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Abstract
Blockchain interoperability protocols enable cross-chain asset trans-

fers or data retrievals between isolated chains, which are considered

as the core infrastructure for Web 3.0 applications such as decen-

tralized finance protocols. However, existing protocols either face

severe scalability issues due to high on-chain and off-chain costs,

or suffer from trust concerns because of centralized designs.

In this paper, we propose MAP, a trustless blockchain interoper-

ability protocol that relays cross-chain transactions across hetero-

geneous chains with high scalability. First, within MAP, we develop
a novel cross-chain relay technique, which integrates a unified re-

lay chain architecture and on-chain light clients of different source

chains, allowing the retrieval and verification of diverse cross-chain

transactions. Furthermore, we reduce cross-chain verification costs

by incorporating an optimized zk-based light client scheme that

adaptively decouples signature verification overheads from inef-

ficient smart contract execution and offloads them to off-chain

provers. For experiments, we conducted the first large-scale evalu-

ation on existing interoperability protocols. With MAP, the required
number of on-chain light clients is reduced from 𝑂 (𝑁 2) to 𝑂 (𝑁 ),
with around 35% reduction in on-chain costs and 25% reduction for

off-chain costs when verifying cross-chain transactions.

To demonstrate the effectiveness, we deployed MAP in the real

world. By 2024, we have supported over six popular public chains,

50 cross-chain applications and relayed over 200K cross-chain trans-

actions worth over 640 million USD. Based on rich practical expe-

riences, we constructed the first real-world cross-chain dataset to

further advance blockchain interoperability research.

Keywords
Web 3.0, Blockchain, Interoperability, Cross-chain Applications

1 Introduction
Blockchain is a decentralized ledger technology that uses crypto-

graphic techniques and consensus mechanisms to achieve Byzan-

tine Fault Tolerance (BFT), enabling decentralized trust and secure

data sharing. Leveraging the philosophy of blockchain, the next

generation of the web, known as Web 3.0, is being built. In recent

years, a wide range of Web 3.0 applications are emerging, including

cryptocurrencies, which revolutionize digital money, Decentralized

Finance (DeFi) protocols that disrupt traditional financial systems,

immersive virtual environments in the Metaverse, and various de-

centralized applications (DApps) [17] [16] [20].

The Problem. With the rapid development of Web 3.0, on-chain

data and assets are increasingly being distributed across multiple

blockchains. According to statistics, there are already over 1,000

public blockchains in the market, hosting more than 10,000 types

of on-chain assets [41]. This extensive distribution creates a critical

need for blockchain interoperability protocols, which enable the

retrieval and transfer of on-chain data and assets between source

and destination chains through cross-chain transactions [33] [40].

With interoperability, conventional DApps could leverage data and

assets from multiple chains simultaneously, thereby supporting a

wider range of applications. For example, cross-chain DeFi services

can increase liquidity and offer diversified financial services by

integrating assets from different chains, such as Non-Fungible To-

kens (NFTs), cryptocurrencies, and real-world assets (RWAs). These

assets can be exchanged in a unified manner [42]. Additionally, an

interoperable Metaverse could enable users to access various virtual

worlds, enriching their experiences across different platforms [22].

There are three major challenges when making chains interop-

erable: trust requirement, expensive verification, and chain hetero-
geneity.

Trust Requirement. When processing cross-chain transactions,

the interoperability protocol must maintain the same level of BFT se-

curity as typical public blockchains to avoid compromising overall

security. This implies that the protocol should be decentralized and

trustless. However, achieving this level of security is challenging, as

the protocol must handle complex tasks such as cross-chain trans-

action retrieval, processing, and verification, while maintaining

consistency and liveness. As a result, many solutions are centralized

or semi-centralized, such as notary schemes and committee-based

protocols [28] [35]. These are widely used by crypto exchanges

but are vulnerable to internal corruption and attacks due to their

reliance on trust. For example, one of the largest multi-party compu-

tation (MPC)-based cross-chain bridges, Multichain, was severely

exploited, leading to a loss of over 120 million USD, allegedly due

to compromised keys within its committee [38][37][49].

Expensive Verification. As different blockchains do not trust

each other, they must verify every incoming cross-chain transaction

to ensure the transaction is valid and confirmed on the source

chain. However, this verification process can be expensive and

inefficient, particularly when it is performed on-chain, as it involves

numerous complex cryptographic operations and the storage of

block headers. For example, verifying an Ethereum Virtual Machine

(EVM)-compatible transaction through an on-chain Light Client

(LC) consumes approximately 18 million gas, which is equivalent

to about 60 USD on Ethereum at the time of writing [19]. This high

cost is mainly due to the storage of public keys and the signature

verification process. Although cutting-edge solutions aim to reduce

on-chain costs by zk-SNARKs, they still require significant off-chain

computational resources for proof generation [19] [46] [43].

Chain Heterogeneity. Connecting heterogeneous chains via
interoperability protocols presents additional challenges. Heteroge-

neous chains differ in their underlying components, such as smart

contract engines, supported cryptographic primitives, parameters,

and transaction formats. As a result, they cannot directly verify

and confirm transactions from one another. For instance, an EVM

chain like Ethereum cannot directly verify transactions from Solana

because the EVM lacks support for the multi-signature scheme

1
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Figure 1. To connect three chains A, B, and C, LC-based protocols must de-
ploy the LCs of chains B and C on chain A to allow it to verify transactions
from those chains (and same for chains B and C), resulting in total 3*2=6 LCs
needed (𝑂 (𝑁 2 )). Besides, it also poses heavy on-chain or off-chain costs when
verifying transactions.

used in Solana transactions. Therefore, existing solutions either

only support specific chain types [44] [18], or require significant

modifications on the underlying components of chains to achieve

compatibility [24], which are both not feasible for in-production

public chains. LC-based bridges may suffer less from compatibility

issues, but still need to redundantlh deploy LC contracts on each

chain [19] [48] [46], as shown in Figure1. This approach incurs

quadratic complexity 𝑂 (𝑁 2) when extending to additional chains,

thus posing huge gas consumption and development burdens.

Our Approach. In this paper, we introduce MAP, a scalable and
trustless blockchain interoperability protocol. At a high level, MAP
aims to minimize the computational costs when scaling to new

chains while maintaining decentralized security, without any un-

derlying modifications on chains. Specifically, MAP designs a novel

relay chain architecture as the intermediary to relay cross-chain

transactions from source chains to destination chains. By this, con-

necting heterogeneous chains only need to deploy their on-chain

light clients. To reduce the on-chain and off-chain costs when veri-

fying transactions, we propose an optimized zk-based light client

scheme, hybrid light client, which adaptively decouples the work-

loads of Boneh-Lynn-Shacham (BLS) signature and proof verifica-

tion based on their diverse performance in on-chain smart contracts

and off-chain circuits.

Contributions. In summary, MAP makes the following contribu-

tions:

• MAP introduces a unified relay chain to facilitate cross-chain

transactions between heterogeneous chains, achieving decentral-

ized security while reducing the required number of on-chain

LCs from 𝑂 (𝑁 2) to 𝑂 (𝑁 ). Furthermore, the relay chain renders

MAP chain-agnostic. When extending to new chains, only corre-

sponding on-chain light clients are required to deploy.

