GRAPH-TO-SEQUENCE GENERATION BEYOND AU-TOREGRESSIVE MODELS: A GRAPH-AWARE DIFFU-SION FRAMEWORK

Anonymous authors
Paper under double-blind review

000

001

002

004

006

008 009 010

011 012 013

014

015

016

017

018

019

021

023

025

026

027

028

029

031 032 033

034

037

040

041

042

043

044

046

047

048

051

052

ABSTRACT

Pre-trained language models (PLMs) remain unreliable for graph-to-sequence (G2S) generation, where two challenges are particularly acute: (i) factual grounding, ensuring all entities are faithfully realized, and (ii) edit sensitivity, ensuring small, local graph edits to propagate consistently in the output. We propose Diffusion Language Models for Graphs (DLM4G), a non-autoregressive framework for iterative refinement conditioned on the graph input. Central to DLM4G is a graph-aware adaptive noising strategy, where noise is applied to the output sequence aligned with the graph components (entities and relations) using a learnable component-wise schedule. We learn a component-wise schedule by linearly mapping between per-component denoising loss and noise schedule. This ensures entities are generated faithfully and keeps graph edits localized in the text. Through extensive experiments on three benchmark datasets, DLM4G outperforms stateof-the-art autoregressive baselines that are 12–127× larger, achieving 10–15% relative gains on standard surface-level metrics (BLEU, ChrF++, METEOR) and embedding-based metrics (BERTScore-F1, MAUVE). More importantly, DLM4G improves factual grounding (FGT, \uparrow) by + Δ_{FGT} 4.7 % and edit sensitivity (EDR, \uparrow) by $+\Delta_{EDR}$ 7.9 % on average compared to comparably sized autoregressive baselines. Finally, we evaluate on molecule captioning, where molecular graphs are verbalized into textual descriptions, demonstrating the applicability of DLM4G to biomedical G2S tasks. Our code is available here: CODE

1 Introduction

Graphs are a ubiquitous data structure, fundamental to domains like social networks, biological systems, and recommendation platforms (Wang et al., 2021; Fan et al., 2019; Wang et al., 2024b). However, their complex topology makes verbalization difficult. Many downstream tasks such as graph reasoning (Skianis et al., 2024), graph captioning (Hsieh et al., 2025; Li et al., 2024a), graph translation (Xu et al., 2022) require readable, faithful text. To address this challenge, the task of Graph-to-Sequence (G2S) has emerged, which focuses on generating coherent text from graph inputs (Fatemi et al., 2024). Real-world G2S applications include (i) molecular & protein captioning – translating chemical graphs (proteins & molecules) into concise natural-language summaries (Kim et al., 2025) and (ii) Knowledge Graph Question Answering (KGQA)–verbalizing KG subgraphs to support multi-hop reasoning (Wu et al., 2023).

Earlier G2S methods encoded structure explicitly with graph-based encoders (Song et al., 2018; Ribeiro et al., 2019; 2020; Schmitt et al., 2021). Recent work shows that autoregressive pre-trained language models (PLMs) achieve strong performance without *graph-specific inductive biases* on surface-overlap metrics (BLEU, chrF++, METEOR) (Ribeiro et al., 2021). These scores can remain high despite factual omissions and hallucinations. Therefore, these models lack (i) factual grounding (all entities/relations must be realized) and (ii) edit sensitivity (small local graph edits must be reflected predictably). A key factor for these weaknesses in PLMs is left-to-right decoding. This approach leads to early token commitments that reduce sensitivity to local edits, often causing entities or relations to be omitted or misrepresented (Li et al., 2022; Gong et al., 2023). This points to two needs: (1) a modeling choice that preserves global coherence and local faithfulness, ensuring while

reflecting small edits and realizing all entities/relations, and (2) an evaluation criterion that directly measures grounding and edit sensitivity.

To address both needs, we investigate non-autoregressive (NAR) diffusion-based language models for G2S and introduce simple, task-grounded metrics for better evaluation. Diffusion models generate via iterative denoising rather than the strict left-to-right decoding used by autoregressive PLMs (Sahoo et al., 2024; Chuang et al., 2024; Yuan et al., 2024). This supports self-correction and sequence-level planning, mitigating early commitments and the propagation of local errors of autoregressive decoders (Gong et al., 2025; Venkatraman et al., 2025). However, standard diffusion models use fixed, data-agnostic noising schedules that corrupt core factual entities and syntactic elements equally (Ho et al., 2020). This uniform corruption undermines factual grounding and sensitivity to local edits. To address this, we introduce DLM4G, a graph-conditioned non-autoregressive framework that implements a novel, graph-aware noising schedule to strategically preserve factual information.

To sum up, our overall contributions: (1) A novel, graph-aware noising schedule to improve factual grounding; (2) State-of-the-art performance on three diverse datasets across a wide range of metrics; (3) Two new task-grounded metrics to evaluate factual grounding and edit sensitivity; and finally (4) An extension of our framework to the real-world scientific task of molecule captioning.

2 BACKGROUND AND RELATED WORK

We briefly review relevant work, deferring full technical details to Appendix A.1.

Graph-to-Sequence Learning: G2S has progressed from (i) template-based systems Wiseman et al. (2018); Kasner & Dusek (2022); Vejvar & Fujimoto (2023), to (ii) neural encoder–decoders with learned graph embeddings Wiseman et al. (2017); Beck et al. (2018); Iso et al. (2019), and (iii) fine-tuned transformers achieving state-of-the-art fluency and factuality Vaswani et al. (2023); Ribeiro et al. (2021). This evolution frames the current G2S landscape.

PLMs for Graphs: Leveraging LLMs for graph verbalisation involves four challenges: (i) *alignment* of graph elements to words Zhu et al. (2025), (ii) *position* encoding under permutation invariance Perozzi et al. (2024), (iii) *multi-level semantics* across nodes, edges, and subgraphs Wang et al. (2024a), and (iv) *context* retention over long spans Ding et al. (2025). This taxonomy spans Graph-to-Sequence (G2S) to Graph-to-Token (G2T). KG-to-text models use positional encodings, prompts, and multi-granularity attention Zhu et al. (2025), reducing omissions but still constrained by left-to-right decoding. Diffusion LMs, with iterative denoising, could overcome these limitations.

Diffusion Models for Conditional Generation: Conditional diffusion guides denoising with an input sequence encoding, extending conditional-VAE ideas Zhao et al. (2017). Early text models (Diffusion-LM Li et al. (2022), Analog Bits Chen et al. (2023)) imposed weak conditioning via classifiers or plug-in controls, while DIFFUSEQ Gong et al. (2023) enabled true sequence-to-sequence conditioning in continuous space. Unlike prior G2S and diffusion-LM models, DLM4G combines classifier-free diffusion with explicit KG conditioning as the control variable to remove exposure bias and enable global planning for more coherent KG verbalisation.

Molecule Captioning: Prior AR/NAR captioning approaches for molecules inherit these limitations Edwards et al. (2022); Liu et al. (2024a). Table 1 compares these paradigms with DLM4G.

Table 1: Comparison of DLM4G with existing paradigms (FG: Factual Grounding; GE: Graph Edits).

Model Family	Output Generation Paradigm	Noising Schedule	FG/GE	Molecule Captioning
Autoregressive (AR)	Sequential, left-to-right token prediction (Exposure bias, local optima, e.g., BART, T5)	No Diffusion	No / No	Standard G2S application
Non-Autoregressive (NAR)	Parallel, independent token prediction (Conditional independence assumption) (e.g., Mask-Predict)	No Diffusion	Yes / No	Standard G2S application
Standard Diffusion LMs	Iterative, parallel refinement from noise Advantage: Mitigates exposure bias(e.g., DiffuSeq)	Uniform, Isotropic	Yes / No	Unexplored for G2S; applied to S2G (generation)
DLM4G (Ours)	Iterative, graph-guided refinement (Global planning + factual grounding)	Graph-aware noising (Preserves entity, relations)	Yes / Yes	Novel G2S application (Graph → Sequence task)

Figure 1: DLM4G framework: (A) Graph-Sequence alignment set $\{A\}$, obtains the aligned tokens; (B) The model is trained with a graph-aware noising schedule (C) Trained DLM4G samples output sequence conditioned on graph.

