

000 001 002 003 004 005 006 007 008 009 010 011 012 GRAPH-TO-SEQUENCE GENERATION BEYOND AU- TOREGRESSIVE MODELS: A GRAPH-AWARE DIFFU- SION FRAMEWORK

013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Pre-trained language models (PLMs) remain unreliable for graph-to-sequence (G2S) generation, where two challenges are particularly acute: (i) *factual grounding*, ensuring all entities are faithfully realized, and (ii) *edit sensitivity*, ensuring small, local graph edits to propagate consistently in the output. We propose Diffusion Language Models for Graphs (DLM4G), a *non-autoregressive framework* for iterative refinement conditioned on the graph input. Central to DLM4G is a graph-aware adaptive noising strategy, where noise is applied to the output sequence aligned with the graph components (entities and relations) using a learnable component-wise schedule. We learn a component-wise schedule by linearly mapping between per-component denoising loss and noise schedule. This ensures entities are generated faithfully and keeps graph edits localized in the text. Through extensive experiments on three benchmark datasets, DLM4G outperforms state-of-the-art autoregressive baselines that are 12–127× larger, achieving 10–15% relative gains on standard surface-level metrics (BLEU, ChrF++, METEOR) and embedding-based metrics (BERTScore-F1, MAUVE). More importantly, DLM4G improves factual grounding (FGT, \uparrow) by $+\Delta_{\text{FGT}} 4.7\%$ and edit sensitivity (ESR, \uparrow) by $+\Delta_{\text{ESR}} 7.9\%$ on average compared to comparably sized autoregressive baselines. Finally, we evaluate DLM4G on molecule captioning, where molecular graphs are verbalized into textual descriptions, demonstrating its applicability to biomedical G2S tasks. Our code is available here: [CODE](#)

1 INTRODUCTION

036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Graphs are a ubiquitous data structure, fundamental to domains like social networks, biological systems, and recommendation platforms (Wang et al., 2021; Fan et al., 2019; Wang et al., 2024b). However, their complex topology makes verbalization difficult. Many downstream tasks such as graph reasoning (Skianis et al., 2024), graph captioning (Hsieh et al., 2025; Li et al., 2024a), graph translation (Xu et al., 2022) require readable, faithful text. To address this challenge, the task of Graph-to-Sequence (G2S) has emerged, which focuses on generating coherent text from graph inputs (Fatemi et al., 2024). Real-world G2S applications include (i) molecular & protein captioning – translating chemical graphs (proteins & molecules) into concise natural-language summaries (Kim et al., 2025) and (ii) Knowledge Graph Question Answering (KGQA)–verbalizing KG subgraphs to support multi-hop reasoning (Wu et al., 2023).

036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Earlier G2S methods encoded structure explicitly with graph-based encoders (Song et al., 2018; Ribeiro et al., 2019; 2020; Schmitt et al., 2021). Recent work shows that autoregressive pre-trained language models (PLMs) achieve strong performance without *graph-specific inductive biases* on surface-overlap metrics (BLEU, chrF++, METEOR) (Ribeiro et al., 2021). These scores can remain high despite factual omissions and hallucinations. Therefore, these models lack (i) factual grounding (all entities/relations must be realized) and (ii) edit sensitivity (small local graph edits must be reflected predictably). A key factor for these weaknesses in PLMs is left-to-right decoding. This approach leads to early token commitments that reduce sensitivity to local edits, often causing entities or relations to be omitted or misrepresented (Li et al., 2022; Gong et al., 2023). This points to two needs: (1) a modeling choice that preserves global coherence and local faithfulness, ensuring while

reflecting small edits and realizing all entities/relations, and (2) an evaluation criterion that directly measures grounding and edit sensitivity.

To address these, we propose a two-pronged approach: *First*: regarding the modeling choice, we investigate non-autoregressive (NAR) diffusion-based language models for G2S. Here, we navigate a key design trade-off: while graph-specific encoders (e.g., GNNs) offer strict structural guarantees like permutation equivariance ("hard" inductive bias), they often lack the semantic richness of PLMs. We therefore use a PLM backbone for DLM4G but re-introduce structure via a "soft" inductive bias—graph-aware noising schedule. This mechanism is critical because, while diffusion models generally support self-correction via iterative denoising (Sahoo et al., 2024; Chuang et al., 2024; Yuan et al., 2024; Gong et al., 2025; Venkatraman et al., 2025), standard data-agnostic schedules corrupt factual and syntactic elements equally (Ho et al., 2020). This uniform corruption undermines factual grounding. DLM4G overcomes this by using the graph-aware schedule to strategically preserve factual information during the noising process. *Second*, to address the evaluation gap, we introduce simple, task-grounded metrics that move beyond surface-level overlap to directly measure factual grounding and edit sensitivity.

To sum up, our overall contributions: (1) A novel, graph-aware noising schedule to improve factual grounding; (2) State-of-the-art performance on three diverse datasets across a wide range of metrics; (3) Two new task-grounded metrics to evaluate factual grounding and edit sensitivity; and finally (4) An extension of our framework to the real-world scientific task of molecule captioning.

2 BACKGROUND AND PRELIMINARIES

This section first reviews related work in graph-to-sequence generation. Then, to ground our contributions, we present the preliminary concepts of standard denoising diffusion models. We briefly review relevant work, deferring full technical details to Appendix A.2.

2.1 RELATED WORK

Graph-to-Sequence Learning: G2S has progressed from (i) template-based systems Wiseman et al. (2018); Kasner & Dusek (2022); Vejvar & Fujimoto (2023), to (ii) neural encoder–decoders with learned graph embeddings Wiseman et al. (2017); Beck et al. (2018); Iso et al. (2019), and (iii) fine-tuned transformers achieving state-of-the-art fluency and factuality Vaswani et al. (2023); Ribeiro et al. (2021). This evolution frames the current G2S landscape.

PLMs for Graphs: Leveraging LLMs for graph verbalisation involves following challenges: (i) *alignment* of graph elements to words Zhu et al. (2025), and (ii) *multi-level semantics* across nodes, edges, and subgraphs Wang et al. (2024a). This taxonomy spans Graph-to-Sequence (G2S) to Graph-to-Token (G2T). KG-to-text models use positional encodings, prompts, and multi-granularity attention Zhu et al. (2025), reducing omissions but still constrained by left-to-right decoding. Diffusion LMs, with iterative denoising, could overcome these limitations.

Prior PLM-based G2S work treats the input KG as a serialized sequence of relational triples, using special markers `[HEAD]`, `[REL]`, `[TAIL]`, and `[SEP]` (see Section 4.1). This design allows us to plug into standard encoder–decoder Transformers while giving up strict permutation invariance, a trade-off we revisit in Limitations 5.

Diffusion Models for Conditional Generation: Conditional diffusion guides denoising with an input sequence encoding, extending conditional-VAE ideas Zhao et al. (2017). Early text models (Diffusion-LM Li et al. (2022), Analog Bits Chen et al. (2023)) imposed weak conditioning via classifiers or plug-in controls, while DIFFUSEQ Gong et al. (2023) enabled true sequence-to-sequence conditioning in continuous space. DLM4G builds on this foundation and combines classifier-free diffusion with explicit KG conditioning as the control variable for more coherent KG verbalisation.

Molecule Captioning: Prior AR/NAR captioning approaches for molecules inherit these limitations Edwards et al. (2022); Liu et al. (2024a). Table 8 compares these paradigms with DLM4G.

2.2 PRELIMINARIES: DENOISING DIFFUSION MODELS

Denoising diffusion probabilistic models (DDPMs) are generative models that learn a data distribution, often conditioned on some context \mathbf{c} , $p(\mathbf{z}_0 \mid \mathbf{c})$. They consist of a fixed forward process and a learned reverse process.

108 **Forward process:** A standard DDPM forward process corrupts clean data \mathbf{z}_0 through a Markov
 109 chain with noise-schedule coefficients $\{\alpha_t\}_{t=1}^T$ controlling signal decay. This yields the standard
 110 closed-form for sampling a noised state \mathbf{z}_t at any timestep t :

$$112 \quad \mathbf{z}_t = \sqrt{\bar{\alpha}_t} \mathbf{z}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon} \quad \text{with} \quad \bar{\alpha}_t = \prod_{s=1}^t \alpha_s \quad \text{and} \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}). \quad (1)$$

115 Standard diffusion models typically use a fixed, data-agnostic (isotropic) noise schedule.

116 **Reverse process with Conditional Denoising:** The reverse process learns to recover the clean data
 117 \mathbf{z}_0 from pure noise $\mathbf{z}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. It is defined as a Markov chain $p_\theta(\mathbf{z}_{0:T})$ where each reverse
 118 transition $p_\theta(\mathbf{z}_{t-1} | \mathbf{z}_t, \mathbf{c})$ is a Gaussian whose mean μ_θ and variance Σ_θ are parameterized by a
 119 model $\mathcal{M}_\theta(\mathbf{z}_t, t, \mathbf{c})$. The model is trained to predict the mean of the true posterior $q(\mathbf{z}_{t-1} | \mathbf{z}_t, \mathbf{z}_0)$.
 120 The model parameters θ are optimized by maximizing the variational lower bound (VLB) on the
 121 conditional log-likelihood:

$$123 \quad \mathcal{L}_{\text{vlb}} = \mathbb{E}_q \left[\underbrace{-\log p_\theta(\mathbf{z}_0 | \mathbf{z}_1, \mathbf{c})}_{\text{Reconstruction } (L_0)} + \sum_{t=2}^T \underbrace{D_{KL}(q(\mathbf{z}_{t-1} | \mathbf{z}_t, \mathbf{z}_0) || p_\theta(\mathbf{z}_{t-1} | \mathbf{z}_t, \mathbf{c}))}_{\text{Denoising Matching } (L_{t-1})} + \underbrace{D_{KL}(q(\mathbf{z}_T | \mathbf{z}_0) || p(\mathbf{z}_T))}_{\text{Prior Matching } (L_T)} \right] \quad (2)$$

126 While tractable, direct optimization of the full VLB is often unstable.

3 THE DLM4G METHODOLOGY

3.1 PROBLEM STATEMENT

132 Let $\mathcal{G} = (\mathbf{V}, \mathbf{E}, \mathbf{X}, \mathcal{R})$ be the input graph, where $\mathbf{V} = \{v_1, \dots, v_n\}$ is the set of nodes, $\mathbf{X} =$
 133 $\{x_1, \dots, x_n\}$, with each $x_i \in \mathbb{R}^d$, representing the associated node features, and $\mathbf{E} \subseteq \mathbf{V} \times \mathcal{R} \times \mathbf{V}$
 134 denotes a set of directed edges representing relations $r_{ij} \in \mathcal{R}$. In many settings, such as KGs, each
 135 relation type $r_{ij} \in \mathcal{R}$ is associated with a feature vector $f_r \in \mathbb{R}^k$, capturing its semantic properties.
 136 This structure can be expressed as a sequence of relational triplets $\tilde{\mathcal{G}} = \{(h_i, r_{ij}, t_j)\}_{i,j=1}^n$, where
 137 $h_i, t_j \in \mathbf{V}$ are head and tail entities, respectively, and $r_{ij} \in \mathcal{R}$ is the relation type. The goal is to
 138 learn a model that maps such structured graph inputs to meaningful output sequences. Formally, a
 139 parameterized DLM4G model \mathcal{M}_θ is trained to predict the corresponding output sequence:

$$141 \quad \mathcal{M}_\theta : \tilde{\mathcal{G}} \rightarrow \mathbf{S}, \quad (3)$$

143 where $\mathbf{S} = \{s_i \in \mathcal{W} \mid 1 \leq i \leq N\}$ is a sequence of fixed length N , and \mathcal{W} denotes the target
 144 vocabulary. Formally, we aim to learn this conditional distribution $p(\mathbf{S} | \tilde{\mathcal{G}}; \theta)$, that approximates the
 145 underlying data distribution. To achieve this, we introduce DLM4G, a novel diffusion framework.

3.2 THE DLM4G FRAMEWORK OVERVIEW

148 We introduce DLM4G (framework is shown in Figure 1), a denoising diffusion framework designed to
 149 generate factually-grounded text from KGs. We adapt the standard conditional DDPM framework
 150 (reviewed in Section 2.2) to the graph-to-sequence task, where we learn the distribution $p(\mathbf{S} |$
 151 $\tilde{\mathcal{G}})$. To apply the diffusion process to discrete text, we first define our "clean data" \mathbf{z}_0 as the
 152 continuous representation of the sequence \mathbf{S} , obtained via a learnable embedding layer: $\mathbf{z}_0 =$
 153 $g_\Phi(\mathbf{S}) \in \mathbb{R}^{N \times d}$. The "conditioning context" \mathbf{c} (from the preliminaries) is our input graph, $\tilde{\mathcal{G}}$.
 154 Following the PLM-based G2S convention introduced in Section 2, we realize $\tilde{\mathcal{G}}$ as a token sequence
 155 $\tilde{\mathcal{G}} = \langle [\text{HEAD}] h_i [\text{REL}] r_{ij} [\text{TAIL}] t_j \rangle$ with $[\text{SEP}]$ delimiters, which is fed to \mathcal{M}_θ as the
 156 conditioning signal (see Section 4.1). Our reverse-process is therefore $\mathcal{M}_\theta(\mathbf{z}_t, t, \tilde{\mathcal{G}})$.

157 The core of our approach differs from standard diffusion in two key aspects:

1. **A Graph-Aware Noising Schedule:** Instead of the isotropic schedule (Eq. 1), our forward
 159 process uses a graph-aware adaptive noising schedule. This is detailed in Section 3.3.
2. **A Simplified Training Objective:** Instead of the full VLB (Eq. 2), we use a simplified
 160 objective (detailed in Sec. 3.4) that trains \mathcal{M}_θ to directly predict \mathbf{z}_0 .