• We develop a hybrid light client scheme based on zk-SNARKs

that reduces both the on-chain and off-chain costs of verifying

cross-chain transactions. We adaptively decouple the verification

workloads of BLS signatures and proof generation based their

performance in on-chain smart contracts and off-chain circuits.

This scheme achieves a reduction in on-chain costs by 35% and

off-chain costs by 25% compared to the existing state-of-the-art

works.

• We evaluate the performance and security of MAP. Specifically,
for performance, we are the first to perform large-scale mea-

surements on existing interoperability protocols. For security,

besides the cross-chain liveness and consistency proof, we iden-

tify and discuss a new security issue named inter-chain security
degradation between interoperable chains.

• We deployed MAP on six public chains and support over 50

cross-chain applications, relaying over 200K real-world cross-

chain transactions, worth over 640 million USD. Base on such

practical experiences, we construct the first cross-chain dataset,

BlockMAP1, containing over 150k cross-chain transactions across
six chains. We also open-sourced all the codes of MAP (over one

million lines), accompanied by detailed documentations
2
.

2 Related Works
Centralized/Committee-based Protocols. To enable efficient

interoperability, centralized designs are widely adopted by native

protocols. Notary schemes directly host clients’ tokens in custodial

wallets and designate an authority (such as crypto exchanges) to fa-

cilitate their exchange efficiently [3] [9]. Similarly, committee-based

protocols, such as MPC bridges and vote-oracle bridges[28] [35],

appoint a small group of off-chain committees to verify and vote

on cross-chain transactions, offering more decentralized features

compared to notary schemes. Despite their convenience and effi-

ciency, both solutions rely on trusting off-chain entities, which are

usually not transparent and permissioned, making them vulnerable

to internal corruption and attacks [28].

Chain-based Protocols. To further reduce the needed trust,

chain-based protocols are developed, which feature at processing

cross-chain transactions fully on-chain, thus making the protocols

trustless. However, these protocols typically suffer from expensive

verification and chain heterogeneity. Hash-Time Lock Contracts

(HTLCs) are pioneering peer-to-peer protocols that allow users

to deploy paired contracts on two chains to control asset release.

However, HTLCs lack efficiency [2] because they require manual

peer matching, enforcing users to wait for another user with the

same token swap demand. As a result, HTLCs are rarly used to

support large-scale cross-chain applications. Polkadot and Cosmos

(Blockchain of Blockchain, BoB) employ hubs to process cross-chain

transactions efficiently [44] [18], but these hubs only support their

own specific homogeneous chains. HyperService [24] proposes a

cross-chain programming framework, but it still requires signifi-

cant modifications to the underlying components of heterogeneous

chains, which is not feasible for in-production chains. LC-based

bridges [19] are currently the mainstream protocols that deploy

light clients (LCs) on each chain to verify cross-chain transactions.

However, the internal verification workload of on-chain LCs is

extremely expensive. Zero-Knowledge (ZK)LC-based bridges [46]

[43] attempt to reduce on-chain costs by moving verification to

off-chain provers using zk-SNARKs. Unfortunately, this requires

intensive computing power and multiple distributed servers due

to the large circuit size of signature verification. Additionally, all

LC-based protocols face high scaling costs due to redundant LCs.

1
https://zenodo.org/records/13928962

2
https://github.com/mapprotocol

2

https://zenodo.org/records/13928962
https://github.com/mapprotocol
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Cross-Sharding. Another related line of work involves sharding
techniques in blockchain databases [34] [31] [29] [15] [47] [21]. In

these works, cross-shard processing techniques are developed to

retrieve transactions from different shards. While these techniques

share similarities with cross-chain transaction processing, the key

distinction is that they only consider single blockchain scenarios,

where all nodes trust each other and only simple transaction verifi-

cation (such as Merkle proof verification) is required. In contrast,

in cross-chain scenarios, blockchains that do not trust each other,

and require complicated verification.

3 Preliminaries
PoS-BFT Consensus Proof of Stake with Byzantine-Fault Toler-

ance (PoS-BFT) consensus has become a best practice for blockchain

development due to its high energy-efficiency and security in recent

years. It requires nodes (validators) to deposit funds as stakes to

be qualified to participate in the consensus and to guarantee secu-

rity. PoS-BFT consensus procedures typically operate and iterate

in epochs. At the beginning and end of each epoch, validators are

rotated and elected as committees by the PoS mechanism. During

the epoch, there will be a fixed period of time for the committees

to validate, agree and finalize proposed blocks according to BFT

algorithms and PoS mechanism[25][11].

Light Client. The light client serves as alternative option

for resource-constrained devices such as mobile phones to run

blockchain nodes. It only syncs and stores block headers to reduce

storage and computation overheads. Therefore, only partial func-

tions of full nodes are available, such as transaction query and

verification, while the costly consensus and mining procedures are

usually excluded[8].

Aggregate Signature Aggregate signature (or aggregate multi-

signature) refers to the signature scheme that supports batch verifi-

cation on signatures with public keys to reduce overheads[4][5]. In

aggregate signature schemes, multiple signatures are aggregated as

one signature, which are further verified by an aggregated public

key. BLS signature and its variants currently are widely used in

PoS-BFT chians due to their high efficiency.

Zero-knowledge Proof The Zero-Knowledge Proof (ZKP) sys-
tem is a cryptographic protocol that allows a prover to prove to a

verifier that a given statement is true without disclosing any addi-

tional information besides the fact that the statement is indeed true

or false. ZKP systems typically need to express and compile the

statement proof procedures into circuits with constraints (gates) to

generate proofs, which is complex and computationally expensive

[36][27] [23].

4 System Model and Goals
Interoperability Model. In MAP, we consider the most general

interoperability model that exists in most cross-chain applications.

In this model, there are typically two types of chains to achieve

interoperability through a relay process: the source chain SC and

the destination chain DC. SC is the initiating entity of the relay

process, which first receives and acknowledges cross-chain transac-

tions 𝑐𝑡𝑥 from users and DApps. Then, a blockchain interoperability
protocol is deployed between SC and DC, responsible for relaying
𝑐𝑡𝑥 between them.

Transaction Model. Interoperability between blockchains is

implemented in the form of cross-chain transactions ctx in MAP.
A ctx is a blockchain transaction from SC to DC containing

the message or asset to be transferred. Formally it is defined as

𝑐𝑡𝑥 = {DC, 𝑝𝑎𝑦𝑙𝑜𝑎𝑑}. The DC field is the chain id of DC, which
identifies the destination of 𝑐𝑡𝑥 . payload field is the actual regard-

ing the two types of 𝑐𝑡𝑥 . When a 𝑐𝑡𝑥 is an asset transaction, its

𝑝𝑎𝑦𝑙𝑜𝑎𝑑 contains the specific asset type, the amount, and the asset

operation instructions; when a 𝑐𝑡𝑥 is a message transaction, its

𝑝𝑎𝑦𝑙𝑜𝑎𝑑 contains the smart contract calls. In MAP, different types of
𝑐𝑡𝑥 are handled in the identical way.