3 METHODOLOGY

3.1 PROBLEM STATEMENT

Let $\mathcal{G} = (\mathbf{V}, \mathbf{E}, \mathbf{X}, \mathcal{R})$ be the input graph, where $\mathbf{V} = \{v_1, \dots, v_n\}$ is the set of nodes, $\mathbf{X} = \{x_1, \dots, x_n\}$, with each $x_i \in \mathbb{R}^d$, representing the associated node features, and $\mathbf{E} \subseteq \mathbf{V} \times \mathcal{R} \times \mathbf{V}$ denotes a set of directed edges representing relations $r_{ij} \in \mathcal{R}$. In many settings, such as KGs, each relation type $r_{ij} \in \mathcal{R}$ is associated with a feature vector $f_r \in \mathbb{R}^k$, capturing its semantic properties. This structure can be expressed as a sequence of relational triplets $\tilde{\mathcal{G}} = \{(h_i, r_{ij}, t_j)\}_{\substack{i,j=1 \ i,j \neq i}}^n$, where

 $h_i, t_j \in \mathbf{V}$ are head and tail entities, respectively, and $r_{ij} \in \mathcal{R}$ is the relation type. The goal is to learn a model that maps such structured graph inputs to meaningful output sequences. Formally, a parameterized DLM4G model \mathcal{M}_{θ} is trained to predict the corresponding output sequence:

$$\mathcal{M}_{\theta}: \tilde{\mathcal{G}} \to \mathbf{S},$$
 (1)

where $\mathbf{S} = \{s_i \in \mathcal{W} \mid 1 \leq i \leq \mathbf{N}\}$ is a sequence of fixed length N, and \mathcal{W} denotes the target vocabulary. Formally, we aim to learn this conditional distribution $p(\mathbf{S} \mid \tilde{\mathcal{G}}; \theta)$, that approximates the underlying data distribution. To achieve this, we introduce DLM4G, a novel diffusion framework.

3.2 THE DLM4G DIFFUSION FRAMEWORK: AN OVERVIEW

DLM4G is a denoising diffusion framework designed to generate factually-grounded text from KGs. The core contribution of our approach is a graph-aware noising schedule, which strategically corrupts the text while preserving information tied to the graph's entities and relations. This ensures that during the iterative denoising process, the model is consistently guided by factual evidence from the source graph. As a result, DLM4G is able to capture fine-grained details and handle issues like entity hallucination and poor factual accuracy; full pipeline is shown in Figure 1

3.3 THE DENOISING DIFFUSION PROCESS

The core of our framework is a denoising diffusion model that learns the conditional distribution $p(\mathbf{S}\mid\tilde{\mathcal{G}})$. It consists of a forward process that systematically corrupts the output sequence \mathbf{S} according to our graph-aware schedule, and a reverse denoising process that iteratively generates the final sequence, conditioned on the input graph $\tilde{\mathcal{G}}$.

Forward process: We convert the discrete sequence ${\bf S}$ into a continuous representation via a learnable embedding layer, ${\bf z}_0 = g_\Phi({\bf S}) \in \mathbb{R}^{N \times d}$, where g_Φ is a learnable embedding layer. A standard DDPM forward process then corrupts the data through a Markov chain with noise-schedule coefficients $\{\alpha_t\}_{t=1}^T$ controlling signal decay. This yields the standard closed-form ${\bf z}_t = \sqrt{\bar{\alpha}_t}\,{\bf z}_0 + \sqrt{1-\bar{\alpha}_t}\,\epsilon$ with $\bar{\alpha}_t = \prod_{s=1}^t \alpha_s$ and $\epsilon \sim \mathcal{N}({\bf 0},{\bf I})$, which permits direct sampling at any timestep t. This baseline assumes an isotropic (uniform across tokens) noise schedule. Our primary contribution is a graph-aware noising schedule that modulates the per-token noise level based on alignment with a source

graph $\tilde{\mathcal{G}}$ (a scalar score per token); the full formulation and its implications for the forward/posterior distributions are deferred to Section §3.5.

Reverse process with Conditional Denoising: The reverse process learns to recover the clean data \mathbf{z}_0 from pure noise \mathbf{z}_T . It is defined as a Markov chain $p_{\theta}(\mathbf{z}_{0:T})$ where each reverse transition $p_{\theta}(\mathbf{z}_{t-1} \mid \mathbf{z}_t, \tilde{\mathcal{G}})$ is a Gaussian whose mean $\boldsymbol{\mu}_{\theta}$ and variance $\boldsymbol{\Sigma}_{\theta}$ are parameterized by our model, $\mathcal{M}_{\theta}(\mathbf{z}_t, t, \tilde{\mathcal{G}})$. The model is trained to predict the mean of the true posterior $q(\mathbf{z}_{t-1} \mid \mathbf{z}_t, \mathbf{z}_0)$, which is derived from the forward process via Bayes' rule. The model parameters θ are optimized by maximizing the variational lower bound (VLB) on the conditional log-likelihood, and is defined as:

$$\mathcal{L}_{\text{vlb}} = \mathbb{E}_{q} \Big[\underbrace{-\log p_{\theta}(\mathbf{z}_{0}|\mathbf{z}_{1}, \tilde{\mathcal{G}})}_{\text{Reconstruction }(L_{0})} + \sum_{t=2}^{T} \underbrace{D_{KL} \big(q(\mathbf{z}_{t-1}|\mathbf{z}_{t}, \mathbf{z}_{0}) || p_{\theta}(\mathbf{z}_{t-1}|\mathbf{z}_{t}, \tilde{\mathcal{G}}) \big)}_{\text{Denoising Matching }(L_{t-1})} + \underbrace{D_{KL} \big(q(\mathbf{z}_{T}|\mathbf{z}_{0}) || p(\mathbf{z}_{T}) \big)}_{\text{Prior Matching }(L_{T})} \Big]$$
(2)

While tractable, direct optimization of the full VLB is often unstable. Following (Ho et al., 2020), we use a simplified objective that is a reweighted variant of the VLB. Our framework adopts a further end-to-end reparameterization of this objective, which trains the model to directly predict the clean data \mathbf{z}_0 at every timestep. This leads to our final, composite objective tailored for discrete sequence generation:

$$\mathcal{L}_{\text{e2e-simple}}(\mathbf{S}) = \mathbb{E}_q \left[\sum_{t=2}^{T} \underbrace{\|\mathcal{M}_{\theta}(\mathbf{z}_t, t, \tilde{\mathcal{G}}) - \mathbf{z}_0\|^2}_{\text{Denoising}} + \underbrace{\|g_{\Phi}(\mathbf{S}) - \mathcal{M}_{\theta}(\mathbf{z}_1, 1, \tilde{\mathcal{G}})\|^2}_{\text{Consistency}} - \underbrace{\log \tilde{p}_{\theta}(\mathbf{S} \mid \mathbf{z}_0)}_{\text{Rounding}} \right]$$
(3)

This objective directly optimizes the most critical parts of the process: the denoising accuracy across all steps, the consistency of the first denoising step with the true data embedding, and the quality of the final rounding to discrete tokens. This ensures that strong, discrete supervision is applied throughout the diffusion trajectory.

3.4 MODEL AND DATA REPRESENTATION

Model Architecture: DLM4G is an encoder–decoder Transformer that conditions on the serialized KG input (see *graph representation*§3.4). We evaluate two variants: a 6-encoder/6-decoder configuration (≈ 50 M parameters; DLM4G-1.0) and a 6-encoder/9-decoder configuration (≈ 63 M; DLM4G-2.0), both using GeLU activations Vaswani et al. (2023); Hendrycks & Gimpel (2023). Inputs are tokenized with the bert-base-uncased vocabulary Devlin et al. (2019); the control tokens [HEAD], [REL], [TAIL], and [SEP] are introduced as learned special tokens with dedicated embeddings. Other components follow the standard Transformer encoder–decoder design.