162 3.3 GRAPH AWARE NOISING SCHEDULE
163

164 **Motivation & Rationale:** Standard diffusion models rely on fixed, data-agnostic noising schedules
165 that apply noise uniformly across all tokens (Ho et al., 2020; Nichol & Dhariwal, 2021). This is
166 suboptimal for graph-to-text generation, as it corrupts critical factual tokens (entities, relations) and
167 simple syntactic tokens equally (Yuan et al., 2024). Since recovering factual content from noisy
168 states is relatively difficult, applying noise uniformly weakens factual grounding. To address this,
169 we introduce a *graph-aware* noising schedule. The core idea is to use the model’s per-timestep
170 reconstruction error for a graph-aligned token, ℓ_t^i , as a proxy for its difficulty with factual consistency.
171 By building a mapping from this empirical difficulty to the noise schedule (details in Stage 2), we
172 re-parameterize the denoising path as a function of prediction error. This creates a more stable
173 trajectory for factual content, thus improving factual grounding and sensitivity to graph edits.
174

175 **Graph-sequence alignment (Training):** To enable our graph-aware noising schedule, we first
176 perform a one-time offline alignment to map tokens in the target sequence (\mathbf{S}) to their corresponding
177 entities and relations in the graph ($\tilde{\mathcal{G}}$). The pipeline operates in three stages: (i) generating all possible
178 names and aliases for each entity; (ii) detecting mentions of these names in the text using a NER
179 model (Zaratiana et al., 2024); and (iii) linking these mentions to the correct graph entity to resolve
180 ambiguities (Xin et al., 2024; Liu et al., 2024b; Ding et al., 2024). The result is an alignment map
181 \mathcal{A} connecting token indices in \mathbf{S} to graph elements, which is used exclusively during training. A
182 detailed analysis of the alignment module is in Appendix A.4.
183

184 **Noising Schedule:** We apply graph-aware noising for the graph-text aligned set \mathcal{A} , while keeping
185 unaligned tokens on the baseline *sqrt* schedule. The procedure has two stages, summarized in Alg 1.
186

187 **Stage 1: Estimating token-wise difficulty.** For
188 each aligned token $i \in \mathcal{A}$ and diffusion step
189 $t = 1, \dots, T$, we define the denoising difficulty
190 as:

$$\ell_t^i = \mathbb{E}_{\mathbf{z}_t \sim q(\mathbf{z}_t | \mathbf{z}_0)} \|\mathcal{M}_\theta(\mathbf{z}_t, t, \tilde{\mathcal{G}})^{(i)} - \mathbf{z}_0^{(i)}\|^2 \quad (4)$$

191 Averaging over the training set yields a difficulty profile $(\ell_1^i, \dots, \ell_T^i)$ for each $i \in \mathcal{A}$.
192 Empirically, ℓ_t^i tends to increase with t (later
193 steps are noisier), but the estimated profile
194 is not strictly monotone. We also compute
195 $\ell_{\min}^i = \min_t \ell_t^i$ and $\ell_{\max}^i = \max_t \ell_t^i$ to define
196 the difficulty range for token i . In Stage 2 these
197 profiles and their ranges are used to construct a
198 token-wise cumulative schedule, and to obtain
199 a monotonic difficulty profile for each token i .
200 **Stage 2: Token-wise schedule.** Given $(\ell_t^i)_{t=1}^T$
201 and the baseline cumulative schedule $(\bar{\alpha}_t)_{t=1}^T$,
202 we construct an adaptive schedule $(\bar{\alpha}_{t,\text{new}}^i)_{t=1}^T$
203 for each $i \in \mathcal{A}$. Since this schedule controls
204 noise applied at each step, we want to
205 reallocate noise according to denoising difficulty.
206 Hence, we define a piecewise-linear map
207 $\Psi_i : [\ell_{\min}^i, \ell_{\max}^i] \rightarrow (0, 1)$ that interpolates the
208 baseline schedule as a function of loss:

$$\Psi_i(x) = \bar{\alpha}_{t-1} + \frac{\bar{\alpha}_t - \bar{\alpha}_{t-1}}{\ell_t^i - \ell_{t-1}^i} (x - \ell_{t-1}^i), \quad x \in [\ell_{t-1}^i, \ell_t^i], \quad t = 2, \dots, T, \quad (5)$$

209 with $\Psi_i(\ell_1^i) = \bar{\alpha}_1$ and $\Psi_i(\ell_T^i) = \bar{\alpha}_T$. In case $\ell_t^i = \ell_{t-1}^i$, we add a tiny jitter ε to avoid division
210 by zero. Empirically, $(\ell_t^i)_{t=1}^T$ is not strictly monotone in t , so instead of using its raw values we
211 introduce a new linear ramp in difficulty space:

$$\ell_t^{i,\text{new}} = \ell_{\min}^i + \frac{t-1}{T-1} (\ell_{\max}^i - \ell_{\min}^i), \quad t = 1, \dots, T. \quad (6)$$

Figure 1: DLM4G framework: (A) Graph-Sequence alignment set $\{\mathcal{A}\}$, obtains the aligned tokens; (B) The model is trained with a graph-aware noising schedule (C) Trained DLM4G samples output sequence conditioned on graph.

Substituting this $\ell_t^{i,\text{new}}$ into $\Psi_i(x)$ we get a new cumulative schedule $\tilde{\alpha}_t^i = \Psi_i(\ell_t^{i,\text{new}})$ for $t = 1, \dots, T$. We clamp $\tilde{\alpha}_t^i$ to $(0, 1)$ and apply a non-increasing isotonic projection (refer Appendix A.5) over t to obtain the final schedule $0 < \tilde{\alpha}_{t+1,\text{new}}^i \leq \tilde{\alpha}_{t,\text{new}}^i < 1$ for all t . We get the forward coefficients for aligned tokens as $\alpha_{t,i} = \tilde{\alpha}_{t,\text{new}}^i / \tilde{\alpha}_{t-1,\text{new}}^i$, with $\tilde{\alpha}_{0,\text{new}}^i = 1$. For unaligned tokens $i \notin \mathcal{A}$, we keep the baseline schedule: $\tilde{\alpha}_{t,\text{new}}^i = \bar{\alpha}_t$, hence $\alpha_{t,i} = \alpha_t$.

3.4 MODEL TRAINING AND INFERENCE

Training: Our training objective is derived from the Variational Lower Bound (VLB) (Eq. 2) presented in the preliminaries. While the full VLB optimization can be unstable (Ho et al., 2020), a common simplification is to train the model \mathcal{M}_θ to predict the added noise ϵ . However, our framework adopts an alternative \mathbf{z}_0 -prediction reparameterization, which trains the model to directly predict the clean data \mathbf{z}_0 at every timestep t . A critical component of this objective is the rounding term $L_0 = -\log \tilde{p}_\Phi(\mathbf{S} \mid \mathbf{z}_0)$, which handles the final step of converting the continuous latent variable \mathbf{z}_0 back into discrete tokens \mathbf{S} . We define this as a trainable rounding distribution: $\tilde{p}_\Phi(\mathbf{S} \mid \mathbf{z}_0) = \prod_{i=1}^N \tilde{p}_\Phi(s_i \mid \mathbf{z}_{0,i})$, where each token s_i is sampled from a softmax distribution over the vocabulary, using logits derived from the corresponding output embedding $\mathbf{z}_{0,i}$. By combining this rounding term (for $t = 0$) with the denoising matching terms (for $t > 1$) using our \mathbf{z}_0 -prediction reparameterization, we arrive at our final, composite objective. (The full derivation from the VLB is in App A.1).

$$\mathcal{L}_{\text{e2e-simple}}(\mathbf{S}) = \mathbb{E}_q \left[\sum_{t=2}^T \underbrace{\|\mathcal{M}_\theta(\mathbf{z}_t, t, \tilde{\mathcal{G}}) - \mathbf{z}_0\|^2}_{\text{Denoising}} + \underbrace{\|\mathcal{M}_\theta(\mathbf{z}_1, 1, \tilde{\mathcal{G}}) - \mathcal{M}_\theta(\mathbf{z}_1, 1, \tilde{\mathcal{G}})\|^2}_{\text{Consistency}} - \underbrace{\log \tilde{p}_\Phi(\mathbf{S} \mid \mathbf{z}_0)}_{\text{Rounding}} \right] \quad (7)$$

This objective directly optimizes the most critical parts of the process: the denoising accuracy across all steps (Denoising), the consistency of the first denoising step with the true data embedding (Consistency), and the quality of the final conversion to discrete tokens (Rounding).

Inference-time schedule. At test time the alignment set \mathcal{A} is unavailable, so we use cross-attention as a proxy. We blend the baseline cumulative schedule $\bar{\alpha}_t^{\text{base}}$ with a fixed “anchor” schedule $\bar{\alpha}_t^{\text{anchor}}$, obtained by averaging the aligned-token schedules learned during training. For each decoder token i at denoising step t , we compute a scalar weight $w_i^t \in [0, 1]$. This weight is calculated by summing the normalized cross-attention weights, $w_{i,k}^t$, from the **final decoder layer’s cross-attention module**. The sum is taken over the encoder positions corresponding to the serialized graph $\tilde{\mathcal{G}}$: $w_i^t = \sum_{k \in \tilde{\mathcal{G}}} w_{i,k}^t$, where $w_{i,k}^t$ denotes the normalized cross-attention weight from decoder token i to encoder token k .

The resulting per-token cumulative schedule is: $\tilde{\alpha}_t^i = (1 - w_i^t) \bar{\alpha}_t^{\text{base}} + w_i^t \bar{\alpha}_t^{\text{anchor}}$. Tokens that attend strongly to graph tokens in $\tilde{\mathcal{G}}$ follow the “anchor” schedule, while purely syntactic tokens follow the baseline schedule, serving as a lightweight proxy for the explicit alignment used during training.

Figure 2: Inference-time schedule. Cross-attention (CA) from decoder token i to graph tokens in $\tilde{\mathcal{G}}$ is aggregated into w_i^t , which blends the baseline and anchor schedules for each token i .

270

4 EXPERIMENTS

271

4.1 EXPERIMENTAL SETUP

274 **Model Architecture:** DLM4G is an encoder-decoder Transformer that conditions on the serialized KG
 275 input (see *graph representation*§4.1). We evaluate two variants: a 6-encoder/6-decoder configuration
 276 (≈ 50 M parameters; DLM4G-1.o) and a 6-encoder/9-decoder configuration (≈ 63 M; DLM4G-2.o),
 277 both using GeLU activations Vaswani et al. (2023); Hendrycks & Gimpel (2023). Inputs are tokenized
 278 with the `bert-base-uncased` vocabulary Devlin et al. (2019); the control tokens `[HEAD]`,
 279 `[REL]`, `[TAIL]`, and `[SEP]` are introduced as learned special tokens with dedicated embeddings.
 280 Other components follow the standard Transformer encoder-decoder design.

281 **Graph Representation:** We represent the set of relational triples $\tilde{\mathcal{G}}$, as a single linearized sequence.
 282 This is achieved by serializing each triplet $(h_i, r_{ij}, t_j) \in \tilde{\mathcal{G}}$ into a string format using special tokens,
 283 e.g: $\langle [\text{HEAD}] h_i [\text{REL}] r_{ij} [\text{TAIL}] t_j \rangle$, and concatenating them with a separator token
 284 `[SEP]`. **For all KG benchmarks (WikiOFGraph, GenWiki, TekGEN), we simply preserve the triple**
 285 **order provided in the released datasets and do not reorder or subsample triples; this dataset-defined**
 286 **order serves as our consistent traversal for linearization.** We adopt linearization for the following
 287 reasons: (i) it plugs into off-the-shelf backbones and decoding stacks, making ablations across
 288 baselines directly comparable; (ii) Transformer self-attention can model long-range interactions
 289 across the flattened triples, which is important for faithful realization; and (iii) prior work shows
 290 strong performance for linearized KG→text with PLMs, even without graph-specific inductive
 291 bias (Ribeiro et al., 2021; Wang et al., 2024a). Example (*graph→sequence*):

292 Serialized KG ($\tilde{\mathcal{G}}$): $\langle [\text{HEAD}] \text{ USA } [\text{REL}] \text{ hosted } [\text{TAIL}] \text{ 1994_FIFA_World_Cup} \rangle$
 293 $\langle [\text{HEAD}] \text{ USA } [\text{REL}] \text{ capital } [\text{TAIL}] \text{ Washington_D.C.} \rangle$
 294 $\langle [\text{HEAD}] \text{ 1994_FIFA_World_Cup } [\text{REL}] \text{ top_scorer } [\text{TAIL}] \text{ Hristo_Stoichkov} \rangle$.

295 Corresponding sequence (**S**): “*The United States hosted the 1994 FIFA World Cup; its capital is*
 296 *Washington, D.C., and the tournament’s top scorer was Hristo Stoichkov*”.

297 **Datasets:** We use three datasets for our experiments: (1) *WikiOFGraph* (Kim et al., 2024), a
 298 5.85M-sample dataset ontology-free dataset for graph-text task; (2) *GenWiki* (Jin et al., 2020), an
 299 unsupervised dataset of 680K Wikipedia text and DBpedia graph pairs, with a focus on entity overlap
 300 and a 1K human-annotated test set; and (3) *TekGEN* (Agarwal et al., 2021), a dataset of 6.3M
 301 sentences generated by verbalizing Wikidata triples. More details are available in Appendix A.3.

302 **Baselines:** We benchmark DLM4G, against four categories of baselines:

303 (i) *Pretrained-LM baselines*, comprising finetuned GPT-2 (Small/Base) (Mager et al., 2020), and T5
 304 (Small/Large) (Ribeiro et al., 2021) on all datasets;
 305 (ii) *Zero-shot evaluation*, deploying GPT-o4-mini (8 B), LLaMa-3-8B (8 B), Qwen 2.5 (7 B) and
 306 DeepSeek (7 B) to assess off-the-shelf generalization without any task-specific finetuning and
 307 (iii) SOTA G2S methods, including ReGen on TekGen (Dognin et al., 2021) and the Ontology-Free
 308 (Kim et al., 2024), Rule-Based (Schmitt et al., 2020), and Direct-Transfer, Noisy-Supervised (Koncel-
 309 Kedziorski et al., 2019) baselines on WikiofGraph and GenWiki (excluding CycleGT_{Base} due to
 310 non-standard splits in prior work (Jin et al., 2020; Guo et al., 2020)).
 311 (iv) *Diffusion baselines*, including Diffuseq Gong et al. (2023), FlowSeq Hu et al. (2024) and
 312 SeqDiffuSeq Yuan et al. (2024) adapted specifically to the G2S task.

313 **Implementation Details and Evaluation Metrics:** We train DLM4G with diffusion process of
 314 $T = 2000$ timesteps, using our graph-aware noising schedule, and inputs are tokenized using the
 315 `bert-base-uncased` vocabulary (Devlin et al., 2019). Training uses a peak learning rate of
 316 10^{-4} , 10,000 warm-up steps, and a linear decay schedule, with the adaptive noising schedule updated
 317 every 20,000 steps. Full implementation details are provided in Appendix A.6 A.8. For evaluation,
 318 we report BLEU (**B**) (Papineni et al., 2002); chrF++ (**CrF++**) (Popović, 2015); and METEOR
 319 (**M**) (Banerjee & Lavie, 2005). In addition, we include MAUVE (**MVE**) (Pillutla et al., 2023) for
 320 distributional similarity and BERTScore-F1 (**B-F1**) (Zhang et al., 2020) as an embedding-based
 321 semantic similarity metric.