Design Goals. MAP has the following design goals:

1. Trustless. Maintaining the same level of BFT security as

typical public blockchains.

2. Scalability. Gas-efficient and computationally efficient

when processing cross-chain transactions and scaling to

new chains.

3. Chain-agnostic. When extending to new chains, no un-

derlying modifications needed except deploying new smart

contracts.

5 MAP Protocol
5.1 Overview
As shown in Figure 2, there are two pipelined phases of cross-chain

relay in MAP:
(Phase 1. SC - RC). First, cross-chain transactions 𝑐𝑡𝑥 are firstly

committed by users or DApps and confirmed on the source chain

SC (❶). Then, an off-chain server 𝑝𝑟𝑜𝑣𝑒𝑟 will proactively monitor

this confirmation event and retrieve the 𝑐𝑡𝑥 with its associated

proofs issued by SC, such as headers and Merkle proofs (❷). Then

the 𝑐𝑡𝑥 and its proofs are sent to the unified relay chain RC by

𝑝𝑟𝑜𝑣𝑒𝑟 for generating proofs (❸).

The unified relay chain RC is an intermediary blockchain that

processes cross-chain transactions between source and destination

chains in a unifiedmanner. More specifically,RC integratesmultiple

hybrid on-chain LCs of each SC (our zk-SNARKs-based optimized

version of LCs, details in §5.3), which receive 𝑐𝑡𝑥s from 𝑝𝑟𝑜𝑣𝑒𝑟

and verify whether they are legal and already confirmed on SC
(❹). After the verification, the 𝑐𝑡𝑥s are temporarily confirmed and

appended to RC.
(Phase 2. RC - DC). Similar with phase 1, this is another off-chain

server 𝑝𝑟𝑜𝑣𝑒𝑟 retrieving 𝑐𝑡𝑥s from RC (❺). 𝑝𝑟𝑜𝑣𝑒𝑟 generates the

proofs of 𝑐𝑡𝑥s for verification on the destination chain DC (❻). On

each DC, an identical hybrid on-chain LC of RC is deployed, which

verifies whether 𝑐𝑡𝑥s confirmed on RC. Finally, the 𝑐𝑡𝑥s initially
committed to SC are eventually confirmed on DC, thus finalizing
the entire cross-chain relay procedure (❼).

Note that there could be multiple SC and DC pairs in MAP, and
the relay process is executed in the same way for each pair. Besides,

SC and DC are relative, which means they could be switched in

reversed relay processes in MAP (by deploying LCs of RC).

5.2 Unified Relay Chain
Insights. To address the trust and heterogeneity challenges, we

present on two key insights on designing the architecture of

blockchain interoperability protocols: (1) Only a BFT system can

3
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Figure 2. Overview of MAP: We introduce a unified relay chain as a framework to facilitate cross-chain communications, which continually retrieves and verifies
cross-chain transactions from source blockchains, including their blocks, transactions, and related proofs. This procedure is executed by the normal on-chain light
client and our hybrid light clients based on zk-SNARKs, which are implemented by smart contracts with off-chain provers.

maintain the same security level with connected blockchains, thus

avoiding degrading overall security. Therefore, the overall architec-

ture must be BFT-secure, such as a blockchain. (2) For decentralized

protocols like (ZK)LC-based bridges, the number of LCs on each

chains are actually the overlapping and redundant. That is, each
chain only consider how to verify other chains from their own

perspective (i.e., deploy other chains’ LC linearly), which ignores

that the same type of LC may be deployed for multiple times from

global view. For example, as shown in Figure 1, each types of LCs

are actually deployed twice. Therefore, if the architecture is able to

verify transactions from different heterogeneous chains in a uni-

fied way, instead of overlapping and redundant, the heterogeneity

challenge will be effectively resolved.

Architecture. To consolidate the above insights, we introduce

the relay chain RC as the cross-chain intermediary in MAP. First,
RC itself is blockchain primarily responsible for receiving trans-

actions from the source chain, verifying them, and forwarding

verified transactions to the destination chain. This relay chain fun-

damentally ensures that MAP maintains decentralized security and

trustworthiness.

Moreover, to address the challenge of chain heterogeneity, we

adopt a unified processing strategy that enables RC to efficiently

verify 𝑐𝑡𝑥 from different heterogeneous chains, thus minimizing

the number of LCs on SC and DC. Specifically, MAP uses the on-

chain LCs for cross-chain transaction verification. However, un-

like existing LC-based bridges that require each of the LCs to be

deployed on every other chain, we instead integrate the LCs of

different chains into a single RC. Consequently, all on-chain LCs

Π𝑠𝑐
ℎ𝑙𝑐

= ⟨Π𝑠𝑐1
ℎ𝑙𝑐

,Π𝑠𝑐2
ℎ𝑙𝑐

, . . . ,Π𝑠𝑐𝑖
ℎ𝑙𝑐
⟩ are build on RC (the internal process

of Π𝑠𝑐
ℎ𝑙𝑐

will be introduce in §5.3).

Cross-Chain Relay. The general process of relaying 𝑐𝑡𝑥 from

source chain SCI to DC works as follows. As shown in the Algo-

rithm 1, there are two pipelined phases.

First, for the SCI − RC phase, after 𝑐𝑡𝑥 is committed and con-

firmed on SCI, it will emit a confirmation event by outputting

the block header 𝑏ℎ𝑠𝑐𝑖 with the Merkle tree root 𝑟
𝑠𝑐𝑖
𝑚𝑘𝑙

(line 2).

Then a 𝑝𝑟𝑜𝑣𝑒𝑟 between SCI and RC will monitor this confirma-

tion event and proactively retrieve the 𝑐𝑡𝑥 and generate the proofs

⟨𝑐𝑡𝑥, 𝑏ℎ𝑠𝑐𝑖 , 𝜋𝑠𝑐𝑖
𝑚𝑘𝑙

, 𝜋
𝑠𝑐𝑖
𝑧𝑘
⟩ (line 4-5) from SCI and transmit them to

Algorithm 1: Unified Relay Chain in MAP

Input: A cross-chain transaction 𝑐𝑡𝑥 from SCI to DC
Output: Updated DC by 𝑐𝑡𝑥

1 Procedure SourceChain(𝑐𝑡𝑥):
2 (𝑏ℎ𝑠𝑐𝑖 , 𝑟𝑠𝑐𝑖

𝑚𝑘𝑙
) ← confirm(𝑐𝑡𝑥 , SCI) ⊲ 𝑐𝑡𝑥 is firstly committed

and confirmed on SCI
3 for 𝑝𝑟𝑜𝑣𝑒𝑟 between SCI and RC do
4 retrieves (𝑏ℎ𝑠𝑐𝑖 , 𝑟𝑠𝑐𝑖