Graph Representation: We represent the set of relational triples $\tilde{\mathcal{G}}$, as a single linearized sequence. This is achieved by serializing each triplet $(h_i, r_{ij}, t_j) \in \tilde{\mathcal{G}}$ into a string format using special tokens, e.g. $\langle [\text{HEAD}] \ h_i \ [\text{REL}] \ r_{ij} \ [\text{TAIL}] \ t_j \rangle$, and concatenating them with a separator token [SEP]. We adopt linearization for the following reasons: (i) it plugs into off-the-shelf backbones and decoding stacks, making ablations across baselines directly comparable; (ii) Transformer self-attention can model long-range interactions across the flattened triples, which is important for faithful realization; and (iii) prior work shows strong performance for linearized KG \rightarrow text with PLMs, even without graph-specific inductive bias (Ribeiro et al., 2021; Wang et al., 2024a). Example $(graph \rightarrow sequence)$:

```
Serialized KG (\tilde{\mathcal{G}}): \langle [\text{HEAD}] \text{ USA [REL] hosted [TAIL] 1994\_FIFA\_World\_Cup} [SEP] <math>\langle [\text{HEAD}] \text{ USA [REL] capital [TAIL] Washington\_D.C.} \rangle [SEP] \langle [\text{HEAD}] \text{ 1994\_FIFA\_World\_Cup [REL] top\_scorer [TAIL]} Hristo_Stoichkov\rangle.
```

Corresponding sequence (S): "The United States hosted the 1994 FIFA World Cup; its capital is Washington, D.C., and the tournament's top scorer was Hristo Stoichkov".

3.5 GRAPH AWARE NOISING SCHEDULE

Motivation: Standard diffusion models rely on fixed, data-agnostic noising schedules (linear, *sqrt*, cosine) that apply noise uniformly across the input (Ho et al., 2020; Nichol & Dhariwal, 2021). Building on recent evidence that *adaptive* noising improves general text generation (Yuan et al., 2024), we extend this idea to structured inputs by making the schedule *graph-aware* rather than

token-generic. For graph-to-text generation, this is critical because core entities and relations carry the facts, while many other tokens are merely syntactic glue. Recovering these facts mid-trajectory is harder, which weakens factual grounding and increases errors. This motivates a content-aware noising schedule, strategically preserving factual information to guide the denoising process. We therefore introduce a graph-aware noising schedule designed to improve factual consistency and reduce generation errors.

Graph–sequence alignment (Training-only): To enable our graph-aware noising schedule, we first perform a one-time offline alignment to map tokens in the target sequence (\mathbf{S}) to their corresponding entities and relations in the graph ($\tilde{\mathcal{G}}$). The pipeline operates in three stages: (i) generating all possible names and aliases for each entity; (ii) detecting mentions of these names in the text using a powerful NER model (Zaratiana et al., 2024); and (iii) linking these mentions to the correct graph entity to resolve ambiguities (Xin et al., 2024; Liu et al., 2024b; Ding et al., 2024). The result is an alignment map \mathcal{A} connecting token indices in \mathbf{S} to graph elements, which is used exclusively during training.

Noising Schedule: We apply graph-aware noising for graph-text aligned set A, while keeping unaligned tokens on the baseline schedule (*sqrt* schedule). The procedure has two connected stages:

Stage 1: Predict & Sort: For each aligned token $i \in \mathcal{A}$, we first measure its empirical denoising error at every time step t, conditioned on $\tilde{\mathcal{G}}$. This score quantifies how difficult it is for the model to restore the token from a given noisy state, calculated as:

$$\ell_t^i = \mathbb{E}_{\mathbf{z}_t \sim q(\mathbf{z}_t|\mathbf{z}_0)} \left\| \mathcal{M}_{\theta}(\mathbf{z}_t, t, \tilde{\mathcal{G}})^i - \mathbf{z}_0^i \right\|^2.$$
 (4)

We then pair each loss (ℓ_t^i) with its corresponding noise level $\bar{\alpha}_t^i$ from the baseline schedule. These pairs are sorted in descending order based on the error. This creates an ordered breakpoints by $(\ell_t^i, \bar{\alpha}_t^i)$ for $t=1,\ldots,T$. The output is a ranked list that decides the schedule for the same token in the next update.

Output: Ordered breakpoints $\{(\ell_t{}^i, \bar{\alpha}_t{}^i)\}_{t=1}^T$ for each aligned token $i \in \mathcal{A}$, input for Step 2. The error distribution for each token can be highly skewed, hence we introduce a piecewise-linear map to re-calibrate the noise levels to maintain a uniform progression of denoising difficulty.

Stage 2: Linear Mapping: In this step we define a continuous, piecewise-linear map Ψ_i on the loss axis by interpolating consecutive breakpoints:

$$\Psi_{i}(k) = \bar{\alpha}_{m-1}^{i} + \frac{\bar{\alpha}_{m}^{i} - \bar{\alpha}_{m-1}^{i}}{\ell_{m}^{i} - \ell_{m-1}^{i}} (k - \ell_{m-1}^{i}), \qquad k \in [\ell_{m-1}^{i}, \ell_{m}^{i}), \tag{5}$$

For each token i, take T equally spaced loss values between ℓ^i_1 and ℓ^i_T : $k^i_t = \ell_1^{\ i} + \frac{t-1}{T-1} \left(\ell_T^{\ i} - \ell_1^{\ i}\right)$, for $t=1,\ldots,T$. Then compute $\tilde{\alpha}^i_t = \Psi_i(k^i_t)$ at each of those values. Next, we round each $\tilde{\alpha}^i_t$ to the nearest value in the baseline set $\alpha_{\text{base}} = \{\bar{\alpha}_1,\ldots,\bar{\alpha}_T\}$, obtaining $\hat{\alpha}^i_t = \arg\min_{\alpha \in \alpha_{\text{base}}} |\alpha - \tilde{\alpha}^i_t|$. We then clamp to $[\bar{\alpha}_{\min},\bar{\alpha}_{\max}] \subset (0,1)$ and apply a non-increasing isotonic projection over t to produce the final token-wise schedule $\bar{\alpha}^i_{t,\text{new}}$ that satisfies $0 < \bar{\alpha}^i_{t+1,\text{new}} \le \bar{\alpha}^i_{t,\text{new}} < 1$ for all t. For unaligned tokens $i \notin \mathcal{A}$, we retain the baseline schedule, $\bar{\alpha}^i_{t,\text{new}} = \bar{\alpha}_t$. Per-step coefficients follow from the schedule via $\alpha_{t,i} = \bar{\alpha}^i_{t,\text{new}}/\bar{\alpha}^i_{t-1,\text{new}}$ (with $\bar{\alpha}^i_{0,\text{new}} = 1$) and $\beta_{t,i} = 1 - \alpha_{t,i}$.

To make linear map continuous and well-defined, we break any ties in the loss values. We define a modified, unique loss for each timestep: $\ell_t^i{}^i = \ell_t^i{}^i + (t \cdot \epsilon)$, where ϵ is a small constant (e.g., 10^{-9}) that makes each loss value unique without significantly altering its magnitude.

Output: The output of this stage is a new, hybrid schedule, $\bar{\alpha}_{\text{new}}$, which has two components: (1) *Alpha Anchor* ($\bar{\alpha}_{t,\text{new}}^i$): The final, adaptive schedule computed by the procedure above. It is applied to all graph-aligned tokens ($i \in \mathcal{A}$), and

(2) Alpha Base $(\bar{\alpha}_t)$: The original baseline schedule. It is retained for all unaligned tokens $(i \notin A)$.

Inference-Time Dynamic Schedule: The procedure described above uses the alignment set \mathcal{A} , which is only available during training. For inference, we use an attention-based method to blend the two schedules. For each token i and denoising step t, the final schedule is an interpolation:

$$\bar{\alpha}_{t,\text{new}}^{i} = (1 - w_i^t)\bar{\alpha}_t^{\text{base}} + w_i^t\bar{\alpha}_t^{\text{anchor}}, \quad w_i^t \in [0, 1]. \tag{6}$$

The weight w_i^t is the model's cross-attention scores assigned to any token in the serialized KG. This allows the model to dynamically apply the $Alpha\ Anchor$ schedule to factual tokens (high attention to the KG) and use the $Alpha\ Base$ for syntactic tokens (low attention). This effectively replaces the alignment set in training to a dynamic inference time criterion.