322 Beyond these, we introduce two task-grounded metrics: Factual Grounding Metric (**FGT**), which
 323 emphasizes recall by checking that all entities present in the input graph are faithfully realized in the
 324 text, and Edit Sensitivity Rate (**ESR**), which emphasizes precision by testing that small, local edits to
 325 the graph propagate consistently-i.e. the output highlights only the modifications.

324 4.2 EXPERIMENTAL RESULTS
325

326 We evaluate our design using four different methods: (1) full fine-tuning, (2) zero-shot prompting,
327 (3) state-of-the-art (SOTA) benchmarking and (4) Diffusion baselines. Throughout these tests, we
328 carefully balance model size (#Parameters) with the amount of data (graph-to-sequence pairs).
329 For full fine-tuning, we train large models on a dataset of 100,000 graph-to-sequence pairs and test
330 them on a separate set of 1,000 graphs. In the zero-shot evaluation, we use state-of-the-art LLMs
331 without providing any specific training examples. The results across different performance metrics
332 are shown in Table 1. We compare these outcomes against our own pre-trained DLM4G family of
333 small models (approx. 50-63M parameters). These models, trained on an 80/10/10 split, are evaluated
334 on the same test set. A separate SOTA benchmarking table (see Section 4.2) compares DLM4G’s
335 performance against other task-specific models.
336

337 Table 1: Performance of DLM4G compared with (i) finetuning and (ii) zero-shot evaluation paradigms.

Model	#P	WikiOfGraph			GenWiki			TekGEN		
		B	CrF++	M	B	CrF++	M	B	CrF++	M
# Pretrain										
DLM4G-1.0	50M	0.619	0.823	0.688	0.401	0.663	0.527	0.247	0.493	0.375
DLM4G-2.0	63M	0.654	0.844	0.791	0.469	0.748	0.574	0.253	0.522	0.414
%Gain	x1.3↓	+5.7%	+2.5%	+14.9%	+16.9%	+12.8%	+8.9%	+2.4%	+5.9%	+10.4%
# Finetune										
GPT-2 (S)	124M	0.166	0.428	0.487	0.280	0.465	0.435	0.226	0.358	0.208
GPT-2 (B)	355M	0.285	0.572	0.490	0.312	0.470	0.425	0.228	0.366	0.211
T5 (S)	60M	0.385	0.688	0.471	0.227	0.495	0.447	0.189	0.352	0.203
T5 (L)	770M	0.658	0.807	0.516	0.361	0.567	0.338	0.199	0.370	0.211
DLM4G-2.0	63M	0.654	0.844	0.791	0.469	0.748	0.574	0.253	0.522	0.414
%Gain	x12↑	0.0%	+4.5%	+53.3%	+29.9%	+31.9%	+28.4%	+10.9%	+41.1%	+96.2%
# Zero-shot										
LLaMa-3	8B	0.622	0.801	0.781	0.461	0.709	0.510	0.176	0.341	0.251
Qwen2.5	7B	0.622	0.681	0.743	0.461	0.697	0.501	0.182	0.312	0.234
DeepSeek	7B	0.633	0.809	0.752	0.391	0.688	0.533	0.121	0.345	0.256
GPT-o4-mini	8B	0.648	0.847	0.783	0.464	0.734	0.471	0.121	0.327	0.277
DLM4G-2.0	63M	0.654	0.844	0.791	0.469	0.748	0.574	0.253	0.522	0.414
%Gain	x127↑	0.0%	0.0%	+1.0%	+1.1%	+2.1%	+7.7%	+39.0%	+51.3%	+49.5%

354
355 **Model Development and Scaling:** We started by pre-training the DLM4G family. The DLM4G-2.0
356 (63 M #P) model was the best performer across all three datasets. Increasing the model size by a
357 modest 1.3x (from 50M to 63M parameters) resulted in a significant performance boost of 2.4% to
358 16.9%. This suggests that further scaling DLM4G is a promising direction.

359 **Performance Against Large-Scale Models:** Using our best model, DLM4G-2.0, we then bench-
360 marked it against competitors that are 10 to over 100 times larger. In full fine-tuning tests against
361 baselines like the 770M parameter T5-Large, our model performed better on nearly every metric,
362 posting gains up to 96.2%. Furthermore, in zero-shot comparisons against models approximately
363 127x larger (including LLaMa-3 and GPT-o4-mini), DLM4G-2.0 remained highly competitive and
364 notably outperformed all of them on the TeKGen dataset. The results are in Table 1

365 **Semantic Evaluation:** To move beyond traditional surface-level metrics and gain a deeper semantic
366 understanding, we also performed experiments using embedding-based metrics. For this analysis, we
367 compare our model against the best-performing autoregressive baselines using the MAUVE score
368 and BERTScore F1. The results of this comparison are detailed in Table 2.

369 Table 2: DLM4G across embedding based metrics.
370

Dataset	Metric	T5 (L) # Finetune	GPT-o4-mini # Zero-shot	DLM4G-2.0 # Pretrain	%Gain
WikiOfGraph	MVE	0.980	0.983	0.981	+0.0%
	B-F1	0.926	0.960	0.963	+0.0%
GenWiki	MVE	0.852	0.811	0.892	+4.7%
	B-F1	0.812	0.865	0.899	+3.9%
TekGEN	MVE	0.803	0.751	0.820	+2.1%
	B-F1	0.789	0.652	0.847	+7.3%

371 **Analysis of Results:** Table 2 shows that
372 DLM4G-2.0 achieves a SoTA performance
373 on the GenWiki and TekGEN datasets. The
374 most significant improvements are on the
375 TekGEN dataset, where our model shows
376 a +7.3% gain in BERTScore F1 over the
377 next best model. Similarly, on GenWiki,
378 DLM4G-2.0 improves the SOTA by +4.7%
379 on the MAUVE score. On the WikiOf-
380 Graph, our model achieves the highest
381 BERTScore F1.

378 These results demonstrate that DLM4G-2.0 , as a compact pre-trained model, generates semantically
 379 rich output that moves beyond simple n-gram matching metrics.

380 **Primary Finding:** A key takeaway from these results is that a graph-aware pre-training strategy can
 381 enable compact models to match, or even surpass, the performance of much larger task-specific and
 382 general-purpose LLMs. Finally, to complete our evaluation, we benchmark DLM4G against other
 383 state-of-the-art (SOTA) models designed specifically for this task.

384 **SoTA Benchmarking:** The results in the Table 3 confirm that DLM4G-2.0 consistently outperforms
 385 specialized baselines. On the TekGEN dataset, our model establishes a new SOTA on all five metrics,
 386 with performance gains reaching as high as +96.2% on METEOR. The results are similarly strong
 387 on GenWiki, where DLM4G-2.0 sets a new SOTA on four of the five metrics and nearly matching
 388 the baseline’s performance on the final one. Its robust performance across both surface-level and
 389 embedding-based metrics highlights the model’s ability to generate text that is both lexically accurate
 390 and semantically coherent.

391 **Diffusion Baselines:** Finally, we evaluate DLM4G against other diffusion-based text generation
 392 models (Table 4). Despite being nearly $1.5 \times$ smaller than the strongest baseline (91M vs. 63M),
 393 DLM4G-2.0 demonstrates superior efficiency, consistently outperforming all baselines across every
 394 dataset and metric.

394 Table 3: Performance of DLM4G compared with baselines on (a) GenWiki and (b) TekGEN.

Baselines	GenWiki					Baselines	TekGEN				
	B	CrF++	M	B-F1	MVE		B	CrF++	M	B-F1	MVE
Rule-Based	0.219	0.360	0.397	0.679	0.822	Rule-based	0.189	0.309	0.301	0.509	0.672
Direct-Transfer	0.234	0.483	0.332	0.808	0.801	ReGen-SCST	0.219	0.385	0.223	0.698	0.719
Noisy-Sup.	0.384	0.623	0.414	0.878	0.901	ReGen-CE	0.199	0.372	0.214	0.612	0.701
DLM4G-1.0	0.401	0.663	0.527	0.857	0.841	DLM4G-1.0	0.247	0.493	0.375	0.795	0.781
DLM4G-2.0	0.469	0.748	0.574	0.899	0.892	DLM4G-2.0	0.253	0.522	0.414	0.847	0.820
%Gain	+22.1%	+20.0%	+38.6%	+2.4%	0.0%	%Gain	+10.9%	+41.1%	+96.2%	+21.3%	+14.0%

404 Table 4: Performance of DLM4G compared with diffusion baselines.

Model	#P	WikiOFG				GenWiki				TekGEN			
		B	M	B-F1	MVE	B	M	B-F1	MVE	B	M	B-F1	MVE
<i># Diffusion</i>													
FlowSeq	91M	0.488	0.508	0.901	0.830	0.133	0.387	0.855	0.672	0.091	0.223	0.673	0.409
DiffuSeq	91M	0.628	0.619	0.923	0.942	0.432	0.523	0.861	0.717	0.154	0.198	0.797	0.725
SeqDiffuSeq	50M	0.616	0.649	0.923	0.947	0.432	0.503	0.857	0.759	0.154	0.396	0.835	0.791
<i># Pretrain</i>													
DLM4G-1.0	50M	0.619	0.688	0.914	0.957	0.401	0.527	0.837	0.822	0.247	0.375	0.823	0.811
DLM4G-2.0	63M	0.654	0.791	0.963	0.981	0.469	0.574	0.899	0.892	0.253	0.414	0.847	0.820
%Gain	x1.5↑	+4.1%	+14.9%	+4.3%	+2.5%	+8.5%	+8.9%	+4.4%	+8.5%	+2.4%	+10.4%	+2.9%	+1.1%

4.3 FACTUAL GROUNDING AND EDIT SENSITIVITY

415 While the results on established metrics in Section 4.2 demonstrate our model’s fluency, these
 416 scores are often insufficient for capturing the critical demands of G2S tasks: factual grounding to
 417 the source graph and sensitivity to its edits. To address this evaluation gap, we now introduce two
 418 novel, task-grounded metrics. To ensure a fair and direct comparison against the baseline results, we
 419 conduct this analysis on the WikiOFG dataset.

420 **Setup and Notations:** For the input KG ($\tilde{\mathcal{G}}$), we extract distinct entities as $\mathcal{U}_{\tilde{\mathcal{G}}} = \{h_i, t_j \mid$
 421 $(h_i, r_{ij}, t_j) \in \tilde{\mathcal{G}}\}$. For the corresponding generated sequence \mathbf{S} , we represent the extracted entities
 422 as $\mathcal{U}_{\mathbf{S}} = \{u \mid u \in \mathbf{S}\}$. Additionally, we maintain a hallucination set for the output: entities
 423 in \mathbf{S} that are not members of $\mathcal{U}_{\tilde{\mathcal{G}}}$ constitute $\mathcal{H}_{\mathbf{S}}$ (with sequence length $N = |\mathbf{S}|$). For the entity and
 424 relation extraction, we use the alignment module discussed previously in section 3.3.

425 **Factual Grounding Metric (FGT, ↑):** FGT measures how precisely the output realizes graph entities,
 426 with an optional penalty for out-of-graph mentions. We define Factual Grounding Metric (FGT) as:

$$\mathcal{F}_{\text{GT}}(\tilde{\mathcal{G}}, \mathbf{S}) = \underbrace{\frac{2|\mathcal{U}_{\tilde{\mathcal{G}}} \cap \mathcal{U}_{\mathbf{S}}|}{|\mathcal{U}_{\tilde{\mathcal{G}}}| + |\mathcal{U}_{\mathbf{S}}|}}_{\text{F1}} \left(1 - \lambda \frac{|\mathcal{H}_{\mathbf{S}}|}{N}\right). \quad (8)$$

431 We report results for $\lambda \in \{0, 0.5, 1\}$ and use $\lambda = 0.5$ by default, to balance the penalty term.

432 **Edit Sensitivity Rate (ESR, ↑):** ESR is a precision focused metric. It evaluates whether the edits

in graph are realized in its generated sequence. Consider an original pair $(\tilde{\mathcal{G}}, \mathbf{S})$ and an edited pair $(\tilde{\mathcal{G}}', \mathbf{S}')$. We build $\mathcal{U}_{\tilde{\mathcal{G}}}, \mathcal{U}_{\tilde{\mathcal{G}}'}, \mathcal{U}_{\mathbf{S}}, \mathcal{U}_{\mathbf{S}'}$ as we do in FGT. The graph and text edits (e.g., additions or deletions) are defined as: $\Delta\mathcal{G} = (\mathcal{U}_{\tilde{\mathcal{G}}'} \setminus \mathcal{U}_{\tilde{\mathcal{G}}}) \cup (\mathcal{U}_{\tilde{\mathcal{G}}} \setminus \mathcal{U}_{\tilde{\mathcal{G}}'})$ and $\Delta\mathcal{T} = (\mathcal{U}_{\mathbf{S}'} \setminus \mathcal{U}_{\mathbf{S}}) \cup (\mathcal{U}_{\mathbf{S}} \setminus \mathcal{U}_{\mathbf{S}'})$. We define Edit Sensitivity Rate (ESR) as:

$$\mathcal{E}_{\text{SR}}(\tilde{\mathcal{G}}, \mathbf{S}) = \frac{|\Delta\mathcal{G} \cap \Delta\mathcal{T}|}{|\Delta\mathcal{T}|}, \quad (9)$$

If the text does not change ($|\Delta\mathcal{T}| = 0$), set $\text{ESR} = 1$ when the graph also does not change ($|\Delta\mathcal{G}| = 0$) and $\text{ESR} = 0$ when the graph does change ($|\Delta\mathcal{G}| > 0$).

To evaluate FGT and ESR, we create edited graphs by randomly substituting a single entity with a plausible alternative from the vocabulary. We then measure whether the output text accurately reflects this specific modification. We compare DLM4G with comparably-size G2S models finetuned on the same task, and report FGT@{0, 0.5, 1} and ESR.

Table 5: Performance of DLM4G on Factual Grounding (FGT) and Edit Sensitivity (ESR).

