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ABSTRACT

Pre-trained language models (PLMs) remain unreliable for graph-to-sequence
(G2S) generation, where two challenges are particularly acute: (i) factual ground-
ing, ensuring all entities are faithfully realized, and (ii) edit sensitivity, ensuring
small, local graph edits to propagate consistently in the output. We propose Dif-
fusion Language Models for Graphs (DLM4G), a non-autoregressive framework
for iterative refinement conditioned on the graph input. Central to DLM4G is a
graph-aware adaptive noising strategy, where noise is applied to the output se-
quence aligned with the graph components (entities and relations) using a learnable
component-wise schedule. We learn a component-wise schedule by linearly map-
ping between per-component denoising loss and noise schedule. This ensures
entities are generated faithfully and keeps graph edits localized in the text. Through
extensive experiments on three benchmark datasets, DLM4G outperforms state-
of-the-art autoregressive baselines that are 12–127× larger, achieving 10–15%
relative gains on standard surface-level metrics (BLEU, ChrF++, METEOR) and
embedding-based metrics (BERTScore-F1, MAUVE). More importantly, DLM4G
improves factual grounding (FGT, ↑) by +∆FGT 4.7 % and edit sensitivity (ESR, ↑)
by +∆ESR 7.9 % on average compared to comparably sized autoregressive baselines.
Finally, we evaluate DLM4G on molecule captioning, where molecular graphs are
verbalized into textual descriptions, demonstrating its applicability to biomedical
G2S tasks. Our code is available here: CODE

1 INTRODUCTION

Graphs are a ubiquitous data structure, fundamental to domains like social networks, biological
systems, and recommendation platforms (Wang et al., 2021; Fan et al., 2019; Wang et al., 2024b).
However, their complex topology makes verbalization difficult. Many downstream tasks such as
graph reasoning (Skianis et al., 2024), graph captioning (Hsieh et al., 2025; Li et al., 2024a), graph
translation (Xu et al., 2022) require readable, faithful text. To address this challenge, the task of
Graph-to-Sequence (G2S) has emerged, which focuses on generating coherent text from graph inputs
(Fatemi et al., 2024). Real-world G2S applications include (i) molecular & protein captioning –
translating chemical graphs (proteins & molecules) into concise natural-language summaries (Kim
et al., 2025) and (ii) Knowledge Graph Question Answering (KGQA)–verbalizing KG subgraphs to
support multi-hop reasoning (Wu et al., 2023).

Earlier G2S methods encoded structure explicitly with graph-based encoders (Song et al., 2018;
Ribeiro et al., 2019; 2020; Schmitt et al., 2021). Recent work shows that autoregressive pre-trained
language models (PLMs) achieve strong performance without graph-specific inductive biases on
surface-overlap metrics (BLEU, chrF++, METEOR) (Ribeiro et al., 2021). These scores can remain
high despite factual omissions and hallucinations. Therefore, these models lack (i) factual grounding
(all entities/relations must be realized) and (ii) edit sensitivity (small local graph edits must be
reflected predictably). A key factor for these weaknesses in PLMs is left-to-right decoding. This
approach leads to early token commitments that reduce sensitivity to local edits, often causing entities
or relations to be omitted or misrepresented (Li et al., 2022; Gong et al., 2023). This points to two
needs: (1) a modeling choice that preserves global coherence and local faithfulness, ensuring while
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reflecting small edits and realizing all entities/relations, and (2) an evaluation criterion that directly
measures grounding and edit sensitivity.

To address these, we propose a two-pronged approach: First: regarding the modeling choice, we
investigate non-autoregressive (NAR) diffusion-based language models for G2S. Here, we navigate a
key design trade-off: while graph-specific encoders (e.g., GNNs) offer strict structural guarantees
like permutation equivariance ("hard" inductive bias), they often lack the semantic richness of PLMs.
We therefore use a PLM backbone for DLM4G but re-introduce structure via a "soft" inductive
bias— graph-aware noising schedule. This mechanism is critical because, while diffusion models
generally support self-correction via iterative denoising (Sahoo et al., 2024; Chuang et al., 2024;
Yuan et al., 2024; Gong et al., 2025; Venkatraman et al., 2025), standard data-agnostic schedules
corrupt factual and syntactic elements equally (Ho et al., 2020). This uniform corruption undermines
factual grounding. DLM4G overcomes this by using the graph-aware schedule to strategically preserve
factual information during the noising process. Second, to address the evaluation gap, we introduce
simple, task-grounded metrics that move beyond surface-level overlap to directly measure factual
grounding and edit sensitivity.

To sum up, our overall contributions: (1) A novel, graph-aware noising schedule to improve factual
grounding; (2) State-of-the-art performance on three diverse datasets across a wide range of metrics;
(3) Two new task-grounded metrics to evaluate factual grounding and edit sensitivity; and finally (4)
An extension of our framework to the real-world scientific task of molecule captioning.

2 BACKGROUND AND PRELIMINARIES

This section first reviews related work in graph-to-sequence generation. Then, to ground our con-
tributions, we present the preliminary concepts of standard denoising diffusion models. We briefly
review relevant work, deferring full technical details to Appendix A.2.

2.1 RELATED WORK

Graph-to-Sequence Learning: G2S has progressed from (i) template-based systems Wiseman et al.
(2018); Kasner & Dusek (2022); Vejvar & Fujimoto (2023), to (ii) neural encoder–decoders with
learned graph embeddings Wiseman et al. (2017); Beck et al. (2018); Iso et al. (2019), and (iii)
fine-tuned transformers achieving state-of-the-art fluency and factuality Vaswani et al. (2023); Ribeiro
et al. (2021). This evolution frames the current G2S landscape.

PLMs for Graphs: Leveraging LLMs for graph verbalisation involves following challenges: (i)
alignment of graph elements to words Zhu et al. (2025), and (ii) multi-level semantics across nodes,
edges, and subgraphs Wang et al. (2024a). This taxonomy spans Graph-to-Sequence (G2S) to Graph-
to-Token (G2T). KG-to-text models use positional encodings, prompts, and multi-granularity attention
Zhu et al. (2025), reducing omissions but still constrained by left-to-right decoding. Diffusion LMs,
with iterative denoising, could overcome these limitations.
Prior PLM-based G2S work treats the input KG as a serialized sequence of relational triples, using
special markers [HEAD], [REL], [TAIL], and [SEP] (see Section 4.1). This design allows us to
plug into standard encoder–decoder Transformers while giving up strict permutation invariance, a
trade-off we revisit in Limitations 5.

Diffusion Models for Conditional Generation: Conditional diffusion guides denoising with an
input sequence encoding, extending conditional-VAE ideas Zhao et al. (2017). Early text models
(Diffusion-LM Li et al. (2022), Analog Bits Chen et al. (2023)) imposed weak conditioning via
classifiers or plug-in controls, while DIFFUSEQ Gong et al. (2023) enabled true sequence-to-sequence
conditioning in continuous space. DLM4G builds on this foundation and combines classifier-free
diffusion with explicit KG conditioning as the control variable for more coherent KG verbalisation.

Molecule Captioning: Prior AR/NAR captioning approaches for molecules inherit these limitations
Edwards et al. (2022); Liu et al. (2024a). Table 8 compares these paradigms with DLM4G.

2.2 PRELIMINARIES: DENOISING DIFFUSION MODELS

Denoising diffusion probabilistic models (DDPMs) are generative models that learn a data distribution,
often conditioned on some context c, p(z0 | c). They consist of a fixed forward process and a learned
reverse process.
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Forward process: A standard DDPM forward process corrupts clean data z0 through a Markov
chain with noise-schedule coefficients {αt}Tt=1 controlling signal decay. This yields the standard
closed-form for sampling a noised state zt at any timestep t:

zt =
√
ᾱt z0 +

√
1− ᾱt ϵ with ᾱt =

t∏
s=1

αs and ϵ ∼ N (0, I). (1)

Standard diffusion models typically use a fixed, data-agnostic (isotropic) noise schedule.

Reverse process with Conditional Denoising: The reverse process learns to recover the clean data
z0 from pure noise zT ∼ N (0, I). It is defined as a Markov chain pθ(z0:T ) where each reverse
transition pθ(zt−1 | zt, c) is a Gaussian whose mean µθ and variance Σθ are parameterized by a
model Mθ(zt, t, c). The model is trained to predict the mean of the true posterior q(zt−1 | zt, z0).
The model parameters θ are optimized by maximizing the variational lower bound (VLB) on the
conditional log-likelihood:

Lvlb = Eq

[
− log pθ(z0|z1, c)︸ ︷︷ ︸

Reconstruction (L0)

+

T∑
t=2

DKL

(
q(zt−1|zt, z0)||pθ(zt−1|zt, c)

)︸ ︷︷ ︸
Denoising Matching (Lt−1)

+DKL

(
q(zT |z0)||p(zT )

)︸ ︷︷ ︸
Prior Matching (LT )

]
(2)

While tractable, direct optimization of the full VLB is often unstable.

