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Abstract

Large language models (LLMs) have attracted significant attention in the ad-
vancement of materials discovery, particularly in their role in automation and
robotics. However, a key question remains: Do these models operate based on a
true grasping of physicochemical principles when designing experiments or inter-
preting results? Existing evaluations primarily focus on fact-checking tasks such
as material property prediction and named entity recognition, while neglecting the
reasoning required to grasp fundamental synthesis mechanisms. Furthermore, no
previous studies have directly evaluated LLMs’ ability to reason about synthesis
mechanisms. To address these challenges, we first develop a benchmark containing
775 semi-manually created multiple-choice questions in the field of gold nanopar-
ticles (AuNPs) synthesis for evaluation. Second, we probe the model’s output
logits to derive precise selection probabilities for the correct answers, obtaining a
confidence-based score (c-score) as a quantitative evaluation metric. Additionally,
based on this evaluation, we also develop an AI assistant using retrieval-augmented
generation (RAG) to explain AuNP synthesis mechanisms, achieving a 10% im-
provement in accuracy over the leading model, Claude. Our study highlights the
potential of LLMs in recognizing scientific mechanisms and offers a valuable tool
for aiding the exploration of synthesis methods. Moreover, our dataset establishes
a foundation for developing highly efficient models with the utilization of material
synthesis mechanisms. Code and dataset are available here.

1 Introduction

Achieving precise synthesis has long been a dream for materials chemists. This involves using a range
of controllable material synthesis techniques to create materials, generally, with specific structures
and properties based on the underlying physicochemical mechanisms. [21, 39, 26, 28] Discover new
synthesis mechanisms is similar to knowing how nature works–why these materials are formed, and
how to synthesize them with desired properties. [27, 34, 36, 33, 38]

Standing at the forefront of contemporary innovation, to achieve controllable material synthesis,
designing cutting-edge deep learning methods, particularly when combined with domain-specific
knowledge, holds significant potential in this field. [25, 6, 29] It is important to note that many
synthesis mechanisms are documented in natural language, which can be extracted directly from the
scientific literature. In this context, large language models (LLMs) such as GPT-4 are emerging as
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Figure 1: Semantic illustration of our proposed framework for LLMs evaluation in nanomaterial synthesis
prediction, highlighting concepts and workflow. a) nanosynthesis study loop: begins with basic conditions,
leading to the discovery of novel synthesis rules through experiments involving variable adjustments. b)
exemplifies the synthesis mechanism, dissected into causality and correlations, with an emphasis on correlations
described through condition-observation pairs. c) outlines the process from sourcing relevant literature (using
key area keywords) for benchmark construction and model evaluation.

promising tools for assisting in the interpretation of material synthesis processes. These models have
already demonstrated exceptional results in autonomous synthesis experiments. [12, 37, 1, 42, 13, 2,
22] However, despite efforts to leverage LLMs for material synthesis, a critical question remains: Do
these LLMs grasp the realworld physicochemical principles? Can they act as expert interpreters of
synthesis mechanisms?

Among existing investigations, the common and straightforward approach for answering this question
is fact-checking, such as named entity recognition (Table 1). [35, 8, 32, 40, 15, 43, 18, 16, 14, 41,
31] However, evaluating the cognitive logic behind underlying principles is far more challenging,
yet essential for tackling key scientific issues. [3] A historical example is Alexander Fleming’s
observation that bacteria could not survive where mold grew—a simple fact. Yet, this observation
alone could not explain why the mold inhibited bacterial growth. Through his reasoning, Fleming
discovered penicillin. This case highlights the crucial role of reasoning in scientific discovery,
underscoring that correlation without rational explanation is insufficient.

Inspired by the research of nanomaterial synthesis, we embark on a feasibility study regarding whether
LLMs can grasp underlying physicochemical principles. Before evaluating LLMs, the description
method of a synthesis mechanism should be defined formally. Given the lack of existing work in
this area, we propose a structured descriptor based on the iterative process of materials synthesis,
which includes four key components: condition, adjustment, observation and mechanisms. Using this
descriptor, we selected 220 high-impact research articles on gold nanoparticle synthesis to develop
775 expert-level multiple-selection questions. This benchmark covers five primary methods of gold
nanoparticle synthesis and six major categories of nanomaterial structures, providing a comprehensive
assessment of the reasoning capabilities of current LLMs. To evaluate reasoning ability, particularly in
domain-specific mechanisms, we probe the output confidence of LLMs by analyzing output logits to
derive the precise selection probability for the correct answer. This confidence-based score (c-score)
serves as a quantitative metric, resembling human knowledge testing to avoid mere conjectures. As
a solution, we demonstrate an assistant with retrieval augmented generation (RAG) to assist gold
nanoparticle synthesis mechanisms question-answering with 10% more accuracy than current leading
model, Claude.