𝑚𝑘𝑙
) emitted by 𝑐𝑡𝑥 from SCI

5 𝜋
𝑠𝑐𝑖
𝑚𝑘𝑙

, 𝜋
𝑠𝑐𝑖
𝑧𝑘
← genProof (𝑏ℎ𝑠𝑐𝑖 , 𝑟

𝑠𝑐𝑖
𝑚𝑘𝑙

, 𝑐𝑡𝑥 )

6 return transmit(𝑐𝑡𝑥, 𝑏ℎ𝑠𝑐𝑖 , 𝜋
𝑠𝑐𝑖
𝑚𝑘𝑙

, 𝜋
𝑠𝑐𝑖
𝑧𝑘

,RC)

7 end

8 Procedure RelayChain(𝑐𝑡𝑥, 𝑏ℎ𝑠𝑐𝑖 , 𝜋𝑠𝑐𝑖
𝑚𝑘𝑙

, 𝜋
𝑠𝑐𝑖
𝑧𝑘

):

9 if Π𝑠𝑐𝑖
ℎ𝑙𝑐
(𝑐𝑡𝑥, 𝑏ℎ𝑠𝑐𝑖 , 𝜋𝑠𝑐𝑖

𝑚𝑘𝑙
, 𝜋

𝑠𝑐𝑖
𝑧𝑘
) == 𝑇𝑟𝑢𝑒 then

10 (𝑏ℎ𝑟𝑐 , 𝑟𝑟𝑐
𝑚𝑘𝑙
) ← confirm(𝑐𝑡𝑥 ,RC) ⊲ 𝑐𝑡𝑥 is verified and

confirmed on RC by corresponding SCI’s light client

11 for 𝑝𝑟𝑜𝑣𝑒𝑟 between RC and DC do
12 retrieves (𝑏ℎ𝑟𝑐 , 𝑟𝑟𝑐

𝑚𝑘𝑙
) emitted by 𝑐𝑡𝑥 from RC

13 𝜋𝑟𝑐
𝑚𝑘𝑙

, 𝜋𝑟𝑐
𝑧𝑘
← genProof (𝑏ℎ𝑟𝑐 , 𝑟𝑟𝑐

𝑚𝑘𝑙
, 𝑐𝑡𝑥 )

14 return transmit(𝑐𝑡𝑥, 𝑏ℎ𝑟𝑐 , 𝜋𝑟𝑐
𝑚𝑘𝑙

,DC)
15 end
16 end

17 Procedure DestinationChain(𝑐𝑡𝑥, 𝑏ℎ𝑟𝑐 , 𝜋𝑟𝑐
𝑚𝑘𝑙

, 𝜋𝑟𝑐
𝑧𝑘
):

18 if Π𝑠𝑐
ℎ𝑙𝑐
(𝑐𝑡𝑥, 𝑏ℎ𝑟𝑐 , 𝜋𝑟𝑐

𝑚𝑘𝑙
, 𝜋𝑟𝑐

𝑧𝑘
) == 𝑇𝑟𝑢𝑒 then

19 (𝑏ℎ𝑑𝑐 , 𝑟𝑑𝑐
𝑚𝑘𝑙
) ← confirm(𝑐𝑡𝑥 , DC) ⊲ 𝑐𝑡𝑥 is finally verified

and confirmed on DC by RC’s light client
20 return DC
21 end

RC (line 6). Then RC verifies these transactions against the corre-

sponding Π𝑠𝑐𝑖
ℎ𝑙𝑐

of SCI built on RC. After verification, the 𝑐𝑡𝑥 are

confirmed on RC as intermediary cross-chain transactions 𝑐𝑡𝑥 .
Then, in the second RC − DC phase, 𝑐𝑡𝑥 will also emit a confir-

mation event to RC by outputting the block header 𝑏ℎ𝑟𝑐 with the

Merkle tree root 𝑟𝑟𝑐
𝑚𝑘𝑙

(line 9). Then a 𝑝𝑟𝑜𝑣𝑒𝑟 between RC and DC
will get the 𝑐𝑡𝑥 and generate its proofs ⟨𝑐𝑡𝑥, 𝑏ℎ𝑟𝑐 , 𝜋𝑟𝑐

𝑚𝑘𝑙
, 𝜋𝑟𝑐

𝑧𝑘
⟩ (line

11-12). These proofs are transmitted to DC for further verification

4
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Figure 3. Our hybrid light client overperforms conventional light clients by adoptive offloading. We move the on-chain verification workloads to off-chain provers
through zk-SNARKs. Meanwhile, we keep the hash operations on-chain to minimize the circuits size and proof generation time.

(line 13). The key difference here is that only one identical type of

Π𝑟𝑐
ℎ𝑙𝑐

needs to be deployed on eachDC (line 15) to verify 𝑐𝑡𝑥 . This is

because all 𝑐𝑡𝑥 are now from RC, even though they were originally

from different SCI. After passing the verification of Π𝑟𝑐
ℎ𝑙𝑐

, the 𝑐𝑡𝑥

are confirmed on DC as the finalized cross-chain transactions 𝑐𝑡𝑥 .

Consensus. To ensure the decentralized security of the relay

process on RC, we make RC run a BFT consensus (e.g., a PoS BFT

consensus like IBFT[26]). It enforces honest nodes with economic

incentives (such as block rewards), while punishing malicious be-

havior by slashing incentives. As long as honest nodes control the

majority of the total stake (e.g., greater than
2

3
), the Π𝑠𝑐

ℎ𝑙𝑐
are guar-

anteed to execute correctly. A detailed security analysis of RC is

presented in §7.2.

5.3 Hybrid Light Client
Although introducing the relay chain can effectively reduce the

required number of on-chain LCs through unified processing, the

heavy on-chain LC verification workload remains a bottleneck [48]

[46].

On-chain Verification. To explore potential optimization

spaces, we analyze the costs of each procedure in normal EVM-PoS

light clients. After a transaction 𝑡𝑥 is committed and finalized by

consensus, a block 𝐵 and its header 𝑏ℎ will be produced and ap-

pended on chain[11]. To prove that such 𝑡𝑥 is included in 𝐵, the

following major content needs to be inputted to normal light client

Π𝑙𝑐 :

• a receipt message𝑚 emitted by 𝑡𝑥 inside 𝐵.

• a Merkle proof 𝜋𝑚𝑘𝑙 for𝑚 extracted from 𝐵, which is usu-

ally provided by full nodes.

• a header 𝑏ℎ = ({𝑝𝑘,𝑤}𝑛, 𝜎𝑎𝑔𝑔, 𝑏𝑖𝑡𝑚𝑎𝑝, 𝑟𝑚𝑘𝑙 ) that consists
of:

– an epoch number 𝑒 .

– a current validator information set 𝑣𝑠𝑒 = {𝑝𝑘,𝑤}𝑛𝑒 that

contains 𝑛 validator public keys and corresponding

voting weights corresponding to 𝑒 . When consensus

entering a new epoch, a new validator information set

will be updated.

– an aggregate signature 𝜎𝑎𝑔𝑔 from validators signing 𝐵.

– a mapping value 𝑏𝑖𝑡𝑚𝑎𝑝 that indicates which validator

actually signed 𝐵.