3 THE DLM4G METHODOLOGY

3.1 PROBLEM STATEMENT

Let G = (V,E,X,R) be the input graph, where V = {v1, . . . , vn} is the set of nodes, X =
{x1, . . . , xn}, with each xi ∈ Rd, representing the associated node features, and E ⊆ V ×R×V
denotes a set of directed edges representing relations rij ∈ R. In many settings, such as KGs, each
relation type rij ∈ R is associated with a feature vector fr ∈ Rk, capturing its semantic properties.
This structure can be expressed as a sequence of relational triplets G̃ = {(hi, rij , tj)}ni,j=1

i̸=j
, where

hi, tj ∈ V are head and tail entities, respectively, and rij ∈ R is the relation type. The goal is to
learn a model that maps such structured graph inputs to meaningful output sequences. Formally, a
parameterized DLM4G model Mθ is trained to predict the corresponding output sequence:

Mθ : G̃ → S, (3)

where S = {si ∈ W | 1 ≤ i ≤ N} is a sequence of fixed length N, and W denotes the target
vocabulary. Formally, we aim to learn this conditional distribution p(S | G̃; θ), that approximates the
underlying data distribution. To achieve this, we introduce DLM4G, a novel diffusion framework.

3.2 THE DLM4G FRAMEWORK OVERVIEW

We introduce DLM4G (framework is shown in Figure 1), a denoising diffusion framework designed to
generate factually-grounded text from KGs. We adapt the standard conditional DDPM framework
(reviewed in Section 2.2) to the graph-to-sequence task, where we learn the distribution p(S |
G̃). To apply the diffusion process to discrete text, we first define our "clean data" z0 as the
continuous representation of the sequence S, obtained via a learnable embedding layer: z0 =
gΦ(S) ∈ RN×d. The "conditioning context" c (from the preliminaries) is our input graph, G̃.
Following the PLM-based G2S convention introduced in Section 2, we realize G̃ as a token sequence
G̃ = ⟨[HEAD] hi [REL] rij [TAIL] tj⟩ with [SEP] delimiters, which is fed to Mθ as the
conditioning signal (see Section 4.1). Our reverse-process is therefore Mθ(zt, t, G̃).
The core of our approach differs from standard diffusion in two key aspects:

1. A Graph-Aware Noising Schedule: Instead of the isotropic schedule (Eq. 1), our forward
process uses a graph-aware adaptive noising schedule. This is detailed in Section 3.3.

2. A Simplified Training Objective: Instead of the full VLB (Eq. 2), we use a simplified
objective (detailed in Sec. 3.4) that trains Mθ to directly predict z0.
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3.3 GRAPH AWARE NOISING SCHEDULE

Motivation & Rationale: Standard diffusion models rely on fixed, data-agnostic noising schedules
that apply noise uniformly across all tokens (Ho et al., 2020; Nichol & Dhariwal, 2021). This is
suboptimal for graph-to-text generation, as it corrupts critical factual tokens (entities, relations) and
simple syntactic tokens equally (Yuan et al., 2024). Since recovering factual content from noisy
states is relatively difficult, applying noise uniformly weakens factual grounding. To address this,
we introduce a graph-aware noising schedule. The core idea is to use the model’s per-timestep
reconstruction error for a graph-aligned token, ℓ it , as a proxy for its difficulty with factual consistency.
By building a mapping from this empirical difficulty to the noise schedule (details in Stage 2), we
re-parameterize the denoising path as a function of prediction error. This creates a more stable
trajectory for factual content, thus improving factual grounding and sensitivity to graph edits.

Graph–sequence alignment (Training): To enable our graph-aware noising schedule, we first
perform a one-time offline alignment to map tokens in the target sequence (S) to their corresponding
entities and relations in the graph (G̃). The pipeline operates in three stages: (i) generating all possible
names and aliases for each entity; (ii) detecting mentions of these names in the text using a NER
model (Zaratiana et al., 2024); and (iii) linking these mentions to the correct graph entity to resolve
ambiguities (Xin et al., 2024; Liu et al., 2024b; Ding et al., 2024). The result is an alignment map
A connecting token indices in S to graph elements, which is used exclusively during training. A
detailed analysis of the alignment module is in Appendix A.4.

Noising Schedule:We apply graph-aware noising for the graph–text aligned set A, while keeping
unaligned tokens on the baseline sqrt schedule. The procedure has two stages, summarized in Alg 1.

Stage 1: Estimating token-wise difficulty. For
each aligned token i ∈ A and diffusion step
t = 1, . . . , T , we define the denoising difficulty
as:

ℓ it = Ezt∼q(zt|z0)

∥∥Mθ(zt, t, G̃)(i) − z
(i)
0

∥∥2 (4)

Averaging over the training set yields a dif-
ficulty profile (ℓ i1, . . . , ℓ

i
T ) for each i ∈ A.

Empirically, ℓ it tends to increase with t (later
steps are noisier), but the estimated profile
is not strictly monotone. We also compute
ℓ imin = mint ℓ

i
t and ℓ imax = maxt ℓ

i
t to define

the difficulty range for token i. In Stage 2 these
profiles and their ranges are used to construct a
token-wise cumulative schedule, and to obtain
a monotonic difficulty profile for each token i.
Stage 2: Token-wise schedule. Given (ℓ it )

T
t=1

and the baseline cumulative schedule (ᾱt)
T
t=1,

we construct an adaptive schedule (ᾱ i
t,new)

T
t=1

for each i ∈ A. Since this schedule con-
trols noise applied at each step, we want to
reallocate noise according to denoising diffi-
culty. Hence, we define a piecewise-linear map
Ψi : [ℓ

i
min, ℓ

i
max] → (0, 1) that interpolates the

baseline schedule as a function of loss:

Algorithm 1 Graph-Aware Adaptive Noising

Require: Baseline cumulative schedule {ᾱt}Tt=1,
alignment set A, update interval K

Ensure: Schedules {ᾱ i
t,new}Tt=1 for i ∈ A

1: if train_step % K == 0 then
2: for i ∈ A do
3: Estimate {ℓ it }Tt=1 via Eq. 4; compute

{ℓ imin, ℓ
i
max}.

4: Define piecewise-linear map Ψi as in
Eq. (5).

5: Construct difficulty ramp {ℓ i,newt }Tt=1 via
Eq. (6).

6: Compute new schedule α̃ i
t = Ψi(ℓ

i,new
t ).

7: Clamp α̃ i
t to (0, 1), apply a non-increasing

isotonic projection to obtain {ᾱ i
t,new}Tt=1.

8: end for
9: end if

10: For any i /∈ A, set ᾱ i
t,new = ᾱt.

11: Compute per-step coefficients αt,i =
ᾱ i
t,new/ᾱ

i
t−1,new, βt,i = 1 − αt,i, with

ᾱ i
0,new = 1.

12: return {ᾱ i
t,new} for all tokens i and steps t.

Ψi(x) = ᾱt−1 +
ᾱt − ᾱt−1

ℓ it − ℓ it−1

(
x− ℓ it−1

)
, x ∈ [ℓ it−1, ℓ

i
t ), t = 2, . . . , T, (5)

with Ψi(ℓ
i
1) = ᾱ1 and Ψi(ℓ

i
T ) = ᾱT . In case ℓ it = ℓ it−1, we add a tiny jitter ε to avoid division

by zero. Empirically, (ℓ it )
T
t=1 is not strictly monotone in t, so instead of using its raw values we

introduce a new linear ramp in difficulty space:

ℓ i,newt = ℓ imin +
t− 1

T − 1

(
ℓ imax − ℓ imin

)
, t = 1, . . . , T. (6)
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Figure 1: DLM4G framework: (A) Graph-Sequence alignment set {A}, obtains the aligned tokens;
(B) The model is trained with a graph-aware noising schedule (C) Trained DLM4G samples output
sequence conditioned on graph.

Substituting this ℓ i,newt into Ψi(x) we get a new cumulative schedule α̃ i
t = Ψi

(
ℓ i,newt

)
for t =

1, . . . , T . We clamp α̃ i
t to (0, 1) and apply a non-increasing isotonic projection (refer Appendix A.5)

over t to obtain the final schedule 0 < ᾱ i
t+1,new ≤ ᾱ i

t,new < 1 for all t. We get the forward
coefficients for aligned tokens as αt,i = ᾱ i

t,new/ᾱ
i
t−1,new, with ᾱ i

0,new = 1. For unaligned tokens
i /∈ A, we keep the baseline schedule: ᾱ i

t,new = ᾱt, hence αt,i = αt.