Our contribution encompasses the following key elements, also shown in Figure 1:

1. We propose a synthetic mechanistic descriptor, grouped by initial conditions, variable
adjustments, and experimental observations for the material synthesis mechanism study.
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Figure 2: Benchmark illustration. We illustrate the collected data set from two perspectives, i.e., synthesis
methods and structures.

Reference Factual Reasoning Mechanisms Creation Domain / Area

Kim et al. (2017) [19] ✓ Auto Materials Science

Weston et al. (2019)
[35] ✓ Auto Materials Science

Thawani et al. (2019)
[31] ✓ Auto Materials Science

Venugopal et al. (2021)
[32] ✓ Manual Chemistry

Cruse et al. (2022) [8] ✓ Auto Materials Science

Guo et al. (2023) [14] ✓ ✓ Auto Chemistry

Zheng et al. (2023) [41] ✓ ✓ Auto Scientific discovery

Dunn et al. (2024) [9] ✓ Auto Chemistry and
Materials Science

Zaki et al. (2024) [40] ✓ Manual Materials Science

Our Benchmark ✓ ✓ ✓ Manual Materials Science

Table 1: An overview of current benchmarks in materials science and related domains with large language
models reveals a focus on three primary categories: factual knowledge, reasoning, and synthesis mechanisms,
particularly those grounded in physicochemical principles. Our benchmark specifically targets the evaluation of
synthesis mechanisms, emphasizing both the factual accuracy of experimental observations and the underlying
physicochemical principles that are fundamental to the development of novel materials.

2. A benchmark for gold nanoparticle synthesis mechanisms is established, comprising 775
multiple-selection questions focused on synthesis mechanisms, developed using the proposed
descriptor.

3. We introduce a confidence-based score (c-score), providing an interpretable metric to assess
LLMs’ reasoning ability of complex synthesis mechanisms.

4. Based on evaluation results, we develop a research assistant to aid the study of gold nanopar-
ticle synthesis mechanisms.

2 Method

2.1 Preparation of datasets

The dataset for evaluation was meticulously selected from high-quality papers boasting an IF > 15,
with a particular emphasis on synthesis methods for controlling the structure of gold nanoparticles.
To ensure the relevance and quality of research articles to meet the theme of gold nanoparticle
synthesis, we manually reviewed 220 articles from a diverse range of journals. Each article underwent
a process of key experimental information extraction, leading to the summarization and collection
of 775 experimental records. To enable the creation of a unified framework of descriptors to assist
in compiling test questions, these data are categorized under a condition-adjustment-observation-
mechanism fashion, which is a usual loop for discovering synthesis principles and serves as a
descriptor for expressing any controlled experiment. Moreover, given the unstructured nature of
mechanistic expression in nanomaterial synthesis, we emphasize the importance of using average
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sampling in the design of the evaluation set by manually checking. In this approach, the dataset
distribution is shown in Figure 2, one case in the benchmark is shown in supplementary information
(see Figure S1-b), and we address three pivotal issues and challenges while collecting these data: 1)
Uniform sampling in gold nanoparticle synthesis. 2) Precise extraction of experiments in each research
article. 3) The information completeness of experiments, and synthesis mechanisms introduced by
authors.

Sampling Issue: Our evaluation approach is based on two key perspectives: material synthesis
methods and material morphology. The first category primarily focuses on the seed-mediated
synthesis method, a widely used technique for creating nanoparticles with complex structures. The
second category emphasizes mechanisms that are more broadly applicable to nanocrystals, rod-shaped
particles, and certain unclassified systems, as illustrated in Figure 2. The two data distributions
indicate the extensive range of knowledge points related to gold nanoparticle synthesis considered in
this study.

Information extraction issue. We employed cue word prompt engineering in conjunction with
predefined descriptors to extract the descriptions of synthesis experiments from each paper. We
found that for each report we collected, on average, experimental report included five particularly
relevant initial conditions and four sets of experimental setups, such as the increase or decrease of
certain parameters, the presence or absence thereof, along with a corresponding number or more of
observations leaning towards conclusions, details are shown in supplementary information (Figure
S1-a).

