conduct ablation studies to investigate the contributions of different components in RegionE, primarily on the Step1X-Edit-v1p1. The quantitative results are summarized in Table 2.

Cache Design. We propose two key components: RIKVCache and AVDCache. Removing RIKVCache, i.e., performing local attention within the edited region without injecting instruction information or context from the unedited region, results in a 2.734x speed-up. However, this comes at a significant cost to editing quality, with PSNR dropping from 30.520 to 22.868 and G-O decreasing from 6.948 to 5.191. This demonstrates that global context supervision is crucial even during region generation. In contrast, removing AVDCache results in a slight improvement in editing quality (G-O increases from 6.948 to 7.023), but without eliminating redundancy across timesteps, the acceleration is limited to 1.733. This indicates that AVDCache significantly improves inference efficiency with minimal degradation in quality.

Stage Design. We introduce two auxiliary stages: Stabilization Stage (STS) and Smooth Stage (SMS), as well as a forced step in the region-aware generation stage (RAGS). Removing STS causes substantial drops in editing quality (PSNR: 30.520 → 21.441, LPIPS: 0.054 → 0.161, G-O: 6.948 → 6.325). As discussed in Section 4, STS addresses the instability in speed estimation, and skipping it results in degraded performance. Removing SMS leads to smaller declines in both pixel-level (PSNR: 30.520 → 28.857, SSIM: 0.939 → 0.904) and perceptual metrics (G-O: 6.948 → 6.773), reflecting its role in bridging the gap between edited and unedited regions. Finally, when the forced step in RAGS was removed, since its role was to mitigate the decay of KV similarity over time, its removal led to a 2-point drop in PSNR, further validating its necessity.

Sensitivity of Parameters δ and η . The parameter δ controls the proportion of cached timesteps. The parameter η is used to distinguish between edited and unedited regions. We evaluate 25 different

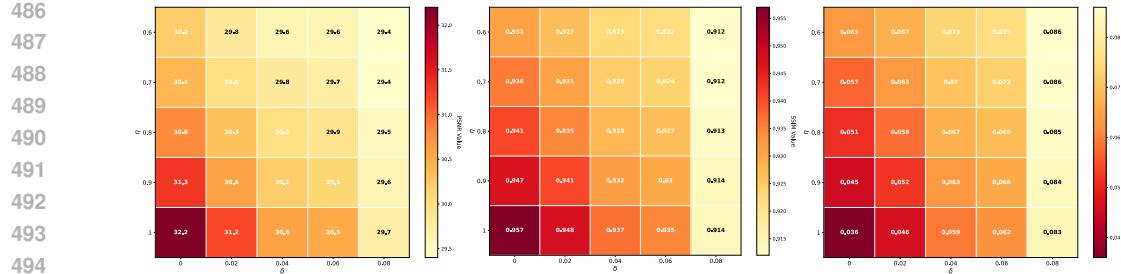
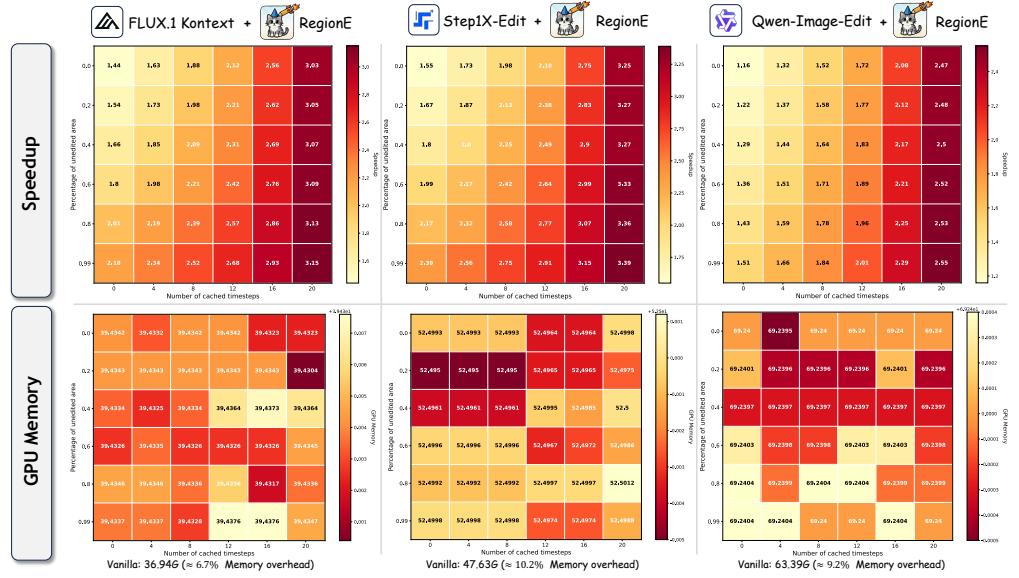
Figure 6: Sensitivity analysis of hyperparameters δ and η performed on Step1X-Edit-v1p1.

Figure 7: Speedup and GPU memory usage at different levels of spatiotemporal redundancy.

combinations of δ and η on the Step1X-Edit, and the quantitative results of editing quality are shown in Figure 6. The results indicate that: (1) as δ increases, more timesteps are skipped and editing quality deteriorates; and (2) as η increases, a larger portion of the image is considered edited, resulting in slower generation due to the increased area requiring local synthesis, but improved editing quality.

Speedup and GPU Memory Across Redundancy Levels. Figure 7 summarizes the speedup and memory consumption of RegionE under varying redundancy levels. The horizontal axis represents the number of cached timesteps, and the vertical axis denotes the proportion of unedited regions, evaluated on 1024x1024 images. As the edited region shrinks and more timesteps are skipped, RegionE yields higher speedups, reaching up to 3.15x, 3.39x, and 2.55x on FLUX.1 Kontext, Step1X-Edit, and Qwen-Image, respectively. Memory usage remains largely unaffected across redundancy levels, with RegionE incurring only 6%–10% additional overhead compared to the vanilla setting.

6 CONCLUSION

Inspired by temporal and spatial redundancy in IIE, we propose RegionE, an adaptive, region-aware generation framework that accelerates the IIE process. Specifically, we perform early prediction on spatial regions using ARP and combine it with RIKVCache for region-wise editing to reduce spatial redundancy. We also use AVDCache to minimize temporal redundancy. Experiments show that RegionE achieves 2.57x, 2.41x, and 2.06x end-to-end speedups on Step1X-Edit and FLUX.1 Kontext, and Qwen-Image-Edit, respectively, while maintaining minimal bias (PSNR 30.52–32.13) and negligible quality loss (GPT-4o evaluation results remain comparable). These results demonstrate the effectiveness of RegionE in reducing redundancy in IIE.

540 REFERENCES
541

542 Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended diffusion for text-driven editing of
543 natural images. In *2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR)*, pp. 18187–18197. IEEE, June 2022. doi: 10.1109/cvpr52688.2022.01767. URL <http://dx.doi.org/10.1109/CVPR52688.2022.01767>.
544

545 Tim Brooks, Aleksander Holynski, and Alexei A. Efros. Instructpix2pix: Learning to follow image
546 editing instructions, 2023. URL <https://arxiv.org/abs/2211.09800>.
547

548 Jiazi Bu, Pengyang Ling, Yujie Zhou, Yibin Wang, Yuhang Zang, Tong Wu, Dahua Lin, and Jiaqi
549 Wang. Dicache: Let diffusion model determine its own cache, 2025. URL <https://arxiv.org/abs/2508.17356>.
550

551 Thibault Castells, Hyoung-Kyu Song, Bo-Kyeong Kim, and Shinkook Choi. Ld-pruner: Efficient
552 pruning of latent diffusion models using task-agnostic insights. In *Proceedings of the IEEE/CVF
553 Conference on Computer Vision and Pattern Recognition*, pp. 821–830, 2024.
554

555 Pengtao Chen, Mingzhu Shen, Peng Ye, Jianjian Cao, Chongjun Tu, Christos-Savvas Bouganis, Yiren
556 Zhao, and Tao Chen. δ -dit: A training-free acceleration method tailored for diffusion transformers.
557 *arXiv preprint arXiv:2406.01125*, 2024.
558

559 Yisol Choi, Sangkyung Kwak, Kyungmin Lee, Hyungwon Choi, and Jinwoo Shin. Improving
560 diffusion models for authentic virtual try-on in the wild. In *European Conference on Computer
561 Vision*, pp. 206–235. Springer, 2024.
562

563 Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and Matthieu Cord. Diffedit: Diffusion-based
564 semantic image editing with mask guidance, 2022. URL <https://arxiv.org/abs/2210.11427>.
565

566 Gongfan Fang, Xinyin Ma, and Xinchao Wang. Structural pruning for diffusion models. In *Advances
567 in Neural Information Processing Systems*, 2023.
568

569 Qin Guo and Tianwei Lin. Focus on your instruction: Fine-grained and multi-instruction image
570 editing by attention modulation, 2023. URL <https://arxiv.org/abs/2312.10113>.
571

572 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint arXiv:2207.12598*,
573 2022.
574

575 Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and
576 Michal Irani. Imagic: Text-based real image editing with diffusion models. In *Proceedings of the
577 IEEE/CVF conference on computer vision and pattern recognition*, pp. 6007–6017, 2023.
578

579 Bo-Kyeong Kim, Hyoung-Kyu Song, Thibault Castells, and Shinkook Choi. Bk-sdm: Architecturally
580 compressed stable diffusion for efficient text-to-image generation. In *Workshop on Efficient Systems
581 for Foundation Models@ ICML*, 2023.
582

583 Max Ku, Dongfu Jiang, Cong Wei, Xiang Yue, and Wenhui Chen. Viescore: Towards explainable
584 metrics for conditional image synthesis evaluation, 2024. URL <https://arxiv.org/abs/2312.14867>.
585

586 Black Forest Labs, Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril Di-
587 agne, Tim Dockhorn, Jack English, Zion English, Patrick Esser, et al. Flux. 1 kontext: Flow match-
588 ing for in-context image generation and editing in latent space. *arXiv preprint arXiv:2506.15742*,
589 2025.
590

591 Muyang Li, Yujun Lin, Zhekai Zhang, Tianle Cai, Xiuyu Li, Junxian Guo, Enze Xie, Chenlin Meng,
592 Jun-Yan Zhu, and Song Han. Svdquant: Absorbing outliers by low-rank components for 4-bit
593 diffusion models. *arXiv preprint arXiv:2411.05007*, 2024a.
594

595 Yaowei Li, Yuxuan Bian, Xuan Ju, Zhaoyang Zhang, Junhao Zhuang, Ying Shan, Yuexian Zou, and
596 Qiang Xu. Brushedit: All-in-one image inpainting and editing. *arXiv preprint arXiv:2412.10316*,
597 2024b.
598

594 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 595 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.
 596

597 Feng Liu, Shiwei Zhang, Xiaofeng Wang, Yujie Wei, Haonan Qiu, Yuzhong Zhao, Yingya Zhang,
 598 Qixiang Ye, and Fang Wan. Timestep embedding tells: It's time to cache for video diffusion model.
 599 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 7353–7363,
 600 2025a.