Model	Recall	F1	$ \mathcal{H}_{\mathbf{S}} $	FGT@ $\lambda=0$	FGT@ $\lambda=0.5$	FGT@ $\lambda=1.0$	ESR
<i># PLM baselines</i>							
GPT-2 (B)	0.60	0.65	2.95	0.65	0.59	0.53	0.46
T5 (S)	0.58	0.62	3.10	0.62	0.56	0.50	0.42
T5 (L)	0.81	0.83	1.54	0.83	0.79	0.75	0.63
DLM4G-1.0	0.80	0.79	2.03	0.79	0.74	0.70	0.60
DLM4G-2.0	0.82	0.86	1.08	0.86	0.83	0.80	0.68
% Gain (vs. T5-L)	+1.23%	+3.61%	29.8%	+3.61%	+5.16%	+5.33%	+7.9%

Primary Findings: Table 5, micro-averaged across 100 edited examples, highlights two key trends. *First*, among the baselines, T5-Large is the strongest, achieving the lowest hallucination rate (1.54 entities/sequence) and the best overall scores (FGT@0 of 0.83, FGT@0.5 of 0.79 and ESR of 0.63). *Second*, DLM4G-2.0 consistently outperforms all baselines, improving upon T5-Large’s recall (0.82 vs. 0.81) while reducing hallucinations by nearly 30% to a new low of 1.08 entities per sequence. Consequently, it achieves significant gains on our proposed metrics, improving the FGT score by +4.7% and the ESR score by +7.9%.

4.4 ABLATION

In this section we perform an ablation study to verify the impact of our graph-aware noise scheduling strategy and the choice of mapping function.

Graph-aware schedule: Table 6 compares the standard *sqrt* schedule against our proposed Graph-aware schedule. First, we observe that applying the Graph-aware schedule to *all* tokens yields an improvement (+0.03 BLEU). When we apply the Graph-aware schedule selectively to the graph-aligned tokens (\mathcal{A}) while keeping the standard schedule for others, performance improves significantly to **0.65 BLEU**. This suggests that the benefit comes not just from the schedule itself, but also from differentiating the noise profile of factual entities with syntactic text.

Mapping Function: We select the linear mapping primarily for its simplicity and ease of implementation. The impact of this design is visualized in Fig 3. As shown in Figure 3L, our adaptive schedule assigns a token-level noise schedule $\bar{\alpha}_t^i$ compared to the global *sqrt* baseline. As seen by contrasting the loss profiles of syntactic tokens (Fig 3M) and factual tokens (Fig 3R), factual entities exhibit higher reconstruction difficulty but, under our graph-aware schedule, their loss evolves in a smooth, approximately linear over time. This stabilized, monotone difficulty profile keeps factual tokens informative throughout the trajectory and allows the denoiser to recover them more faithfully. While we also explored exponential, cosine, and polynomial mappings (Table 6), we found they offered no performance benefit. Detailed comparisons of these alternatives are in App. A.7.

Table 6: Ablation of DLM4G noise schedules and mapping function $\Psi_i(x)$.

DLM4G	Tokens	$\Psi_i(x)$	B
<i>sqrt</i> (baseline)	All	linear	0.60
Graph-aware	All	linear	0.63
Graph-aware	\mathcal{A}	linear	0.65
Graph-aware	\mathcal{A}	poly	0.61
Graph-aware	\mathcal{A}	cosine	0.62

Figure 3: (Left) Noise schedule corresponding to alignment set $i \in \mathcal{A}$ (position 10, 25,.., 60) compared against sqrt schedule for $i \notin \mathcal{A}$ (position 3, 29,.., 63); (Mid) The loss profile across time steps ($t = 0 \rightarrow T$) for the syntactic tokens (Right) The loss profile across time steps ($t = 0 \rightarrow T$) for the factual tokens.

4.5 DLM4G FOR MOLECULE CAPTIONING

DLM4G has demonstrated strong performance in fluency (Section 4.2) and factual grounding (Section 4.3). We now test its generalization to a complex, real-world application by applying it to molecule captioning—a challenging Graph-to-Sequence task from the scientific domain. This benchmark evaluates whether our model’s efficient, graph-aware design can outperform larger, specialized models in a completely different field, demonstrating its practical utility

Dataset and Graph representation: We use a subset of the M3-20M dataset Guo et al. (2025) containing 360,000 SMILES-description pairs, which we split 80/10/10 for training, validation, and testing. To process this data, we convert each SMILES string into a knowledge graph $\tilde{\mathcal{G}}$, where the molecule’s atoms are treated as entities (nodes) and the chemical bonds between them are the relations (edges). This allows our model to directly interpret the molecule’s topology.

Results: First we analyze the scaling effect within the DLM4G variants. As shown in Fig 7, the larger DLM4G-2.0 (63M parameters) consistently outperforms the DLM4G-1.0 version (50M). It achieves a +6.1% improvement in BLEU, a +2.6% gain in chrF++, and a significant +11.7% increase in METEOR. This validates our scaling approach and establishes DLM4G-2.0 as our best model.

More importantly, DLM4G-2.0 achieves a new state-of-the-art result against all specialized baselines. The detailed analysis beside the table 7 highlights the specific performance gains and the model’s remarkable parameter efficiency. Refer Appendix A.9 for more details.

Table 7: Comparison of our DLM4G models against baselines.

Method	#P	B	CrF++	M	B-F1	MVE
MolT5 (B)	220M	0.452	0.651	0.510	0.681	0.852
GitMol	700M	0.475	0.680	0.532	0.751	0.875
GraphT5	272M	0.481	0.692	0.545	0.810	0.913
DLM4G-1.0	50M	0.534	0.715	0.560	0.816	0.901
DLM4G-2.0	63M	0.567	0.734	0.626	0.843	0.925
%Gain	x12↑	+17.8%	+6.1%	+14.8%	+4.1%	+1.3%

Analysis of Results: Our DLM4G-2.0 model outperforms all baselines across every metric. It demonstrates strong performance on surface-level scores, achieving a BLEU of 0.567 (a +17.8% gain over the best baseline), and also leads on semantic metrics with a BERTScore-F1 of 0.843. Crucially, it delivers these results while being 4x to 11x smaller than the baselines.

5 CONCLUSION AND LIMITATIONS

We presented DLM4G, a graph-conditioned, non-autoregressive diffusion framework for graph-to-sequence generation that targets two persistent failures of PLMs—factual grounding and edit sensitivity. Our approach learns a graph-aware noising schedule that prioritizes graph-aligned tokens during training, and at inference combines this schedule with cross-attention to the graph to guide denoising. Across standard surface and embedding metrics, DLM4G surpasses strong baselines; on two task-grounded metrics, it outperforms comparably sized models. Extending to molecule captioning further demonstrates generality. While promising, DLM4G introduces diffusion-time costs and relies on entity alignment quality and operates on a fixed, dataset-defined linearization of the input KG. As a result, the model is not permutation invariant and may in principle be sensitive to alternative serialization schemes. Future work will reduce sampling steps, relax alignment dependence, and explore structure-aware encoding.

540 REFERENCES
541

542 Oshin Agarwal, Heming Ge, Siamak Shakeri, and Rami Al-Rfou. Knowledge graph based synthetic
543 corpus generation for knowledge-enhanced language model pre-training. In Kristina Toutanova,
544 Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cot-
545 terrell, Tanmoy Chakraborty, and Yichao Zhou (eds.), *Proceedings of the 2021 Conference of*
546 *the North American Chapter of the Association for Computational Linguistics: Human Lan-*
547 *guage Technologies*, pp. 3554–3565, Online, June 2021. Association for Computational Linguis-
548 *tics*. doi: 10.18653/v1/2021.nacl-main.278. URL <https://aclanthology.org/2021.nacl-main.278/>.

549

550 Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with improved
551 correlation with human judgments. In *Proceedings of the ACL Workshop on Intrinsic and Extrinsic*
552 *Evaluation Measures for Machine Translation and/or Summarization*, pp. 65–72, Ann Arbor, MI,
553 2005. Association for Computational Linguistics.

554 Daniel Beck, Gholamreza Haffari, and Trevor Cohn. Graph-to-sequence learning using gated
555 graph neural networks. In Iryna Gurevych and Yusuke Miyao (eds.), *Proceedings of the 56th*
556 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
557 273–283, Melbourne, Australia, July 2018. Association for Computational Linguistics. doi:
558 10.18653/v1/P18-1026. URL <https://aclanthology.org/P18-1026/>.

559

560 Mitchell Black, Zhengchao Wan, Gal Mishne, Amir Nayyeri, and Yusu Wang. Comparing graph
561 transformers via positional encodings. In *Proceedings of the 41st International Conference on*
562 *Machine Learning*, ICML’24. JMLR.org, 2024.

563 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
564 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
565 few-shot learners. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 33,
566 pp. 1877–1901, 2020.

567 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pinto, Jared Kaplan, Harri Edwards,
568 Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models trained on
569 code. *arXiv preprint arXiv:2107.03374*, 2021a.

570

571 Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William Chan. Wave-
572 grad: Estimating gradients for waveform generation. In *International Conference on Learning*
573 *Representations*, 2021b. URL <https://openreview.net/forum?id=NsMLjcFaO8O>.

574 Ting Chen, Ruixiang ZHANG, and Geoffrey Hinton. Analog bits: Generating discrete data using
575 diffusion models with self-conditioning. In *The Eleventh International Conference on Learning*
576 *Representations*, 2023. URL <https://openreview.net/forum?id=3itjR9QxFw>.

577

578 Yunyen Chuang, Hung-Min Hsu, Kevin Lin, Chen-Sheng Gu, Ling Zhen Li, Ray-I Chang, and
579 Hung yi Lee. Meta-diffu\$b\$: A contextualized sequence-to-sequence text diffusion model with
580 meta-exploration. In *The Thirty-eighth Annual Conference on Neural Information Processing*
581 *Systems*, 2024. URL <https://openreview.net/forum?id=NTWXVvIXJM>.

582 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
583 deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran,
584 and Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter*
585 *of the Association for Computational Linguistics: Human Language Technologies, Volume 1*
586 *(Long and Short Papers)*, pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for
587 Computational Linguistics. doi: 10.18653/v1/N19-1423. URL <https://aclanthology.org/N19-1423/>.

588

589 Jiayu Ding, Zhangkai Zheng, Benshuo Lin, Yun Xue, and Yiping Song. MSG-LLM: A multi-
590 scale interactive framework for graph-enhanced large language models. In Owen Rambow, Leo
591 Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert
592 (eds.), *Proceedings of the 31st International Conference on Computational Linguistics*, pp. 9687–
593 9700, Abu Dhabi, UAE, January 2025. Association for Computational Linguistics. URL <https://aclanthology.org/2025.coling-main.648/>.

594 Yifan Ding, Amrit Poudel, Qingkai Zeng, Tim Weninger, Balaji Veeramani, and Sanmitra Bhat-
 595 tacharya. Entgpt: Linking generative large language models with knowledge bases. *arXiv preprint*
 596 *arXiv:2402.06738*, 2024. URL <https://arxiv.org/abs/2402.06738>.

597 Pierre Dognin, Inkit Padhi, Igor Melnyk, and Payel Das. ReGen: Reinforcement learning for text and
 598 knowledge base generation using pretrained language models. In Marie-Francine Moens, Xuanjing
 599 Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), *Proceedings of the 2021 Conference on Empirical
 600 Methods in Natural Language Processing*, pp. 1084–1099, Online and Punta Cana, Dominican
 601 Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
 602 emnlp-main.83. URL <https://aclanthology.org/2021.emnlp-main.83/>.

603 Carl Edwards, Tuan Lai, Kevin Ros, Garrett Honke, Kyunghyun Cho, and Heng Ji. Translation
 604 between molecules and natural language. *arXiv preprint arXiv:2204.11817*, 2022.

605 Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
 606 networks for social recommendation. In *The world wide web conference*, pp. 417–426, 2019.

607 Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for large
 608 language models. In *The Twelfth International Conference on Learning Representations*, 2024.
 609 URL <https://openreview.net/forum?id=IuXR1CCrSi>.

610 Shanshan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. Diffuseq: Sequence
 611 to sequence text generation with diffusion models, 2023. URL <https://arxiv.org/abs/2210.08933>.

612 Shanshan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An, Peilin
 613 Zhao, Wei Bi, Jiawei Han, Hao Peng, and Lingpeng Kong. Scaling diffusion language models via
 614 adaptation from autoregressive models. In *The Thirteenth International Conference on Learning
 615 Representations*, 2025. URL <https://openreview.net/forum?id=j1tSLYKwg8>.

616 Qipeng Guo, Zhijing Jin, Xipeng Qiu, Weinan Zhang, David Wipf, and Zheng Zhang. CycleGT: Un-
 617 supervised graph-to-text and text-to-graph generation via cycle training. In Thiago Castro Ferreira,
 618 Claire Gardent, Nikolai Ilinykh, Chris van der Lee, Simon Mille, Diego Moussallem, and Anastasia
 619 Shimorina (eds.), *Proceedings of the 3rd International Workshop on Natural Language Generation
 620 from the Semantic Web (WebNLG+)*, pp. 77–88, Dublin, Ireland (Virtual), 12 2020. Association for
 621 Computational Linguistics. URL <https://aclanthology.org/2020.webnlg-1.8/>.

622 Siyuan Guo, Lexuan Wang, Chang Jin, Jinxian Wang, Han Peng, Huayang Shi, Wengen Li, Jihong
 623 Guan, and Shuigeng Zhou. M³-20m: A large-scale multi-modal molecule dataset for ai-driven
 624 drug design and discovery, 2025. URL <https://arxiv.org/abs/2412.06847>.

625 Jiuzhou Han and Ehsan Shareghi. Self-supervised graph masking pre-training for graph-to-text gener-
 626 ation. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Confer-
 627 ence on Empirical Methods in Natural Language Processing*, pp. 4845–4853, Abu Dhabi, United
 628 Arab Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/
 629 2022.emnlp-main.321. URL <https://aclanthology.org/2022.emnlp-main.321/>.

630 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023. URL <https://arxiv.org/abs/1606.08415>.

631 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020. URL
 632 <https://arxiv.org/abs/2006.11239>.

633 Yu-Guan Hsieh, Cheng-Yu Hsieh, Shih-Ying Yeh, Louis Béthune, Hadi Pour Ansari, Pavan Ku-
 634 mar Anasosalu Vasu, Chun-Liang Li, Ranjay Krishna, Oncel Tuzel, and Marco Cuturi. Graph-
 635 based captioning: Enhancing visual descriptions by interconnecting region captions, 2025. URL
 636 <https://arxiv.org/abs/2407.06723>.