Mechanism completeness issue. We consider the inherent bias in interpreting mechanisms—where
a handful of studies fail to report complete and comprehensive descriptions of mechanisms compared
to the average, and there exists a wide variance in the interpretation of complete mechanisms. To
illustrate this, we employ the GPT-4 to model in conjunction with cue words for a more detailed
interpretation of observed tendencies based on the content. Meanwhile, we also confirmed that
775 questions are almost making the accuracy converged for evaluating LLMs according to their
performance in this task, see supplementary information (Figure S2) for more details.

Furthermore, we discovered that the utilization of cue word engineering with the GPT-4 model
enables rapid acquisition of summaries for nanomaterials synthesis papers, which is also demon-
strated in existing work. [7, 4, 42, 23] This capability extends even to articles that do not contain
experimental data (such as literature reviews, opinions, and comments), wherein GPT-4 provides
feedback indicating the absence of extractable content, thereby demonstrating GPT-4’s honesty in
responding to user queries.

Ultimately, we can rephrase this refined condition-observation pair-wise data into a standardized
format of questions and options with the gold answer using the GPT-4 along with predefined
instructions, one case is shown in Figure 2c. These samples are formatted as selection questions with
four options, only one gold answer. For detailed methodologies on the aforementioned cue word
prompt engineering, and prompt with instructions, please refer to the supplementary information
(Note S1).

2.2 LLM Baselines

We choose multiple existing models with different architectures and features for comparison, to better
consider the inner design differences. We here consider mainstream models, i.e., Vicuna series (7B
and 13B)[5], Mistral and Mixtral architectures[17, 10], Qwen series[11], Gemma[30], GPT-4[12]
and Claude. All models introduction please see supplementary information (Note S2).

2.3 Evaluation metrics

The most direct metric for evaluation is accuracy, which assesses the overall performance of models
based on the number of correctly answered test questions—higher accuracy scores indicate stronger
capabilities. [20, 24] In this work, we aim for the model to answer questions with computed
confidence, reflecting a quantitative recognition of the logic in material synthesis. We introduce
the confidence-based score (c-score) using a knowledge probing technique. Statistical accuracy,
measured by the true-or-false count, serves as a baseline metric to evaluate the model’s performance
and compare it against random guessing.
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Figure 3: Evaluation accuracy of baselines and the confidence-based scores of top-5 open-sourced models
compared to the original accuracy in multiple selection questions. a) x-axis represents different models,
while y-axis is the accuracy. The figure delineates the range in accuracy achieved by each model under different
temperature settings (from 0.0 to 1.0), where the circles represent the accuracy at each temperature setting, and
the diamonds denote their average values. b) The comparison between accuracy and confidence-based scores
among five top-performance models, showing the performence increasing (green line) and decreasing (red line).

In summary, our benchmark evaluates LLMs from two perspectives: (1) true-or-false-based accuracy,
which examines whether LLMs recognize physicochemical principles, and (2) the confidence-based
score (c-score), which ensures the model’s ability to discern correct answers, as depicted in Figure
2d. To achieve this, we conduct a preliminary study on the effects of temperature on LLMs to assess
their stability. Both intuitive accuracy and the c-score are used to evaluate the models’ capabilities in
recognizing physicochemical principles.

3 Results and Discussion

3.1 Temperature Effect Analysis

To assess the stability of language models, we investigated the effect of different temperatures on their
performance. We conducted controlled experiments using five temperature values uniformly selected
from 0 to 1: specifically 0.1, 0.3, 0.5, 0.7, and 0.9. With the analysis of the accuracy, we find that there
is a general trend of declining precision as temperature increases, though some models exhibit more
complex fluctuations. For instance, models such as Claude-3-ops-20240229, GPT-4-0125-preview,
Mixtral-8x7B-Instruct-v0.1, Mistral-7B-Instruct-v0.2, and GPT-3.5-turbo initially showed a decrease
in accuracy, followed by an increase as the temperature rose slightly.

The results reveal that temperature has a patterned influence on the performance of language models
in this task. While the likelihood of incorrect responses increases at higher temperatures, statistical
analysis suggests that overall performance at lower temperatures is marginally better, demonstrating
enhanced stability. For further details, refer to the supplementary information (Figure S3).