601 Shiyu Liu, Yucheng Han, Peng Xing, Fukun Yin, Rui Wang, Wei Cheng, Jiaqi Liao, Yingming Wang,
 602 Honghao Fu, Chunrui Han, et al. Step1x-edit: A practical framework for general image editing.
 603 *arXiv preprint arXiv:2504.17761*, 2025b.

604 Songhua Liu, Zhenxiong Tan, and Xinchao Wang. Clear: Conv-like linearization revs pre-trained
 605 diffusion transformers up. *arXiv preprint arXiv:2412.16112*, 2024.

606

607 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 608 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.

609

610 Ziming Liu, Yifan Yang, Chengruidong Zhang, Yiqi Zhang, Lili Qiu, Yang You, and Yuqing Yang.
 611 Region-adaptive sampling for diffusion transformers. *arXiv preprint arXiv:2502.10389*, 2025c.

612

613 Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models:
 614 Synthesizing high-resolution images with few-step inference. *arXiv preprint arXiv:2310.04378*,
 615 2023.

616

617 Zhaoyang Lyu, Xudong Xu, Ceyuan Yang, Dahua Lin, and Bo Dai. Accelerating diffusion models
 618 via early stop of the diffusion process. *arXiv preprint arXiv:2205.12524*, 2022.

619

620 Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for
 621 free. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 622 15762–15772, 2024.

623

624 Wenyi Mo, Tianyu Zhang, Yalong Bai, Bing Su, and Ji-Rong Wen. Uniform attention maps: Boosting
 625 image fidelity in reconstruction and editing, 2024. URL <https://arxiv.org/abs/2411.19652>.

626

627 Zhihong Pan, Riccardo Gherardi, Xiufeng Xie, and Stephen Huang. Effective real image editing
 628 with accelerated iterative diffusion inversion, 2023. URL <https://arxiv.org/abs/2309.04907>.

629

630 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of
 631 the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

632

633 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 634 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 635 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

636

637 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 638 image segmentation. In *International Conference on Medical image computing and computer-
 639 assisted intervention*, pp. 234–241. Springer, 2015.

640

641 Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
 642 distillation. In *European Conference on Computer Vision*, pp. 87–103. Springer, 2024.

643

644 Pratheba Selvaraju, Tianyu Ding, Tianyi Chen, Ilya Zharkov, and Luming Liang. Fora: Fast-forward
 645 caching in diffusion transformer acceleration. *arXiv preprint arXiv:2407.01425*, 2024.

646

647 Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and Yan Yan. Post-training quantization on
 648 diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
 649 recognition*, pp. 1972–1981, 2023.

650

651 Enis Simsar, Alessio Tonioni, Yongqin Xian, Thomas Hofmann, and Federico Tombari. Lime:
 652 Localized image editing via attention regularization in diffusion models, 2024. URL <https://arxiv.org/abs/2312.09256>.

648 Jiangshan Wang, Junfu Pu, Zhongang Qi, Jiayi Guo, Yue Ma, Nisha Huang, Yuxin Chen, Xiu Li, and
 649 Ying Shan. Taming rectified flow for inversion and editing, 2025. URL <https://arxiv.org/abs/2411.04746>.
 650

651 Qian Wang, Biao Zhang, Michael Birsak, and Peter Wonka. Instructedit: Improving automatic masks
 652 for diffusion-based image editing with user instructions. *arXiv preprint arXiv:2305.18047*, 2023.
 653

654 Zhou Wang and Alan C Bovik. A universal image quality index. *IEEE signal processing letters*, 9(3):
 655 81–84, 2002.
 656

657 Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng-ming Yin, Shuai
 658 Bai, Xiao Xu, Yilei Chen, et al. Qwen-image technical report. *arXiv preprint arXiv:2508.02324*,
 659 2025.

660 Haocheng Xi, Shuo Yang, Yilong Zhao, Chenfeng Xu, Muyang Li, Xiuyu Li, Yujun Lin, Han
 661 Cai, Jintao Zhang, Dacheng Li, Jianfei Chen, Ion Stoica, Kurt Keutzer, and Song Han. Sparse
 662 videogen: Accelerating video diffusion transformers with spatial-temporal sparsity, 2025. URL
 663 <https://arxiv.org/abs/2502.01776>.
 664

665 Zexuan Yan, Yue Ma, Chang Zou, Wenteng Chen, Qifeng Chen, and Linfeng Zhang. Edit:
 666 Rethinking the spatial and temporal redundancy for efficient image editing, 2025. URL
 667 <https://arxiv.org/abs/2503.10270>.
 668

669 Zhen Yang, Ganggui Ding, Wen Wang, Hao Chen, Bohan Zhuang, and Chunhua Shen. Object-aware
 670 inversion and reassembly for image editing, 2024. URL <https://arxiv.org/abs/2310.12149>.
 671

672 Kai Zhang, Lingbo Mo, Wenhui Chen, Huan Sun, and Yu Su. Magicbrush: A manually annotated
 673 dataset for instruction-guided image editing. *Advances in Neural Information Processing Systems*,
 674 36:31428–31449, 2023a.

675 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 676 diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 677 pp. 3836–3847, 2023b.

678 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 679 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on*
 680 *computer vision and pattern recognition*, pp. 586–595, 2018.

681 Maosen Zhao, Pengtao Chen, Chong Yu, Yan Wen, Xudong Tan, and Tao Chen. Pioneering 4-bit fp
 682 quantization for diffusion models: Mixup-sign quantization and timestep-aware fine-tuning, 2025a.
 683 URL <https://arxiv.org/abs/2505.21591>.
 684

685 Tianchen Zhao, Tongcheng Fang, Haofeng Huang, Enshu Liu, Rui Wan, Widayadewi Soedarmadji,
 686 Shiyao Li, Zinan Lin, Guohao Dai, Shengen Yan, Huazhong Yang, Xuefei Ning, and Yu Wang.
 687 Vedit-q: Efficient and accurate quantization of diffusion transformers for image and video genera-
 688 tion, 2025b. URL <https://arxiv.org/abs/2406.02540>.
 689

690 Xuanlei Zhao, Xiaolong Jin, Kai Wang, and Yang You. Real-time video generation with pyramid
 691 attention broadcast. *arXiv preprint arXiv:2408.12588*, 2024.
 692

693 Xin Zhou, Dingkang Liang, Kairui Chen, Tianrui Feng, Xiwu Chen, Hongkai Lin, Yikang Ding,
 694 Feiyang Tan, Hengshuang Zhao, and Xiang Bai. Less is enough: Training-free video diffusion
 695 acceleration via runtime-adaptive caching, 2025. URL <https://arxiv.org/abs/2507.02860>.
 696

697 Chang Zou, Xuyang Liu, Ting Liu, Siteng Huang, and Linfeng Zhang. Accelerating diffusion
 698 transformers with token-wise feature caching. *arXiv preprint arXiv:2410.05317*, 2024a.
 699

700 Chang Zou, Evelyn Zhang, Runlin Guo, Haohang Xu, Conghui He, Xuming Hu, and Linfeng Zhang.
 701 Accelerating diffusion transformers with dual feature caching. *arXiv preprint arXiv:2412.18911*,
 702 2024b.

702 **RegionE: Adaptive Region-Aware Generation for Efficient Image Editing**
703704 **Supplementary Material**
705706
707 We organize the supplementary material as follows:
708

- 709 • Section A: Pseudocode of RegionE
- 710 • Section B: Analysis of Adaptive Velocity Decay Cache
- 711 • Section C: [Discussion on Using AVDCache During the Stabilization Stage](#)
- 712 • Section D: [Discussion on High-Resolution Image Editing](#)
- 713 • Section E: [Discussion on Editing Boundaries](#)
- 714 • Section F: [Discussion on Multi-Region Editing](#)
- 715 • Section G: [Discussion on Global Editing](#)
- 716 • Section H: [Discussion on Bad Cases](#)
- 717 • Section I: [Experimental Setup of the User Study](#)
- 718 • Section J: Per-Task Visualization Results in the Benchmark
- 719 • Section K: Per-Task Quantitative Results in the Benchmark
- 720 • Section L: Statement on LLM Usage

721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 A PSEUDOCODE OF REGIONE
757758 **Algorithm 1** RegionE: Adaptive Region-Aware Generation for Efficient Image Editing

760 **Input:** Diffusion transformer $\Phi(\cdot)$, sampling step T , insturction image \mathbf{X}^I , text tokens \mathbf{X}^P , random
761 noise \mathbf{X}_T , total steps in stabilization stage t^{st} , total steps in smooth stage t^{sm} , threshold of
762 adaptive region partition η , threshold of adaptive velocity decay cache δ , sorted forced steps list
763 $t_f.list$.

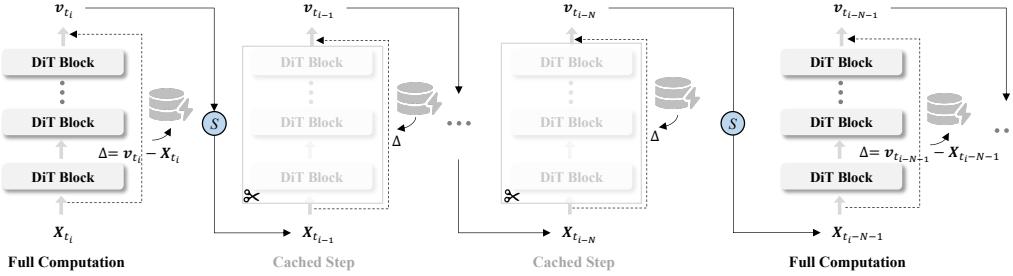
764 1: // **Initialization**
765 2: RIKVCache $\mathcal{C}_{\mathcal{K}\mathcal{V}}$ = None, RIKVCache flag $f = (False, False)$; AVDCache $\mathcal{C}_{\mathcal{A}}$ = None;
766 3: Accumulative Error $e = 0$; $t_f.list.insert(0, T - t^{st})$; $t_f.list.insert(-1, t^{sm} - 1)$;

767 4: // **Stabilization Stage**
768 5: **for** $i \leftarrow T$ to $T - t^{st}$ **do**
769 6: **if** $i == T - t^{st}$ **then**
770 7: $f[0] = True$ \triangleright *first dimension represents storing, second dimension represents retrieving*
771 8: **end if**
772 9: $\mathbf{v}_{t_i}, \mathcal{C}_{\mathcal{K}\mathcal{V}} = \Phi([\mathbf{X}^P, \mathbf{X}_{t_i}, \mathbf{X}^I], \mathcal{C}_{\mathcal{K}\mathcal{V}}, f)$
773 10: $\mathbf{X}_{t_{i-1}} = \mathbf{X}_{t_i} - (t_i - t_{i-1}) \cdot \mathbf{v}_{t_i}$
774 11: **end for**