637 Vincent Hu, Di Wu, Yuki Asano, Pascal Mettes, Basura Fernando, Björn Ommer, and Cees Snoek.
 638 Flow matching for conditional text generation in a few sampling steps. In Yvette Graham and
 639 Matthew Purver (eds.), *Proceedings of the 18th Conference of the European Chapter of the
 640 Association for Computational Linguistics (Volume 2: Short Papers)*, pp. 380–392, St. Julian’s,
 641 Malta, March 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.eacl-short.
 642 33. URL <https://aclanthology.org/2024.eacl-short.33/>.

648 Yinan Huang, William Lu, Joshua Robinson, Yu Yang, Muhan Zhang, Stefanie Jegelka, and Pan
 649 Li. On the stability of expressive positional encodings for graphs. In *The Twelfth International*
 650 *Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=xAqcJ9XoTf>.

651

652 Hayate Iso, Yui Uehara, Tatsuya Ishigaki, Hiroshi Noji, Eiji Aramaki, Ichiro Kobayashi, Yusuke
 653 Miyao, Naoaki Okazaki, and Hiroya Takamura. Learning to select, track, and generate for
 654 data-to-text. In Anna Korhonen, David Traum, and Lluís Màrquez (eds.), *Proceedings of the*
 655 *57th Annual Meeting of the Association for Computational Linguistics*, pp. 2102–2113, Florence,
 656 Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1202. URL
 657 <https://aclanthology.org/P19-1202/>.

658

659 Zhijing Jin, Qipeng Guo, Xipeng Qiu, and Zheng Zhang. GenWiki: A dataset of 1.3 million
 660 content-sharing text and graphs for unsupervised graph-to-text generation. In Donia Scott,
 661 Nuria Bel, and Chengqing Zong (eds.), *Proceedings of the 28th International Conference on*
 662 *Computational Linguistics*, pp. 2398–2409, Barcelona, Spain (Online), December 2020. Interna-
 663 tional Committee on Computational Linguistics. doi: 10.18653/v1/2020.coling-main.217. URL
 664 <https://aclanthology.org/2020.coling-main.217/>.

665

666 Shailza Jolly, Zi Zhang, Andreas Dengel, and Lili Mou. Search and learn: Improving semantic
 667 coverage for data-to-text generation, 12 2021.

668

669 Zdeněk Kasner and Ondrej Dusek. Neural pipeline for zero-shot data-to-text generation. In Smaranda
 670 Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Proceedings of the 60th Annual Meeting*
 671 *of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 3914–3932, Dublin,
 672 Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.
 673 271. URL <https://aclanthology.org/2022.acl-long.271/>.

674

675 Daehee Kim, Deokhyung Kang, Sangwon Ryu, and Gary Geunbae Lee. Ontology-free general-
 676 domain knowledge graph-to-text generation dataset synthesis using large language model, 2024.
 677 URL <https://arxiv.org/abs/2409.07088>.

678

679 Sangyeup Kim, Nayeon Kim, Yinhua Piao, and Sun Kim. Graph5: Unified molecular graph-
 680 language modeling via multi-modal cross-token attention, 2025. URL <https://arxiv.org/abs/2503.07655>.

681

682 Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan, Mirella Lapata, and Hannaneh Hajishirzi. Text
 683 Generation from Knowledge Graphs with Graph Transformers. In Jill Burstein, Christy Doran,
 684 and Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter*
 685 *of the Association for Computational Linguistics: Human Language Technologies, Volume 1*
 686 *(Long and Short Papers)*, pp. 2284–2293, Minneapolis, Minnesota, June 2019. Association for
 687 Computational Linguistics. doi: 10.18653/v1/N19-1238. URL <https://aclanthology.org/N19-1238/>.

688

689 Jiatong Li, Yunqing Liu, Wenqi Fan, Xiao-Yong Wei, Hui Liu, Jiliang Tang, and Qing Li. Em-
 690 powering molecule discovery for molecule-caption translation with large language models:
 691 A chatgpt perspective. *IEEE Transactions on Knowledge and Data Engineering*, 36(11):
 692 6071–6083, November 2024a. ISSN 2326-3865. doi: 10.1109/TKDE.2024.3393356. URL
 693 <http://dx.doi.org/10.1109/TKDE.2024.3393356>.

694

695 Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori B. Hashimoto. Diffusion-
 696 lm improves controllable text generation, 2022. URL <https://arxiv.org/abs/2205.14217>.

697

698 Yang Li, Xiaodong Chen, Wen Zhao, and Yifan Liu. Deepseek: A 7b-parameter llm for cross-modal
 699 retrieval. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*
 700 *(CVPR) Workshops*, 2024b.

701

702 Yifan Li, Kun Zhou, Wayne Xin Zhao, and Ji-Rong Wen. Diffusion models for non-autoregressive
 703 text generation: a survey. In *Proceedings of the Thirty-Second International Joint Conference on*
 704 *Artificial Intelligence*, IJCAI '23, 2023. ISBN 978-1-956792-03-4. doi: 10.24963/ijcai.2023/750.
 705 URL <https://doi.org/10.24963/ijcai.2023/750>.

702 Chu-Cheng Lin, Aaron Jaech, Xin Li, Matthew R. Gormley, and Jason Eisner. Limitations of
 703 autoregressive models and their alternatives. In Kristina Toutanova, Anna Rumshisky, Luke
 704 Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty,
 705 and Yichao Zhou (eds.), *Proceedings of the 2021 Conference of the North American Chapter of
 706 the Association for Computational Linguistics: Human Language Technologies*, pp. 5147–5173,
 707 Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.
 708 405. URL <https://aclanthology.org/2021.naacl-main.405/>.

709 Pengfei Liu, Yiming Ren, Jun Tao, and Zhixiang Ren. Git-mol: A multi-modal large language model
 710 for molecular science with graph, image, and text. *Computers in Biology and Medicine*, 171:108073,
 711 2024a. ISSN 0010-4825. doi: <https://doi.org/10.1016/j.combiomed.2024.108073>. URL <https://www.sciencedirect.com/science/article/pii/S0010482524001574>.

712 Xukai Liu, Ye Liu, Kai Zhang, Kehang Wang, Qi Liu, and Enhong Chen. Onenet: A fine-tuning
 713 free framework for few-shot entity linking via large language model prompting. *arXiv preprint
 714 arXiv:2410.07549*, 2024b. URL <https://arxiv.org/abs/2410.07549>.

715 Haitong Luo, Xuying Meng, Suhang Wang, Tianxiang Zhao, Fali Wang, Hanyun Cao, and Yujun
 716 Zhang. Enhance graph alignment for large language models, 2024. URL <https://arxiv.org/abs/2410.11370>.

717 Manuel Mager, Ramón Fernandez Astudillo, Tahira Naseem, Md Arafat Sultan, Young-Suk Lee,
 718 Radu Florian, and Salim Roukos. GPT-too: A language-model-first approach for AMR-to-text
 719 generation. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), *Proceedings of
 720 the 58th Annual Meeting of the Association for Computational Linguistics*, pp. 1846–1852, Online,
 721 July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.167. URL
 722 <https://aclanthology.org/2020.acl-main.167/>.

723 Ali Mousavi, Xin Zhan, He Bai, Peng Shi, Theodoros Rekatsinas, Benjamin Han, Yunyao Li, Jeffrey
 724 Pound, Joshua M. Susskind, Natalie Schluter, Ihab F. Ilyas, and Navdeep Jaitly. Construction
 725 of paired knowledge graph - text datasets informed by cyclic evaluation. In Nicoletta Calzolari,
 726 Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.),
 727 *Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language
 728 Resources and Evaluation (LREC-COLING 2024)*, pp. 3782–3803, Torino, Italia, May 2024. ELRA
 729 and ICCL. URL <https://aclanthology.org/2024.lrec-main.335/>.

730 Alex Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models, 2021. URL
 731 <https://arxiv.org/abs/2102.09672>.

732 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
 733 evaluation of machine translation. In *Proceedings of the 40th Annual Meeting of the Association for
 734 Computational Linguistics*, pp. 311–318, Philadelphia, PA, 2002. Association for Computational
 735 Linguistics.

736 Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsitsulin, Mehran Kazemi, Rami Al-Rfou, and
 737 Jonathan Halcrow. Let your graph do the talking: Encoding structured data for llms, 2024. URL
 738 <https://arxiv.org/abs/2402.05862>.

739 Krishna Pillutla, Lang Liu, John Thickstun, Sean Welleck, Swabha Swayamdipta, Rowan Zellers,
 740 Sewoong Oh, Yejin Choi, and Zaid Harchaoui. Mauve scores for generative models: Theory and
 741 practice, 2023. URL <https://arxiv.org/abs/2212.14578>.

742 Maja Popović. chrF: character n-gram F-score for automatic MT evaluation. In Ondřej Bojar,
 743 Rajan Chatterjee, Christian Federmann, Barry Haddow, Chris Hokamp, Matthias Huck, Varvara
 744 Logacheva, and Pavel Pecina (eds.), *Proceedings of the Tenth Workshop on Statistical Machine
 745 Translation*, pp. 392–395, Lisbon, Portugal, September 2015. Association for Computational Lin-
 746 guistics. doi: 10.18653/v1/W15-3049. URL <https://aclanthology.org/W15-3049/>.

747 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 748 Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
 749 transformer. *Journal of Machine Learning Research*, 21(140):1–67, 2020.

756 Leonardo F. R. Ribeiro, Claire Gardent, and Iryna Gurevych. Enhancing AMR-to-text generation
 757 with dual graph representations. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.),
 758 *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and*
 759 *the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pp.
 760 3183–3194, Hong Kong, China, November 2019. Association for Computational Linguistics. doi:
 761 10.18653/v1/D19-1314. URL <https://aclanthology.org/D19-1314/>.

762 Leonardo F. R. Ribeiro, Yue Zhang, Claire Gardent, and Iryna Gurevych. Modeling global and
 763 local node contexts for text generation from knowledge graphs. *Transactions of the Association*
 764 *for Computational Linguistics*, 8:589–604, 2020. doi: 10.1162/tacl_a_00332. URL <https://aclanthology.org/2020.tacl-1.38/>.

766 Leonardo F. R. Ribeiro, Martin Schmitt, Hinrich Schütze, and Iryna Gurevych. Investigating
 767 pretrained language models for graph-to-text generation. In Alexandros Papangelis, Paweł
 768 Budzianowski, Bing Liu, Elnaz Nouri, Abhinav Rastogi, and Yun-Nung Chen (eds.), *Proceedings*
 769 *of the 3rd Workshop on Natural Language Processing for Conversational AI*, pp. 211–227, Online,
 770 November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.nlp4convai-1.
 771 20. URL <https://aclanthology.org/2021.nlp4convai-1.20/>.

772 Subham Sekhar Sahoo, Marianne Arriola, Aaron Gokaslan, Edgar Mariano Marroquin, Alexander M
 773 Rush, Yair Schiff, Justin T Chiu, and Volodymyr Kuleshov. Simple and effective masked diffusion
 774 language models. In *The Thirty-eighth Annual Conference on Neural Information Processing*
 775 *Systems*, 2024. URL <https://openreview.net/forum?id=L4uaAR4ArM>.

777 Martin Schmitt, Sahand Sharifzadeh, Volker Tresp, and Hinrich Schütze. An unsupervised joint
 778 system for text generation from knowledge graphs and semantic parsing. In Bonnie Webber,
 779 Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the 2020 Conference on Empirical*
 780 *Methods in Natural Language Processing (EMNLP)*, pp. 7117–7130, Online, November 2020.
 781 Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.577. URL <https://aclanthology.org/2020.emnlp-main.577/>.

783 Martin Schmitt, Leonardo F. R. Ribeiro, Philipp Dufter, Iryna Gurevych, and Hinrich Schütze.
 784 Modeling graph structure via relative position for text generation from knowledge graphs. In
 785 Alexander Panchenko, Fragkiskos D. Malliaros, Varvara Logacheva, Abhik Jana, Dmitry Ustalov,
 786 and Peter Jansen (eds.), *Proceedings of the Fifteenth Workshop on Graph-Based Methods for*
 787 *Natural Language Processing (TextGraphs-15)*, pp. 10–21, Mexico City, Mexico, June 2021.
 788 Association for Computational Linguistics. doi: 10.18653/v1/2021.textgraphs-1.2. URL <https://aclanthology.org/2021.textgraphs-1.2/>.

790 Konstantinos Skianis, Giannis Nikolentzos, and Michalis Vazirgiannis. Graph reasoning with large
 791 language models via pseudo-code prompting, 2024. URL <https://arxiv.org/abs/2409.17906>.

793 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 794 learning using nonequilibrium thermodynamics. In Francis Bach and David Blei (eds.), *Proceedings*
 795 *of the 32nd International Conference on Machine Learning*, volume 37 of *Proceedings of Machine*
 796 *Learning Research*, pp. 2256–2265, Lille, France, 07–09 Jul 2015. PMLR. URL <https://proceedings.mlr.press/v37/sohl-dickstein15.html>.

798 Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel Gildea. A graph-to-sequence model for
 799 AMR-to-text generation. In Iryna Gurevych and Yusuke Miyao (eds.), *Proceedings of the 56th*
 800 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 801 1616–1626, Melbourne, Australia, July 2018. Association for Computational Linguistics. doi:
 802 10.18653/v1/P18-1150. URL <https://aclanthology.org/P18-1150/>.

803 Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. CSDI: conditional score-based
 804 diffusion models for probabilistic time series imputation. In *Proceedings of the 35th International*
 805 *Conference on Neural Information Processing Systems*, NIPS ’21, Red Hook, NY, USA, 2021.
 806 Curran Associates Inc. ISBN 9781713845393.

808 Hugo Touvron, Louis Liu, Haoxin Fan, Urvashi Khandelwal, Christine Cai, Samuel Thomson, Xiaoyi
 809 Jia, Abdoulaye Lasri, Michihiro Yasunaga, Zhengbao Li, et al. Llama-3: Advancing open-source
 llms with zero-shot and multilingual capabilities. *arXiv preprint arXiv:2311.12345*, 2023.

810 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
 811 Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL <https://arxiv.org/abs/1706.03762>.