3.4 MODEL TRAINING AND INFERENCE

Training: Our training objective is derived from the Variational Lower Bound (VLB) (Eq. 2)
presented in the preliminaries. While the full VLB optimization can be unstable (Ho et al., 2020),
a common simplification is to train the model Mθ to predict the added noise ϵ. However, our
framework adopts an alternative z0-prediction reparameterization, which trains the model to directly
predict the clean data z0 at every timestep t. A critical component of this objective is the rounding
term L0 = − log p̃Φ(S | z0), which handles the final step of converting the continuous latent variable
z0 back into discrete tokens S. We define this as a trainable rounding distribution: p̃Φ(S | z0) =∏N

i=1 p̃Φ(si | z0,i), where each token si is sampled from a softmax distribution over the vocabulary,
using logits derived from the corresponding output embedding z0,i. By combining this rounding term
(for t = 0) with the denoising matching terms (for t > 1) using our z0-prediction reparameterization,
we arrive at our final, composite objective. (The full derivation from the VLB is in App A.1).

Le2e-simple(S) = Eq

[ T∑
t=2

∥Mθ(zt, t, G̃)− z0∥2︸ ︷︷ ︸
Denoising

+ ∥ gΦ(S)−Mθ(z1, 1, G̃)∥2︸ ︷︷ ︸
Consistency

− log p̃Φ(S | z0)︸ ︷︷ ︸
Rounding

]
(7)

This objective directly optimizes the most critical parts of the process: the denoising accuracy
across all steps (Denoising), the consistency of the first denoising step with the true data embedding
(Consistency), and the quality of the final conversion to discrete tokens (Rounding).
Inference-time schedule. At test time the alignment
set A is unavailable, so we use cross-attention as a
proxy. We blend the baseline cumulative schedule
ᾱbase
t with a fixed “anchor” schedule ᾱanchor

t , obtained
by averaging the aligned-token schedules learned
during training. For each decoder token i at denois-
ing step t, we compute a scalar weight wt

i ∈ [0, 1].
This weight is calculated by summing the normal-
ized cross-attention weights, wt

i,k, from the final
decoder layer’s cross-attention module. The sum
is taken over the encoder positions corresponding
to the serialized graph G̃: wt

i =
∑

k∈G̃ wt
i,k, where

wt
i,k denotes the normalized cross-attention weight

from decoder token i to encoder token k.

Figure 2: Inference-time schedule. Cross-
attention (CA) from decoder token i to
graph tokens in G̃ is aggregated into wt

i ,
which blends the baseline and anchor
schedules for each token i.

The resulting per-token cumulative schedule is: α̃ i
t = (1− wt

i) ᾱ
base
t + wt

i ᾱ
anchor
t . Tokens that attend

strongly to graph tokens in G̃ follow the “anchor” schedule, while purely syntactic tokens follow the
baseline schedule, serving as a lightweight proxy for the explicit alignment used during training.

5
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Model Architecture: DLM4G is an encoder–decoder Transformer that conditions on the serialized KG
input (see graph representation§4.1). We evaluate two variants: a 6-encoder/6-decoder configuration
(≈ 50M parameters; DLM4G-1.o) and a 6-encoder/9-decoder configuration (≈ 63M; DLM4G-2.o),
both using GeLU activations Vaswani et al. (2023); Hendrycks & Gimpel (2023). Inputs are tokenized
with the bert-base-uncased vocabulary Devlin et al. (2019); the control tokens [HEAD],
[REL], [TAIL], and [SEP] are introduced as learned special tokens with dedicated embeddings.
Other components follow the standard Transformer encoder–decoder design.

Graph Representation: We represent the set of relational triples G̃, as a single linearized sequence.
This is achieved by serializing each triplet (hi, rij , tj) ∈ G̃ into a string format using special tokens,
e.g: ⟨[HEAD] hi [REL] rij [TAIL] tj⟩, and concatenating them with a separator token
[SEP]. For all KG benchmarks (WikiOFGraph, GenWiki, TekGEN), we simply preserve the triple
order provided in the released datasets and do not reorder or subsample triples; this dataset-defined
order serves as our consistent traversal for linearization. We adopt linearization for the following
reasons: (i) it plugs into off-the-shelf backbones and decoding stacks, making ablations across
baselines directly comparable; (ii) Transformer self-attention can model long-range interactions
across the flattened triples, which is important for faithful realization; and (iii) prior work shows
strong performance for linearized KG→text with PLMs, even without graph-specific inductive
bias (Ribeiro et al., 2021; Wang et al., 2024a). Example (graph→sequence):
Serialized KG (G̃): ⟨[HEAD] USA [REL] hosted [TAIL] 1994_FIFA_World_Cup⟩
[SEP] ⟨[HEAD] USA [REL] capital [TAIL] Washington_D.C.⟩
[SEP] ⟨[HEAD] 1994_FIFA_World_Cup [REL] top_scorer [TAIL]
Hristo_Stoichkov⟩.
Corresponding sequence (S): “The United States hosted the 1994 FIFA World Cup; its capital is
Washington, D.C., and the tournament’s top scorer was Hristo Stoichkov”.

Datasets: We use three datasets for our experiments: (1) WikiOFGraph (Kim et al., 2024), a
5.85M-sample dataset ontology-free dataset for graph-text task; (2) GenWiki (Jin et al., 2020), an
unsupervised dataset of 680K Wikipedia text and DBpedia graph pairs, with a focus on entity overlap
and a 1K human-annotated test set; and (3) TekGEN (Agarwal et al., 2021), a dataset of 6.3M
sentences generated by verbalizing Wikidata triples. More details are available in Appendix A.3.

Baselines: We benchmark DLM4G, against four categories of baselines:
(i) Pretrained-LM baselines, comprising finetuned GPT-2 (Small/Base) (Mager et al., 2020), and T5
(Small/Large) (Ribeiro et al., 2021) on all datasets;
(ii) Zero-shot evaluation, deploying GPT-o4-mini (8 B), LLaMa-3-8B (8 B), Qwen 2.5 (7 B) and
DeepSeek (7 B) to assess off-the-shelf generalization without any task-specific finetuning and
(iii) SOTA G2S methods, including ReGen on TekGen (Dognin et al., 2021) and the Ontology-Free
(Kim et al., 2024), Rule-Based (Schmitt et al., 2020), and Direct-Transfer, Noisy-Supervised (Koncel-
Kedziorski et al., 2019) baselines on WikiofGraph and GenWiki (excluding CycleGTBase due to
non-standard splits in prior work (Jin et al., 2020; Guo et al., 2020)).
(iv) Diffusion baselines, including Diffuseq Gong et al. (2023), FlowSeq Hu et al. (2024) and
SeqDiffuSeq Yuan et al. (2024) adapted specifically to the G2S task.

Implementation Details and Evaluation Metrics: We train DLM4G with diffusion process of
T = 2000 timesteps, using our graph-aware noising schedule, and inputs are tokenized using the
bert-base-uncased vocabulary (Devlin et al., 2019). Training uses a peak learning rate of
10−4, 10,000 warm-up steps, and a linear decay schedule, with the adaptive noising schedule updated
every 20,000 steps. Full implementation details are provided in Appendix A.6 A.8. For evaluation,
we report BLEU (B) (Papineni et al., 2002); chrF++ (CrF++) (Popović, 2015); and METEOR
(M) (Banerjee & Lavie, 2005). In addition, we include MAUVE (MVE) (Pillutla et al., 2023) for
distributional similarity and BERTScore-F1 (B-F1) (Zhang et al., 2020) as an embedding-based
semantic similarity metric.
Beyond these, we introduce two task-grounded metrics: Factual Grounding Metric (FGT), which
emphasizes recall by checking that all entities present in the input graph are faithfully realized in the
text, and Edit Sensitivity Rate (ESR), which emphasizes precision by testing that small, local edits to
the graph propagate consistently-i.e. the output highlights only the modifications.
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4.2 EXPERIMENTAL RESULTS

We evaluate our design using four different methods: (1) full fine-tuning, (2) zero-shot prompting,
(3) state-of-the-art (SOTA) benchmarking and (4) Diffusion baselines. Throughout these tests, we
carefully balance model size (#Parameters) with the amount of data (graph-to-sequence pairs).
For full fine-tuning, we train large models on a dataset of 100,000 graph-to-sequence pairs and test
them on a separate set of 1,000 graphs. In the zero-shot evaluation, we use state-of-the-art LLMs
without providing any specific training examples. The results across different performance metrics
are shown in Table 1. We compare these outcomes against our own pre-trained DLM4G family of
small models (approx. 50-63M parameters). These models, trained on an 80/10/10 split, are evaluated
on the same test set. A separate SOTA benchmarking table (see Section 4.2) compares DLM4G’s
performance against other task-specific models.