– a root hash of receipt trie 𝑟𝑚𝑘𝑙 that is computed from

𝑚.

• other auxiliary information such as timestamp and epoch

size 𝐸

With above input content, the normal Π𝑙𝑐 is defined as three

algorithms (Setup, Update, Verify), as shown in Figure 3 (left):

- 𝑣𝑠𝑔 ←Setup(𝑝𝑎𝑟𝑎): given system parameters, 𝑝𝑎𝑟𝑎, initial-

ize Π𝑙𝑐 in terms of the epoch size, 𝐸, the vote threshold, 𝑇 ,

and the initial validator information, {𝑝𝑘,𝑤}𝑛𝑔 . Then output
a validator set, 𝑣𝑠𝑔 = {𝑝𝑘,𝑤}𝑛𝑔 , that indicates the current
validator set stored in Π𝑙𝑐 .

- 𝑣𝑠𝑒+1 ←Update(𝑒, 𝑣𝑠𝑒 , 𝑏ℎ): given a header𝑏ℎwith an epoch
change , verify the aggregate signature 𝜎𝑎𝑔𝑔 inside 𝑏ℎ and

update the current validator set 𝑣𝑠𝑒 to a new validator set

𝑣𝑠𝑒+1 = {𝑝𝑘,𝑤}𝑛𝑒+1.
- {0, 1} ←Verify(𝑣𝑠𝑒 ,𝑚,𝑏ℎ, 𝜋𝑚𝑘𝑙 ): given a message, 𝑚,

emitted from 𝑡𝑥 and its header, 𝑏ℎ, check whether 𝑡𝑥 is

successfully included in 𝐵 through its aggregate signature

𝜎𝑎𝑔𝑔 , vote weights, and its Merkle proof 𝜋𝑚𝑘𝑙 . Output {0, 1}
as the result. The incremental increase in the epoch number,

𝑒 , is also verified during the signature verification.

Efficiency Optimization Space. Computation and storage are

the main overheads when triggering Update and Verify. For com-

putation, aggregate signature verification is frequently performed,

which is essentially operations on elliptic curves, including hashing

(i.e., the Hash-to-Curve algorithm), equation evaluations, and pair-

ing checks[6][1][13]. These operations are inefficient in EVM due

to their relatively high complexity when calculating underlying

fields via curve equations. For instance, currently verifying one

EVM cross-chain transaction with full BLS signatures can cost up

to 1 × 10
6
gas[48] (approximately 30 USD on ETH). For storage,

Π𝑙𝑐 needs to store 𝑣𝑠𝑒 = {𝑝𝑘,𝑤}𝑛𝑒 persistently and frequently read

them. Since most of PoS blockchains have more than 100 validators,

storing and updating these data at the end of each epoch on smart

contracts requires a large amount of storage space, thus consuming

a expensive gas fees. Storing one validator information set requires

0.1 × 106 gas.
Hybrid Verification. To estimate the high gas fee consumption,

we develop a hybrid verification scheme Πℎ𝑙𝑐 to reduce on-chain

costs using off-chain zk-SNARKs.
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First, we aim to efficiently prove the two functions

Update and Verify using zk-SNARKs. We compress

the validator information 𝑣𝑠 into a single commitment:

𝑣𝑠 = commitment({(𝑝𝑘0,𝑤0), (𝑝𝑘1,𝑤1), . . . , (𝑝𝑘𝑛,𝑤𝑛)}) to

reduce the on-chain storage overhead. In this way, the validator

aggregate signatures of 𝑏ℎ and the corresponding voting weights

must satisfy this commitment value to pass verification. One native

approach to implementing zk-SNARKs for proving is to program

and compile all verification procedures into circuits, i.e., input

the entire block header into the circuit along with all signature

verification algorithms [46] [39]. Then deploy an off-chain prover

to generate the zk-proofs based on this circuit and submits them to

Πℎ𝑙𝑐 for verification.

However, we observe that despite Πℎ𝑙𝑐 improving efficiency by

shifting on-chain workloads to off-chain provers, generating zk-

proofs for verifying the entire aggregate signature instead requires

substantial off-chain storage and computational resources for the

prover. Specifically, in this way, the circuit size for an aggregate

signature verification is extremely large due to multiple complex

operations such as Hash-to-Curve and pairing checks (typically ex-

ceeding 2×107 gates in existing implementations and 100 GB[12] for

eight signatures). These factors also increase the proof generation

time.

To optimize the off-chain costs of generating zk-proofs, we try

to decouple the aggregate signature verification process and handle

it separately. Specifically, the Hash-to-Curve algorithm in the BLS

scheme hashes the message𝑚 to curve points in G, which typically

consists of two steps in practical implementations:

1. Hash-to-Base. Input a a message𝑚 and map it to possible

coordinates (base field elements) through hash functions.

This returns a field element 𝑡 .

2. Base-to-G. Input a field element 𝑡 and calculate the curve

point (𝑥,𝑦) through the curve equations.

SinceHash-to-Basemainly consists of multiple hash operations, it

can be efficiently computed through smart contract but inefficiently

compiled into circuits due to its large size. In contrast, Base-to-G per-

forms arithmetic operations in the finite field through elliptic curve

equations, which can be relatively briefly and efficiently expressed

into circuits. In this way, we improve the off-chain efficiency of

zk-SNARKs based aggregate signature verification, further speed

up the entire Πℎ𝑙𝑐 .

With the above optimization, the Πℎ𝑙𝑐 is defined as the following

algorithms, as shown in Figure 3(right):

- 𝑣𝑠𝑔 ←Setup(𝑝𝑎𝑟𝑎): given the system parameters, 𝑝𝑎𝑟𝑎,

initialize Πℎ𝑙𝑐 with the hard-coded epoch size, 𝐸, the vote

threshold, 𝑇 , and the initial validator information commit-

ment, 𝑣𝑠𝑔 = 𝐶 ({𝑝𝑘,𝑤}𝑛𝑔 ). Then, output a validator set,

𝑣𝑠𝑔 = {𝑝𝑘,𝑤}𝑛𝑔 , that indicates the current validator set

stored in Πℎ𝑙𝑐 .

- 𝑣𝑠𝑒+1 ←Update(𝑣𝑠𝑒 , ℎ, 𝜋𝑧𝑘 ): given header 𝑏ℎ during an

epoch change, verify the aggregate signature, 𝜎𝑎𝑔𝑔 , of 𝑏ℎ.

First, compute the base field elements 𝑡 = (𝑡0, 𝑡1) in 𝐺1

by hash function 𝐻0 (𝑏ℎ), and send 𝑡 to the prover. After

receiving 𝜋𝑧𝑘 that satisfied 𝑐 , update the current validator

set, 𝑣𝑠𝑒 , with the new validator set, 𝑣𝑠𝑒+1 = 𝐶 ({𝑝𝑘,𝑤}𝑛
𝑒+1).