812

813 Martin Vejvar and Yasutaka Fujimoto. ASPIRO: Any-shot structured parsing-error-induced
 814 RePrOmpting for consistent data-to-text generation. In Houda Bouamor, Juan Pino, and
 815 Kalika Bali (eds.), *Findings of the Association for Computational Linguistics: EMNLP*
 816 2023, pp. 3550–3563, Singapore, December 2023. Association for Computational Linguistics.
 817 doi: 10.18653/v1/2023.findings-emnlp.229. URL <https://aclanthology.org/2023.findings-emnlp.229/>.

818

819

820 Siddarth Venkatraman, Moksh Jain, Luca Scimeca, Minsu Kim, Marcin Sendera, Mohsin Hasan,
 821 Luke Rowe, Sarthak Mittal, Pablo Lemos, Emmanuel Bengio, Alexandre Adam, Jarrid Rector-
 822 Brooks, Yoshua Bengio, Glen Berseth, and Nikolay Malkin. Amortizing intractable inference in
 823 diffusion models for vision, language, and control, 2025. URL <https://arxiv.org/abs/2405.20971>.

824

825 Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Jonathan Michael, Felix Hill,
 826 Omer Levy, and Samuel R. Bowman. Benchmarking zero-shot transfer across tasks. In *Proceedings*
 827 *of the 60th Annual Meeting of the Association for Computational Linguistics (ACL)*, pp. 4476–4486,
 828 2022.

829

830 Shanshan Wang, Chun Zhang, and Ning Zhang. Mgsa: Multi-granularity graph structure attention
 831 for knowledge graph-to-text generation, 2024a. URL <https://arxiv.org/abs/2409.10294>.

832

833 Shoujin Wang, Liang Hu, Yan Wang, Xiangnan He, Quan Z. Sheng, Mehmet A. Orgun, Longbing
 834 Cao, Francesco Ricci, and Philip S. Yu. Graph learning based recommender systems: A review,
 835 2021. URL <https://arxiv.org/abs/2105.06339>.

836

837 Xinyou Wang, Zaixiang Zheng, Fei Ye, Dongyu Xue, Shujian Huang, and Quanquan Gu. Diffusion
 838 language models are versatile protein learners. In *Proceedings of the 41st International Conference*
 839 *on Machine Learning*, ICML’24. JMLR.org, 2024b.

840

841 Yaoke Wang, Yun Zhu, Wenqiao Zhang, Yueling Zhuang, Liyunfei Liyunfei, and Siliang Tang.
 842 Bridging local details and global context in text-attributed graphs. In Yaser Al-Onaizan, Mohit
 843 Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods*
 844 *in Natural Language Processing*, pp. 14830–14841, Miami, Florida, USA, November 2024c.
 845 Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.823. URL <https://aclanthology.org/2024.emnlp-main.823/>.

846

847 Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
 848 Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto,
 849 Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large lan-
 850 guage models. *Transactions on Machine Learning Research*, 2022. ISSN 2835-8856. URL
 851 <https://openreview.net/forum?id=yzkSU5zdwD>. Survey Certification.

852

853 Sam Wiseman, Stuart Shieber, and Alexander Rush. Challenges in data-to-document generation. In
 854 Martha Palmer, Rebecca Hwa, and Sebastian Riedel (eds.), *Proceedings of the 2017 Conference*
 855 *on Empirical Methods in Natural Language Processing*, pp. 2253–2263, Copenhagen, Denmark,
 856 September 2017. Association for Computational Linguistics. doi: 10.18653/v1/D17-1239. URL
 857 <https://aclanthology.org/D17-1239/>.

858

859 Sam Wiseman, Stuart Shieber, and Alexander Rush. Learning neural templates for text generation.
 860 In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), *Proceedings of*
 861 *the 2018 Conference on Empirical Methods in Natural Language Processing*, pp. 3174–3187,
 862 Brussels, Belgium, October–November 2018. Association for Computational Linguistics. doi:
 863 10.18653/v1/D18-1356. URL <https://aclanthology.org/D18-1356/>.

864

865 Yike Wu, Nan Hu, Sheng Bi, Guilin Qi, Jie Ren, Anhuan Xie, and Wei Song. Retrieve-rewrite-answer:
 866 A kg-to-text enhanced llms framework for knowledge graph question answering, 2023. URL
 867 <https://arxiv.org/abs/2309.11206>.

864 A. Xin et al. LLM-augmented entity linking (llmael). *arXiv preprint arXiv:2407.04020*, 2024. URL
 865 <https://arxiv.org/abs/2407.04020>.

866

867 Yi Xu, Luoyi Fu, Zhouhan Lin, Jiebing Qi, and Xinbing Wang. Infinity: A simple yet effective
 868 unsupervised framework for graph-text mutual conversion, 2022. URL <https://arxiv.org/abs/2209.10754>.

869

870 Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Fei Huang, and Songfang Huang. Text diffusion model
 871 with encoder-decoder transformers for sequence-to-sequence generation. In Kevin Duh, Helena
 872 Gomez, and Steven Bethard (eds.), *Proceedings of the 2024 Conference of the North American
 873 Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume
 874 1: Long Papers)*, pp. 22–39, Mexico City, Mexico, June 2024. Association for Computational
 875 Linguistics. doi: 10.18653/v1/2024.naacl-long.2. URL <https://aclanthology.org/2024.naacl-long.2/>.

876

877 Urchade Zaratiana, Nadi Tomeh, Pierre Holat, and Thierry Charnois. GLiNER: Generalist model
 878 for named entity recognition using bidirectional transformer. In *Proceedings of the 2024 Confer-
 879 ence of the North American Chapter of the Association for Computational Linguistics: Human
 880 Language Technologies (Volume 1: Long Papers)*, pp. 5364–5376, Mexico City, Mexico, June
 881 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.300. URL
 882 <https://aclanthology.org/2024.naacl-long.300/>.

883

884 Shuiqing Zeng, Xin Huang, Yunchang Wang, and Jun Li. Qwen2.5: Scaling up for code and
 885 knowledge-intensive tasks. *arXiv preprint arXiv:2401.12345*, 2024.

886

887 Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evaluating
 888 text generation with bert, 2020. URL <https://arxiv.org/abs/1904.09675>.

889

890 Tiancheng Zhao, Ran Zhao, and Maxine Eskenazi. Learning discourse-level diversity for neural dia-
 891 log models using conditional variational autoencoders. In Regina Barzilay and Min-Yen Kan (eds.),
 892 *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume
 893 1: Long Papers)*, pp. 654–664, Vancouver, Canada, July 2017. Association for Computational Lin-
 894 guistics. doi: 10.18653/v1/P17-1061. URL <https://aclanthology.org/P17-1061/>.

895

896 Xi Zhu, Haochen Xue, Ziwei Zhao, Wujiang Xu, Jingyuan Huang, Minghao Guo, Qifan Wang,
 897 Kaixiong Zhou, and Yongfeng Zhang. Llm as gnn: Graph vocabulary learning for text-attributed
 898 graph foundation models, 2025. URL <https://arxiv.org/abs/2503.03313>.

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

A APPENDIX

919
 920 This section presents an in-depth discussion of the eleven core components of the manuscript, includ-
 921 ing the principal mathematical derivations, template methods (zero-shot prompting and molecular
 922 captioning), the proposed algorithm pseudo-codes, and detailed implementation aspects. Additionally,
 923 the complete code implementation is available here: [CODE](#)

924
 925

A.1 DERIVATION OF THE TRAINING OBJECTIVE

926 **DLM4G** builds on the standard diffusion framework, which trades the flexibility of expressive genera-
 927 tive models (e.g., GANs, VAEs, flow models) for the tractability of likelihood-based training in a
 928 continuous latent space \mathbf{z} . The overall goal is to minimize the negative log-likelihood
 929

$$930 \mathbb{E}_{\mathbf{z}_0, \mathbf{c}}[-\log p_{\theta}(\mathbf{z}_0 \mid \mathbf{c})], \quad (10)$$

931 which is upper-bounded by the Variational Lower Bound (VLB).
 932

933

A.1.1 FORWARD AND REVERSE PROCESSES

934 The forward Markov chain is defined as $q(\mathbf{z}_{1:T} \mid \mathbf{z}_0) = \prod_{t=1}^T q(\mathbf{z}_t \mid \mathbf{z}_{t-1})$, where each transition is
 935 Gaussian:
 936

$$937 q(\mathbf{z}_t \mid \mathbf{z}_{t-1}) = \mathcal{N}\left(\mathbf{z}_t \mid \sqrt{1 - \beta_t} \mathbf{z}_{t-1}, \beta_t \mathbf{I}\right). \quad (11)$$

938 Let $\alpha_t = 1 - \beta_t$ and $\bar{\alpha}_t = \prod_{i=1}^t \alpha_i$. By induction, the marginal at time t satisfies:
 939

$$940 \mathbf{z}_t = \sqrt{\bar{\alpha}_t} \mathbf{z}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad (12)$$

941 so that $q(\mathbf{z}_t \mid \mathbf{z}_0) = \mathcal{N}\left(\sqrt{\bar{\alpha}_t} \mathbf{z}_0, (1 - \bar{\alpha}_t) \mathbf{I}\right)$. We used the *sqrt* schedule as the baseline schedule
 942 used in DiffusionLM Li et al. (2022), namely $\bar{\alpha}_t = 1 - \sqrt{t/T + s}$ with small $s > 0$. The reverse
 943 denoising process then learns
 944

$$945 p_{\theta}(\mathbf{z}_{0:T}) = p(\mathbf{z}_T) \prod_{t=1}^T p_{\theta}(\mathbf{z}_{t-1} \mid \mathbf{z}_t), \quad p_{\theta}(\mathbf{z}_{t-1} \mid \mathbf{z}_t) = \mathcal{N}(\boldsymbol{\mu}_{\theta}(\mathbf{z}_t, t), \boldsymbol{\sigma}_{\theta}^2(\mathbf{z}_t, t)). \quad (13)$$

946 Applying Bayes' rule to the forward transitions yields the exact posterior mean
 947

$$948 \boldsymbol{\mu}_t(\mathbf{z}_t, \mathbf{z}_0) = \frac{\sqrt{\bar{\alpha}_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{z}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1 - \bar{\alpha}_t} \mathbf{z}_0, \quad (14)$$

949 whose coefficients we denote by \mathcal{U} and \mathcal{E} . **DLM4G**'s training objective is then to match the network's
 950 predicted $\boldsymbol{\mu}_{\theta}, \boldsymbol{\sigma}_{\theta}$ to these posterior quantities via a simple noise-prediction loss. We optimize the
 951 negative log-likelihood by upper-bounding it with the variational lower bound
 952

$$953 \mathbb{E}[-\log p_{\theta}(\mathbf{z}_0)] \leq \mathcal{L}_{\text{vlb}} = \sum_{t=0}^T \mathcal{L}_t. \quad (15)$$

954
 955

A.1.2 VARIATIONAL LOWER BOUND (VLB)

956 Following Sohl-Dickstein et al. (2015), for conditional generation the VLB
 957 decomposes into:
 958

$$959 \mathcal{L}_{\text{vlb}} = \mathbb{E}_{q(\mathbf{z}_{1:T} \mid \mathbf{z}_0)} \left[\underbrace{\log \frac{q(\mathbf{z}_T \mid \mathbf{z}_0)}{p(\mathbf{z}_T)}}_{\mathcal{L}_T} + \sum_{t=2}^T \underbrace{\log \frac{q(\mathbf{z}_{t-1} \mid \mathbf{z}_t, \mathbf{z}_0)}{p_{\theta}(\mathbf{z}_{t-1} \mid \mathbf{z}_t, \mathbf{c})}}_{\mathcal{L}_t} - \underbrace{\log p_{\theta}(\mathbf{z}_0 \mid \mathbf{z}_1, \mathbf{c})}_{\mathcal{L}_0} \right], \quad (16)$$

960 where each \mathcal{L}_t is a KL divergence between Gaussians. The true posterior mean (via Bayes' rule) is:
 961

$$962 \boldsymbol{\mu}_t(\mathbf{z}_t, \mathbf{z}_0) = \underbrace{\frac{\sqrt{\bar{\alpha}_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{z}_t}_{\mathcal{U}} + \underbrace{\frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1 - \bar{\alpha}_t} \mathbf{z}_0}_{\mathcal{E}}, \quad (17)$$

972 with covariance $\Sigma_q = \tilde{\beta}_t \mathbf{I}$, $\tilde{\beta}_t = \frac{1-\bar{\alpha}_{t-1}}{1-\bar{\alpha}_t} \beta_t$. In the standard simplification, the model's covariance is
 973 fixed to match the true posterior covariance $\Sigma_\theta = \Sigma_q$, the KL collapses to a weighted MSE:
 974

$$975 \quad \mathcal{L}_t = \frac{1}{2} \|\boldsymbol{\mu}_t - \boldsymbol{\mu}_\theta\|_{\Sigma_q^{-1}}^2 \propto \mathbb{E} [\|\mathbf{z}_0 - \mathcal{M}_\theta(\mathbf{z}_t, t, \mathbf{c})\|^2]. \quad (18)$$

977 Thus, for $2 \leq t \leq T$, $\mathcal{L}_t \rightarrow \|\mathbf{z}_0 - \mathcal{M}_\theta(\mathbf{z}_t, t, \mathbf{c})\|^2$. The final KL encourages \mathbf{z}_T to match the unit
 978 Gaussian prior:

$$979 \quad \mathcal{L}_T = \text{KL}(q(\mathbf{z}_T \mid \mathbf{z}_0) \parallel p(\mathbf{z}_T)) \propto \|\boldsymbol{\mu}(\mathbf{z}_T)\|^2, \quad (19)$$

980 a constant w.r.t. θ . The discrete target \mathbf{S} (sequence) is encoded into a continuous embedding $g_\Phi(\mathbf{S})$.
 981 The final term in VLB is $\mathcal{L}_0 = -\log p_\theta(\mathbf{z}_0 \mid \mathbf{z}_1, \mathbf{c})$. We need to integrate the discrete data \mathbf{S}
 982 into this continuous likelihood term. We use the law of total probability to express the continuous
 983 likelihood $p_\theta(\mathbf{z}_0 \mid \mathbf{z}_1, \mathbf{c})$ by marginalizing over all possible discrete tokens in the target sequence
 984 $\mathbf{S} = \{s_1, s_2, \dots, s_N\}$:

$$985 \quad p_\theta(\mathbf{z}_0 \mid \mathbf{z}_1, \mathbf{c}) = \sum_{\mathbf{S}} p_\theta(\mathbf{z}_0, \mathbf{S} \mid \mathbf{z}_1, \mathbf{c}) \quad (20)$$