Table 1: Performance of DLM4G compared with (i) finetuning and (ii) zero-shot evaluation paradigms.

Model #P WikiOFGraph GenWiki TekGEN

B CrF++ M B CrF++ M B CrF++ M

# Pretrain
DLM4G-1.o 50M 0.619 0.823 0.688 0.401 0.663 0.527 0.247 0.493 0.375
DLM4G-2.o 63M 0.654 0.844 0.791 0.469 0.748 0.574 0.253 0.522 0.414
%Gain x1.3↓ +5.7% +2.5% +14.9% +16.9% +12.8% +8.9% +2.4% +5.9% +10.4%
# Finetune
GPT-2 (S) 124M 0.166 0.428 0.487 0.280 0.465 0.435 0.226 0.358 0.208
GPT-2 (B) 355M 0.285 0.572 0.490 0.312 0.470 0.425 0.228 0.366 0.211
T5 (S) 60M 0.385 0.688 0.471 0.227 0.495 0.447 0.189 0.352 0.203
T5 (L) 770M 0.658 0.807 0.516 0.361 0.567 0.338 0.199 0.370 0.211
DLM4G-2.o 63M 0.654 0.844 0.791 0.469 0.748 0.574 0.253 0.522 0.414
%Gain x12↑ 0.0% +4.5% +53.3% +29.9% +31.9% +28.4% +10.9% +41.1% +96.2%

# Zero-shot
LLaMa-3 8B 0.622 0.801 0.781 0.461 0.709 0.510 0.176 0.341 0.251
Qwen2.5 7B 0.622 0.681 0.743 0.461 0.697 0.501 0.182 0.312 0.234
DeepSeek 7B 0.633 0.809 0.752 0.391 0.688 0.533 0.121 0.345 0.256
GPT-o4-mini 8B 0.648 0.847 0.783 0.464 0.734 0.471 0.121 0.327 0.277
DLM4G-2.o 63M 0.654 0.844 0.791 0.469 0.748 0.574 0.253 0.522 0.414
%Gain x127↑ 0.0% 0.0% +1.0% +1.1% +2.1% +7.7% +39.0% +51.3% +49.5%

Model Development and Scaling: We started by pre-training the DLM4G family. The DLM4G-2.o
(63 M #P) model was the best performer across all three datasets. Increasing the model size by a
modest 1.3x (from 50M to 63M parameters) resulted in a significant performance boost of 2.4% to
16.9%. This suggests that further scaling DLM4G is a promising direction.
Performance Against Large-Scale Models: Using our best model, DLM4G-2.o, we then bench-
marked it against competitors that are 10 to over 100 times larger. In full fine-tuning tests against
baselines like the 770M parameter T5-Large, our model performed better on nearly every metric,
posting gains up to 96.2%. Furthermore, in zero-shot comparisons against models approximately
127x larger (including LLaMa-3 and GPT-o4-mini), DLM4G-2.o remained highly competitive and
notably outperformed all of them on the TeKGen dataset. The results are in Table 1
Semantic Evaluation: To move beyond traditional surface-level metrics and gain a deeper semantic
understanding, we also performed experiments using embedding-based metrics. For this analysis, we
compare our model against the best-performing autoregressive baselines using the MAUVE score
and BERTScore F1. The results of this comparison are detailed in Table 2.

Table 2: DLM4G across embedding based metrics.

Dataset Metric T5 (L) GPT-o4-mini DLM4G-2.o %Gain
# Finetune # Zero-shot # Pretrain

WikiOFGraph MVE 0.980 0.983 0.981 +0.0%
B-F1 0.926 0.960 0.963 +0.0%

GenWiki MVE 0.852 0.811 0.892 +4.7%
B-F1 0.812 0.865 0.899 +3.9%

TekGEN MVE 0.803 0.751 0.820 +2.1%
B-F1 0.789 0.652 0.847 +7.3%

Analysis of Results: Table 2 shows that
DLM4G-2.o achieves a SoTA performance
on the GenWiki and TekGEN datasets. The
most significant improvements are on the
TekGEN dataset, where our model shows
a +7.3% gain in BERTScore F1 over the
next best model. Similarly, on GenWiki,
DLM4G-2.o improves the SOTA by +4.7%
on the MAUVE score. On the WikiOF-
Graph, our model achieves the highest
BERTScore F1.
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These results demonstrate that DLM4G-2.o, as a compact pre-trained model, generates semantically
rich output that moves beyond simple n-gram matching metrics.
Primary Finding: A key takeaway from these results is that a graph-aware pre-training strategy can
enable compact models to match, or even surpass, the performance of much larger task-specific and
general-purpose LLMs. Finally, to complete our evaluation, we benchmark DLM4G against other
state-of-the-art (SOTA) models designed specifically for this task.
SoTA Benchmarking: The results in the Table 3 confirm that DLM4G-2.o consistently outperforms
specialized baselines. On the TekGEN dataset, our model establishes a new SOTA on all five metrics,
with performance gains reaching as high as +96.2% on METEOR. The results are similarly strong
on GenWiki, where DLM4G-2.o sets a new SOTA on four of the five metrics and nearly matching
the baseline’s performance on the final one. Its robust performance across both surface-level and
embedding-based metrics highlights the model’s ability to generate text that is both lexically accurate
and semantically coherent.
Diffusion Baselines: Finally, we evaluate DLM4G against other diffusion-based text generation
models (Table 4). Despite being nearly 1.5× smaller than the strongest baseline (91M vs. 63M),
DLM4G-2.o demonstrates superior efficiency, consistently outperforming all baselines across every
dataset and metric.

Table 3: Performance of DLM4G compared with baselines on (a) GenWiki and (b) TekGEN.

GenWiki

Baselines B CrF++ M B-F1 MVE

Rule-Based 0.219 0.360 0.397 0.679 0.822
Direct-Transfer 0.234 0.483 0.332 0.808 0.801
Noisy-Sup. 0.384 0.623 0.414 0.878 0.901
DLM4G-1.o 0.401 0.663 0.527 0.857 0.841
DLM4G-2.o 0.469 0.748 0.574 0.899 0.892
%Gain +22.1% +20.0% +38.6% +2.4% 0.0%

TekGEN

Baselines B CrF++ M B-F1 MVE

Rule-based 0.189 0.309 0.301 0.509 0.672
ReGen-SCST 0.219 0.385 0.223 0.698 0.719
ReGen-CE 0.199 0.372 0.214 0.612 0.701
DLM4G-1.o 0.247 0.493 0.375 0.795 0.781
DLM4G-2.o 0.253 0.522 0.414 0.847 0.820
%Gain +10.9% +41.1% +96.2% +21.3% +14.0%

Table 4: Performance of DLM4G compared with diffusion baselines.

Model #P WikiOFGraph GenWiki TekGEN

B M B-F1 MVE B M B-F1 MVE B M B-F1 MVE

# Diffusion
FlowSeq 91M 0.488 0.508 0.901 0.830 0.133 0.387 0.855 0.672 0.091 0.223 0.673 0.409
DiffuSeq 91M 0.628 0.619 0.923 0.942 0.432 0.523 0.861 0.717 0.154 0.198 0.797 0.725
SeqDiffuSeq 50M 0.616 0.649 0.923 0.947 0.432 0.503 0.857 0.759 0.154 0.396 0.835 0.791
# Pretrain
DLM4G-1.o 50M 0.619 0.688 0.914 0.957 0.401 0.527 0.837 0.822 0.247 0.375 0.823 0.811
DLM4G-2.o 63M 0.654 0.791 0.963 0.981 0.469 0.574 0.899 0.892 0.253 0.414 0.847 0.820
%Gain x1.5↑ +4.1% +14.9% +4.3% +2.5% +8.5% +8.9% +4.4% +8.5% +2.4% +10.4% +2.9% +1.1%

4.3 FACTUAL GROUNDING AND EDIT SENSITIVITY

While the results on established metrics in Section 4.2 demonstrate our model’s fluency, these
scores are often insufficient for capturing the critical demands of G2S tasks: factual grounding to
the source graph and sensitivity to its edits. To address this evaluation gap, we now introduce two
novel, task-grounded metrics. To ensure a fair and direct comparison against the baseline results, we
conduct this analysis on the WikiOFGraph dataset.
Setup and Notations: For the input KG (G̃), we extract distinct entities as UG̃ = {hi, tj |
(hi, rij , tj) ∈ G̃}. For the corresponding generated sequence S, we represent the extracted en-
tities as US = {u | u ∈ S }. Additionally, we maintain a hallucination set for the output: entities
in S that are not members of UG̃ constitute HS (with sequence length N = |S|). For the entity and
relation extraction, we use the alignment module discussed previously in section 3.3.