Rationale: The model's per-timestep prediction error for a graph-aligned token is a proxy for its difficulty with factual consistency. We quantify this error using the graph-conditioned denoising loss, ℓ_t^i . The graph-aware noising schedule creates schedule for each factual anchor token. First, we sort diffusion timesteps by their prediction error. We then use piecewise-linear interpolation (Eq. 5) to re-parameterize the cumulative schedule, $\bar{\alpha}_t$. This linearizes the denoising path with respect to the prediction error. The resulting trajectory for factual content is more stable. This stability compels the model to consistently attend to the conditioning graph $\tilde{\mathcal{G}}$, strengthening factual grounding. A direct consequence is improved handling of graph edits. The model's heightened attention on anchor tokens ensures that changes in the conditioning graph are reflected in the output.

4 EXPERIMENTS

Datasets: We use three datasets for our experiments: (1) *WikiOFGraph* (Kim et al., 2024), a 5.85M-sample dataset ontology-free dataset for graph-text task; (2) *GenWiki* (Jin et al., 2020), an unsupervised dataset of 680K Wikipedia text and DBpedia graph pairs, with a focus on entity overlap and a 1K human-annotated test set; and (3) *TekGEN* (Agarwal et al., 2021), a dataset of 6.3M sentences generated by verbalizing Wikidata triples. More details are available in Appendix A.2.

Baselines: We benchmark DLM4G, against three categories of baselines:

- (i) Pretrained-LM baselines, comprising finetuned GPT-2 (Small/Base) (Mager et al., 2020), and T5 (Small/Large) (Ribeiro et al., 2021) on all datasets;
- (ii) Zero-shot evaluation, deploying GPT-o4-mini (8 B), LLaMa-3-8B (8 B), Qwen 2.5 (7 B) and DeepSeek (7 B) to assess off-the-shelf generalization without any task-specific finetuning and
- (iii) SOTA G2S methods, including ReGen on TekGen (Dognin et al., 2021) and the Ontology-Free (Kim et al., 2024), Rule-Based (Schmitt et al., 2020), and Direct-Transfer, Noisy-Supervised (Koncel-Kedziorski et al., 2019) baselines on WikiofGraph and GenWiki (excluding CycleGT_{Base} due to non-standard splits in prior work (Jin et al., 2020; Guo et al., 2020)).

Implementation Details and Evaluation Metrics: We train DLM4G with diffusion process of T=2000 timesteps, using our graph-aware noising schedule, and inputs are tokenized using the bert-base-uncased vocabulary (Devlin et al., 2019). Training uses a peak learning rate of 10^{-4} , 10,000 warm-up steps, and a linear decay schedule, with the adaptive noising schedule updated every 20,000 steps. Full implementation details are provided in Appendix A.3 A.4. For evaluation, we report BLEU (B) (Papineni et al., 2002), which measures n-gram precision with a brevity penalty; chrF++ (CrF++) (Popović, 2015), which computes character n-gram F-score by combining precision and recall; and METEOR (M) (Banerjee & Lavie, 2005), which aligns outputs and references via synonym and stem matching and scores based on unigram precision and recall. In addition, we include MAUVE (MVE) (Pillutla et al., 2023) for distributional similarity and BERTScore-F1 (B-F1) (Zhang et al., 2020) as an embedding-based semantic similarity metric.

Beyond these, we introduce two task-grounded metrics: Factual Grounding Metric (**FGT**), which emphasizes recall by checking that all entities present in the input graph are faithfully realized in the text, and Edit Sensitivity Rate (**EDR**), which emphasizes precision by testing that small, local edits to the graph propagate consistently-i.e. the output highlights only the modifications.

4.1 EXPERIMENTAL RESULTS

We evaluate our design using three different methods: (1) full fine-tuning, (2) zero-shot prompting, and (3) state-of-the-art (SOTA) benchmarking. Throughout these tests, we carefully balance model size (**#P**arameters) with the amount of data (graph-to-sequence pairs).

For full fine-tuning, we train large models on a dataset of 100,000 graph-to-sequence pairs and test them on a separate set of 1,000 graphs. In the zero-shot evaluation, we use state-of-the-art LLMs without providing any specific training examples. The results across different performance metrics are shown in Table 2. We compare these outcomes against our own pre-trained DLM4G family of small models (approx. 50-63M parameters). These models, trained on an 80/10/10 split, are evaluated on the same test set. A separate SOTA benchmarking table (see Section 4.1) compares DLM4G's performance against other task-specific models.

Table 2: Performance of DLM4G compared with (i) finetuning and (ii) zero-shot evaluation paradigms.

Model	#P	V	VikiOFGra	ıph		GenWiki			TekGEN	
		В	CrF++	M	В	CrF++	M	В	CrF++	M
# Pretrain										
DLM4G-1.o	50M	0.619	0.823	0.688	0.401	0.663	0.527	0.247	0.493	0.375
DLM4G-2.o	63M	0.654	0.844	0.791	0.469	0.748	0.574	0.253	0.522	0.414
%Gain	x1.3↓	+5.7%	+2.5%	+14.9%	+16.9%	+12.8%	+8.9%	+2.4%	+5.9%	+10.4%
# Finetune										
GPT-2 (S)	124M	0.166	0.428	0.487	0.280	0.465	0.435	0.226	0.358	0.208
GPT-2 (B)	355M	0.285	0.572	0.490	0.312	0.470	0.425	0.228	0.366	0.211
T5 (S)	60M	0.385	0.688	0.471	0.227	0.495	0.447	0.189	0.352	0.203
T5 (L)	770M	0.658	0.807	0.516	0.361	0.567	0.338	0.199	0.370	0.211
DLM4G-2.o	63M	0.654	0.844	0.791	0.469	0.748	0.574	0.253	0.522	0.414
%Gain	x12↑	0.0%	+4.5%	+53.3%	+29.9%	+31.9%	+28.4%	+10.9%	+41.1%	+96.2%
# Zero-shot										
LLaMa-3	8B	0.622	0.801	0.781	0.461	0.709	0.510	0.176	0.341	0.251
Owen2.5	7B	0.622	0.681	0.743	0.461	0.697	0.501	0.182	0.312	0.234
DeepSeek	7B	0.633	0.809	0.752	0.391	0.688	0.533	0.121	0.345	0.256
GPT-o4-mini	8B	0.648	0.847	0.783	0.464	0.734	$\overline{0.471}$	0.121	0.327	0.277
DLM4G-2.o	63M	0.654	0.844	0.791	0.469	0.748	0.574	0.253	0.522	0.414
%Gain	x127↑	0.0%	0.0%	+1.0%	+1.1%	+2.1%	+7.7%	+39.0%	+51.3%	+49.5%

Model Development and Scaling: We started by pre-training the DLM4G family. The DLM4G-2.0 (63 M #P) model was the best performer across all three datasets. Increasing the model size by a modest 1.3x (from 50M to 63M parameters) resulted in a significant performance boost of 2.4% to 16.9%. This suggests that further scaling DLM4G is a promising direction.

Performance Against Large-Scale Models: Using our best model, DLM4G-2.o, we then benchmarked it against competitors that are 10 to over 100 times larger. In full fine-tuning tests against baselines like the 770M parameter T5-Large, our model performed better on nearly every metric, posting gains up to 96.2%. Furthermore, in zero-shot comparisons against models approximately 127x larger (including LLaMA-3 and GPT-o4-mini), DLM4G-2.o remained highly competitive and notably outperformed all of them on the TeKGen dataset. The results are in Table 2

Semantic Evaluation: To move beyond traditional surface-level metrics and gain a deeper semantic understanding, we also performed experiments using embedding-based metrics. For this analysis, we compare our model against the best-performing autoregressive baselines using the MAUVE score and BERTScore F1. The results of this comparison are detailed in Table 3.

Table 3: DLM4G across embedding based metrics.