3.2 Results of Accuracy with Temperature

Contemporary LLMs rely on the aforementioned pre-training and fine-tuning processes. Conse-
quently, multiple-choice questions serve as one of the effective methods to evaluate the level of
reasoning ability of the language model in a specific domain. This implies that the model should
provide answers according to the domain knowledge learned during the pre-training phase and the
comprehensive abilities acquired during the fine-tuning phase, as required by the question.

The content we aim to evaluate primarily unfolds from two aspects:
1. The themes encompassed by the multiple-choice questions represent the knowledge being

assessed, aiming to evaluate the recognition of the model in terms of the concepts and
semantics demonstrated within the sentences.

2. This question format supports both the different mechanisms expression and the examination
of the language model’s logical reasoning abilities, assessing whether it can answer based
on the fundamental principles of gold nanoparticle synthesis.

In order to obtain the binary accuracy of the model, for each multiple-choice questions, one point
will be given to the model if it selected the gold answer, otherwise zero. Based on the temperature
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Figure 4: Illustration of the knowledge probing method using a simple case. This diagram represents the
application of a knowledge probing method where an input comprising a question-option pair is presented
(correct options are highlighted in green and incorrect options in red). The accompanying bar plots visualize the
probing results; the y-axis represents probability and the x-axis represents the options. Error bars in the plots
depict the effects of temperature adjustments. Both bar plots are identical but apply different masks.

analysis, we here fix the temperature at 0.1 to test all these LLMs. Finally, the average score of each
model on the benchmark will be ranked.

As illustrated in Figure 3a, all models significantly surpass the random guessing baseline of 25% with
a remarkable margin, consistent with their capabilities in general tasks.

In this evaluation, Claude and GPT-4 emerged as the top-performing models, achieving accuracies of
84.8% and 81.2%, respectively, significantly outstripping other open-source models which generally
scored around 70% or lower. This discrepancy underscores a substantial performance gap between
the leading models and their counterparts. The superior performance of Claude and GPT-4 across a
broad spectrum of benchmarks can be attributed to their robust training regimens. In contrast, the
relatively poorer performance of open-source models may stem from factors such as the quality and
type of training data and the constraints of model size. Notably, the Mixtral-8x7B model demonstrates
performance comparable to the Vicuna series, with an accuracy of approximately 70.4%. Gemma, at
the lower end of the scale, records an accuracy of 44.7%, which, while being the lowest in this study,
still significantly exceeds the 25% accuracy expected from random guessing. The accuracy levels of
other models occupy a middle ground and are detailed in the supplementary information (Table S1).
Additionally, a trend observed in this study is the correlation between model size and accuracy; larger
models such as GPT-4 and Claude not only excel in reasoning but also in recognition of mechanisms,
further illustrating the advantages of increased scale.

In summary, the performance of these tested LLMs demonstrates their capability to elucidate physico-
chemical principles. This showcases their potential future utility in explaining synthetic mechanisms
effectively.

3.3 Results of C-scores with Temperature

Knowledge probing is a method designed to assess the capacity of language models, such as those in
the GPT series, to recognize and recall specific knowledge domains. This technique evaluates the
model’s comprehension by analyzing the probability distribution of tokens corresponding to the logits
in the model’s output. Since the prediction of the next token is governed by the distribution of logits
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Figure 5: An RAG-based LLM assistant (the bottom one) for gold nanoparticle synthesis mechanism
explanation. The depicted dialogue illustrates a question posed by a researcher. The responses demonstrate that
while the original GPT-4 model (top) struggles to clearly elucidate the mechanisms involved, the RAG-based
LLM assistant provides a clear and detailed explanation of the mechanisms, showcasing its remarkable capacity
to assist human scientists in recognition of complex synthesis processes.

and transformed by the Softmax function, each token is assigned a probability. Our focus is directed
towards a subset of tokens with higher probabilities rather than a singular output result, as illustrated
in Figure 4. The model responds using a predetermined vocabulary consisting of four tokens: A, B,
C, and D. Each option’s probability is computed based on the output logits. Using the vicuna-7B
model as an example, the c-score assesses the probability associated with the correct answer, whereas
accuracy solely indicates whether the response is correct. Typically, a sharper distribution of predicted
token probabilities indicates a higher certainty in the model response, and vice versa. This design
enables an analysis of the model’s responses to varied queries, discerning whether they are grounded
in solid theoretical recognition or merely speculative guesses.