775 12: // **Region-Aware Generation Stage**
776 13: \triangleright *Adaptive Region Partition*
777 14: $\hat{\mathbf{X}}_0 = \mathbf{X}_{t_{T-t^{st}}} - \mathbf{v}_{T-t^{st}+1} \cdot t_{T-t^{st}}$
778 15: $E_{index}, U_{index} = Erosion_ \& \ Dilate(\cos(\hat{\mathbf{X}}_0, \mathbf{X}^I) > \eta)$
779 16: \triangleright *Region-Aware Generation*
780 17: **for** $i \leftarrow 0$ to $\text{len}(t_f.list) - 2$ **do**
781 18: $prev = t_f.list[i]; next = t_f.list[i + 1]$
782 19: $\mathbf{X}_{t_{prev}}^E = \mathbf{X}_{t_{prev}}[E_{index}]; \mathbf{X}_{t_{prev}}^U = \mathbf{X}_{t_{prev}}[U_{index}]$
783 20: $\hat{\mathbf{X}}_{t_{next+1}}^U = \mathbf{X}_{t_{prev}}^U - \mathbf{v}_{t_{prev}+1}^U \cdot (t_{prev} - t_{next+1})$ \triangleright *one-step estimation for unedited region*
784 21: $f[0] = False, f[1] = True$ \triangleright *iteritive denoising for edited region*
785 22: **for** $j \leftarrow prev$ to $next + 1$ **do**
786 23: \triangleright *Adaptive Velocity Decay Cache*
787 24: Calculate e according to Eq.8
788 25: **if** $e > \delta$ **then**
789 26: $\mathbf{v}_{t_j}^E, \mathcal{C}_{\mathcal{K}\mathcal{V}} = \Phi([\mathbf{X}^P, \mathbf{X}_{t_j}^E, \mathbf{X}^I], \mathcal{C}_{\mathcal{K}\mathcal{V}}, f)$
790 27: $\mathcal{C}_{\mathcal{A}} = \mathbf{v}_{t_j}^E$
791 28: $\mathbf{X}_{t_{j-1}}^E = \mathbf{X}_{t_j}^E - (t_j - t_{j-1}) \cdot \mathbf{v}_{t_j}^E$
792 29: **else**
793 30: $\mathbf{v}_{t_j}^E = \mathcal{C}_{\mathcal{A}} * \text{decay factor according to Eq.7}$
794 31: **end if**
795 32: **end for**
796 33: $\mathbf{X}_{t_{next+1}} = \text{gather}(\mathbf{X}_{t_{next}}^U, \mathbf{X}_{t_{next+1}}^E)$
797 34: $f[0] = True, f[1] = False$
798 35: $\mathbf{v}_{t_{next+1}}, \mathcal{C}_{\mathcal{K}\mathcal{V}} = \Phi([\mathbf{X}^P, \mathbf{X}_{t_{next+1}}, \mathbf{X}^I], \mathcal{C}_{\mathcal{K}\mathcal{V}}, f)$
799 36: $\mathbf{X}_{t_{next}} = \mathbf{X}_{t_{next+1}} - (t_{next} - t_{next+1}) \cdot \mathbf{v}_{t_{next+1}}$
800 37: **end for**

801 38: // **Smooth Stage**
802 39: $f[0] = False, f[1] = False$
803 40: **for** $i \leftarrow t^{sm} - 1$ to 1 **do**
804 41: $\mathbf{v}_{t_i}, \mathcal{C}_{\mathcal{K}\mathcal{V}} = \Phi(\mathbf{X}_{t_i}, \mathcal{C}_{\mathcal{K}\mathcal{V}}, f)$
805 42: $\mathbf{X}_{t_{i-1}} = \mathbf{X}_{t_i} - (t_i - t_{i-1}) \cdot \mathbf{v}_{t_i}$
806 43: **end for**

807 **Output:** Target image after editing \mathbf{X}_0

810 B ANALYSIS OF ADAPTIVE VELOCITY DECAY CACHE
811822 Figure 8: Pipeline Based on Residual Cache.
823

824 In current research on diffusion model caching, many studies focus on residual-based caches (Chen
825 et al., 2024; Liu et al., 2025a; Zhou et al., 2025; Bu et al., 2025), which store the Δ shown in
826 Figure 8. Based on the sampling formula in Equation 4 and the definition of caching, we can derive
827 the following expression:

$$\begin{cases} \mathbf{X}_{t_{i-1}} = \mathbf{X}_{t_i} - (t_i - t_{i-1}) \cdot \mathbf{v}_{t_i} \\ \Delta = \mathbf{v}_{t_i} - \mathbf{X}_{t_i} \\ \mathbf{v}_{t_{i-1}} = \mathbf{X}_{t_{i-1}} + \Delta \end{cases} . \quad (10)$$

832 It can be solved as:

$$\mathbf{v}_{t_{i-1}} = [1 - (t_i - t_{i-1})] \cdot \mathbf{v}_{t_i} . \quad (11)$$

834 Similarly, for the timestep t_{i-2} , we have:

$$\mathbf{v}_{t_{i-2}} = [1 - (t_{i-1} - t_{i-2})] \cdot \mathbf{v}_{t_{i-1}} . \quad (12)$$

837 Therefore, if we perform N steps of residual caching, as illustrated in Figure 8, we can obtain:

$$\begin{aligned} \mathbf{v}_{t_{i-N}} &= \prod_{m=1}^N [1 - (t_{i-m+1} - t_{i-m})] \cdot \mathbf{v}_{t_i} \\ &= \underbrace{\prod_{m=1}^N [1 - \Delta t_{i-m+1, i-m}]}_{\text{Determined by Solver}} \cdot \mathbf{v}_{t_i} . \end{aligned} \quad (13)$$

848 This further indicates that the current residual cache and the velocity cache are equivalent. Since
849 $\Delta t_{i-m+1, i-m}$ is a minimal value approaching zero, the coefficient before \mathbf{v}_{t_i} is less than one.
850 Therefore, it can be seen that the current residual cache is essentially a decayed form of the velocity
851 cache. Furthermore, we observe that the solver determines the decay coefficient in Equation 13.
852 However, as shown in Figure 2d, the decay of velocity exhibits a timestep-dependent behavior. To
853 account for this, we introduce an external timestep correction coefficient γ_{t_i} . Notably, the AVDCache
854 proposed in this paper reduces to Equation 13 when the correction coefficient γ_{t_i} equals 1.

855 C DISCUSSION ON USING AVDCACHE DURING THE STABILIZATION STAGE
856

858 In RegionE, AVDCache is used exclusively in the Region-Aware Generation Stage. This design
859 choice is motivated by the following considerations:

860 The first stage of RegionE is the Stabilization Stage. We do not apply caching in this stage for
861 four reasons. (a) As discussed in Section 4 of the manuscript, the input in this stage has a low
862 signal-to-noise ratio, and the DiT predictions are inherently unstable, making it unsuitable for
863 acceleration techniques such as caching. (b) Velocity similarity between consecutive steps is very
864 low at the beginning, and since this stage is responsible for shaping the coarse structure of the image,

864 introducing caching would harm generation quality. (c) This stage concludes with the separation of
 865 edited and unedited regions; thus, avoiding any loss during this stage is crucial. (d) Prior studies
 866 have also emphasized avoiding efficient methods at early timesteps, such as SVG (Xi et al., 2025),
 867 ViDiT-Q (Zhao et al., 2025b), and others.

868 For completeness, we also applied AVDCache to the Stabilization Stage, and the quantitative results
 869 are shown in Table 3. We observe that applying AVDCache in the STS yields higher speedups but
 870 also leads to a noticeable degradation in editing quality. Specifically, PSNR largely drops by 1.91,
 871 SSIM decreases by 0.013, LPIPS worsens by 0.16, and G-O declines by 0.066. To achieve a better
 872 balance between generation quality and efficiency, we therefore choose not to apply AVDCache in
 873 the STS.

874

875 Table 3: Quantitative impact of applying AVDCache in the Stabilization Stage (STS).
 876

Model	Against Vanilla			GPT-4o Score			Efficiency	
	PSNR↑	SSIM↑	LPIPS↓	G-SC↑	G-PQ↑	G-O↑	Latency (s)↓	Speedup↑
Step1X-Edit	-	-	-	7.479	7.466	6.906	27.945	1.000
+ Ours wo STS Cache	30.520	0.939	0.054	7.552	7.405	6.948	10.865	2.572
+ Ours w STS Cache	28.610	0.926	0.070	7.455	7.395	6.882	8.583	3.256

881

882

883

884

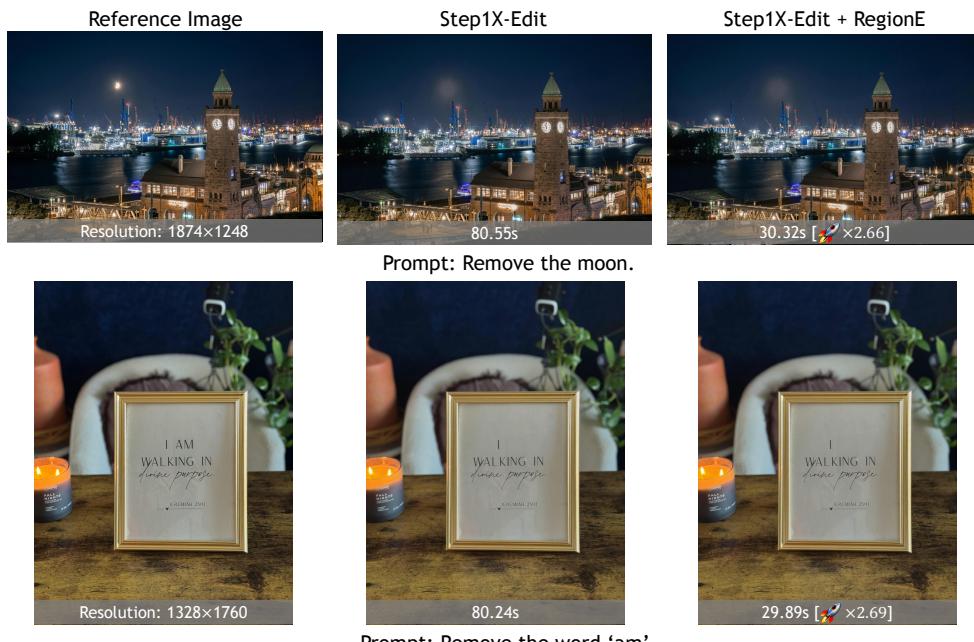
885

DISCUSSION ON HIGH-RESOLUTION IMAGE EDITING

886

887 In the main experiments, we focus on 1k-resolution reference images since Step1X-Edit, FLUX.1
 888 Kontext, and Qwen-Image-Edit are all native 1k-resolution editing models. Here, we provide a
 889 preliminary evaluation of RegionE on high-resolution image editing, as shown in Figure 9. High-
 890 resolution images contain more tokens after tokenization, resulting in greater spatial redundancy,
 891 which allows RegionE to achieve higher acceleration. The results in Figure 9 demonstrate both high
 892 fidelity and increased speedup, further validating this observation. Since there is currently no suitable
 893 benchmark for high-resolution image editing, we do not report quantitative results on a dataset.