Dataset	Metric	T5 (L) # Finetune	GPT-o4-mini # Zero-shot	DLM4G-2.0 # Pretrain	%Gain
WikiOFGraph	MVE B-F1	0.980 0.926	0.983 <u>0.960</u>	0.981 0.963	+0.0% +0.0%
GenWiki	MVE B-F1	$\frac{0.852}{0.812}$	0.811 <u>0.865</u>	0.892 0.899	+4.7% +3.9%
TekGEN	MVE B-F1	$\frac{0.803}{0.789}$	0.751 0.652	0.820 0.847	+2.1% +7.3%

Analysis of Results: Table 3 shows that DLM4G-2.0 achieves a SoTA performance on the GenWiki and TekGEN datasets. The most significant improvements are on the TekGEN dataset, where our model shows a +7.3% gain in BERTScore F1 over the next best model. Similarly, on GenWiki, DLM4G-2.0 improves the SOTA by +4.7% on the MAUVE score. On the WikiOF-Graph, our model achieves the highest BERTScore F1.

These results demonstrate that DLM4G-2.o, as a compact pre-trained model, generates semantically rich output that moves beyond simple n-gram matching metrics.

Primary Finding: A key takeaway from these results is that a graph-aware pre-training strategy can enable compact models to match, or even surpass, the performance of much larger task-specific and general-purpose LLMs. Finally, to complete our evaluation, we benchmark DLM4G against other state-of-the-art (SOTA) models designed specifically for this task.

SoTA Benchmarking: The results in the Table 4 confirm that DLM4G-2.0 consistently outperforms specialized baselines. On the TekGEN dataset, our model establishes a new SOTA on all five metrics, with performance gains reaching as high as +96.2% on METEOR. The results are similarly strong on GenWiki, where DLM4G-2.0 sets a new SOTA on four of the five metrics and nearly matching the baseline's performance on the final one. Its robust performance across both surface-level and embedding-based metrics highlights the model's ability to generate text that is both lexically accurate and semantically coherent.

Table 4: Performance of DLM4G compared with baselines on (a) GenWiki and (b) TekGEN.

GenWiki			TekGEN								
Baselines	В	CrF++	M	B-F1	MVE	Baselines	В	CrF++	M	B-F1	MVE
Rule-Based	0.219	0.360	0.397	0.679	0.822	Rule-based	0.189	0.309	0.301	0.509	0.672
Direct-Transfer	0.234	0.483	0.332	0.808	0.801	ReGen-SCST	0.219	0.385	0.223	0.698	0.719
Noisy-Sup.	0.384	0.623	0.414	0.878	0.901	ReGen-CE	0.199	0.372	0.214	0.612	0.701
DLM4G-1.o	0.401	0.663	0.527	0.857	0.841	DLM4G-1.o	0.247	0.493	0.375	0.795	0.781
DLM4G-2.o	0.469	0.748	0.574	0.899	0.892	DLM4G-2.o	0.253	0.522	0.414	0.847	0.820
%Gain	+22.1%	+20.0%	+38.6%	+2.4%	0.0%	%Gain	+10.9%	+41.1%	+96.2%	+21.3%	+14.0%

4.2 FACTUAL GROUNDING AND EDIT SENSITIVITY

While the results on established metrics in Section 4.1 demonstrate our model's fluency, these scores are often insufficient for capturing the critical demands of G2S tasks: factual grounding to the source graph and sensitivity to its edits. To address this evaluation gap, we now introduce two novel, task-grounded metrics. To ensure a fair and direct comparison against the baseline results, we conduct this analysis on the WikiOFGraph dataset.

Setup and Notations: For the input KG $(\tilde{\mathcal{G}})$, we extract distinct entities as $\mathcal{U}_{\tilde{\mathcal{G}}} = \{h_i, t_j \mid (h_i, r_{ij}, t_j) \in \tilde{\mathcal{G}}\}$. For the corresponding generated sequence \mathbf{S} , we represent the extracted entities as $\mathcal{U}_{\mathbf{S}} = \{u \mid u \in \mathbf{S}\}$. Additionally, we maintain a hallucination set for the output: entities in \mathbf{S} that are not members of $\mathcal{U}_{\tilde{\mathcal{G}}}$ constitute $\mathcal{H}_{\mathbf{S}}$ (with sequence length $N = |\mathbf{S}|$). For the entity and relation extraction, we use the alignment module discussed previously in section 3.5.

Factual Grounding Metric (FGT, \uparrow): FGT measures how precisely the output realizes graph entities, with an optional penalty for out-of-graph mentions. We define Factual Grounding Metric (FGT) as:

$$\mathcal{F}_{GT}(\tilde{\mathcal{G}}, \mathbf{S}) = \underbrace{\frac{2|\mathcal{U}_{\tilde{\mathcal{G}}} \cap \mathcal{U}_{\mathbf{S}}|}{|\mathcal{U}_{\tilde{\mathcal{G}}}| + |\mathcal{U}_{\mathbf{S}}|}}_{\text{F1}} \left(1 - \lambda \frac{|\mathcal{H}_{\mathbf{S}}|}{N}\right). \tag{7}$$

We report results for $\lambda \in \{0, 0.5, 1\}$ and use $\lambda = 0.5$ by default, to balance the penalty term. **Edit Sensitivity Rate (EDR,** \uparrow): EDR is a precision focused metric. It evaluates whether the edits in graph are realized in its generated sequence. Consider an original pair $(\tilde{\mathcal{G}}, \mathbf{S})$ and an edited pair $(\tilde{\mathcal{G}}', \mathbf{S}')$. We build $\mathcal{U}_{\tilde{\mathcal{G}}}, \mathcal{U}_{\tilde{\mathcal{G}}'}, \mathcal{U}_{\mathbf{S}}, \mathcal{U}_{\mathbf{S}'}$ as we do in FGT. The graph and text edits (e.g., additions or deletions) are defined as: $\Delta \mathcal{G} = (\mathcal{U}_{\tilde{\mathcal{G}}'} \setminus \mathcal{U}_{\tilde{\mathcal{G}}}) \cup (\mathcal{U}_{\tilde{\mathcal{G}}} \setminus \mathcal{U}_{\tilde{\mathcal{G}}'})$ and $\Delta \mathcal{T} = (\mathcal{U}_{\mathbf{S}'} \setminus \mathcal{U}_{\mathbf{S}}) \cup (\mathcal{U}_{\mathbf{S}} \setminus \mathcal{U}_{\mathbf{S}'})$. We define Edit Sensitivity Rate (EDR) as:

$$\mathcal{E}_{DR}(\tilde{\mathcal{G}}, \mathbf{S}) = \frac{|\Delta \mathcal{G} \cap \Delta \mathcal{T}|}{|\Delta \mathcal{T}|},$$
 (8)

If the text does not change ($|\Delta \mathcal{T}| = 0$), set EDR = 1 when the graph also does not change ($|\Delta \mathcal{G}| = 0$) and EDR = 0 when the graph does change ($|\Delta \mathcal{G}| > 0$).

To evaluate FGT and EDR, we create edited graphs by randomly substituting a single entity with a plausible alternative from the vocabulary. We then measure whether the output text accurately reflects this specific modification. We compare DLM4G with comparably-size G2S models finetuned on the same task, and report FGT@ $\{0, 0.5, 1\}$ and EDR.

Table 5: Performance of DLM4G on Factual Grounding (FGT) and Edit Sensitivity (EDR).