- 𝜋𝑧𝑘 ←GenZK(𝑏𝑖𝑡𝑚𝑎𝑝, 𝑣𝑠𝑒 , 𝜎𝑎𝑔𝑔, 𝑡, ): given extracted𝑏𝑖𝑡𝑚𝑎𝑝 ,

𝑣𝑠𝑒 = {𝑝𝑘,𝑤}𝑛𝑒 , 𝜎𝑎𝑔𝑔 , validator set commitment 𝑐 from 𝑣𝑠𝑒
and 𝑡 from Update, run a zk-SNARKs system and generate

a zk-proof, 𝜋𝑧𝑘 , for 𝑐 .

- {0, 1} ←Verify(𝑣𝑠𝑒 ,𝑚,ℎ, 𝜋𝑚𝑘𝑙 ): given message𝑚 emitted

from 𝑡𝑥 and its header 𝑏ℎ, verify whether 𝑡𝑥 is successfully

included in 𝐵 through its aggregate signature, 𝜎𝑎𝑔𝑔 , and

there are sufficient weights according to the stored 𝑣𝑠𝑒 and

its Merkle proof 𝜋𝑚𝑘𝑙 . Then output {0, 1} as the result.

6 Performance Evaluation
Experiment Setup. We set up a Google Compute Engine machine

type c2d-highcpu-32 instance (32 vCPUs with 64GB RAM, ~800

USD per month) as a prover, and a e2-medium instance as prover (1

vCPUs with 4GB RAM, ~24 USD per month). For the relay chain, the

hardware configuration for validator is similar with e2-standard-4

(4 vCPUs with 16 GB RAM), and requires at least 1×106 MAP token

as stakes (~10K USD).

Baselines andWorkloads. Since very few works provide quan-

titative performance evaluation results, it is difficult to find a fair

baseline [36][33][40]. To this end, we perform the first compre-

hensive measurement and comparison of existing blockchain in-

teroperability protocols. As shown in Table 1, we measure five

key security and scalability metrics across six representative types

of protocols. Based on these results, we select the state-of-the-art

(SOTA) results as baselines for comparison. We set the workloads as

cross-chain transactions from Polygon to Ethereum for comparison,

which is mostly supported by existing works. For protocols that

do not support such workloads (such as Polkadot), we select their

popular source-destination chain pair for evaluation. For each type

of workload, we measure 100 transactions and record the average

result.

6.1 Evaluation Results
On-chain Costs. For on-chain costs, we mainly refer to the LC-

based bridges as baselines, because they are the most common

decentralized solutions [48]. For each cross-chain transaction veri-

fication, on-chain LCs require ~1 × 106, while MAP requires only

~0.65M at the time of writing, saving ~35%. These costs are deter-

ministic in repeated tests on smart contracts [11] [45].

Off-chain Costs. For off-chain costs caused by zk-SNARKs,

we refer to the standard implementation using snarkjs Groth16

to prove signature verification as the baseline [12] [46] [39]. As

shown in Figure 2, for eight signatures, the circuit size of the MAP
prover is ~1.57 × 107 gates, which is reduced by ~25% compared

to the aforementioned baselines (2 × 107 gates). Correspondingly,
the proof generation time is also reduced by ~25% due to its linear

relationship with circuit size.

Number of On-chain Light Clients (scaling up costs). Ac-
cording to statistics

3
, a PoS-BFT EVM light client requires approxi-

mately ~100K gas per validator information storage. Assuming the

number of validators is 100 for each chain, then for connecting

𝑁 chains, LC-based bridges need to spend 10
7 × 𝑁 (𝑁 − 1) gas to

3
https://github.com/shresthagrawal/poc-superlight-client
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Evaluation Metrics Centralized Committee Chain

Solutions

Binance,

CoinBase[3][9]

Multichain,

Celer[28][10]

EthHTLC[7],

Lighting[2]

Polkadot,

Cosmos[44][18]

Horizon,

LayerZero,[19][48]

zkRelay,

zkBridge[43][46]

MAP

Type Notary MPC HTLC BoB LC ZKLC ZKLC+Relay

Security Models Trusted Semi-Trusted Trustless Trustless Trustless Trustless Trustless

On-chain Costs (gas) N/A 0.5 × 106 1.5 × 106 0.8 × 105 1 × 106 0.3 × 106 0.65 × 106
(35% less)

Off-chain Costs (gates) N/A N/A N/A N/A N/A 2 × 107 1.57 × 107
(25% less)

Latency 1s 310s N/A 13s 227s 153s 210s

Complexity 𝑂 (𝑁 ) 𝑂 (𝑁 2) 𝑂 (𝑁 2) 𝑂 (𝑁 ) 𝑂 (𝑁 2) 𝑂 (𝑁 2) O(N)
Table 1. Performance Comparisons of MAP and Existing Blockchain Interoperability Protocols. (Polygon to Ethereum transaction workload)

Table 2. Circuit size of provers for verifying different number of validator
signatures

Number of Sigs (Validators) Circuit Size (gates)
4 0.9 × 106
8 15.7 × 106
16 25.2 × 106
32 49.3 × 106

deploy LCs. In contrast, for MAP, it is ~100K gas fixed per LC for val-

idator information set commitment storage (no matter how many

validators), which means only 2 × 105 × 𝑁 gas is needed.

Cross-chain Latency We measure the end-to-end latency of

cross-chain transactions relayed in MAP, from the confirmation

timestamp on source chains until the confirmation timestamp on

destination chains, including transaction transmission between

chains, proof generation, and on-chain LC verification. As shown

in Table 4, the results indicate that MAP’s cross-chain latency is ~210

seconds. Compared to existing works, these results suggest that

despite introducing provers and relay chain will increase latency,

the on-chain LCs execution are simplified to reduce the overall

latency.

Figure 4. Cross-chain latency under different size of validators

Real-world Cross-chain Dataset. Based on the experiments

and our deployment statistics, we prune and provide the first public,

real-world blockchain interoperability dataset, BlockMAP4, which
consists of 150k cross-chain transactions from six popular pub-

lic chains. The dataset includes several essential attributes, such

as transaction direction, start and end timestamps, token types,

and amounts. This dataset presents practical measurement of real-

world cross-chain transactions, aiming to offer new insights and

understandings for future blockchain research.

4
https://zenodo.org/records/13928962

7 Security Analysis
We thoroughly analyze the security of MAP. Particularly, as previous
works have extensively proved the security of a transaction will be

confirmed onwith liveness and consistency within a single PoS-BFT

chain [32][30], we focus on demonstrating the newly introduced

components (i.e., provers and relay chain) in MAP will still maintain

the liveness and consistency under various attacks.

7.1 Assumptions
MAP works under several basic and common security assumptions

in blockchain communities [36].

Assumption 1. (PoS-BFT Threshold). ForRC, more than 𝜏 = 2𝑆
3

of the stakes are controlled by honest validators, where 𝑆 is the total
stakes. This group of honest validators is always live, i.e., they will
confirm 𝑐𝑡𝑥 in a timely manner.

Assumption 2. (Secure Cryptographic Primitives). The cryp-
tographic primitives used in MAP, including the BLS signature, the
Groth16 zk-SNARKs, and the hash functions, are secure against prob-
abilistic polynomial-time (PPT) adversaries. That is, no PPT adversary
can generate incorrect proofs or signatures that would be accepted.