Factual Grounding Metric (FGT, ↑): FGT measures how precisely the output realizes graph entities,
with an optional penalty for out-of-graph mentions. We define Factual Grounding Metric (FGT) as:

FGT(G̃,S) =
2 |UG̃ ∩ US|
|UG̃ |+ |US|︸ ︷︷ ︸

F1

(
1− λ

|HS|
N

)
. (8)

We report results for λ ∈ {0, 0.5, 1} and use λ = 0.5 by default, to balance the penalty term.
Edit Sensitivity Rate (ESR, ↑): ESR is a precision focused metric. It evaluates whether the edits
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in graph are realized in its generated sequence. Consider an original pair (G̃,S) and an edited pair
(G̃′,S′). We build UG̃ ,UG̃′ ,US,US′ as we do in FGT. The graph and text edits (e.g., additions or
deletions) are defined as: ∆G =

(
UG̃′ \ UG̃

)
∪

(
UG̃ \ UG̃′

)
and ∆T =

(
US′ \ US

)
∪

(
US \ US′

)
.

We define Edit Sensitivity Rate (ESR) as:

ESR(G̃,S) =
|∆G ∩∆T |

|∆T |
, (9)

If the text does not change (|∆T | = 0), set ESR = 1 when the graph also does not change (|∆G| = 0)
and ESR = 0 when the graph does change (|∆G| > 0).

To evaluate FGT and ESR, we create edited graphs by randomly substituting a single entity with a
plausible alternative from the vocabulary. We then measure whether the output text accurately reflects
this specific modification. We compare DLM4G with comparably-size G2S models finetuned on the
same task, and report FGT@{0, 0.5, 1} and ESR.

Table 5: Performance of DLM4G on Factual Grounding (FGT) and Edit Sensitivity (ESR).

Model Recall F1 |HS| FGT@λ=0 FGT@λ=0.5 FGT@λ=1.0 ESR

# PLM baselines
GPT-2 (B) 0.60 0.65 2.95 0.65 0.59 0.53 0.46
T5 (S) 0.58 0.62 3.10 0.62 0.56 0.50 0.42
T5 (L) 0.81 0.83 1.54 0.83 0.79 0.75 0.63
DLM4G-1.0 0.80 0.79 2.03 0.79 0.74 0.70 0.60
DLM4G-2.0 0.82 0.86 1.08 0.86 0.83 0.80 0.68
% Gain (vs. T5-L) +1.23% +3.61% 29.8% +3.61% +5.16% +5.33% +7.9%

Primary Findings: Table 5, micro-averaged across 100 edited examples, highlights two key trends.
First, among the baselines, T5-Large is the strongest, achieving the lowest hallucination rate (1.54
entities/sequence) and the best overall scores (FGT@0 of 0.83, FGT@0.5 of 0.79 and ESR of 0.63).
Second, DLM4G-2.o consistently outperforms all baselines, improving upon T5-Large’s recall (0.82
vs. 0.81) while reducing hallucinations by nearly 30% to a new low of 1.08 entities per sequence.
Consequently, it achieves significant gains on our proposed metrics, improving the FGT score by
+4.7% and the ESR score by +7.9%.

4.4 ABLATION

In this section we perform an ablation study to verify the impact of our graph-aware noise scheduling
strategy and the choice of mapping function.

Graph- aware schedule: Table 6 compares the stan-
dard sqrt schedule against our proposed Graph-aware
schedule. First, we observe that applying the Graph-
aware schedule to all tokens yields an improvement
(+0.03 BLEU). When we apply the Graph-aware sched-
ule selectively to the graph-aligned tokens (A) while
keeping the standard schedule for others, performance
improves significantly to 0.65 BLEU. This suggests
that the benefit comes not just from the schedule itself,
but also from differentiating the noise profile of factual
entities with syntactic text.

Table 6: Ablation of DLM4G noise sched-
ules and mapping function Ψi(x).

DLM4G Tokens Ψi(x) B

sqrt (baseline) All linear 0.60
Graph-aware All linear 0.63

Graph-aware A linear 0.65
Graph-aware A poly 0.61
Graph-aware A cosine 0.62

Mapping Function: We select the linear mapping primarily for its simplicity and ease of implemen-
tation. The impact of this design is visualized in Fig 3. As shown in Figure 3L, our adaptive schedule
assigns a token-level noise schedule ᾱi

t compared to the global sqrt baseline. As seen by contrasting
the loss profiles of syntactic tokens (Fig 3M) and factual tokens (Fig 3R), factual entities exhibit
higher reconstruction difficulty but, under our graph-aware schedule, their loss evolves in a smooth,
approximately linear over time. This stabilized, monotone difficulty profile keeps factual tokens
informative throughout the trajectory and allows the denoiser to recover them more faithfully. While
we also explored exponential, cosine, and polynomial mappings (Table 6), we found they offered no
performance benefit. Detailed comparisons of these alternatives are in App. A.7.
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Figure 3: (Left) Noise schedule corresponding to alignment set i ∈ A (position 10, 25,.., 60)
compared against sqrt schedule for i /∈ A (position 3, 29,.., 63); (Mid) The loss profile across time
steps (t = 0 → T ) for the syntactic tokens (Right) The loss profile across time steps (t = 0 → T ) for
the factual tokens.

4.5 DLM4G FOR MOLECULE CAPTIONING

DLM4G has demonstrated strong performance in fluency (Section 4.2) and factual grounding (Sec-
tion 4.3). We now test its generalization to a complex, real-world application by applying it to
molecule captioning—a challenging Graph-to-Sequence task from the scientific domain. This bench-
mark evaluates whether our model’s efficient, graph-aware design can outperform larger, specialized
models in a completely different field, demonstrating its practical utility

Dataset and Graph representation: We use a subset of the M3-20M dataset Guo et al. (2025)
containing 360,000 SMILES-description pairs, which we split 80/10/10 for training, validation, and
testing. To process this data, we convert each SMILES string into a knowledge graph G̃, where
the molecule’s atoms are treated as entities (nodes) and the chemical bonds between them are the
relations (edges). This allows our model to directly interpret the molecule’s topology.
Results: First we analyze the scaling effect within the DLM4G variants. As shown in Fig 7, the larger
DLM4G-2.o (63M parameters) consistently outperforms the DLM4G-1.o version (50M). It achieves
a +6.1% improvement in BLEU, a +2.6% gain in chrF++, and a significant +11.7% increase in
METEOR. This validates our scaling approach and establishes DLM4G-2.o as our best model.
More importantly, DLM4G-2.o achieves a new state-of-the-art result against all specialized baselines.
The detailed analysis beside the table 7 highlights the specific performance gains and the model’s
remarkable parameter efficiency. Refer Appendix A.9 for more details.

Table 7: Comparison of our DLM4Gmodels against baselines.

Method #P B CrF++ M B-F1 MVE

MolT5 (B) 220M 0.452 0.651 0.510 0.681 0.852
GitMol 700M 0.475 0.680 0.532 0.751 0.875
GraphT5 272M 0.481 0.692 0.545 0.810 0.913
DLM4G-1.o 50M 0.534 0.715 0.560 0.816 0.901
DLM4G-2.o 63M 0.567 0.734 0.626 0.843 0.925
%Gain x12↑ +17.8% +6.1% +14.8% +4.1% +1.3%

Analysis of Results: Our DLM4G-2.o
model outperforms all baselines across ev-
ery metric. It demonstrates strong perfor-
mance on surface-level scores, achieving
a BLEU of 0.567 (a +17.8% gain over the
best baseline), and also leads on seman-
tic metrics with a BERTScore-F1 of 0.843.
Crucially, it delivers these results while be-
ing 4x to 11x smaller than the baselines.

5 CONCLUSION AND LIMITATIONS

We presented DLM4G, a graph-conditioned, non-autoregressive diffusion framework for graph-
to-sequence generation that targets two persistent failures of PLMs—factual grounding and edit
sensitivity. Our approach learns a graph-aware noising schedule that prioritizes graph-aligned tokens
during training, and at inference combines this schedule with cross-attention to the graph to guide
denoising. Across standard surface and embedding metrics, DLM4G surpasses strong baselines;
on two task-grounded metrics, it outperforms comparably sized models. Extending to molecule
captioning further demonstrates generality. While promising, DLM4G introduces diffusion-time costs
and relies on entity alignment quality and operates on a fixed, dataset-defined linearization of the input
KG. As a result, the model is not permutation invariant and may in principle be sensitive to alternative
serialization schemes. Future work will reduce sampling steps, relax alignment dependence, and
explore structure-aware encoding.
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A APPENDIX

This section presents an in-depth discussion of the eleven core components of the manuscript, includ-
ing the principal mathematical derivations, template methods (zero-shot prompting and molecular
captioning), the proposed algorithm pseudo-codes, and detailed implementation aspects. Additionally,
the complete code implementation is available here: CODE

A.1 DERIVATION OF THE TRAINING OBJECTIVE

DLM4G builds on the standard diffusion framework, which trades the flexibility of expressive genera-
tive models (e.g., GANs, VAEs, flow models) for the tractability of likelihood-based training in a
continuous latent space z. The overall goal is to minimize the negative log-likelihood

Ez0,c

[
− log pθ(z0 | c)

]
, (10)

which is upper-bounded by the Variational Lower Bound (VLB).