Model	Recall	F1	$ \mathcal{H}_{\mathbf{S}} $	FGT@λ =0	FGT@λ=0.5	FGT@λ=1.0	EDR
GPT-2 (B)	0.60	0.65	2.95	0.65	0.59	0.53	0.46
T5 (S)	0.58	0.62	3.10	0.62	0.56	0.50	0.42
T5 (L)	0.81	0.83	<u>1.54</u>	0.83	<u>0.79</u>	<u>0.75</u>	0.63
DLM4G-1.0	0.80	0.79	2.03	0.79	0.74	0.70	0.60
DLM4G-2.0	0.82	0.86	1.08	0.86	0.83	0.80	0.68
% Gain (vs. T5-L)	+1.23%	+3.61%	29.8%	+3.61%	+5.16%	+5.33%	+7.9%

Primary Findings: Table 5, micro-averaged across 100 edited examples, highlights two key trends. *First*, among the baselines, T5-Large is the strongest, achieving the lowest hallucination rate (1.54)

entities/sequence) and the best overall scores (FGT@0 of 0.83, FGT@0.5 of 0.79 and EDR of 0.63). *Second*, DLM4G-2.0 consistently outperforms all baselines, improving upon T5-Large's recall (0.82 vs. 0.81) while reducing hallucinations by nearly 30% to a new low of 1.08 entities per sequence. Consequently, it achieves significant gains on our proposed metrics, improving the FGT score by +4.7% and the EDR score by +7.9%.

4.3 DLM4G FOR MOLECULE CAPTIONING

Figure 2: Comparison of (left) framing molecule captioning as a G2S task and (right) the performance of DLM4G-1.0 and DLM4G-2.0 models on the molecule captioning dataset.

DLM4G has demonstrated strong performance in fluency (Section 4.1) and factual grounding (Section 4.2). We now test its generalization to a complex, real-world application by applying it to molecule captioning—a challenging Graph-to-Sequence task from the scientific domain. This benchmark evaluates whether our model's efficient, graph-aware design can outperform larger, specialized models in a completely different field, demonstrating its practical utility

Dataset and Graph representation: We use a subset of the M3-20M dataset Guo et al. (2025) containing 360,000 SMILES-description pairs, which we split 80/10/10 for training, validation, and testing. To process this data, we convert each SMILES string into a knowledge graph $\tilde{\mathcal{G}}$, where the molecule's atoms are treated as entities (nodes) and the chemical bonds between them are the relations (edges). This allows our model to directly interpret the molecule's topology.

Results: First we analyze the scaling effect within the DLM4G variants. As shown in Fig 2, the larger DLM4G-2.0 (63M parameters) consistently outperforms the DLM4G-1.0 version (50M). It achieves a +6.1% improvement in BLEU, a +2.6% gain in chrF++, and a significant +11.7% increase in METEOR. This validates our scaling approach and establishes DLM4G-2.0 as our best model.

More importantly, DLM4G-2.0 achieves a new state-of-the-art result against all specialized baselines. The detailed analysis beside the table 6 highlights the specific performance gains and the model's remarkable parameter efficiency. Refer Appendix A.5 for more details.

Table 6: Comparison of our DLM4G models against baselines. Analysis of Results: Our DLM4G-2.0

Method	#P	В	CrF++	M	B-F1	MVE
MolT5 (B)	220M	0.452	0.651	0.510	0.681	0.852
GitMol	700M	0.475	0.680	0.532	0.751	0.875
GraphT5	272M	0.481	0.692	0.545	0.810	0.913
DLM4G-1.o	50M	0.534	0.715	0.560	0.816	0.901
DLM4G-2.o	63M	0.567	0.734	0.626	0.843	0.925
%Gain	x12↑	+17.8%	+6.1%	+14.8%	+4.1%	+1.3%

Analysis of Results: Our DLM4G-2.0 model outperforms all baselines across every metric. It demonstrates strong performance on surface-level scores, achieving a BLEU of 0.567 (a +17.8% gain over the best baseline), and also leads on semantic metrics with a BERTScore-F1 of 0.843. Crucially, it delivers these results while being 4x to 11x smaller than the baselines.

5 CONCLUSION AND LIMITATIONS

We presented DLM4G, a graph-conditioned, non-autoregressive diffusion framework for graph-to-sequence generation that targets two persistent failures of PLMs—factual grounding and edit sensitivity. Our approach learns a graph-aware noising schedule that prioritizes graph-aligned tokens during training, and at inference combines this schedule with cross-attention to the graph to guide denoising. Across standard surface and embedding metrics, DLM4G surpasses strong baselines; on two task-grounded metrics, it outperforms comparably sized models. Extending to molecule captioning further demonstrates generality. While promising, DLM4G introduces diffusion-time costs and relies on entity alignment quality; future work will reduce sampling steps, relax alignment dependence, and explore structure-aware encoding.

REFERENCES

- Oshin Agarwal, Heming Ge, Siamak Shakeri, and Rami Al-Rfou. Knowledge graph based synthetic corpus generation for knowledge-enhanced language model pre-training. In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou (eds.), *Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pp. 3554–3565, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.278. URL https://aclanthology.org/2021.naacl-main.278/.
- Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with improved correlation with human judgments. In *Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization*, pp. 65–72, Ann Arbor, MI, 2005. Association for Computational Linguistics.
- Daniel Beck, Gholamreza Haffari, and Trevor Cohn. Graph-to-sequence learning using gated graph neural networks. In Iryna Gurevych and Yusuke Miyao (eds.), *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 273–283, Melbourne, Australia, July 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1026. URL https://aclanthology.org/P18-1026/.
- Mitchell Black, Zhengchao Wan, Gal Mishne, Amir Nayyeri, and Yusu Wang. Comparing graph transformers via positional encodings. In *Proceedings of the 41st International Conference on Machine Learning*, ICML'24. JMLR.org, 2024.
- Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 33, pp. 1877–1901, 2020.
- Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021a.
- Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William Chan. Wavegrad: Estimating gradients for waveform generation. In *International Conference on Learning Representations*, 2021b. URL https://openreview.net/forum?id=NsMLjcFaO8O.
- Ting Chen, Ruixiang ZHANG, and Geoffrey Hinton. Analog bits: Generating discrete data using diffusion models with self-conditioning. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=3itjR9QxFw.
- Yunyen Chuang, Hung-Min Hsu, Kevin Lin, Chen-Sheng Gu, Ling Zhen Li, Ray-I Chang, and Hung yi Lee. Meta-diffu\$b\$: A contextualized sequence-to-sequence text diffusion model with meta-exploration. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=NTWXVvIXJM.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423/.
- Jiayu Ding, Zhangkai Zheng, Benshuo Lin, Yun Xue, and Yiping Song. MSG-LLM: A multiscale interactive framework for graph-enhanced large language models. In Owen Rambow, Leo Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert (eds.), *Proceedings of the 31st International Conference on Computational Linguistics*, pp. 9687–9700, Abu Dhabi, UAE, January 2025. Association for Computational Linguistics. URL https://aclanthology.org/2025.coling-main.648/.

- Yifan Ding, Amrit Poudel, Qingkai Zeng, Tim Weninger, Balaji Veeramani, and Sanmitra Bhattacharya. Entgpt: Linking generative large language models with knowledge bases. *arXiv* preprint arXiv:2402.06738, 2024. URL https://arxiv.org/abs/2402.06738.
- Pierre Dognin, Inkit Padhi, Igor Melnyk, and Payel Das. ReGen: Reinforcement learning for text and knowledge base generation using pretrained language models. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*, pp. 1084–1099, Online and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021. emnlp-main.83. URL https://aclanthology.org/2021.emnlp-main.83/.
- Carl Edwards, Tuan Lai, Kevin Ros, Garrett Honke, Kyunghyun Cho, and Heng Ji. Translation between molecules and natural language. *arXiv preprint arXiv:2204.11817*, 2022.
- Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural networks for social recommendation. In *The world wide web conference*, pp. 417–426, 2019.
- Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for large language models. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=IuXR1CCrSi.
- Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. Diffuseq: Sequence to sequence text generation with diffusion models, 2023. URL https://arxiv.org/abs/2210.08933.
- Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An, Peilin Zhao, Wei Bi, Jiawei Han, Hao Peng, and Lingpeng Kong. Scaling diffusion language models via adaptation from autoregressive models. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=jltSLYKwg8.
- Qipeng Guo, Zhijing Jin, Xipeng Qiu, Weinan Zhang, David Wipf, and Zheng Zhang. CycleGT: Unsupervised graph-to-text and text-to-graph generation via cycle training. In Thiago Castro Ferreira, Claire Gardent, Nikolai Ilinykh, Chris van der Lee, Simon Mille, Diego Moussallem, and Anastasia Shimorina (eds.), *Proceedings of the 3rd International Workshop on Natural Language Generation from the Semantic Web (WebNLG+)*, pp. 77–88, Dublin, Ireland (Virtual), 12 2020. Association for Computational Linguistics. URL https://aclanthology.org/2020.webnlg-1.8/.
- Siyuan Guo, Lexuan Wang, Chang Jin, Jinxian Wang, Han Peng, Huayang Shi, Wengen Li, Jihong Guan, and Shuigeng Zhou. M³-20m: A large-scale multi-modal molecule dataset for ai-driven drug design and discovery, 2025. URL https://arxiv.org/abs/2412.06847.
- Jiuzhou Han and Ehsan Shareghi. Self-supervised graph masking pre-training for graph-to-text generation. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pp. 4845–4853, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.321. URL https://aclanthology.org/2022.emnlp-main.321/.
- Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023. URL https://arxiv.org/abs/1606.08415.
- Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020. URL https://arxiv.org/abs/2006.11239.
- Yu-Guan Hsieh, Cheng-Yu Hsieh, Shih-Ying Yeh, Louis Béthune, Hadi Pour Ansari, Pavan Kumar Anasosalu Vasu, Chun-Liang Li, Ranjay Krishna, Oncel Tuzel, and Marco Cuturi. Graph-based captioning: Enhancing visual descriptions by interconnecting region captions, 2025. URL https://arxiv.org/abs/2407.06723.
- Yinan Huang, William Lu, Joshua Robinson, Yu Yang, Muhan Zhang, Stefanie Jegelka, and Pan Li. On the stability of expressive positional encodings for graphs. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=xAqcJ9XoTf.