894



915

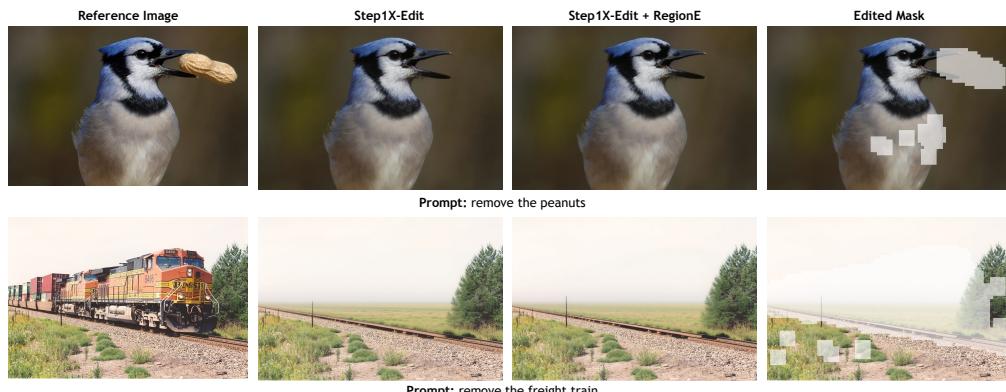
916

917

Figure 9: Visualization results in high-resolution image editing scenarios.

918 E DISCUSSION ON EDITING BOUNDARIES
919

920 Image editing with RegionE does not introduce boundary artifacts. This can be attributed to the
 921 following reasons: a) During local generation in the edited region, RegionE uses RIKVCache, which
 922 allows the Attention computation to access global key-value information. As a result, the edited
 923 region maintains awareness of the entire image, and only extremely minor boundary artifacts may
 924 occur at this stage. b) The final stage in RegionE is the Smooth Stage, which effectively eliminates any
 925 subtle boundary artifacts between edited and unedited regions. Two randomly selected visualization
 926 examples are shown in Figure 10, where the boundaries between edited and unedited regions are
 927 imperceptible.

942 Figure 10: Visualization of image editing boundaries.
943972 Figure 11: Visualization in multi-region image editing scenarios.
973

972 **F DISCUSSION ON MULTI-REGION EDITING**
973

974 In Figure 5, we show generation results when the edited region is contiguous. In practice, whether
 975 the edited region is contiguous or dispersed does not affect RegionE’s performance. This is because
 976 RegionE leverages RIKVCache, where the local query (Q) accesses global key-value (KV) informa-
 977 tion during Attention computation. Consequently, even dispersed edited regions attend to the same
 978 global context, avoiding significant computational bias. Figure 11 visualizes several examples with
 979 dispersed edited regions, demonstrating that RegionE achieves accelerated editing while maintaining
 980 high fidelity.

981
982 **G DISCUSSION ON GLOBAL EDITING**
983

984 In practical applications, fully global editing scenarios also occur. In such cases, the spatial redun-
 985 dancy in the editing task is low, and RegionE primarily exploits redundancy across timesteps to
 986 accelerate the editing process. Figure 12 shows an example of this type of task, demonstrating that
 987 RegionE can still achieve high-fidelity generation.

1001 Figure 12: Visualization results in global image editing scenarios.
1002
10031004 **H DISCUSSION ON BAD CASES**
1005

1006 At higher speedup, RegionE may produce some rare bad cases. Upon reviewing the entire dataset,
 1007 we found that these few instances typically involve minor generation deviations that do not affect
 1008 instruction adherence. As shown in Figure 13, in the first example, the color of the top corner slightly
 1009 deviates, and in the second example, the shape of the ceramic shows a small discrepancy. However,
 1010 these deviations do not compromise the overall adherence to the editing instructions.

1012 **I EXPERIMENTAL SETUP OF THE USER STUDY**
1013

1014 In this section, we provide a detailed description of the user study setup. For evaluating RegionE
 1015 on Step1X-Edit and Qwen-Image-Edit, we selected a total of 11 tasks from GEdit-Bench, randomly
 1016 sampling 5 image–instruction pairs per task, resulting in 55 samples. For FLUX.1 Kontext, we
 1017 selected 5 tasks from Kontext Bench, randomly sampling 11 image–instruction pairs per task, also
 1018 totaling 55 samples.

1019 After constructing the evaluation sets, we generated edited images using the base models both
 1020 with and without RegionE, and saved the corresponding outputs. We then collected votes from 10
 1021 participants, who were asked to choose the image with higher quality and better instruction adherence.
 1022 The order of the images was randomized, and participants were unaware of which method was used
 1023 for each image. If the two images were similar, participants could select a neutral option. Finally, the
 1024 scores for the two methods were aggregated. The layout of the questionnaire is shown in Figure 14.
 1025

1026
1027
1028
1029
1030
1031
1032
1033

Prompt: alter the color of doughnut to silver

1035
1036
1037
1038
1039
1040
1041
1042

Figure 13: Visualization of failure cases.

User Study on Image Editing

We are evaluating two image-editing models. You will be presented with 165 items, each containing five components: the original image, the editing instruction, the output from Model A, the output from Model B, and evaluation options (Model A, Model B, Neutral).

Please compare the two edited images in terms of **output quality** and **adherence to the instruction**, and select the model that performs **better overall**. If their results are comparable, select "Neutral." Thank you for your participation and cooperation. (Model A and Model B are randomized for each item to ensure objectivity.)

1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063

Q1.

Instruction

Original Image

Change this bag to red.

Output from Model A

Output from Model B

Preference.

○ Model A

○ Model B

Neutral

1079

Figure 14: Thumbnails from the user study questionnaire.

1080 **J PER-TASK VISUALIZATION RESULTS IN THE BENCHMARK**
10811082 Due to space limitations, we put the visualization results of some tasks in the manuscript. Here,
1083 we provide a visual comparison of additional tasks and models. Figure 15 and Figure 16 show the
1084 visualization results of 11 tasks on Step1X-Edit. Figure 18 and Figure 19 show the visualization
1085 results of 11 tasks on Qwen-Image-Edit. Figure 17 show the visualization results of 5 tasks on
1086 FLUX.1 Kontext.
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134

1135

1136

1137

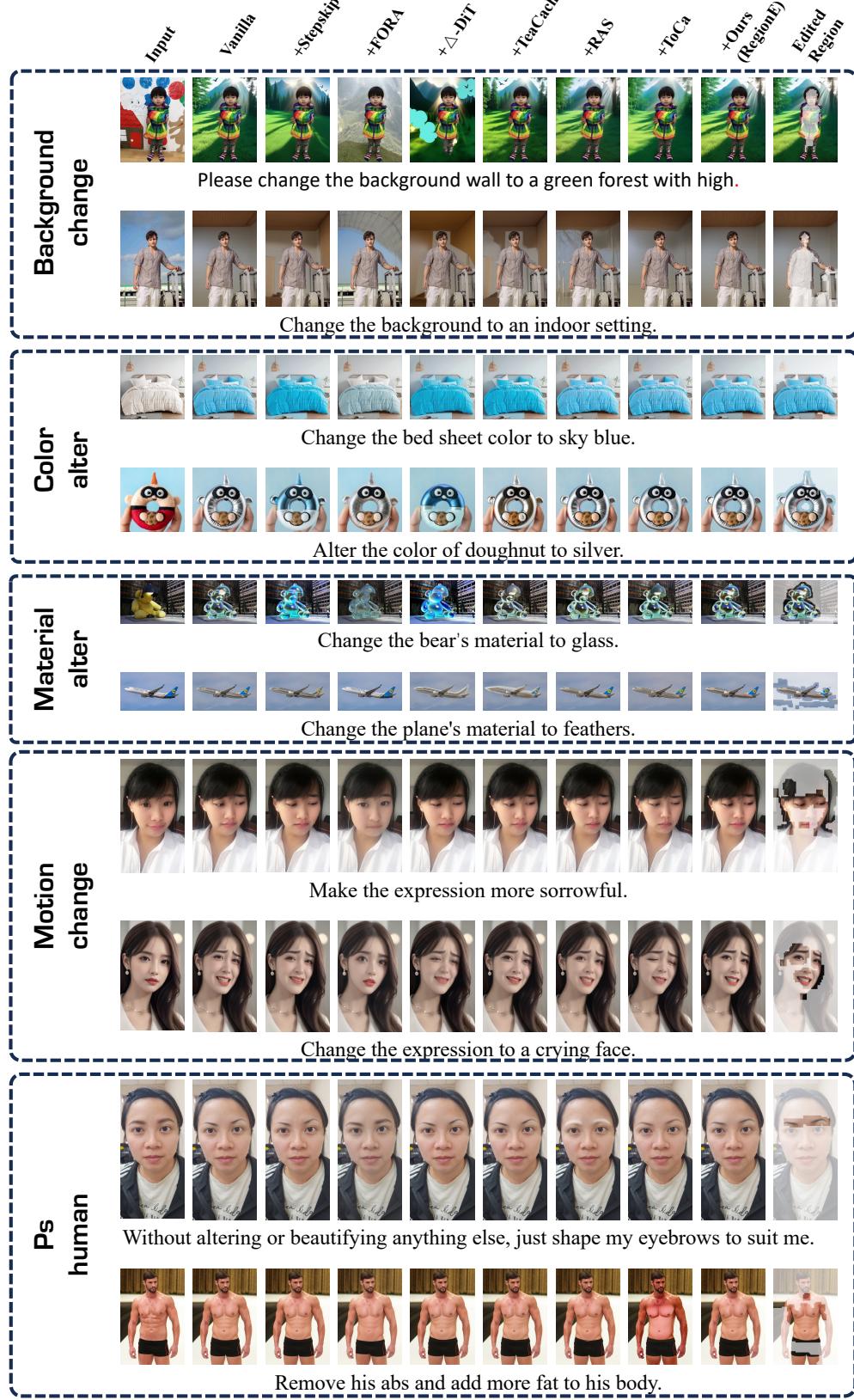


Figure 15: Examples of edited images by RegionE and baseline on Step1X-Edit-v1p1.