A.1.1 FORWARD AND REVERSE PROCESSES

The forward Markov chain is defined as q(z1:T | z0) =
∏T

t=1 q(zt | zt−1), where each transition is
Gaussian:

q(zt | zt−1) = N
(
zt

∣∣√1− βt zt−1, βt I
)
. (11)

Let αt = 1− βt and ᾱt =
∏t

i=1 αi. By induction, the marginal at time t satisfies:

zt =
√
ᾱt z0 +

√
1− ᾱt ϵ, ϵ ∼ N (0, I), (12)

so that q(zt | z0) = N
(√

ᾱt z0, (1 − ᾱt)I
)
. We used the sqrt schedule as the baseline schedule

used in DiffusionLM Li et al. (2022), namely ᾱt = 1−
√

t/T + s with small s > 0. The reverse
denoising process then learns

pθ(z0:T ) = p(zT )

T∏
t=1

pθ(zt−1 | zt), pθ(zt−1 | zt) = N
(
µθ(zt, t), σ

2
θ(zt, t)

)
. (13)

Applying Bayes’ rule to the forward transitions yields the exact posterior mean

µt(zt, z0) =

√
αt(1− ᾱt−1)

1− ᾱt
zt +

√
ᾱt−1 βt

1− ᾱt
z0, (14)

whose coefficients we denote by U and E . DLM4G’s training objective is then to match the network’s
predicted µθ,σθ to these posterior quantities via a simple noise-prediction loss. We optimize the
negative log-likelihood by upper-bounding it with the variational lower bound

E
[
− log pθ(x0)

]
≤ Lvlb =

T∑
t=0

Lt. (15)

A.1.2 VARIATIONAL LOWER BOUND (VLB)

Following Sohl-Dickstein et al.Sohl-Dickstein et al. (2015), for conditional generation the VLB
decomposes into:

Lvlb = Eq(z1:T |z0)

[
log

q(zT | z0)
p(zT )︸ ︷︷ ︸
LT

+

T∑
t=2

log
q(zt−1 | zt, z0)
pθ(zt−1 | zt, c)︸ ︷︷ ︸

Lt

− log pθ(z0 | z1, c)︸ ︷︷ ︸
L0

]
, (16)

where each Lt is a KL divergence between Gaussians. The true posterior mean (via Bayes’ rule) is:

µt(zt, z0) =

√
αt(1− ᾱt−1)

1− ᾱt︸ ︷︷ ︸
U

zt +

√
ᾱt−1βt

1− ᾱt︸ ︷︷ ︸
E

z0, (17)
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with covariance Σq = β̃tI, β̃t =
1−ᾱt−1

1−ᾱt
βt. In the standard simplification, the model’s covariance is

fixed to match the true posterior covariance Σθ = Σq , the KL collapses to a weighted MSE:

Lt =
1

2

∥∥µt − µθ

∥∥2
Σ−1

q
∝ E

[∥∥z0 −Mθ(zt, t, c)
∥∥2] . (18)

Thus, for 2 ≤ t ≤ T , Lt → ∥z0 −Mθ(zt, t, c)∥2. The final KL encourages zT to match the unit
Gaussian prior:

LT = KL
(
q(zT | z0) ∥ p(zT )

)
∝

∥∥µ(zT )∥∥2, (19)

a constant w.r.t. θ. The discrete target S (sequence) is encoded into a continuous embedding gΦ(S).
The final term in VLB is L0 = − log pθ(z0 | z1, c). We need to integrate the discrete data S
into this continuous likelihood term. We use the law of total probability to express the continuous
likelihood pθ(z0 | z1, c) by marginalizing over all possible discrete tokens in the target sequence
S = {s1, s2 · · · , sN}:

pθ(z0 | z1, c) =
∑
S

pθ(z0,S | z1, c) (20)

We then apply the product rule to the joint probability:

pθ(z0,S | z1, c) = pθ(z0 | S, z1, c) · pθ(S | z1, c) (21)

For training, we are interested in the specific ground-truth sequence S. When we evaluate L0 during
training, we consider only the term where S is the ground-truth sequence:

L0 ≈ − log pθ(z0,S | z1, c) = − log [pθ(z0 | S, z1, c) · pθ(S | z1, c)] (22)

The core approximation simplifies the dependency graph by asserting that the discrete data S is
generated only from the clean latent z0, and is independent of z1 and c given z0.

S ⊥ (z1, c) | z0 (23)

This allows us to replace the discrete conditional likelihood with the separate rounding network
p̃Φ(S | z0): pθ(S | z1, c) ≈ p̃Φ(S | z0). Substituting this back into the likelihood decomposition:

pθ(z0,S | z1, c) ≈ pcont(z0 | S, z1, c) · p̃Φ(S | z0) (24)

Taking the negative logarithm of the approximation gives the two desired terms:

L0 ≈ − log pcont(z0 | S, z1, c)− log p̃Φ(S | z0)

This split yields the two components used in the final training objective:

1. Consistency Term (LCons): The first term is the negative log-likelihood of the continuous
latent, which is minimized via the MSE loss on the means: − log pcont(z0 | S, z1, c) →
LConsistency =

∥∥gΦ(S)−Mθ(z1, 1, c)
∥∥2.

2. Rounding Term (LRound): This second term is the dedicated loss for the discrete data
likelihood: LRound = − log p̃Φ(S | z0)

A.1.3 FINAL END-TO-END OBJECTIVE

Combining all components:

Lvlb ∝
T∑

t=2

∥∥z0 −Mθ(zt, t, c)
∥∥2︸ ︷︷ ︸

Denoising

+
∥∥gΦ(S)−Mθ(z1, 1, c)

∥∥2︸ ︷︷ ︸
Consistency

− log p̃Φ(S | z0)︸ ︷︷ ︸
Rounding

. (25)

Dropping constant terms, the simplified end-to-end training loss is:

Le2e-simple(S) = Eq

[ T∑
t=2

∥Mθ(zt, t, G̃)− z0∥2︸ ︷︷ ︸
Denoising

+ ∥ gΦ(S)−Mθ(z1, 1, G̃)∥2︸ ︷︷ ︸
Consistency

− log p̃Φ(S | z0)︸ ︷︷ ︸
Rounding

]
(26)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.2 RELATED WORK AND BACKGROUND

Graph-to-Sequence Learning: G2S has evolved through three stages: (i) template-based systems that
verbalised graph predicates but were brittle for complex inputs Wiseman et al. (2018); Kasner & Dusek
(2022); Vejvar & Fujimoto (2023); (ii) neural encoder–decoder models that learned graph embeddings,
improving structural generalisation yet struggling with long-range dependencies Wiseman et al.
(2017); Beck et al. (2018); Iso et al. (2019); and (iii) fine-tuned transformers, now dominant, offering
superior fluency and factuality with minimal task-specific design Vaswani et al. (2023); Ribeiro et al.
(2021); Jolly et al. (2021); Han & Shareghi (2022). This trajectory frames the current G2S landscape
and motivates subsequent approaches.

PLMs for Graphs: Leveraging LLMs for graph verbalisation involves four challenges: (i) alignment
of graph elements to words Luo et al. (2024); Zhu et al. (2025), (ii) position encoding under
permutation invariance Black et al. (2024); Huang et al. (2024); Perozzi et al. (2024), (iii) multi-level
semantics across nodes, edges, and subgraphs Wang et al. (2024a), and (iv) context retention over
long spans Ding et al. (2025); Wang et al. (2024c). These define a taxonomy from Graph-to-Sequence
(G2S) to Graph-to-Token (G2T) methods. Current KG-to-text models employ positional encodings,
structural prompts, and multi-granularity attention Luo et al. (2024); Zhu et al. (2025); Wang et al.
(2024a), reducing factual omissions but still limited by left-to-right decoding and weak global
planning Wei et al. (2022); Lin et al. (2021). Diffusion LMs, with iterative denoising, could address
these issues, though they remain unexplored for KG-to-text generation Li et al. (2023).