- Hayate Iso, Yui Uehara, Tatsuya Ishigaki, Hiroshi Noji, Eiji Aramaki, Ichiro Kobayashi, Yusuke Miyao, Naoaki Okazaki, and Hiroya Takamura. Learning to select, track, and generate for data-to-text. In Anna Korhonen, David Traum, and Lluís Màrquez (eds.), *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pp. 2102–2113, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1202. URL https://aclanthology.org/P19-1202/.
- Zhijing Jin, Qipeng Guo, Xipeng Qiu, and Zheng Zhang. GenWiki: A dataset of 1.3 million content-sharing text and graphs for unsupervised graph-to-text generation. In Donia Scott, Nuria Bel, and Chengqing Zong (eds.), *Proceedings of the 28th International Conference on Computational Linguistics*, pp. 2398–2409, Barcelona, Spain (Online), December 2020. International Committee on Computational Linguistics. doi: 10.18653/v1/2020.coling-main.217. URL https://aclanthology.org/2020.coling-main.217/.
- Shailza Jolly, Zi Zhang, Andreas Dengel, and Lili Mou. Search and learn: Improving semantic coverage for data-to-text generation, 12 2021.
- Zdeněk Kasner and Ondrej Dusek. Neural pipeline for zero-shot data-to-text generation. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 3914–3932, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long. 271. URL https://aclanthology.org/2022.acl-long.271/.
- Daehee Kim, Deokhyung Kang, Sangwon Ryu, and Gary Geunbae Lee. Ontology-free general-domain knowledge graph-to-text generation dataset synthesis using large language model, 2024. URL https://arxiv.org/abs/2409.07088.
- Sangyeup Kim, Nayeon Kim, Yinhua Piao, and Sun Kim. Grapht5: Unified molecular graph-language modeling via multi-modal cross-token attention, 2025. URL https://arxiv.org/abs/2503.07655.
- Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan, Mirella Lapata, and Hannaneh Hajishirzi. Text Generation from Knowledge Graphs with Graph Transformers. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pp. 2284–2293, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1238. URL https://aclanthology.org/N19-1238/.
- Jiatong Li, Yunqing Liu, Wenqi Fan, Xiao-Yong Wei, Hui Liu, Jiliang Tang, and Qing Li. Empowering molecule discovery for molecule-caption translation with large language models: A chatgpt perspective. *IEEE Transactions on Knowledge and Data Engineering*, 36(11): 6071–6083, November 2024a. ISSN 2326-3865. doi: 10.1109/tkde.2024.3393356. URL http://dx.doi.org/10.1109/TKDE.2024.3393356.
- Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori B. Hashimoto. Diffusionlm improves controllable text generation, 2022. URL https://arxiv.org/abs/2205. 14217.
- Yang Li, Xiaodong Chen, Wen Zhao, and Yifan Liu. Deepseek: A 7b-parameter llm for cross-modal retrieval. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops*, 2024b.
- Yifan Li, Kun Zhou, Wayne Xin Zhao, and Ji-Rong Wen. Diffusion models for non-autoregressive text generation: a survey. In *Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence*, IJCAI '23, 2023. ISBN 978-1-956792-03-4. doi: 10.24963/ijcai.2023/750. URL https://doi.org/10.24963/ijcai.2023/750.
- Chu-Cheng Lin, Aaron Jaech, Xin Li, Matthew R. Gormley, and Jason Eisner. Limitations of autoregressive models and their alternatives. In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou (eds.), *Proceedings of the 2021 Conference of the North American Chapter of*

- the Association for Computational Linguistics: Human Language Technologies, pp. 5147–5173, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main. 405. URL https://aclanthology.org/2021.naacl-main.405/.
- Pengfei Liu, Yiming Ren, Jun Tao, and Zhixiang Ren. Git-mol: A multi-modal large language model for molecular science with graph, image, and text. *Computers in Biology and Medicine*, 171:108073, 2024a. ISSN 0010-4825. doi: https://doi.org/10.1016/j.compbiomed.2024.108073. URL https://www.sciencedirect.com/science/article/pii/S0010482524001574.
- Xukai Liu, Ye Liu, Kai Zhang, Kehang Wang, Qi Liu, and Enhong Chen. Onenet: A fine-tuning free framework for few-shot entity linking via large language model prompting. *arXiv* preprint *arXiv*:2410.07549, 2024b. URL https://arxiv.org/abs/2410.07549.
- Haitong Luo, Xuying Meng, Suhang Wang, Tianxiang Zhao, Fali Wang, Hanyun Cao, and Yujun Zhang. Enhance graph alignment for large language models, 2024. URL https://arxiv.org/abs/2410.11370.
- Manuel Mager, Ramón Fernandez Astudillo, Tahira Naseem, Md Arafat Sultan, Young-Suk Lee, Radu Florian, and Salim Roukos. GPT-too: A language-model-first approach for AMR-to-text generation. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pp. 1846–1852, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.167. URL https://aclanthology.org/2020.acl-main.167/.
- Ali Mousavi, Xin Zhan, He Bai, Peng Shi, Theodoros Rekatsinas, Benjamin Han, Yunyao Li, Jeffrey Pound, Joshua M. Susskind, Natalie Schluter, Ihab F. Ilyas, and Navdeep Jaitly. Construction of paired knowledge graph text datasets informed by cyclic evaluation. In Nicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pp. 3782–3803, Torino, Italia, May 2024. ELRA and ICCL. URL https://aclanthology.org/2024.lrec-main.335/.
- Alex Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models, 2021. URL https://arxiv.org/abs/2102.09672.
- Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation of machine translation. In *Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics*, pp. 311–318, Philadelphia, PA, 2002. Association for Computational Linguistics.
- Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsitsulin, Mehran Kazemi, Rami Al-Rfou, and Jonathan Halcrow. Let your graph do the talking: Encoding structured data for llms, 2024. URL https://arxiv.org/abs/2402.05862.
- Krishna Pillutla, Lang Liu, John Thickstun, Sean Welleck, Swabha Swayamdipta, Rowan Zellers, Sewoong Oh, Yejin Choi, and Zaid Harchaoui. Mauve scores for generative models: Theory and practice, 2023. URL https://arxiv.org/abs/2212.14578.
- Maja Popović. chrF: character n-gram F-score for automatic MT evaluation. In Ondřej Bojar, Rajan Chatterjee, Christian Federmann, Barry Haddow, Chris Hokamp, Matthias Huck, Varvara Logacheva, and Pavel Pecina (eds.), *Proceedings of the Tenth Workshop on Statistical Machine Translation*, pp. 392–395, Lisbon, Portugal, September 2015. Association for Computational Linguistics. doi: 10.18653/v1/W15-3049. URL https://aclanthology.org/W15-3049/.
- Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. *Journal of Machine Learning Research*, 21(140):1–67, 2020.
- Leonardo F. R. Ribeiro, Claire Gardent, and Iryna Gurevych. Enhancing AMR-to-text generation with dual graph representations. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pp. 3183–3194, Hong Kong, China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1314. URL https://aclanthology.org/D19-1314/.