In our study, we examine the distribution at the logits layer before the model responses, which is
considered an indicator of confidence, to better address the aforementioned question. We further
assess this by combining previous accuracy metrics with c-score. In past multiple-choice assessments,
the final answer of the model is assumed to be chosen with 100% confidence, meaning that either
True or False only. This inspires us to measure its capabilities directly by the percentage of the
gold answer’s confidence, even the model chooses the drinkable gold answer. We here evaluate the
overall confidence using the formulated c-score, which quantifies the confidence level assigned to
each correct answer, as detailed in the E.q. 1:

c-score =
1

N

N∑
i=1

eL
i
G

eL
i
A + eL

i
B + eL

i
C + eL

i
D

(1)

where Li
G is the probability (or confidence) of gold answer regarding the i-th question and LX is for

other options. The probability of all options (assume four here) is normalized exponentially and N is
the number of all questions.

Specifically, based on the evaluation of accuracy, we further evaluate the top-5 ranked open-source
models with c-score for efficient comparison, considering only models that excel in the benchmark.
These models represent typical scales in the open-source community. The evaluation process will
also be repeated with different temperature settings, as mentioned before (0.1, 0.3, 0.5, 0.7 and 0.9).
Finally, the average c-scores of top-5 models will be ranked for discussion due to their competitive
performances.

Regarding the results, as shown in Figure 3, the Vicuna-33B exhibits a lower level of performance,
whereas the other models showed slight improvements in the c-score compared to accuracy. In detail,
the c-score of Mixtral-8x7B improves by about 8% compared to the accuracy, while the c-score
of Vicuna-33B decreases by about 6%. This indicates a clear confidence difference between the
two models. Similarly, Vicuna-13B, Mistral-7B and Vicuna-7B demonstrate remarkable differences
between accuracy and c-scores. The results indicate that the c-score effectively measures the ability
of LLMs in gold nanoparticle synthesis tasks in an interpretable manner. Such metrics suggest that
utilizing c-score allows for a more appropriate assessment of language models compared with pure
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Figure 6: Results of accuracy with different
knowledge corpus sizes.

Figure 7: Results of accuracy with model
differences.

accuracy, revealing insights distinct from traditional accuracy statistics. We believe that this design
can help guide models toward a deeper recognition of mechanisms, potentially enhancing the training
process of LLMs in the future.

To illustrate the knowledge probing process, we present representative results in Figure 4, demon-
strating the temperature effects with error bars. Here, option A is correct, because the higher the
supersaturation (reduction rate), the more unbalanced the growth of the gold particle morphology
will be, and thus a nanoparticle morphology with a high-index crystal face or high curvature will be
developed. Options B, C, and D have opposite statements. For each model tested, except for option
B, there is a tendency to choose A, C, and D – with a higher confidence. Among them, Mistral-7B
has a confidence of nearly 100% for the correct option A, and a tendency for other options is almost
0. This result shows that the model has sufficient and solid learning of this knowledge point, and can
distinguish the nanosynthesis logic involved in this question, while other models are more confused.
One possible reason is that the model is interfered by certain keywords, resulting in a confidence
level of about 50%. Some other examples of knowledge probing are in supplementary information
(Note S3).

3.4 RAG-based Assistant for Synthesis Mechanism Explanation

Judging from the evaluation results, the LLM demonstrates a notable ability to comprehend synthesis
mechanisms, making it a promising tool for assisting materials scientists in their studies. This
capability spans extensive literature learning and natural language reasoning. In this work, we have
utilized collected data on mechanisms to establish a knowledge base focused on the synthesis of gold
nanoparticles. Leveraging this knowledge, we employed RAG technology to develop an intelligent
assistant capable of explaining the mechanisms of gold nanoparticle synthesis through a chat system.
This intelligent assistant can accurately respond to inquiries about mechanisms by retrieving relevant
text information, thus aiding in the comprehension of material synthesis processes, as illustrated in
Figure 5.

To implement this system, we utilized the GPT-4-turbo and the Claude model as the reasoning core
of our assistant. The knowledge base was structured in a condition-observation-mechanism pairwise
fashion, cataloging existing studies on gold nanoparticle synthesis. For retrieving relevant records,
we used the text embedding model text-embedding-ada-002 provided by OpenAI, creating a vector
database for efficient search. When users pose questions, the assistant initially retrieves the most
relevant entries from the knowledge base via similarity matching before responding, citing the source
records.