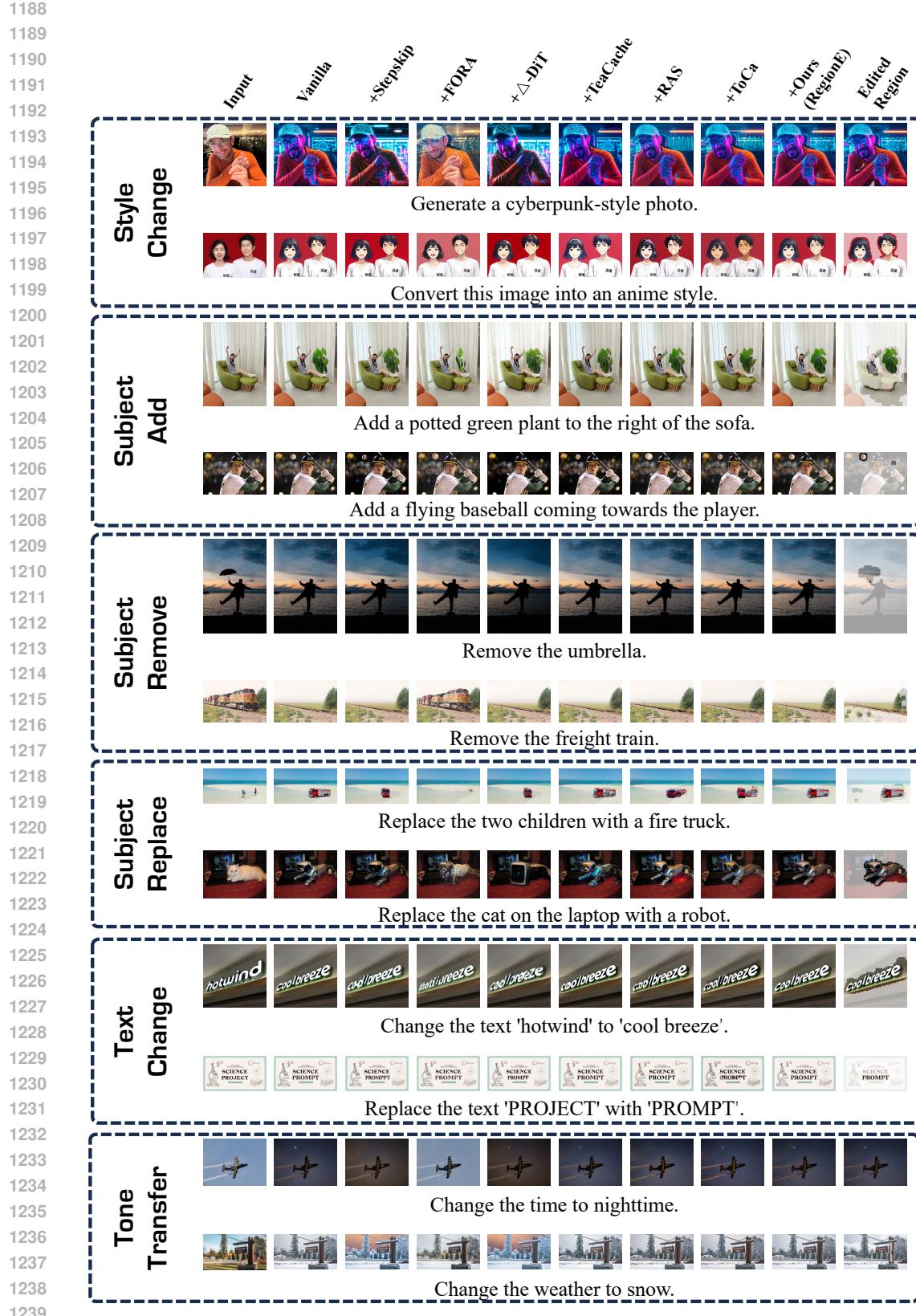


Figure 16: Examples of edited images by RegionE and baseline on Step1X-Edit-v1p1.

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

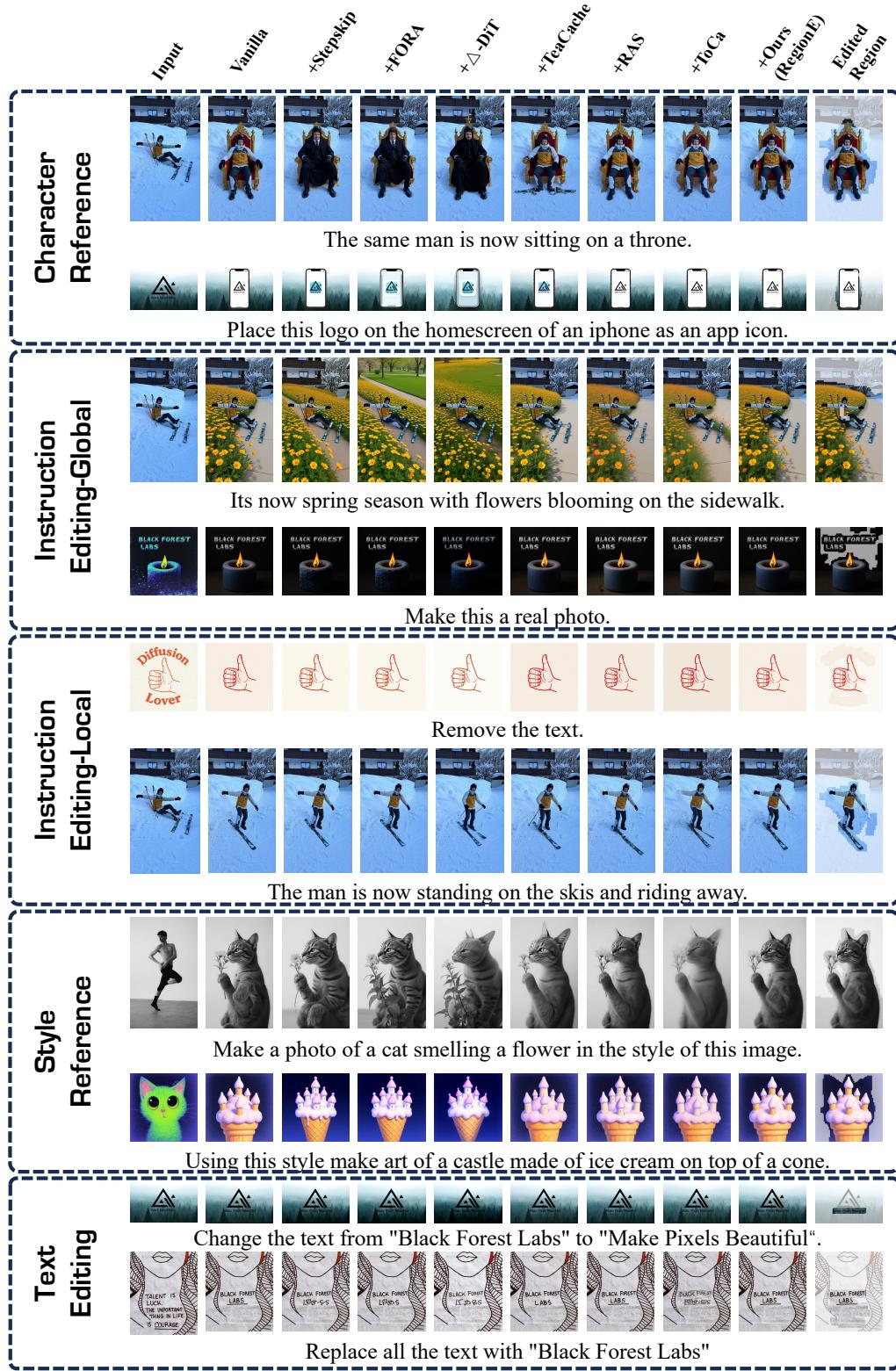


Figure 17: Examples of edited images by RegionE and baseline on FLUX.1 Kontext.

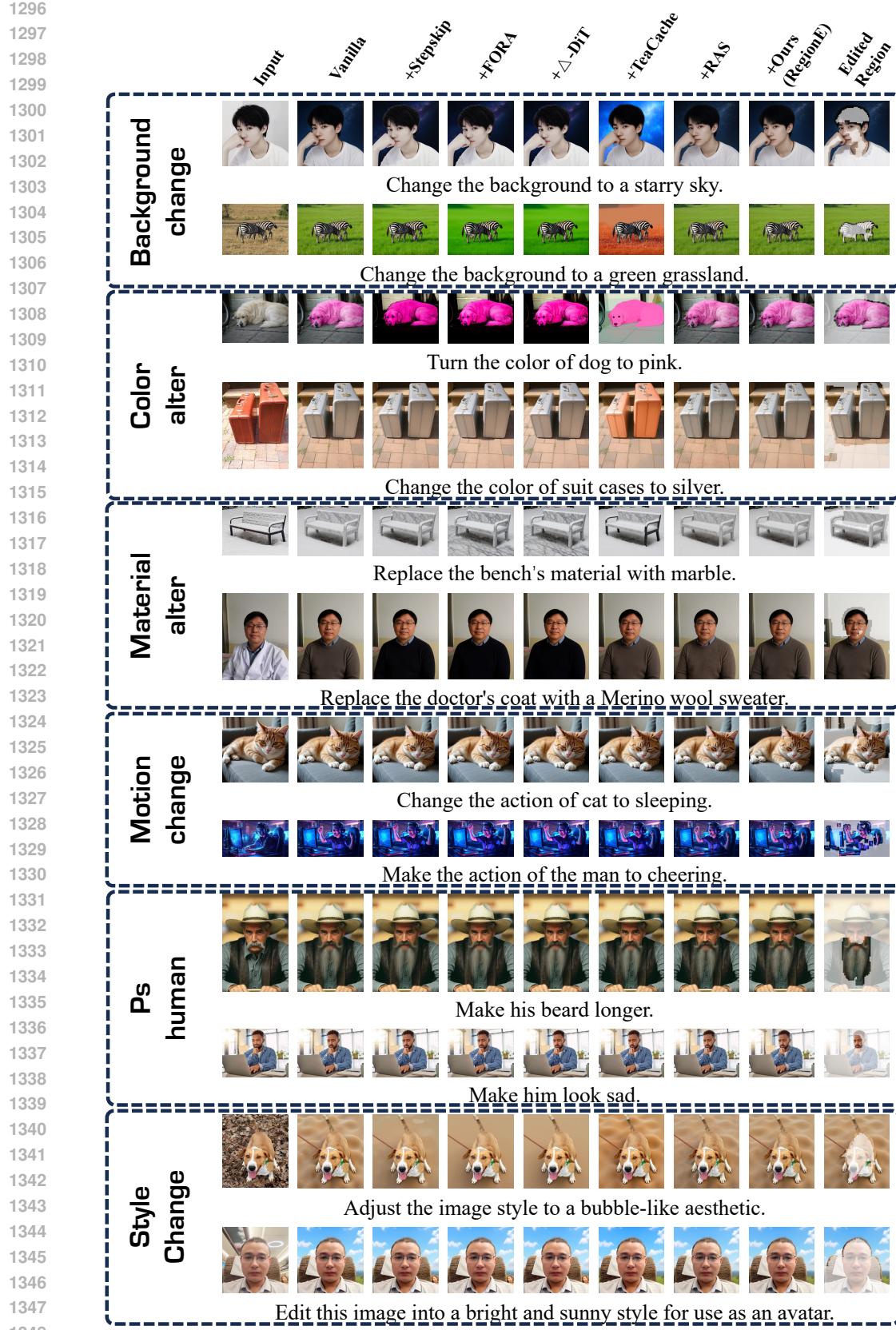


Figure 18: Examples of edited images by RegionE and baseline on Qwen-Image-Edit.