Diffusion Models for Conditional Generation: Conditional diffusion guides denoising with an
input sequence encoding, extending conditional-VAE ideas Zhao et al. (2017). Early text models
(Diffusion-LM Li et al. (2022), Analog Bits Chen et al. (2023)) imposed weak conditioning via
classifiers or plug-in controls, while DIFFUSEQ Gong et al. (2023); Yuan et al. (2024) enabled true
sequence-to-sequence conditioning in continuous space. Related frameworks also target time-series
(CSDI Tashiro et al. (2021)) and speech (WaveGrad Chen et al. (2021b)). Distinct from prior G2S
and diffusion-LM work, DLM4G integrates classifier-free diffusion with explicit KG conditioning,
treating the graph itself as the control variable. This eliminates exposure bias and supports global
planning, yielding more coherent KG verbalisation.

Molecule Captioning: Most prior works adapt either AR or NAR generation for molecular de-
scriptions, but these methods often inherit exposure bias (AR) or strong independence assumptions
(NAR) Edwards et al. (2022); Liu et al. (2024a). Diffusion-based approaches, while promising for
text generation, have not been systematically applied to graph-to-sequence captioning. To clarify
the conceptual distinctions, Table 8 summarizes the characteristics of major generation paradigms
and highlights how DLM4G differs. In particular, our method introduces a graph-guided refinement
process with graph-aware noising, enabling both factual grounding and graph edits during caption
generation, a capability absent in existing paradigms.

Table 8: Comparison of DLM4G with existing paradigms (FG: Factual Grounding; GE: Graph Edits).

Model Family Output Generation Paradigm Noising Schedule Mechanism for FG / GE Molecule Captioning

Autoregressive (AR) Sequential, left-to-right token prediction No Diffusion Implicit (data-driven/ graph prompts ) Standard G2S application

(Exposure bias, local optima, e.g., BART, T5)

Non-Autoregressive (NAR) Parallel, independent token prediction No Diffusion Implicit (sequence-level objective; no graph-aware bias) Standard G2S application

(Conditional independence assumption) (e.g., Mask-Predict)

Standard Diffusion LMs Iterative, parallel refinement from noise Uniform, Isotropic Implicit (standard diffusion schedule) Unexplored for G2S;

Advantage: Mitigates exposure bias(e.g., DiffuSeq) applied to S2G (generation)

DLM4G (Ours) Iterative, graph-guided refinement Graph-aware noising Explicit (graph-aware schedule over A) Novel G2S application
(Global planning + factual grounding) (Preserves entity, relations) (Graph → Sequence task)

A.3 SUMMARY OF DATASET AND BASELINES

WikiOFGraph: We use the WikiOFGraph dataset as described in Kim et al. (2024). This dataset com-
prises approximately 5.85 million graph–text pairs extracted from general-domain English Wikipedia
articles. Each graph is represented as a set of RDF-style triples, automatically mined and refined
via large-language-model prompting. For example, the triple <Alan Turing, birthPlace,
London> corresponds to the sentence “Alan Turing was born in London.”
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Table 9: Training set statistics for comparative analysis. # triplet (m/M/avg) indicates the minimum,
maximum, and average number of triplets per sample.

Dataset # samples # unique predicate # unique entity # triplet (m/M/avg)
WikiOFGraph 5.85M 140,733 8.2M 1/173/3.62
GenWiki 680K 287 86.6K 1/10/2.64
TekGen 6.31M 50,861 4.3M 1/54/1.73

GenWiki: We use the “fine” split of GenWiki Jin et al. (2020), which contains 680 K graph–text pairs;
we reserve 10 % of these for evaluation. The dataset covers 287 distinct predicates, with an average
of 2.64 ± 1.72 triples per graph and an average text length of 26.05 ± 10.99 tokens. For instance,
the graph { (Google, founder, Larry Page), (Google, founder, Sergey Brin)} maps to the sentence
“Google was founded by Larry Page and Sergey Brin.”

TekGen: We adopt the TekGen dataset as released in Mousavi et al. (2024), containing roughly 6.3 M
aligned Wikidata triple–sentence pairs drawn from Wikipedia. It spans about 50.8 K distinct predicates
and is provided in separate train/validation/test TSV files (each line a JSON object). An exemplar
entry is: {"subject":"The Lion King","predicate":"director","object":"Roger Allers","text":"The Lion
King is an animated musical drama film directed by Roger Allers and Rob Minkoff."}

A.4 ALIGNMENT MODULE

Figure 4: NER-based graph–sequence alignment. Given a linearized graph G̃ and target se-
quence S, the module (1) expands aliases for each KG node, (2) detects mentions in S, and (3)
links/disambiguates them to obtain the alignment set A of graph-grounded tokens.

Setup. For each graph–sequence pair (G̃,S), the alignment module outputs a set A of token spans
in S that are linked to entities or relations in G̃ (see Fig. 4 and Sec. 3.3). To quantify the quality of
this mapping, we manually annotate a subset of WikiOFGraph dev examples (100 examples) with
gold alignments A⋆ and evaluate the module at the span level: a prediction is correct (TP) if the span
overlaps a gold mention and is linked to the same KG node; other predicted spans are counted as FP,
and unmatched gold spans as FN. We report precision, recall, and F1 over (span,KG node) pairs, as
well as token and KG-node coverage.

Overall quality. Table 10 summarizes the quality of the alignment module for our default configura-
tion (maximum of k=5 aliases per KG node). Specifically, Token coverage measures the percentage
of tokens in the target sequence S that are part of an aligned span, while KG-node coverage measures
the percentage of entities and relations in G̃ that successfully link to S. The module achieves high
precision while covering a substantial fraction of graph-grounded tokens and KG nodes, which is
sufficient to anchor the graph-aware noising schedule.

Effect of alias-set size. The size of the alias set controls the effective size of A: larger k exposes
more surface forms and increases recall and coverage, but can introduce additional ambiguity and
harm precision. We vary k ∈ {2, 3, 4, 5} and re-evaluate the module on the same annotated subset, as
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Table 10: Alignment quality on the WikiOFGraph (dev), with k=5 aliases per KG node. The
average magnitude of the alignment set (|A|) represents the size of alignment set per example. Token
coverage is the percentage of target tokens that belong to some aligned span; KG-node coverage is
the percentage of nodes in G̃ with at least one aligned mention in S.

Setting Prec. Rec. F1 Token cov. (%) KG-node cov. (%) |A|
Aliases (k=5) 0.90 0.78 0.83 24.1 86.3 7.4

well as the downstream performance of DLM4G on WikiOFGraph (Table 12). We observe a smooth
precision–recall trade-off as k increases; the default k=5 offers a good balance, yielding the best
BLEU score.

Table 11: Alias-budget ablation on WikiOFGraph. Increasing the maximum number of aliases k
per KG node improves recall and coverage but slightly reduces precision, resulting in a modest but
consistent gain in downstream performance.

k (aliases) Prec. Rec. F1 |A| Token cov. (%) KG-node cov. (%) BLEU
2 0.94 0.70 0.80 3.9 17.3 75.1 0.603
3 0.92 0.75 0.83 4.3 20.5 80.4 0.609
4 0.91 0.77 0.84 6.7 22.8 84.0 0.624
5 0.90 0.78 0.83 7.4 24.1 86.3 0.651

Example. To illustrate the alignment process, consider the following graph–sequence pair:
Serialized KG (G̃): ⟨[HEAD] USA [REL] hosted [TAIL] 1994_FIFA_World_Cup⟩
[SEP] ⟨[HEAD] USA [REL] capital [TAIL] Washington_D.C.⟩
[SEP] ⟨[HEAD] 1994_FIFA_World_Cup [REL] top_scorer [TAIL]
Hristo_Stoichkov⟩.
Corresponding sequence (S): “The United States hosted the 1994 FIFA World Cup; its capital is
Washington, D.C., and the tournament’s top scorer was Hristo Stoichkov”.
(1) Alias expansion. From the KG we construct an alias dictionary, e.g.,

USA: {“USA”, “U.S.”, “United States”, “United States of America”, . . . },
1994_FIFA_World_Cup: {“1994 FIFA World Cup”, “1994 World Cup”, . . . },

Washington_D.C.: {“Washington, D.C.”, “Washington DC”, . . . },
Hristo_Stoichkov: {“Hristo Stoichkov”, “Stoichkov”}.

(2) NER mentions in S. A NER detector identifies mentions such as “United States”, “1994 FIFA
World Cup”, “Washington, D.C.”, and “Hristo Stoichkov” in the sequence.
(3) Entity linking / disambiguation. Each mention is matched against the alias dictionary and, if
multiple candidates exist, disambiguated using local context similarity to KG node descriptions. For
this example the module recovers the alignment set A as:
A = {(“United States”,USA), (“1994 FIFA World Cup”, 1994_FIFA_World_Cup),
(“Washington, D.C.”,Washington_D.C.), (“Hristo Stoichkov”,Hristo_Stoichkov),
(“hosted”, hosted), (“capital”, capital), (“top scorer”, top_scorer)}},
which corresponds to seven true-positive links between S and G̃. This alignment set is then used to
derive token-wise difficulty profiles and the graph-aware noising schedule described in Sec. 3.3.
Details. For this specific instance, the sequence S contains 32 tokens. The G̃ contains 7 unique factual
elements (4 entities and 3 relations). The alignment set A has a magnitude |A| = 7.0, aligning all 7
elements (100.0% KG-node coverage). The results are reported in Table 12.