987 We then apply the product rule to the joint probability:

$$989 \quad p_\theta(\mathbf{z}_0, \mathbf{S} \mid \mathbf{z}_1, \mathbf{c}) = p_\theta(\mathbf{z}_0 \mid \mathbf{S}, \mathbf{z}_1, \mathbf{c}) \cdot p_\theta(\mathbf{S} \mid \mathbf{z}_1, \mathbf{c}) \quad (21)$$

990 For training, we are interested in the specific ground-truth sequence \mathbf{S} . When we evaluate \mathcal{L}_0 during
 991 training, we consider only the term where \mathbf{S} is the ground-truth sequence:

$$992 \quad \mathcal{L}_0 \approx -\log p_\theta(\mathbf{z}_0, \mathbf{S} \mid \mathbf{z}_1, \mathbf{c}) = -\log [p_\theta(\mathbf{z}_0 \mid \mathbf{S}, \mathbf{z}_1, \mathbf{c}) \cdot p_\theta(\mathbf{S} \mid \mathbf{z}_1, \mathbf{c})] \quad (22)$$

994 The core approximation simplifies the dependency graph by asserting that the discrete data \mathbf{S} is
 995 generated only from the clean latent \mathbf{z}_0 , and is independent of \mathbf{z}_1 and \mathbf{c} given \mathbf{z}_0 .

$$996 \quad \mathbf{S} \perp (\mathbf{z}_1, \mathbf{c}) \mid \mathbf{z}_0 \quad (23)$$

998 This allows us to replace the discrete conditional likelihood with the separate rounding network
 999 $\tilde{p}_\Phi(\mathbf{S} \mid \mathbf{z}_0)$: $p_\theta(\mathbf{S} \mid \mathbf{z}_1, \mathbf{c}) \approx \tilde{p}_\Phi(\mathbf{S} \mid \mathbf{z}_0)$. Substituting this back into the likelihood decomposition:

$$1000 \quad p_\theta(\mathbf{z}_0, \mathbf{S} \mid \mathbf{z}_1, \mathbf{c}) \approx p_{\text{cont}}(\mathbf{z}_0 \mid \mathbf{S}, \mathbf{z}_1, \mathbf{c}) \cdot \tilde{p}_\Phi(\mathbf{S} \mid \mathbf{z}_0) \quad (24)$$

1001 Taking the negative logarithm of the approximation gives the two desired terms:

$$1004 \quad \mathcal{L}_0 \approx -\log p_{\text{cont}}(\mathbf{z}_0 \mid \mathbf{S}, \mathbf{z}_1, \mathbf{c}) - \log \tilde{p}_\Phi(\mathbf{S} \mid \mathbf{z}_0)$$

1006 This split yields the two components used in the final training objective:

1. **Consistency Term ($\mathcal{L}_{\text{Cons}}$)**: The first term is the negative log-likelihood of the continuous
 1009 latent, which is minimized via the MSE loss on the means: $-\log p_{\text{cont}}(\mathbf{z}_0 \mid \mathbf{S}, \mathbf{z}_1, \mathbf{c}) \rightarrow$
 1010 $\mathcal{L}_{\text{Consistency}} = \|g_\Phi(\mathbf{S}) - \mathcal{M}_\theta(\mathbf{z}_1, 1, \mathbf{c})\|^2$.
2. **Rounding Term ($\mathcal{L}_{\text{Round}}$)**: This second term is the dedicated loss for the discrete data
 1012 likelihood: $\mathcal{L}_{\text{Round}} = -\log \tilde{p}_\Phi(\mathbf{S} \mid \mathbf{z}_0)$

1014 A.1.3 FINAL END-TO-END OBJECTIVE

1016 Combining all components:

$$1018 \quad \mathcal{L}_{\text{vlb}} \propto \sum_{t=2}^T \underbrace{\|\mathbf{z}_0 - \mathcal{M}_\theta(\mathbf{z}_t, t, \mathbf{c})\|^2}_{\text{Denoising}} + \underbrace{\|g_\Phi(\mathbf{S}) - \mathcal{M}_\theta(\mathbf{z}_1, 1, \mathbf{c})\|^2}_{\text{Consistency}} - \underbrace{\log \tilde{p}_\Phi(\mathbf{S} \mid \mathbf{z}_0)}_{\text{Rounding}}. \quad (25)$$

1021 Dropping constant terms, the simplified end-to-end training loss is:

$$1023 \quad \mathcal{L}_{\text{e2e-simple}}(\mathbf{S}) = \mathbb{E}_q \left[\sum_{t=2}^T \underbrace{\|\mathcal{M}_\theta(\mathbf{z}_t, t, \tilde{\mathcal{G}}) - \mathbf{z}_0\|^2}_{\text{Denoising}} + \underbrace{\|g_\Phi(\mathbf{S}) - \mathcal{M}_\theta(\mathbf{z}_1, 1, \tilde{\mathcal{G}})\|^2}_{\text{Consistency}} - \underbrace{\log \tilde{p}_\Phi(\mathbf{S} \mid \mathbf{z}_0)}_{\text{Rounding}} \right] \quad (26)$$

1026
1027

A.2 RELATED WORK AND BACKGROUND

1028
1029
1030
1031
1032
1033
1034
1035

Graph-to-Sequence Learning: *G2S* has evolved through three stages: (i) template-based systems that verbalised graph predicates but were brittle for complex inputs Wiseman et al. (2018); Kasner & Dusek (2022); Vejvar & Fujimoto (2023); (ii) neural encoder–decoder models that learned graph embeddings, improving structural generalisation yet struggling with long-range dependencies Wiseman et al. (2017); Beck et al. (2018); Iso et al. (2019); and (iii) fine-tuned transformers, now dominant, offering superior fluency and factuality with minimal task-specific design Vaswani et al. (2023); Ribeiro et al. (2021); Jolly et al. (2021); Han & Shareghi (2022). This trajectory frames the current *G2S* landscape and motivates subsequent approaches.

1036
1037
1038
1039
1040
1041
1042
1043
1044
1045

PLMs for Graphs: Leveraging LLMs for graph verbalisation involves four challenges: (i) *alignment* of graph elements to words Luo et al. (2024); Zhu et al. (2025), (ii) *position* encoding under permutation invariance Black et al. (2024); Huang et al. (2024); Perozzi et al. (2024), (iii) *multi-level semantics* across nodes, edges, and subgraphs Wang et al. (2024a), and (iv) *context* retention over long spans Ding et al. (2025); Wang et al. (2024c). These define a taxonomy from Graph-to-Sequence (*G2S*) to Graph-to-Token (*G2T*) methods. Current KG-to-text models employ positional encodings, structural prompts, and multi-granularity attention Luo et al. (2024); Zhu et al. (2025); Wang et al. (2024a), reducing factual omissions but still limited by left-to-right decoding and weak global planning Wei et al. (2022); Lin et al. (2021). Diffusion LMs, with iterative denoising, could address these issues, though they remain unexplored for KG-to-text generation Li et al. (2023).

1046
1047
1048
1049
1050
1051
1052
1053

Diffusion Models for Conditional Generation: Conditional diffusion guides denoising with an input sequence encoding, extending conditional-VAE ideas Zhao et al. (2017). Early text models (Diffusion-LM Li et al. (2022), Analog Bits Chen et al. (2023)) imposed weak conditioning via classifiers or plug-in controls, while DIFFUSEQ Gong et al. (2023); Yuan et al. (2024) enabled true sequence-to-sequence conditioning in continuous space. Related frameworks also target time-series (CSDI Tashiro et al. (2021)) and speech (WaveGrad Chen et al. (2021b)). Distinct from prior *G2S* and diffusion-LM work, *DLM4G* integrates classifier-free diffusion with explicit KG conditioning, treating the graph itself as the control variable. This eliminates exposure bias and supports global planning, yielding more coherent KG verbalisation.

1054
1055
1056
1057
1058
1059
1060
1061

Molecule Captioning: Most prior works adapt either AR or NAR generation for molecular descriptions, but these methods often inherit exposure bias (AR) or strong independence assumptions (NAR) Edwards et al. (2022); Liu et al. (2024a). Diffusion-based approaches, while promising for text generation, have not been systematically applied to graph-to-sequence captioning. To clarify the conceptual distinctions, Table 8 summarizes the characteristics of major generation paradigms and highlights how *DLM4G* differs. In particular, our method introduces a *graph-guided refinement process* with *graph-aware noising*, enabling both factual grounding and graph edits during caption generation, a capability absent in existing paradigms.

1062
1063
1064
1065
1066
1067
1068
1069
1070
1071Table 8: Comparison of *DLM4G* with existing paradigms (FG: Factual Grounding; GE: Graph Edits).

Model Family	Output Generation Paradigm	Noising Schedule	Mechanism for FG / GE	Molecule Captioning
Autoregressive (AR)	Sequential, left-to-right token prediction (<i>Exposure bias, local optima</i> , e.g., <i>BART, T5</i>)	No Diffusion	Implicit (data-driven/ graph prompts)	Standard G2S application
Non-Autoregressive (NAR)	Parallel, independent token prediction (<i>Conditional independence assumption</i> (e.g., <i>Mask-Predict</i>))	No Diffusion	Implicit (sequence-level objective; no graph-aware bias)	Standard G2S application
Standard Diffusion LMs	Iterative, parallel refinement from noise <i>Advantage: Mitigates exposure bias</i> (e.g., <i>DiffuseSeq</i>)	Uniform, Isotropic	Implicit (standard diffusion schedule)	Unexplored for G2S; applied to S2G (generation)
DLM4G (Ours)	Iterative, graph-guided refinement (<i>Global planning + factual grounding</i>)	Graph-aware noising (<i>Preserves entity, relations</i>)	Explicit (graph-aware schedule over \mathcal{A})	Novel G2S application (<i>Graph → Sequence task</i>)

1072
1073

A.3 SUMMARY OF DATASET AND BASELINES

1074
1075
1076
1077
1078
1079

WikiOFGraph: We use the WikiOFGraph dataset as described in Kim et al. (2024). This dataset comprises approximately 5.85 million graph–text pairs extracted from general-domain English Wikipedia articles. Each graph is represented as a set of RDF-style triples, automatically mined and refined via large-language-model prompting. For example, the triple `<Alan Turing, birthPlace, London>` corresponds to the sentence “Alan Turing was born in London.”

1080 Table 9: Training set statistics for comparative analysis. *# triplet (m/M/avg)* indicates the minimum,
 1081 maximum, and average number of triplets per sample.

1083 Dataset	1084 # samples	1085 # unique predicate	1086 # unique entity	1087 # triplet (m/M/avg)
WikiOFGraph	5.85M	140,733	8.2M	1/173/3.62
GenWiki	680K	287	86.6K	1/10/2.64
TekGen	6.31M	50,861	4.3M	1/54/1.73

1088
 1089 *GenWiki*: We use the “fine” split of GenWiki Jin et al. (2020), which contains 680 K graph–text pairs;
 1090 we reserve 10 % of these for evaluation. The dataset covers 287 distinct predicates, with an average
 1091 of 2.64 ± 1.72 triples per graph and an average text length of 26.05 ± 10.99 tokens. For instance,
 1092 the graph $\{(\text{Google}, \text{founder}, \text{Larry Page}), (\text{Google}, \text{founder}, \text{Sergey Brin})\}$ maps to the sentence
 1093 “Google was founded by Larry Page and Sergey Brin.”

1094 *TekGen*: We adopt the TekGen dataset as released in Mousavi et al. (2024), containing roughly 6.3 M
 1095 aligned Wikidata triple–sentence pairs drawn from Wikipedia. It spans about 50.8 K distinct predicates
 1096 and is provided in separate train/validation/test TSV files (each line a JSON object). An exemplar
 1097 entry is: $\{"\text{subject}": "The Lion King", \text{predicate}": "director", \text{object}": "Roger Allers", \text{text}": "The Lion$
 1098 $\text{King is an animated musical drama film directed by Roger Allers and Rob Minkoff."}$

1100 A.4 ALIGNMENT MODULE

1114 Figure 4: NER-based graph–sequence alignment. Given a linearized graph \tilde{G} and target se-
 1115 quence S , the module (1) expands aliases for each KG node, (2) detects mentions in S , and (3)
 1116 links/disambiguates them to obtain the alignment set \mathcal{A} of graph-grounded tokens.

1117
 1118 **Setup.** For each graph–sequence pair (\tilde{G}, S) , the alignment module outputs a set \mathcal{A} of token spans
 1119 in S that are linked to entities or relations in \tilde{G} (see Fig. 4 and Sec. 3.3). To quantify the quality of
 1120 this mapping, we manually annotate a subset of WikiOFGraph dev examples (100 examples) with
 1121 gold alignments \mathcal{A}^* and evaluate the module at the span level: a prediction is correct (TP) if the span
 1122 overlaps a gold mention and is linked to the same KG node; other predicted spans are counted as FP,
 1123 and unmatched gold spans as FN. We report precision, recall, and F1 over (span, KG node) pairs, as
 1124 well as token and KG-node coverage.

1125
 1126 **Overall quality.** Table 10 summarizes the quality of the alignment module for our default configura-
 1127 tion (maximum of $k=5$ aliases per KG node). Specifically, **Token coverage** measures the percentage
 1128 of tokens in the target sequence S that are part of an aligned span, while **KG-node coverage** measures
 1129 the percentage of entities and relations in \tilde{G} that successfully link to S . The module achieves high
 1130 precision while covering a substantial fraction of graph-grounded tokens and KG nodes, which is
 1131 sufficient to anchor the graph-aware noising schedule.