Figure 19: Examples of edited images by RegionE and baseline on Qwen-Image-Edit.

1404 K PER-TASK QUANTITATIVE RESULTS IN THE BENCHMARK

1406 In this section, we present the performance of RegionE and the baseline methods on each task in
 1407 the benchmark. Table 4-Table 14 show the performance on the 11 tasks: motion-change, ps-human,
 1408 color-alter, material-alter, subject-add, subject-remove, style-change, tone-transfer, subject-replace,
 1409 text-change, and background-change. Table 15-Table19 show the performance on the five tasks:
 1410 Character Reference, Style Reference, Text Editing, Instruction Editing-Global, and Instruction
 1411 Editing-Local.

1412 Table 4: Comparison of RegionE and other baselines on the motion[-change task of GEdit-Bench,
 1413 evaluated in terms of quality and efficiency.

Model	Against Vanilla			GPT-4o Score			Efficiency	
	PSNR↑	SSIM ↑	LPIPS ↓	G-SC ↑	G-PQ ↑	G-O ↑	Latency (s) ↓	Speedup ↑
StepIX-Edit (Liu et al., 2025b)	-	-	-	4.350	7.950	4.444	27.950	1.000
+ Stepskip	25.887	0.902	0.093	4.350	8.100	4.562	12.306	2.271
+ FORA (Selvaraju et al., 2024)	20.935	0.818	0.189	2.175	7.575	2.385	14.339	1.949
+ Δ - DIT (Chen et al., 2024)	24.549	0.876	0.121	4.350	7.975	4.445	12.730	2.196
+ TeaCache (Liu et al., 2025a)	26.926	0.925	0.068	4.475	8.050	4.524	11.218	2.492
+ RAS (Liu et al., 2025c)	25.888	0.889	0.109	4.025	7.375	4.012	15.253	1.832
+ ToCa (Zou et al., 2024a)	24.428	0.843	0.165	3.775	6.975	3.578	22.225	1.258
Ours (RegionE)	29.633	0.937	0.053	4.625	7.775	4.763	10.739	2.603
Qwen-Image-Edit (Wu et al., 2025)	-	-	-	4.850	8.550	5.112	32.140	1.000
+ Stepskip	27.791	0.905	0.066	4.725	8.625	5.029	17.566	1.830
+ FORA (Selvaraju et al., 2024)	26.744	0.889	0.079	4.825	8.325	4.995	17.827	1.803
+ Δ - DIT (Chen et al., 2024)	25.756	0.848	0.095	4.675	8.575	4.921	17.481	1.839
+ TeaCache (Liu et al., 2025a)	26.776	0.911	0.070	5.025	8.500	5.251	16.389	1.961
+ RAS (Liu et al., 2025c)	26.585	0.882	0.096	5.000	8.625	5.262	22.300	1.441
+ ToCa (Zou et al., 2024a)	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM
Ours (RegionE)	29.416	0.932	0.057	4.825	8.550	5.164	15.695	2.048

1429
 1430 Table 5: Comparison of RegionE and other baselines on the ps-human task of GEdit-Bench, evaluated
 1431 in terms of quality and efficiency.

Model	Against Vanilla			GPT-4o Score			Efficiency	
	PSNR↑	SSIM ↑	LPIPS ↓	G-SC ↑	G-PQ ↑	G-O ↑	Latency (s) ↓	Speedup ↑
StepIX-Edit (Liu et al., 2025b)	-	-	-	4.614	8.086	4.649	27.927	1.000
+ Stepskip	29.220	0.916	0.069	4.600	8.086	4.728	12.296	2.271
+ FORA (Selvaraju et al., 2024)	23.596	0.863	0.142	3.414	8.529	3.920	14.323	1.950
+ Δ - DIT (Chen et al., 2024)	26.348	0.884	0.099	4.800	8.086	4.893	12.728	2.194
+ TeaCache (Liu et al., 2025a)	31.428	0.942	0.047	5.114	7.929	5.191	11.208	2.492
+ RAS (Liu et al., 2025c)	29.077	0.921	0.072	4.400	7.886	4.486	15.237	1.833
+ ToCa (Zou et al., 2024a)	26.716	0.878	0.125	4.786	7.914	4.838	22.073	1.265
Ours (RegionE)	32.985	0.957	0.037	4.629	8.114	4.731	10.813	2.583
Qwen-Image-Edit (Wu et al., 2025)	-	-	-	5.814	8.500	5.972	32.100	1.000
+ Stepskip	32.080	0.936	0.040	5.757	8.414	5.904	17.553	1.829
+ FORA (Selvaraju et al., 2024)	30.120	0.920	0.049	5.700	8.443	5.933	17.816	1.802
+ Δ - DIT (Chen et al., 2024)	28.323	0.887	0.062	5.743	8.500	5.911	17.462	1.838
+ TeaCache (Liu et al., 2025a)	32.347	0.948	0.038	5.714	8.400	5.833	16.360	1.962
+ RAS (Liu et al., 2025c)	29.857	0.917	0.061	5.843	8.271	5.884	22.340	1.437
+ ToCa (Zou et al., 2024a)	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM
Ours (RegionE)	33.550	0.963	0.029	6.086	8.486	6.227	15.473	2.075

1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

1458
 1459 Table 6: Comparison of RegionE and other baselines on the color-alter task of GEdit-Bench, evaluated
 1460 in terms of quality and efficiency.

Model	Against Vanilla			GPT-4o Score			Efficiency	
	PSNR↑	SSIM↑	LPIPS↓	G-SC↑	G-PQ↑	G-O↑	Latency (s)↓	Speedup↑
Step1X-Edit (Liu et al., 2025b)	-	-	-	8.750	6.875	7.395	28.019	1.000
+ Stepskip	27.291	0.919	0.080	8.325	6.975	7.349	12.330	2.273
+ FORA (Selvaraju et al., 2024)	21.871	0.838	0.132	8.800	7.525	7.889	14.356	1.952
+ Δ - DIT (Chen et al., 2024)	24.942	0.901	0.107	8.075	6.600	6.968	12.770	2.194
+ TeaCache (Liu et al., 2025a)	28.084	0.938	0.050	8.525	6.950	7.345	11.242	2.492
+ RAS (Liu et al., 2025c)	28.800	0.909	0.069	8.700	6.925	7.432	15.274	1.834
+ ToCa (Zou et al., 2024a)	25.917	0.864	0.118	8.600	6.725	7.232	21.996	1.274
Ours (RegionE)	32.739	0.956	0.032	8.850	7.250	7.747	11.188	2.504
Qwen-Image-Edit (Wu et al., 2025)	inf	1.000	0.000	9.250	7.525	8.170	32.082	1.000
+ Stepskip	29.795	0.896	0.064	9.050	7.450	8.084	17.527	1.830
+ FORA (Selvaraju et al., 2024)	28.035	0.879	0.078	8.875	7.350	7.872	17.795	1.803
+ Δ - DIT (Chen et al., 2024)	25.892	0.835	0.094	9.025	7.375	8.021	17.479	1.835
+ TeaCache (Liu et al., 2025a)	30.757	0.922	0.057	8.775	7.250	7.840	16.566	1.937
+ RAS (Liu et al., 2025c)	29.132	0.909	0.060	9.150	7.050	7.860	22.356	1.435
+ ToCa (Zou et al., 2024a)	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM
Ours (RegionE)	33.144	0.951	0.032	9.225	7.475	8.172	15.527	2.066

1475
 1476
 1477 Table 7: Comparison of RegionE and other baselines on the material-alter task of GEdit-Bench,
 1478 evaluated in terms of quality and efficiency.

Model	Against Vanilla			GPT-4o Score			Efficiency	
	PSNR↑	SSIM↑	LPIPS↓	G-SC↑	G-PQ↑	G-O↑	Latency (s)↓	Speedup↑
Step1X-Edit (Liu et al., 2025b)	-	-	-	8.300	6.575	7.226	27.880	1.000
+ Stepskip	24.377	0.858	0.117	8.050	5.900	6.676	12.260	2.274
+ FORA (Selvaraju et al., 2024)	20.406	0.763	0.224	7.175	6.875	6.579	14.286	1.952
+ Δ - DIT (Chen et al., 2024)	21.995	0.829	0.154	8.025	5.975	6.695	12.685	2.198
+ TeaCache (Liu et al., 2025a)	25.630	0.875	0.099	8.175	6.000	6.796	11.163	2.498
+ RAS (Liu et al., 2025c)	24.302	0.844	0.141	8.275	5.700	6.633	15.202	1.834
+ ToCa (Zou et al., 2024a)	22.503	0.793	0.186	7.850	5.450	6.352	22.306	1.250
Ours (RegionE)	27.248	0.897	0.080	8.475	6.200	6.997	11.251	2.478
Qwen-Image-Edit (Wu et al., 2025)	-	-	-	8.725	7.150	7.629	32.156	1.000
+ Stepskip	26.300	0.870	0.093	8.650	6.875	7.557	17.578	1.829
+ FORA (Selvaraju et al., 2024)	24.699	0.841	0.116	8.525	6.675	7.389	17.839	1.803
+ Δ - DIT (Chen et al., 2024)	23.827	0.799	0.133	8.425	6.475	7.205	17.472	1.840
+ TeaCache (Liu et al., 2025a)	26.788	0.876	0.092	8.725	6.775	7.564	16.485	1.951
+ RAS (Liu et al., 2025c)	26.927	0.862	0.098	8.400	6.625	7.192	22.357	1.438
+ ToCa (Zou et al., 2024a)	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM
Ours (RegionE)	30.024	0.917	0.060	8.550	6.900	7.415	15.671	2.052

1493
 1494
 1495 Table 8: Comparison of RegionE and other baselines on the subject-add task of GEdit-Bench,
 1496 evaluated in terms of quality and efficiency.