Table 12: Alignment Metrics for the example (G̃,S) pair .

k (aliases) Prec. Rec. F1 |A| Token cov. (%) KG-node cov. (%) BLEU
5 1.00 1.00 1.00 7.0 31.2 100.0 0.773
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A.5 NON- INCREASING ISOTONIC PROJECTION

After constructing the per-token cumulative schedule α̃i
t, we project it onto the set of non-increasing

sequences {ᾱi
t}Tt=1 such that ᾱi

1 ≥ ᾱi
2 ≥ · · · ≥ ᾱi

T . Concretely, this is a 1D isotonic regression
problem with squared loss, which we solve using the standard Pool-Adjacent-Violators Algorithm
(PAVA). This algorithm finds the closest monotone non-increasing sequence (in the least-squares
sense) to the input. Intuitively, it smooths out spurious "bumps" in the loss profile while guaranteeing
that the cumulative signal strength strictly decays over time, fulfilling the monotonicity requirement
of the diffusion process.

A.6 TRAINING DETAILS

Model variants: We train two Transformer–based denoisers: (i) a 6-encoder / 6-decoder architecture
with ≈ 50 M parameters, and (ii) a 6-encoder / 9-decoder architecture with ≈ 63 M parameters.
Both use GeLU activations Vaswani et al. (2023); Hendrycks & Gimpel (2023) and share all other
hyper-parameters.

Diffusion setup: A fixed diffusion horizon of T = 2000 timesteps is employed, following the
sqrt noise schedule introduced in DiffusionLM Li et al. (2022). Inputs are tokenised with the
bert-base-uncased vocabulary Devlin et al. (2019). The graph-aware noising schedule is
calculated every 20,000 training steps.

Optimization: All experiments use AdamW with a peak learning rate of 1×10−4, a linear warm-up
of 10,000 steps, and linear decay to zero. Gradient norms are clipped to 1.0; no label-smoothing or
dropout is applied beyond the architectural dropout already reported in the main text.

Training regime: Each model is trained for up to 200,000 steps per dataset:

• The 50 M model achieves its best validation metrics after ∼190, 000 steps.

• The 63 M model converges at the full 200,000-steps budget.

These numbers were found to be stable across all datasets considered.

A.7 MAPPING FUNCTION ABLATIONS

Choice of Mapping Function: As discussed in Sec. 3.3, the graph-aware schedule is obtained
by mapping token-wise difficulty profiles {ℓ it }Tt=1 through a monotone mapping function Ψi(x) to
produce the cumulative noise schedule {ᾱ i

t }Tt=1. For x ∈ [ℓit−1, ℓ
i
t] we write

Ψi(x) = ᾱt−1 + (ᾱt − ᾱt−1)ϕ

(
x− ℓit−1

ℓit − ℓit−1

)
, t = 2, . . . , T, (27)

In the main experiments we use a linear mapping ϕlin(u) = u. Here we ablate three smooth
alternatives—exponential, cosine, and polynomial mappings, all with the same boundary conditions.
Table 14 summarizes the functional forms, and Fig. 5(L–R) visualizes the induced loss profiles over
diffusion steps for aligned token positions (10, 25, 40, 55, 60). All three mappings introduce sharper
non-linearities (e.g., flatter early regions and steeper tails), which make the token-wise loss grow
more abruptly near the end of the diffusion process. Empirically, this concentration of noise updates
degrades downstream performance: we observe small but consistent drops in BLEU (see Table 6).
Hence, we retain the simple linear mapping ϕlin(u) = u in DLM4G.
Impact on Performance: In addition to BLEU, we assess how the choice of mapping function affects
factual grounding and edit sensitivity on WikiOFGraph, using the metrics introduced in Sec. 4.3. For
FGT we report FGT@λ = 0.5, our default setting which balances the penalty on hallucinated entities;
ESR has no hyperparameter. Table 13 extends the mapping ablation to these metrics. We find that the
graph-aware linear mapping over aligned tokens A improves BLEU and FGT while also achieving
the highest ESR, whereas the more non-linear polynomial and cosine mappings consistently degrade
all three metrics. This supports our qualitative analysis in Fig. 5 and further motivates our choice of
the simple linear mapping in DLM4G.
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Table 13: Ablation of DLM4G noise schedules and mapping function Ψi(x) on WikiOFGraph. We
report BLEU (B), Factual Grounding (FGT@λ = 0.5, higher is better), and Edit Sensitivity Rate
(ESR, higher is better).

DLM4G Tokens Ψi(x) B FGT@0.5 ESR

Graph-aware A linear 0.65 0.83 0.68
Graph-aware A poly 0.61 0.80 0.61
Graph-aware A cosine 0.62 0.80 0.63

Table 14: Ablation of ϕ(u) used in the graph-aware schedule.

Ablation ϕ(u)

Linear ϕlin(u) = u
Polynomial ϕpoly(u) = up (we use p = 2)

Exponential ϕexp(u) =
eβu − 1

eβ − 1
(we use β = 3)

Cosine ϕcos(u) =
1
2

(
1− cos(πu)

)

Figure 5: Induced loss profiles for the graph-aware schedule under different mappings: (Left)
exponential, (Mid) cosine, and (Right) polynomial. Curves show loss trajectories for aligned token
positions at steps 10, 25, 40, 55, and 60.

Figure 6: Zero-Shot Prompt Template for Knowledge Graph Verbalization Across Multiple LLMs
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Figure 7: Comparison of (left) framing molecule captioning as a G2S task and (right) the performance
of DLM4G-1.o and DLM4G-2.o models on the molecule captioning dataset.

A.8 ZERO-SHOT PROMPTING

Zero-shot prompting (illustrated in Figure 6) exploits the rich, general-purpose knowledge encoded
in pretrained large language models (LLMs) to tackle novel tasks without additional fine-tuning. By
casting tasks as natural-language instructions or templated prompts, models such as GPT-3 Brown
et al. (2020), DeepSeek Li et al. (2024b), LLaMa-3 Touvron et al. (2023), and Qwen2.5 Zeng et al.
(2024) demonstrate strong out-of-the-box performance across diverse applications. Prior work has
shown that LLMs internalize extensive linguistic, factual, and procedural knowledge during self-
supervised training, yielding robust zero-shot capabilities in text classification Wang et al. (2022),
machine translation Raffel et al. (2020), and code generation Chen et al. (2021a). A typical zero-shot
prompt comprises three components:

1. A system prompt that assigns the model’s role (e.g., “You are {MODEL}, a large language
model. Convert RDF triples into fluent English.”).

2. A model-specific guidance segment to steer style or brevity (e.g., “Keep your output con-
cise.”).

3. A user prompt presenting the task instance.

For example: Convert the following knowledge graph into a single English sentence:
⟨S⟩ Arròs negre ⟨P ⟩ country ⟨O⟩ Spain, ⟨S⟩ Spain ⟨P ⟩ ethnic Group ⟨O⟩ Spaniards.

In this study, we evaluate four models—DeepSeek (7 B), GPT-o4-mini (8 B), LLaMa-3 (8 B), and
Qwen2.5 (7 B)—to investigate how model scale, pretraining corpus, and architectural choices affect
zero-shot generalization on knowledge-to-text tasks.

A.9 MOLECULE CAPTIONING

Figure 8: Qualitative Assessment of Molecule Captioning by DLM4G Given SMILES Representations

Figure 8 shows the captions produced by two variants of our model, DLM4G-1.0 (50 M parameters)
and DLM4G-2.0 (63 M parameters), alongside the ground-truth description for a polybrominated
biphenyl (PBB) molecule (SMILES shown beneath the 3D rendering). Both model outputs are nearly
identical, correctly capturing: (1) The molecule class: “polybrominated biphenyls (PBBs) comprise
209 synthetic biphenyl derivatives”, (2) The substitution range: “bearing 1–10 bromine atoms” and
(3) The typical use case: “commonly used as flame-retardant additives in plastics.”
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Quantitatively, the two variants achieve very similar scores on all three evaluation metrics—BLEU,
chrF++ and METEOR—reflecting their equivalently high factual fidelity and fluency. This example
illustrates that even the smaller 50 M model matches the larger 63 M model in this task. Full dataset
statistics and comprehensive metric results are provided in the main paper.
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