To assess the efficiency of our developed assistant, we conducted a benchmark using a question-and-
answer format. Notably, these two models ranked as the top performers in our evaluation, though they
are both closed-sourced. We used accuracy as our comparison metric, finding that the RAG-based
assistant using GPT-4-turbo achieved an accuracy of 94.58%, while the assistant utilizing the Claude
model reached 93.81%, which is nearly 10% higher than the top-accuracy of the Claude model
without RAG. However, it was observed that the performance of the Claude model with RAG was not
as competitive as that of the GPT-4-turbo model. This discrepancy may be attributed to the Claude
model’s in context learning ability, specifically in this domain.

Considering the efficiency and high-quality question-answering capability of the GPT-4-turbo-based
assistant, we believe this design could significantly advance the application of LLM-based techniques
in aiding nanomaterials synthesis mechanisms study.
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3.4.1 Ablation Study

We conducted further experiments to explore the impact of knowledge base size on the performance
of the assistant. By selecting 90%, 80%, 70%, 60%, and 50% of the sub-knowledge bases from the
original full-size knowledge base, we systematically assessed the assistant’s performance across these
varied conditions.

The results, as illustrated in Figure 6, indicate a significant influence of the knowledge base size
on the assistant’s efficacy. There was a noticeable decrease in performance, specifically a 6.8%
drop, when the knowledge base was reduced to 50% of its original size. It is important to note that
this corpus encompasses the majority of gold nanoparticle synthesis methods and structure control
mechanisms. Interestingly, even with an increase in the corpus from 70% to 80%, only a minor
decrease in performance was observed, and performance still improved when the size was expanded
back to 100% of the original. These findings suggest that the retrieval performance of the assistant
is not highly sensitive to increments in knowledge base size, indicating robustness in the assistant’s
underlying retrieval mechanisms.

Additionally, we substituted the original GPT-4 model with the GPT-3.5-turbo model, both developed
by OpenAI, to evaluate performance differences when each is paired with the RAG system. We opted
not to use the Claude model due to accessibility issues.

As depicted in Figure 7, the GPT-3.5-turbo model achieved an accuracy of 88.1%. There is a
performance gap of 6.5% between GPT-3.5-turbo and GPT-4 when both are equipped with RAG.
Notably, in scenarios without RAG, the accuracy gap between these two models widens to 15%. This
result highlights the significant role of the RAG assistant in enhancing the models’ ability to explain
synthesis mechanisms effectively.

4 Related Work

In the field of materials science, existing datasets predominantly support tasks focused on factual
knowledge, such as named entity recognition and classification. [9, 35, 8, 32, 19, 14, 41, 16, 40]
Researchers utilize these datasets to benchmark the performance of language models in the materials
domain, see Table 1. Previously, three key chemistry-related capabilities in LLMs, recognition,
reasoning, and explaining have been identified, and a benchmark containing eight chemistry tasks
has been established. [14] Meanwhile, the potential of large language models to perform scientific
synthesis, inference, and explanation across many domains for scientific discovery has been discussed,
although this approach is based solely on knowledge graph inference. [41] To expend the task diversity,
LLMs such as GPT-3 have been benchmarked on datasets spanning the chemical space, including
molecules, materials, and reactions, across diverse tasks such as classification, regression, and inverse
design. [16] With the continuous growing of the LLMs, a dataset of 650 challenging questions from
the materials domain, requiring the knowledge and skills of a materials science student who has
completed their undergraduate degree, has been curated. [40]

5 Conclusion

In this study, we developed a novel evaluation framework and benchmark to assess LLMs’ capabilities
in materials science, with a specific focus on AuNP synthesis. Our methodology centred on a
comprehensive set of 775 multiple-choice questions, evaluating various mainstream LLMs through
both accuracy metrics and confidence scores (c-scores). The results demonstrate that c-scores
combined with the benchmark effectively differentiate whether LLMs’ responses are based on the
grasping of physicochemical mechanisms, rather than random outputs. Building on these insights,
we developed an RAG-based assistant to explain gold nanoparticle synthesis mechanisms, boosting
both efficiency and accuracy. This assistant helps material scientists reduce the hallucination in
mechanism-related question-answering, thus aiding the exploration of more synthesis mechanisms.
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