1132 **Effect of alias-set size.** The size of the alias set controls the effective size of \mathcal{A} : larger k exposes
 1133 more surface forms and increases recall and coverage, but can introduce additional ambiguity and
 1134 harm precision. We vary $k \in \{2, 3, 4, 5\}$ and re-evaluate the module on the same annotated subset, as

1134 Table 10: Alignment quality on the WikiOFFGraph (dev), with $k=5$ aliases per KG node. The
 1135 average magnitude of the alignment set ($|\mathcal{A}|$) represents the size of alignment set per example. Token
 1136 coverage is the percentage of target tokens that belong to some aligned span; KG-node coverage is
 1137 the percentage of nodes in $\tilde{\mathcal{G}}$ with at least one aligned mention in S .
 1138

Setting	Prec.	Rec.	F1	Token cov. (%)	KG-node cov. (%)	$ \mathcal{A} $
Aliases ($k=5$)	0.90	0.78	0.83	24.1	86.3	7.4

1142
 1143 well as the downstream performance of DLM4G on WikiOFFGraph (Table 12). We observe a smooth
 1144 precision–recall trade-off as k increases; the default $k=5$ offers a good balance, yielding the best
 1145 BLEU score.
 1146

1147 Table 11: Alias-budget ablation on WikiOFFGraph. Increasing the maximum number of aliases k
 1148 per KG node improves recall and coverage but slightly reduces precision, resulting in a modest but
 1149 consistent gain in downstream performance.
 1150

k (aliases)	Prec.	Rec.	F1	$ \mathcal{A} $	Token cov. (%)	KG-node cov. (%)	BLEU
2	0.94	0.70	0.80	3.9	17.3	75.1	0.603
3	0.92	0.75	0.83	4.3	20.5	80.4	0.609
4	0.91	0.77	0.84	6.7	22.8	84.0	0.624
5	0.90	0.78	0.83	7.4	24.1	86.3	0.651

1156
 1157 **Example.** To illustrate the alignment process, consider the following graph–sequence pair:
 1158 Serialized KG ($\tilde{\mathcal{G}}$): `<[HEAD] USA [REL] hosted [TAIL] 1994_FIFA_World_Cup>`
 1159 `[SEP] <[HEAD] USA [REL] capital [TAIL] Washington_D.C.>`
 1160 `[SEP] <[HEAD] 1994_FIFA_World_Cup [REL] top_scorer [TAIL]`
 1161 `Hristo_Stoichkov`.
 1162 Corresponding sequence (S): “*The United States hosted the 1994 FIFA World Cup; its capital is*
 1163 *Washington, D.C., and the tournament’s top scorer was Hristo Stoichkov*”.
 1164 (1) *Alias expansion.* From the KG we construct an alias dictionary, e.g.,
 1165

1166 USA: {"USA", "U.S.", "United States", "United States of America", ...},
 1167 1994_FIFA_World_Cup: {"1994 FIFA World Cup", "1994 World Cup", ...},
 1168 Washington_D.C.: {"Washington, D.C.", "Washington DC", ...},
 1169 Hristo_Stoichkov: {"Hristo Stoichkov", "Stoichkov"}.

1170 (2) *NER mentions in S.* A NER detector identifies mentions such as “United States”, “1994 FIFA
 1171 World Cup”, “Washington, D.C.”, and “Hristo Stoichkov” in the sequence.
 1172 (3) *Entity linking / disambiguation.* Each mention is matched against the alias dictionary and, if
 1173 multiple candidates exist, disambiguated using local context similarity to KG node descriptions. For
 1174 this example the module recovers the alignment set \mathcal{A} as:
 1175 $\mathcal{A} = \{(\text{United States}, \text{USA}), (\text{1994 FIFA World Cup}, \text{1994_FIFA_World_Cup}),$
 1176 $(\text{Washington, D.C.}, \text{Washington_D.C.}), (\text{Hristo Stoichkov}, \text{Hristo_Stoichkov}),$
 1177 $(\text{hosted}, \text{hosted}), (\text{capital}, \text{capital}), (\text{top scorer}, \text{top_scorer})\}$,
 1178 which corresponds to seven true-positive links between S and $\tilde{\mathcal{G}}$. This alignment set is then used to
 1179 derive token-wise difficulty profiles and the graph-aware noising schedule described in Sec. 3.3.
 1180 **Details.** For this specific instance, the sequence S contains 32 tokens. The $\tilde{\mathcal{G}}$ contains 7 unique factual
 1181 elements (4 entities and 3 relations). The alignment set \mathcal{A} has a magnitude $|\mathcal{A}| = 7.0$, aligning all 7
 1182 elements (100.0% KG-node coverage). The results are reported in Table 12.
 1183

Table 12: Alignment Metrics for the example ($\tilde{\mathcal{G}}, S$) pair .

k (aliases)	Prec.	Rec.	F1	$ \mathcal{A} $	Token cov. (%)	KG-node cov. (%)	BLEU
5	1.00	1.00	1.00	7.0	31.2	100.0	0.773

1188
1189

A.5 NON-INCREASING ISOTONIC PROJECTION

1190
1191
1192
1193
1194
1195
1196
1197

After constructing the per-token cumulative schedule $\tilde{\alpha}_t^i$, we project it onto the set of non-increasing sequences $\{\bar{\alpha}_t^i\}_{t=1}^T$ such that $\bar{\alpha}_1^i \geq \bar{\alpha}_2^i \geq \dots \geq \bar{\alpha}_T^i$. Concretely, this is a 1D isotonic regression problem with squared loss, which we solve using the standard Pool-Adjacent-Violators Algorithm (PAVA). This algorithm finds the closest monotone non-increasing sequence (in the least-squares sense) to the input. Intuitively, it smooths out spurious "bumps" in the loss profile while guaranteeing that the cumulative signal strength strictly decays over time, fulfilling the monotonicity requirement of the diffusion process.

1200
1201
1202
1203

A.6 TRAINING DETAILS

1204
1205
1206
1207

Model variants: We train two Transformer-based denoisers: (i) a 6-encoder / 6-decoder architecture with ≈ 50 M parameters, and (ii) a 6-encoder / 9-decoder architecture with ≈ 63 M parameters. Both use GeLU activations Vaswani et al. (2023); Hendrycks & Gimpel (2023) and share all other hyper-parameters.

1208
1209
1210
1211

Diffusion setup: A fixed diffusion horizon of $T = 2000$ timesteps is employed, following the *sqrt* noise schedule introduced in DiffusionLM Li et al. (2022). Inputs are tokenised with the *bert-base-uncased* vocabulary Devlin et al. (2019). The graph-aware noising schedule is calculated every 20,000 training steps.

1212
1213
1214
1215
1216

Optimization: All experiments use AdamW with a peak learning rate of 1×10^{-4} , a linear warm-up of 10,000 steps, and linear decay to zero. Gradient norms are clipped to 1.0; no label-smoothing or dropout is applied beyond the architectural dropout already reported in the main text.

Training regime: Each model is trained for up to 200,000 steps per dataset:

- The 50 M model achieves its best validation metrics after $\sim 190,000$ steps.
- The 63 M model converges at the full 200,000-steps budget.

1217
1218
1219
1220

These numbers were found to be stable across all datasets considered.

A.7 MAPPING FUNCTION ABLATIONS

1221
1222
1223
1224

Choice of Mapping Function: As discussed in Sec. 3.3, the graph-aware schedule is obtained by mapping token-wise difficulty profiles $\{\ell_t^i\}_{t=1}^T$ through a monotone mapping function $\Psi_i(x)$ to produce the cumulative noise schedule $\{\bar{\alpha}_t^i\}_{t=1}^T$. For $x \in [\ell_{t-1}^i, \ell_t^i]$ we write

1225
1226
1227

$$\Psi_i(x) = \bar{\alpha}_{t-1} + (\bar{\alpha}_t - \bar{\alpha}_{t-1}) \phi\left(\frac{x - \ell_{t-1}^i}{\ell_t^i - \ell_{t-1}^i}\right), \quad t = 2, \dots, T, \quad (27)$$

1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

In the main experiments we use a linear mapping $\phi_{\text{lin}}(u) = u$. Here we ablate three smooth alternatives—exponential, cosine, and polynomial mappings, all with the same boundary conditions. Table 14 summarizes the functional forms, and Fig. 5(L–R) visualizes the induced loss profiles over diffusion steps for aligned token positions (10, 25, 40, 55, 60). All three mappings introduce sharper non-linearities (e.g., flatter early regions and steeper tails), which make the token-wise loss grow more abruptly near the end of the diffusion process. Empirically, this concentration of noise updates degrades downstream performance: we observe small but consistent drops in BLEU (see Table 6). Hence, we retain the simple linear mapping $\phi_{\text{lin}}(u) = u$ in DLM4G.

Impact on Performance: In addition to BLEU, we assess how the choice of mapping function affects factual grounding and edit sensitivity on WikiOFG, using the metrics introduced in Sec. 4.3. For FGT we report FGT@ $\lambda = 0.5$, our default setting which balances the penalty on hallucinated entities; ESR has no hyperparameter. Table 13 extends the mapping ablation to these metrics. We find that the graph-aware linear mapping over aligned tokens \mathcal{A} improves BLEU and FGT while also achieving the highest ESR, whereas the more non-linear polynomial and cosine mappings consistently degrade all three metrics. This supports our qualitative analysis in Fig. 5 and further motivates our choice of the simple linear mapping in DLM4G.

1242 Table 13: Ablation of DLM4G noise schedules and mapping function $\Psi_i(x)$ on WikiOFGraph. We
 1243 report BLEU (B), Factual Grounding (FGT@ $\lambda = 0.5$, higher is better), and Edit Sensitivity Rate
 1244 (ESR, higher is better).

1245

DLM4G	Tokens	$\Psi_i(x)$	B	FGT@0.5	ESR
Graph-aware	\mathcal{A}	linear	0.65	0.83	0.68
Graph-aware	\mathcal{A}	poly	0.61	0.80	0.61
Graph-aware	\mathcal{A}	cosine	0.62	0.80	0.63

1251

1252

1253

Table 14: Ablation of $\phi(u)$ used in the graph-aware schedule.

1254

1255

Ablation	$\phi(u)$
Linear	$\phi_{\text{lin}}(u) = u$
Polynomial	$\phi_{\text{poly}}(u) = u^p$ (we use $p = 2$)
Exponential	$\phi_{\text{exp}}(u) = \frac{e^{\beta u} - 1}{e^{\beta} - 1}$ (we use $\beta = 3$)
Cosine	$\phi_{\text{cos}}(u) = \frac{1}{2}(1 - \cos(\pi u))$

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273 Figure 5: Induced loss profiles for the graph-aware schedule under different mappings: (Left)
 1274 exponential, (Mid) cosine, and (Right) polynomial. Curves show loss trajectories for aligned token
 1275 positions at steps 10, 25, 40, 55, and 60.

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296 **==== System Prompt====**
 1297 You are {MODEL}, a large language model.
 1298 Your task is to convert a flat list of RDF-style triples into a single,
 1299 fluent English description.

1300 **==== MODEL-SPECIFIC GUIDANCE ====**
 1301 {MODEL_GUIDANCE}

1302 **==== USER PROMPT ====**

1303 Convert the following knowledge graph into a coherent English
 1304 sentence or short paragraph.
 1305 Triples are given in the form (<S> subject | <P> predicate | <O>
 1306 object), separated by commas.

1307 **Knowledge Graph:**

1308 (<S> Arròs negre | <P> country | <O> Spain),
 1309 (<S> Spain | <P> ethnic Group | <O> Spaniards)

1310 **==== ASSISTANT (you) ===**

1311 <your generated text here>

1312 **==== System Prompt====**
 1313 You are {GPT-o4-mini}, a large language model.

1314 Your task is to convert a flat list of RDF-style triples into a single, fluent

1315 English description.

1316 **==== MODEL-SPECIFIC GUIDANCE ====**

1317 {• Keep your output concise.

1318 • Use simple vocabulary and straightforward syntax.]

1319 **==== USER PROMPT ====**

1320 Convert the following knowledge graph into a coherent English sentence
 1321 or short paragraph.

1322 Triples are given in the form (<S> subject | <P> predicate | <O> object),
 1323 separated by commas.

1324 **Knowledge Graph:**

1325 (<S> Arròs negre | <P> country | <O> Spain),
 1326 (<S> Spain | <P> ethnic Group | <O> Spaniards)

1327 **==== ASSISTANT (you) ===**

1328 <your generated text here>

Figure 6: Zero-Shot Prompt Template for Knowledge Graph Verbalization Across Multiple LLMs

Figure 7: Comparison of (left) framing molecule captioning as a G2S task and (right) the performance of DLM4G-1.0 and DLM4G-2.0 models on the molecule captioning dataset.

A.8 ZERO-SHOT PROMPTING

Zero-shot prompting (illustrated in Figure 6) exploits the rich, general-purpose knowledge encoded in pretrained large language models (LLMs) to tackle novel tasks without additional fine-tuning. By casting tasks as natural-language instructions or templated prompts, models such as GPT-3 Brown et al. (2020), DeepSeek Li et al. (2024b), LLaMa-3 Touvron et al. (2023), and Qwen2.5 Zeng et al. (2024) demonstrate strong out-of-the-box performance across diverse applications. Prior work has shown that LLMs internalize extensive linguistic, factual, and procedural knowledge during self-supervised training, yielding robust zero-shot capabilities in text classification Wang et al. (2022), machine translation Raffel et al. (2020), and code generation Chen et al. (2021a). A typical zero-shot prompt comprises three components:

1. A *system prompt* that assigns the model’s role (e.g., “You are {MODEL}, a large language model. Convert RDF triples into fluent English.”).
2. A *model-specific guidance* segment to steer style or brevity (e.g., “Keep your output concise.”).
3. A *user prompt* presenting the task instance.

For example: *Convert the following knowledge graph into a single English sentence:*
 $\langle S \rangle$ Arròs negre $\langle P \rangle$ country $\langle O \rangle$ Spain, $\langle S \rangle$ Spain $\langle P \rangle$ ethnic Group $\langle O \rangle$ Spaniards.

In this study, we evaluate four models—DeepSeek (7 B), GPT-o4-mini (8 B), LLaMa-3 (8 B), and Qwen2.5 (7 B)—to investigate how model scale, pretraining corpus, and architectural choices affect zero-shot generalization on knowledge-to-text tasks.

A.9 MOLECULE CAPTIONING

Figure 8: Qualitative Assessment of Molecule Captioning by DLM4G Given SMILES Representations

Figure 8 shows the captions produced by two variants of our model, DLM4G-1.0 (50 M parameters) and DLM4G-2.0 (63 M parameters), alongside the ground-truth description for a polybrominated biphenyl (PBB) molecule (SMILES shown beneath the 3D rendering). Both model outputs are nearly identical, correctly capturing: (1) The molecule class: “polybrominated biphenyls (PBBs) comprise 209 synthetic biphenyl derivatives”, (2) The substitution range: “bearing 1–10 bromine atoms” and (3) The typical use case: “commonly used as flame-retardant additives in plastics.”

1350 Quantitatively, the two variants achieve very similar scores on all three evaluation metrics—BLEU,
1351 chrF++ and METEOR—reflecting their equivalently high factual fidelity and fluency. This example
1352 illustrates that even the smaller 50 M model matches the larger 63 M model in this task. Full dataset
1353 statistics and comprehensive metric results are provided in the main paper.

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403