Model	Against Vanilla			GPT-4o Score			Efficiency	
	PSNR↑	SSIM↑	LPIPS↓	G-SC↑	G-PQ↑	G-O↑	Latency (s)↓	Speedup↑
Step1X-Edit (Liu et al., 2025b)	-	-	-	8.283	7.950	7.905	27.912	1.000
+ Stepskip	25.692	0.892	0.085	8.583	8.083	8.142	12.290	2.271
+ FORA (Selvaraju et al., 2024)	21.717	0.848	0.150	6.400	8.083	6.131	14.322	1.949
+ Δ - DIT (Chen et al., 2024)	24.203	0.868	0.099	8.017	8.050	7.655	12.727	2.193
+ TeaCache (Liu et al., 2025a)	26.413	0.914	0.073	8.600	8.067	8.177	11.204	2.491
+ RAS (Liu et al., 2025c)	25.008	0.880	0.101	8.100	7.517	7.532	15.232	1.832
+ ToCa (Zou et al., 2024a)	23.524	0.820	0.159	7.650	6.950	6.939	22.062	1.265
Ours (RegionE)	28.514	0.923	0.058	8.383	7.950	7.858	10.528	2.651
Qwen-Image-Edit (Wu et al., 2025)	-	-	-	9.117	8.017	8.381	32.081	1.000
+ Stepskip	27.666	0.890	0.092	8.767	7.950	8.146	17.532	1.830
+ FORA (Selvaraju et al., 2024)	26.871	0.879	0.093	9.017	7.933	8.313	17.810	1.801
+ Δ - DIT (Chen et al., 2024)	25.559	0.849	0.108	8.617	7.817	7.967	17.452	1.838
+ TeaCache (Liu et al., 2025a)	28.672	0.903	0.066	8.783	7.933	8.099	16.422	1.954
+ RAS (Liu et al., 2025c)	27.398	0.891	0.081	9.100	7.933	8.267	22.278	1.440
+ ToCa (Zou et al., 2024a)	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM
Ours (RegionE)	30.763	0.938	0.050	8.983	8.233	8.441	15.295	2.097

1512

1513 Table 9: Comparison of RegionE and other baselines on the subject-remove task of GEdit-Bench,
1514 evaluated in terms of quality and efficiency.

1515

Model	Against Vanilla			GPT-4o Score			Efficiency	
	PSNR↑	SSIM ↑	LPIPS ↓	G-SC ↑	G-PQ ↑	G-O ↑	Latency (s) ↓	Speedup ↑
StepIX-Edit (Liu et al., 2025b)	-	-	-	7.351	7.947	6.973	27.954	1.000
+ Stepskip	33.649	0.954	0.038	7.579	7.684	6.969	12.300	2.273
+ FORA (Selvaraju et al., 2024)	30.330	0.943	0.062	5.474	7.895	5.285	14.330	1.951
+ Δ - DIT (Chen et al., 2024)	31.847	0.948	0.047	7.930	7.684	7.319	12.724	2.197
+ TeaCache (Liu et al., 2025a)	36.735	0.973	0.024	7.281	7.737	6.841	11.213	2.493
+ RAS (Liu et al., 2025c)	32.966	0.936	0.052	7.211	7.860	6.861	15.236	1.835
+ ToCa (Zou et al., 2024a)	29.806	0.894	0.095	7.175	7.088	6.481	22.378	1.249
+ Ours (RegionE)	35.772	0.963	0.028	7.719	7.737	7.182	10.453	2.674
Qwen-Image-Edit (Wu et al., 2025)	-	-	-	8.965	8.246	8.477	32.170	1.000
+ Stepskip	32.187	0.913	0.048	9.035	8.298	8.558	17.572	1.831
+ FORA (Selvaraju et al., 2024)	29.288	0.865	0.072	9.175	7.930	8.475	17.820	1.805
+ Δ - DIT (Chen et al., 2024)	27.056	0.826	0.090	8.895	7.947	8.348	17.486	1.840
+ TeaCache (Liu et al., 2025a)	31.687	0.899	0.051	8.895	8.228	8.441	16.434	1.958
+ RAS (Liu et al., 2025c)	28.440	0.876	0.080	8.842	8.035	8.371	22.331	1.441
+ ToCa (Zou et al., 2024a)	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM
+ Ours (RegionE)	32.122	0.925	0.052	9.333	8.351	8.787	15.349	2.096

1529

1530

1531 Table 10: Comparison of RegionE and other baselines on the style-change task of GEdit-Bench,
1532 evaluated in terms of quality and efficiency.

1533

Model	Against Vanilla			GPT-4o Score			Efficiency	
	PSNR↑	SSIM ↑	LPIPS ↓	G-SC ↑	G-PQ ↑	G-O ↑	Latency (s) ↓	Speedup ↑
StepIX-Edit (Liu et al., 2025b)	-	-	-	8.150	6.917	7.359	27.898	1.000
+ Stepskip	21.064	0.828	0.185	8.183	6.583	7.199	12.277	2.272
+ FORA (Selvaraju et al., 2024)	15.851	0.680	0.372	7.183	7.017	6.883	14.300	1.951
+ Δ - DIT (Chen et al., 2024)	18.893	0.791	0.233	8.167	6.367	7.066	12.684	2.200
+ TeaCache (Liu et al., 2025a)	21.695	0.857	0.156	8.000	6.733	7.213	11.187	2.494
+ RAS (Liu et al., 2025c)	21.355	0.814	0.193	8.217	6.400	7.108	15.217	1.833
+ ToCa (Zou et al., 2024a)	19.819	0.760	0.250	8.283	6.000	6.927	22.327	1.250
+ Ours (RegionE)	25.449	0.900	0.102	8.267	6.617	7.251	11.797	2.365
Qwen-Image-Edit (Wu et al., 2025)	-	-	-	8.267	7.133	7.526	32.115	1.000
+ Stepskip	23.954	0.805	0.139	8.067	7.083	7.355	17.560	1.829
+ FORA (Selvaraju et al., 2024)	21.784	0.745	0.185	8.017	7.100	7.385	17.807	1.804
+ Δ - DIT (Chen et al., 2024)	20.552	0.662	0.219	8.117	7.033	7.395	17.455	1.840
+ TeaCache (Liu et al., 2025a)	23.137	0.816	0.152	8.300	7.133	7.544	16.414	1.957
+ RAS (Liu et al., 2025c)	24.073	0.772	0.169	7.983	7.000	7.348	22.275	1.442
+ ToCa (Zou et al., 2024a)	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM
+ Ours (RegionE)	27.980	0.897	0.073	8.233	7.250	7.583	16.822	1.909

1547

1548

1549 Table 11: Comparison of RegionE and other baselines on the tone-transfer task of GEdit-Bench,
1550 evaluated in terms of quality and efficiency.

1551

Model	Against Vanilla			GPT-4o Score			Efficiency	
	PSNR↑	SSIM ↑	LPIPS ↓	G-SC ↑	G-PQ ↑	G-O ↑	Latency (s) ↓	Speedup ↑
StepIX-Edit (Liu et al., 2025b)	-	-	-	6.950	7.325	6.679	27.874	1.000
+ Stepskip	24.744	0.899	0.122	7.200	7.325	6.917	12.260	2.274
+ FORA (Selvaraju et al., 2024)	19.078	0.786	0.251	6.900	8.125	7.088	14.293	1.950
+ Δ - DIT (Chen et al., 2024)	22.104	0.862	0.164	7.000	7.250	6.852	12.678	2.199
+ TeaCache (Liu et al., 2025a)	27.915	0.933	0.072	6.825	7.400	6.600	11.171	2.495
+ RAS (Liu et al., 2025c)	26.455	0.895	0.111	7.200	7.000	6.688	15.187	1.835
+ ToCa (Zou et al., 2024a)	23.954	0.840	0.159	6.500	6.550	5.991	22.408	1.244
+ Ours (RegionE)	30.860	0.945	0.064	6.900	7.275	6.641	11.496	2.425
Qwen-Image-Edit (Wu et al., 2025)	-	-	-	8.475	8.025	8.084	32.160	1.000
+ Stepskip	29.715	0.862	0.092	8.150	8.000	7.820	17.562	1.831
+ FORA (Selvaraju et al., 2024)	27.514	0.839	0.117	8.025	7.875	7.771	17.841	1.803
+ Δ - DIT (Chen et al., 2024)	25.471	0.792	0.139	7.950	7.725	7.592	17.462	1.842
+ TeaCache (Liu et al., 2025a)	30.064	0.910	0.061	8.375	8.125	8.033	16.381	1.963
+ RAS (Liu et al., 2025c)	29.142	0.880	0.089	8.500	8.075	8.142	22.372	1.437
+ ToCa (Zou et al., 2024a)	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM
+ Ours (RegionE)	34.051	0.948	0.034	8.450	8.275	8.199	15.851	2.029

1565

1566

1567 Table 12: Comparison of RegionE and other baselines on the subject-replace task of GEdit-Bench,
1568 evaluated in terms of quality and efficiency.

1569

Model	Against Vanilla			GPT-4o Score			Efficiency	
	PSNR↑	SSIM ↑	LPIPS ↓	G-SC ↑	G-PQ ↑	G-O ↑	Latency (s) ↓	Speedup ↑
Step1X-Edit (Liu et al., 2025b)	-	-	-	8.650	7.233	7.718	27.983	1.000
+ Stepskip	25.233	0.875	0.111	8.683	6.867	7.548	12.325	2.270
+ FORA (Selvaraju et al., 2024)	20.594	0.831	0.189	5.833	6.817	5.306	14.359	1.949
+ Δ - DIT (Chen et al., 2024)	22.927	0.835	0.141	8.500	6.733	7.345	12.766	2.192
+ TeaCache (Liu et al., 2025a)	25.856	0.915	0.088	8.417	7.183	7.536	11.245	2.488
+ RAS (Liu et al., 2025c)	25.072	0.888	0.116	8.250	6.433	6.996	15.268	1.833
+ ToCa (Zou et al., 2024a)	23.407	0.840	0.168	8.267	6.217	6.909	22.080	1.267
+ Ours (RegionE)	28.654	0.935	0.064	8.517	7.167	7.585	10.647	2.628
Qwen-Image-Edit (Wu et al., 2025)	inf	1.000	0.000	8.883	7.683	8.136	32.161	1.000
+ Stepskip	26.344	0.897	0.076	8.783	7.733	8.128	17.575	1.830
+ FORA (Selvaraju et al., 2024)	24.578	0.864	0.104	8.600	7.550	7.930	17.836	1.803
+ Δ - DIT (Chen et al., 2024)	23.745	0.829	0.120	8.450	7.267	7.687	17.496	1.838
+ TeaCache (Liu et al., 2025a)	25.993	0.891	0.084	8.700	7.733	8.120	16.391	1.962
+ RAS (Liu et al., 2025c)	25.579	0.881	0.095	8.867	7.400	7.996	22.341	1.440
+ ToCa (Zou et al., 2024a)	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM
+ Ours (RegionE)	29.388	0.938	0.047	8.967	7.767	8.242	15.446	2.082

1583

1584

1585 Table 13: Comparison of RegionE and other baselines on the text-change task of GEdit-Bench,
1586 evaluated in terms of quality and efficiency.

1587

1588 Table 13: Comparison of RegionE and other baselines on the text-change task of GEdit-Bench,
1589 evaluated in terms of quality and efficiency.