Assumption 3. (Minimal Prover and Reachable Commu-
nication). At least one prover is available and honest in MAP, i.e.,
they will correctly generate the proofs 𝜋𝑚𝑘𝑙 and 𝜋𝑧𝑘 and transmit
cross-chain transactions 𝑐𝑡𝑥 between chains, i.e., SC, RC, and DC.
Additionally, we assume that the communication channels between
the prover and the chains are reachable (i.e., no network partitions,
though they may be insecure).

7.2 Liveness and Consistency

Theorem 1. (Cross-chain Liveness). If a valid 𝑐𝑡𝑥 is committed
to and confirmed on SC, then it will eventually be confirmed on DC
via MAP, assuming the above assumptions hold.

Proof. Given a committed 𝑐𝑡𝑥 from SC, there are two potential
cases that could prevent it from being confirmed on DC: Case 1:
A faulty or compromised 𝑝𝑟𝑜𝑣𝑒𝑟 refuses to generate proofs and

transmit 𝑐𝑡𝑥 between SC-RC or RC-DC. Case 2: Sufficient validators

of RC are corrupted to force RC to withhold 𝑐𝑡𝑥 , preventing it from

being sent to DC. For Case 1, by Assumption 3, at least one 𝑝𝑟𝑜𝑣𝑒𝑟

will transmit 𝑐𝑡𝑥 to RC and DC (a single 𝑝𝑟𝑜𝑣𝑒𝑟 is sufficient for

processing transactions from any number of chains). Therefore,

7
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even if other 𝑝𝑟𝑜𝑣𝑒𝑟𝑠 are faulty or compromised (e.g., via DDoS at-

tacks), RC and DC can still receive and verify 𝑐𝑡𝑥 from the reliable

𝑝𝑟𝑜𝑣𝑒𝑟 . For Case 2, previous works have proven that any liveness

attacks on PoS-BFT chains involving the refusal to verify trans-

actions require at least
1𝑆
3
stakes [32][30], which is prevented by

Assumption 1. Even in the case of DDoS attacks on some of the RC
validators, since the honest validators are live and control over

2𝑆
3
,

they will always confirm the 𝑐𝑡𝑥 in time. As a result, Πℎ𝑙𝑐 run by

the validators will eventually verify 𝑐𝑡𝑥 and confirm it on both RC
and DC, thereby guaranteeing the overall cross-chain liveness. □

Theorem 2. (Cross-chain Consistency). If a valid 𝑐𝑡𝑥 is com-
mitted and confirmed on SC and a 𝑐𝑡𝑥 is finally confirmed on DC
via MAP, then 𝑐𝑡𝑥 = 𝑐𝑡𝑥 , assuming the above assumptions hold.

Proof. Given a 𝑐𝑡𝑥 from SC, there are two potential cases for
consistency attacks: Case 1: A malicious 𝑝𝑟𝑜𝑣𝑒𝑟 generates a tam-

pered 𝑐𝑡𝑥 with its proofs and tries to get them accepted by RC.
Case 2: Adversaries directly corrupt RC to force it to accept a tam-

pered 𝑐𝑡𝑥 . For Case 1, in order to pass Πℎ𝑙𝑐 verification, the ma-

licious 𝑝𝑟𝑜𝑣𝑒𝑟 would need to forge block headers (including the

corresponding signatures and Merkle proofs) to generate incorrect

zk-proofs. However, by Assumption 2, this is highly unlikely to

succeed. Therefore, Πℎ𝑙𝑐 will not accept 𝑐𝑡𝑥 as a valid cross-chain

transaction on RC. For Case 2, corrupting RC to accept a tampered

𝑐𝑡𝑥 requires controlling at least
2𝑆
3
of the validators, which is pre-

vented by Assumption 1. Therefore, any tampered 𝑐𝑡𝑥 will not be

accepted on RC, thus ensuring cross-chain consistency. □

7.3 Inter-Chain Security
Despite the analysis in §7.2 proving that cross-chain transaction

verification is secure under Assumptions 1, 2, and 3, it does not fully

match cross-chain scenarios. Specifically, within a single chain, the

profit-from-corruption can hardly be higher than cost-to-corruption

because they are calculated by the relative token value. That is,

within a chain A with security threshold 𝜏𝐴 =
2𝑆𝐴
3

, it is unlikely to

see a transaction with value over 𝜏𝐴 .

We identify a new potential security issue when connecting mul-

tiple chains with interoperability protocols that may converse the

above situation, which also applies to chain-based protocols but

never discussed before. We name this issue Inter-Chain Security
Degradation. We argue that the overall security of interoperable

multi-chain networks is as strong as the least secure chain. For

example, given three interoperable PoS-BFT chains A, B, and C,

with their BFT security boundaries as 𝜏𝐴 =
2𝑆𝐴
3
, 𝜏𝐵 =

2𝑆𝐵
3
, and

𝜏𝐶 =
2𝑆𝐶
3
, the security of the entire network is min(𝜏𝐴, 𝜏𝐵, 𝜏𝐶 ).

This can be justified by considering the following situation: assume

𝜏𝐵 = min(𝜏𝐴, 𝜏𝐵, 𝜏𝐶 ). If a 𝑐𝑡𝑥 from chain A to chain B has a ex-

tremely large value 𝑉𝑒𝑥𝑡𝑟𝑒𝑚𝑒 > 𝜏𝐵 , the validators of chain B will

be motivated to manipulate 𝑐𝑡𝑥𝑒𝑥𝑡𝑟𝑒𝑚𝑒 (such as double-spending),

even if they were honest before (Assumption 1) and run the risk of

being slashed by all the staked. Because their profit-from-corruption

is now explicitly higher than cost-to-corruption. In other words,

the security of chains A, B, and C is degraded to𝑉𝑒𝑥𝑡𝑟𝑒𝑚𝑒 < 𝜏𝐵 due

to interoperability.
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Figure 5. Historical statistics of MAP: The maximum value of any single cross-
chain transaction is significantly smaller than the security boundary of the
relay chain

Discussion Regarding MAP, this degradation requires the secu-

rity of the relay chain to be strong enough (high staked value) to

support cross-chain transactions. To examine this, we provide real-

world statistics in MAP. As shown in Figure 5, the most valuable

cross-chain transaction was a 100K USDC transfer from NEAR in

March 2023
5
, worth 1.3% of the total MAP stakes (7M USD). This

also means MAP could still support transactions worth up to 4.67M

USD. In summary, although inter-chain security degradation exists

due to the interoperability, MAP’s relay chain design is still highly

reliable and secure in practice.

8 Supported Chains and Cross-chain
Applications

MAP supports six major public chains: including EVM chains such

as Ethereum, BNB chains, Polygon, and Conflux, and Non-EVM

chains such as Klaytn and Near. By 2024, there are over 640M

USD assets relayed by over 5M cross-chain transactions with MAP6.
Over 50 industrial cross-chain applications and layer-2 projects are

built
7
. Representative cross-chain applications range from cross-

chain swap (Butterswap), crypto payment (AlchemyPay), liquidity

aggregation (Openliq), DePINs (ConsensusCore), DeFi solutions

development (Unify)
8
.