Model	Against Vanilla			GPT-4o Score			Efficiency	
	PSNR↑	SSIM ↑	LPIPS ↓	G-SC ↑	G-PQ ↑	G-O ↑	Latency (s) ↓	Speedup ↑
Step1X-Edit (Liu et al., 2025b)	-	-	-	8.293	8.091	7.900	28.027	1.000
+ Stepskip	30.069	0.955	0.032	8.222	8.192	7.951	12.331	2.273
+ FORA (Selvaraju et al., 2024)	26.368	0.941	0.049	7.000	7.899	6.926	14.375	1.950
+ Δ - DIT (Chen et al., 2024)	28.615	0.953	0.032	8.515	8.222	8.171	12.768	2.195
+ TeaCache (Liu et al., 2025a)	31.420	0.967	0.023	8.222	8.192	7.925	11.254	2.491
+ RAS (Liu et al., 2025c)	28.434	0.939	0.042	7.929	7.970	7.649	15.270	1.835
+ ToCa (Zou et al., 2024a)	26.305	0.902	0.078	7.949	7.707	7.609	21.723	1.290
+ Ours (RegionE)	32.404	0.968	0.020	8.212	8.242	8.002	10.237	2.738
Qwen-Image-Edit (Wu et al., 2025)	-	-	-	9.192	8.394	8.606	32.071	1.000
+ Stepskip	29.577	0.929	0.047	8.828	8.222	8.202	17.519	1.831
+ FORA (Selvaraju et al., 2024)	27.408	0.909	0.061	8.818	8.303	8.192	17.790	1.803
+ Δ - DIT (Chen et al., 2024)	25.837	0.881	0.072	8.879	8.333	8.259	17.432	1.840
+ TeaCache (Liu et al., 2025a)	29.126	0.932	0.047	8.778	8.222	8.184	16.539	1.939
+ RAS (Liu et al., 2025c)	26.732	0.912	0.061	8.889	8.010	8.187	22.302	1.438
+ ToCa (Zou et al., 2024a)	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM
+ Ours (RegionE)	31.357	0.950	0.033	8.838	8.313	8.260	14.813	2.165

1601

1602

1603

1604 Table 14: Comparison of RegionE and other baselines on the background-change task of GEdit-
1605 Bench, evaluated in terms of quality and efficiency.

1606

Model	Against Vanilla			GPT-4o Score			Efficiency	
	PSNR↑	SSIM ↑	LPIPS ↓	G-SC ↑	G-PQ ↑	G-O ↑	Latency (s) ↓	Speedup ↑
Step1X-Edit (Liu et al., 2025b)	-	-	-	8.575	7.175	7.722	27.886	1.000
+ Stepskip	21.011	0.812	0.218	8.625	6.975	7.635	12.267	2.273
+ FORA (Selvaraju et al., 2024)	15.897	0.719	0.372	6.500	7.125	6.104	14.285	1.952
+ Δ - DIT (Chen et al., 2024)	18.641	0.781	0.271	8.375	6.625	7.338	12.687	2.198
+ TeaCache (Liu et al., 2025a)	23.549	0.866	0.151	8.375	6.725	7.379	11.163	2.498
+ RAS (Liu et al., 2025c)	25.468	0.840	0.169	8.425	6.725	7.372	15.206	1.834
+ ToCa (Zou et al., 2024a)	22.925	0.768	0.255	8.200	6.175	6.995	22.631	1.232
+ Ours (RegionE)	29.076	0.917	0.091	8.500	7.125	7.675	11.324	2.463
Qwen-Image-Edit (Wu et al., 2025)	-	-	-	9.125	8.200	8.603	32.221	1.000
+ Stepskip	25.088	0.854	0.133	9.175	7.975	8.511	17.603	1.830
+ FORA (Selvaraju et al., 2024)	22.473	0.802	0.184	8.775	7.875	8.252	17.815	1.809
+ Δ - DIT (Chen et al., 2024)	21.263	0.750	0.210	8.825	7.850	8.281	17.552	1.836
+ TeaCache (Liu et al., 2025a)	24.016	0.852	0.147	8.850	7.950	8.281	16.492	1.954
+ RAS (Liu et al., 2025c)	26.550	0.858	0.128	9.100	7.450	8.153	22.411	1.438
+ ToCa (Zou et al., 2024a)	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM
+ Ours (RegionE)	30.462	0.939	0.053	9.175	8.050	8.547	16.694	1.930

1619

1620
1621 Table 15: Comparison of RegionE and other baselines on the Character Reference task of Kon-
1622 textBench, evaluated in terms of quality and efficiency.
1623

Model	Against Vanilla			GPT-4o Score			Efficiency	
	PSNR↑	SSIM↑	LPIPS↓	G-SC↑	G-PQ↑	G-O↑	Latency (s)↓	Speedup↑
FLUX.1 Kontext (Labs et al., 2025)	-	-	-	7.549	6.642	6.664	14.677	1.000
+ Stepskip	18.793	0.730	0.238	7.741	6.803	6.917	8.502	1.726
+ FORA (Selvaraju et al., 2024)	17.898	0.697	0.275	7.617	6.788	6.813	7.494	1.958
+ Δ - DIT (Chen et al., 2024)	15.560	0.604	0.387	7.668	6.451	6.704	6.737	2.178
+ TeaCache (Liu et al., 2025a)	20.313	0.770	0.197	7.865	6.565	6.842	6.271	2.341
+ RAS (Liu et al., 2025c)	21.320	0.752	0.214	7.632	6.352	6.657	8.211	1.788
+ ToCa (Zou et al., 2024a)	19.596	0.679	0.298	7.570	6.047	6.454	11.279	1.301
+ Ours (RegionE)	26.980	0.880	0.086	7.637	6.611	6.715	6.406	2.291

1631
1632 Table 16: Comparison of RegionE and other baselines on the Instruction Editing-Global task of
1633 KontextBench, evaluated in terms of quality and efficiency.
1634

Model	Against Vanilla			GPT-4o Score			Efficiency	
	PSNR↑	SSIM↑	LPIPS↓	G-SC↑	G-PQ↑	G-O↑	Latency (s)↓	Speedup↑
FLUX.1 Kontext (Labs et al., 2025)	-	-	-	7.023	6.798	6.380	14.688	1.000
+ Stepskip	23.957	0.797	0.132	7.000	6.870	6.435	8.516	1.725
+ FORA (Selvaraju et al., 2024)	22.611	0.760	0.159	7.092	6.840	6.497	7.506	1.957
+ Δ - DIT (Chen et al., 2024)	18.687	0.659	0.252	7.073	6.882	6.574	6.754	2.175
+ TeaCache (Liu et al., 2025a)	27.206	0.842	0.101	7.294	6.885	6.626	6.251	2.350
+ RAS (Liu et al., 2025c)	24.845	0.778	0.157	7.302	6.866	6.668	8.221	1.787
+ ToCa (Zou et al., 2024a)	23.030	0.711	0.218	7.179	6.588	6.483	11.412	1.287
+ Ours (RegionE)	30.403	0.886	0.071	7.126	6.943	6.572	6.379	2.303

1642
1643 Table 17: Comparison of RegionE and other baselines on the Instruction Editing-Local task of
1644 KontextBench, evaluated in terms of quality and efficiency.
1645

Model	Against Vanilla			GPT-4o Score			Efficiency	
	PSNR↑	SSIM↑	LPIPS↓	G-SC↑	G-PQ↑	G-O↑	Latency (s)↓	Speedup↑
FLUX.1 Kontext (Labs et al., 2025)	-	-	-	6.779	6.909	5.817	14.677	1.000
+ Stepskip	31.147	0.913	0.058	6.839	6.887	5.872	8.510	1.725
+ FORA (Selvaraju et al., 2024)	29.279	0.895	0.072	6.800	6.901	5.873	7.491	1.959
+ Δ - DIT (Chen et al., 2024)	23.390	0.824	0.130	6.822	6.829	5.846	6.751	2.174
+ TeaCache (Liu et al., 2025a)	33.341	0.938	0.040	6.942	6.800	5.896	6.113	2.401
+ RAS (Liu et al., 2025c)	30.088	0.907	0.063	6.945	6.921	5.972	8.219	1.786
+ ToCa (Zou et al., 2024a)	26.996	0.855	0.112	6.851	6.635	5.790	11.231	1.307
+ Ours (RegionE)	36.334	0.959	0.025	6.889	6.880	5.917	5.799	2.531

1653
1654 Table 18: Comparison of RegionE and other baselines on the Style Reference task of KontextBench,
1655 evaluated in terms of quality and efficiency.
1656

Model	Against Vanilla			GPT-4o Score			Efficiency	
	PSNR↑	SSIM↑	LPIPS↓	G-SC↑	G-PQ↑	G-O↑	Latency (s)↓	Speedup↑
FLUX.1 Kontext (Labs et al., 2025)	-	-	-	6.810	6.556	6.331	14.684	1.000
+ Stepskip	18.606	0.678	0.290	6.333	6.381	5.947	8.501	1.727
+ FORA (Selvaraju et al., 2024)	17.508	0.631	0.329	6.222	6.413	5.667	7.476	1.964
+ Δ - DIT (Chen et al., 2024)	14.639	0.525	0.450	6.397	6.873	6.108	6.731	2.182
+ TeaCache (Liu et al., 2025a)	19.781	0.712	0.264	6.444	6.286	5.832	6.261	2.345
+ RAS (Liu et al., 2025c)	19.481	0.638	0.343	6.603	6.381	6.031	8.202	1.790
+ ToCa (Zou et al., 2024a)	18.245	0.553	0.439	6.000	6.175	5.668	11.480	1.279
+ Ours (RegionE)	24.433	0.811	0.165	6.921	6.571	6.277	6.411	2.291

1664
1665 Table 19: Comparison of RegionE and other baselines on the Text Editing task of KontextBench,
1666 evaluated in terms of quality and efficiency.
1667

Model	Against Vanilla			GPT-4o Score			Efficiency	
	PSNR↑	SSIM↑	LPIPS↓	G-SC↑	G-PQ↑	G-O↑	Latency (s)↓	Speedup↑
FLUX.1 Kontext (Labs et al., 2025)	-	-	-	7.826	7.913	7.295	14.697	1.000
+ Stepskip	30.950	0.943	0.033	7.717	7.750	7.142	8.535	1.722
+ FORA (Selvaraju et al., 2024)	28.976	0.915	0.044	7.696	7.543	7.067	7.520	1.954
+ Δ - DIT (Chen et al., 2024)	23.931	0.839	0.085	7.315	7.554	6.823	6.779	2.168
+ TeaCache (Liu et al., 2025a)	31.283	0.955	0.026	7.620	7.696	7.076	6.290	2.336
+ RAS (Liu et al., 2025c)	27.504	0.913	0.048	7.598	7.402	6.971	8.238	1.784
+ ToCa (Zou et al., 2024a)	25.342	0.857	0.093	7.326	7.500	6.791	11.206	1.312
+ Ours (RegionE)	34.141	0.962	0.018	7.815	7.761	7.211	5.767	2.548

1674 **L STATEMENT ON LLM USAGE**

1675
1676 We declare that large language models (LLMs) were used to assist in polishing the writing of this
1677 paper. All ideas, methods, and experimental results are original contributions of the authors. The
1678 authors take full responsibility for the content of this work.

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727