9 Conclusion
This paper introduces MAP, a trustless and scalable blockchain in-

teroperability protocol with practical implementations. MAP strikes

a balance between trustlessness and scalability by introducing a

unified relay chain architecture and optimized zk-based hybrid light

clients (LCs). We conducted extensive experiments to comprehen-

sively evaluate its performance and analyze its security. Addition-

ally, we have open-sourced the entire MAP codebase and released

the first cross-chain transaction dataset, BlockMAP. We envision

MAP as a practical solution for interoperable data and networking

infrastructure in the Web 3.0 era.

5
https://maposcan.io/cross-chains/565

6
https://www.maposcan.io

7
A full list at https://www.mapprotocol.io/en/ecosystem

8
https://www.butterswap.io/swap, https://alchemypay.org, https://www.consen

suscore.com,https://openliq.com, https://unifiprotocol.com

8
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chains (over 1 × 106 lines of Go code
9
). To overcome the hetero-

geneity, we integrate the most commonly adopted cryptographic

primitives and parameters in existing chains into our smart contract

engine. Specifically, supported hashing algorithms include SHA-3,

SHA-256, keccak256, and blake2b, while signature algorithms (or

elliptic curves) include ed25519, secp256k1, sr25519, and BN256,

which covers most public chains. We adopt IBFT in the relay chain,

which is also well tested and widely adapted in many chains. With

IBFT, we issue the token $𝑀𝐴𝑃𝑂 on the relay chain, which is used

to pay for the gas fees of cross-chain transactions and the block

rewards for validators.

We also implement our proposed hybrid LCs together with nor-

mal LCs (six clients for six chains, totally over 180K lines of Solidity

code
10
), spawning multiple smart contracts.

For off-chain provers, we use Groth16[14] to express the BLS

signature verification (except Hash-to-Base) through Circom, along-

side with our optimizations to reduce the size of the circuit
11
. First,

we make BLS public keys in G2, while the signatures are in G1 to

reduce the signature size. Second, as mentioned before, we move

two Hash-to-Base functions outside of the circuit to simplify the

constraints in the circuit.

B MAP Omnichain Service
Motivations. Despite MAP enables trusless and scalable cross-

chain transaction relaying, it is still inconvenient and costly for

developers to directly integrateMAP into DApps directly in practice.

That is, directly interacting with the underlying relay chain and the

on-chain light clients will require intensive domain knowledge and

complicate the business logics. Moreover, as the gas fees for cross-

chain transactions are not negligible, a designing pricing model for

cross-chain transactions is necessary.

To this end, inspared by the role of traditional DBMS in database

field, we design a middleware layer named MAP Omnichain Service

(MOS) upon MAP
12
. At a high level, MOS shares some similar

functionalities with DBMS for database, which aims to abstract

ready-to-use services from the underlying relay chain and on-chain

light clients, thus effectively manage the cross-chain transactions.

There two major services provided in MOS: 1) cross-chain data

management service contracts, and 2) a dynamic pre-paid pricing

model.

Service Contracts for Cross-chain Data Management. When

building DApps, it is essential to manage various cross-chain data,

such as sending cross-chain transactions, addresses (senders and

receivers), and inquiry emitted events (transaction states, times-

tamp, etc). To facilitate this, MOS provides two general service

contracts as interfaces for DApps to relay cross-chain data and

inquiry cross-chain data conveniently, as defined in the followings:

• dataOut(uint256 _toChainId, bytes memory
_messageData, address _feeToken) (deployed on

source chains and the relay chain)

9
https://github.com/mapprotocol/atlas

10
https://github.com/mapprotocol/atlas, https://github.com/mapprotocol/map-co

ntracts/tree/main/mapclients/zkLightClient, and https://github.com/zkCloak/zkMapo

11
https://github.com/zkCloak/zkMapo

12
https://github.com/mapprotocol/mapo-service-contracts

• dataIn(uint256 _fromChainId, bytes memory
_receiptProof) (deployed on the relay chain and destina-

tion chains)

where _toChain is the destination chain chain id, _messageData
is the cross-chain data to be relayed, _feeToken is the address of
the token type for paying the cross-chain fees. To relay data, an

DApps first calls the messageOut on SC by specfiying the id of RC,
data payload, and paying the fees of the cross-chain. When the

SC-RC messager observes the event emitted from messageOut, it
builds the corresponding proofs and sends them to the messageIn
on RC, which will future call the on-chain LCs for verification.

likewise, the messageOut and messageIn will be called on RC and

DC, respectively, and the message data is eventually relayed.

For cross-chain data inquiry, each messageIn will also return the

hash of converted cross-chain transactions to the DApps, which

can be further used to inquery the transaction status and details

on the relay chain and destination chains. For example, by inquiry-

ing, DApps can demonstrate where the cross-chain transaction is

currently being processed, whether it is confirmed or not, and the

final status of the transaction.

Limited Pre-paid Pricing model. Designing pricing model for

DApps to charge cross-chain transactions is significant for busi-

ness sustainability. However, one major challenge is that the gas

is separately consumpted on each chains and hard to be precisely

estimated in advance as the token price is dynamic. To address

these, in MOS, we propose a pre-paid pricing model that charges

the whole cross-chain transaction fees on the relay chain and the

destination chain once the cross-chain transaction is confirmed

on the source chain. Specifically, the pricing model 𝐹 (𝑎𝑚𝑜𝑢𝑛𝑡) is
defined as follows:

𝐹 (𝑎𝑚𝑜𝑢𝑛𝑡) =


𝑓RC + 𝑓DC, 𝐹 ≤ 𝑓RC + 𝑓DC
𝑘 × 𝑎𝑚𝑜𝑢𝑛𝑡, 𝑓RC + 𝑓DC < 𝐹 ≤ 𝐹𝑚𝑎𝑥

𝐹𝑚𝑎𝑥 , 𝐹 > 𝐹𝑚𝑎𝑥

where 𝐹 is the total cross-chain transaction fee. In normal sce-

narios, 𝐹 is decided by the cross-chain transaction token 𝑎𝑚𝑜𝑢𝑛𝑡

and its percentage coefficient 𝑘 (in MAP we usually take 0.02-0.03).

In case of the cross-chain transactions only contain negligible to-

ken amount (e.g., a transaction for calling smart contracts instead

of transferring tokens), the fee is set to be the sum of the basic

gas fees 𝑓RC + 𝑓DC for covering transaction processing fees on

the relay chain and the destination chain. Besides, for cross-chain

transactions containing extreme amounts of token, we set a upper

bound 𝐹𝑚𝑎𝑥 to avoid charging unreasonable expensive fees. In this

way, the pricing model ensures to cover while provding reasonable

incentives for validitors to behave honestly the relay chain.

C Future work
In the future, we plan to extend MAP to support Bitcoin, the most

renowned and valuable cryptocurrency project, enabling Bitcoin

assets to be operable outside the original network and avoiding

costly transaction processing.

10
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