- Leonardo F. R. Ribeiro, Yue Zhang, Claire Gardent, and Iryna Gurevych. Modeling global and local node contexts for text generation from knowledge graphs. *Transactions of the Association for Computational Linguistics*, 8:589–604, 2020. doi: 10.1162/tacl_a_00332. URL https://aclanthology.org/2020.tacl-1.38/.
- Leonardo F. R. Ribeiro, Martin Schmitt, Hinrich Schütze, and Iryna Gurevych. Investigating pretrained language models for graph-to-text generation. In Alexandros Papangelis, Paweł Budzianowski, Bing Liu, Elnaz Nouri, Abhinav Rastogi, and Yun-Nung Chen (eds.), *Proceedings of the 3rd Workshop on Natural Language Processing for Conversational AI*, pp. 211–227, Online, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.nlp4convai-1. 20. URL https://aclanthology.org/2021.nlp4convai-1.20/.
- Subham Sekhar Sahoo, Marianne Arriola, Aaron Gokaslan, Edgar Mariano Marroquin, Alexander M Rush, Yair Schiff, Justin T Chiu, and Volodymyr Kuleshov. Simple and effective masked diffusion language models. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=L4uaAR4ArM.
- Martin Schmitt, Sahand Sharifzadeh, Volker Tresp, and Hinrich Schütze. An unsupervised joint system for text generation from knowledge graphs and semantic parsing. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 7117–7130, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.577. URL https://aclanthology.org/2020.emnlp-main.577/.
- Martin Schmitt, Leonardo F. R. Ribeiro, Philipp Dufter, Iryna Gurevych, and Hinrich Schütze. Modeling graph structure via relative position for text generation from knowledge graphs. In Alexander Panchenko, Fragkiskos D. Malliaros, Varvara Logacheva, Abhik Jana, Dmitry Ustalov, and Peter Jansen (eds.), *Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15)*, pp. 10–21, Mexico City, Mexico, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.textgraphs-1.2. URL https://aclanthology.org/2021.textgraphs-1.2/.
- Konstantinos Skianis, Giannis Nikolentzos, and Michalis Vazirgiannis. Graph reasoning with large language models via pseudo-code prompting, 2024. URL https://arxiv.org/abs/2409.17906.
- Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel Gildea. A graph-to-sequence model for AMR-to-text generation. In Iryna Gurevych and Yusuke Miyao (eds.), *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 1616–1626, Melbourne, Australia, July 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1150. URL https://aclanthology.org/P18-1150/.
- Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: conditional score-based diffusion models for probabilistic time series imputation. In *Proceedings of the 35th International Conference on Neural Information Processing Systems*, NIPS '21, Red Hook, NY, USA, 2021. Curran Associates Inc. ISBN 9781713845393.
- Hugo Touvron, Louis Liu, Haoxin Fan, Urvashi Khandelwal, Christine Cai, Samuel Thomson, Xiaoyi Jia, Abdoulaye Lasri, Michihiro Yasunaga, Zhengbao Li, et al. Llama-3: Advancing open-source llms with zero-shot and multilingual capabilities. *arXiv preprint arXiv:2311.12345*, 2023.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.org/abs/1706.03762.
- Martin Vejvar and Yasutaka Fujimoto. ASPIRO: Any-shot structured parsing-error-induced ReprOmpting for consistent data-to-text generation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 3550–3563, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.229. URL https://aclanthology.org/2023.findings-emnlp.229/.

- Siddarth Venkatraman, Moksh Jain, Luca Scimeca, Minsu Kim, Marcin Sendera, Mohsin Hasan, Luke Rowe, Sarthak Mittal, Pablo Lemos, Emmanuel Bengio, Alexandre Adam, Jarrid Rector-Brooks, Yoshua Bengio, Glen Berseth, and Nikolay Malkin. Amortizing intractable inference in diffusion models for vision, language, and control, 2025. URL https://arxiv.org/abs/2405.20971.
 - Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Jonathan Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. Benchmarking zero-shot transfer across tasks. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (ACL)*, pp. 4476–4486, 2022.
 - Shanshan Wang, Chun Zhang, and Ning Zhang. Mgsa: Multi-granularity graph structure attention for knowledge graph-to-text generation, 2024a. URL https://arxiv.org/abs/2409.10294.
 - Shoujin Wang, Liang Hu, Yan Wang, Xiangnan He, Quan Z. Sheng, Mehmet A. Orgun, Longbing Cao, Francesco Ricci, and Philip S. Yu. Graph learning based recommender systems: A review, 2021. URL https://arxiv.org/abs/2105.06339.
 - Xinyou Wang, Zaixiang Zheng, Fei Ye, Dongyu Xue, Shujian Huang, and Quanquan Gu. Diffusion language models are versatile protein learners. In *Proceedings of the 41st International Conference on Machine Learning*, ICML'24. JMLR.org, 2024b.
 - Yaoke Wang, Yun Zhu, Wenqiao Zhang, Yueting Zhuang, Liyunfei Liyunfei, and Siliang Tang. Bridging local details and global context in text-attributed graphs. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 14830–14841, Miami, Florida, USA, November 2024c. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.823. URL https://aclanthology.org/2024.emnlp-main.823/.
 - Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models. *Transactions on Machine Learning Research*, 2022. ISSN 2835-8856. URL https://openreview.net/forum?id=yzkSU5zdwD. Survey Certification.
 - Sam Wiseman, Stuart Shieber, and Alexander Rush. Challenges in data-to-document generation. In Martha Palmer, Rebecca Hwa, and Sebastian Riedel (eds.), *Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing*, pp. 2253–2263, Copenhagen, Denmark, September 2017. Association for Computational Linguistics. doi: 10.18653/v1/D17-1239. URL https://aclanthology.org/D17-1239/.
 - Sam Wiseman, Stuart Shieber, and Alexander Rush. Learning neural templates for text generation. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun'ichi Tsujii (eds.), *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pp. 3174–3187, Brussels, Belgium, October-November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1356. URL https://aclanthology.org/D18-1356/.
 - Yike Wu, Nan Hu, Sheng Bi, Guilin Qi, Jie Ren, Anhuan Xie, and Wei Song. Retrieve-rewrite-answer: A kg-to-text enhanced llms framework for knowledge graph question answering, 2023. URL https://arxiv.org/abs/2309.11206.
 - A. Xin et al. LLM-augmented entity linking (Ilmael). arXiv preprint arXiv:2407.04020, 2024. URL https://arxiv.org/abs/2407.04020.
 - Yi Xu, Luoyi Fu, Zhouhan Lin, Jiexing Qi, and Xinbing Wang. Infinity: A simple yet effective unsupervised framework for graph-text mutual conversion, 2022. URL https://arxiv.org/abs/2209.10754.
 - Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Fei Huang, and Songfang Huang. Text diffusion model with encoder-decoder transformers for sequence-to-sequence generation. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the 2024 Conference of the North American*

 Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 22–39, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.2. URL https://aclanthology.org/2024.naacl-long.2/.

- Urchade Zaratiana, Nadi Tomeh, Pierre Holat, and Thierry Charnois. GLiNER: Generalist model for named entity recognition using bidirectional transformer. In *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 5364–5376, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.300. URL https://aclanthology.org/2024.naacl-long.300/.
- Shuiqing Zeng, Xin Huang, Yunchang Wang, and Jun Li. Qwen2.5: Scaling up for code and knowledge-intensive tasks. *arXiv preprint arXiv:2401.12345*, 2024.
- Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evaluating text generation with bert, 2020. URL https://arxiv.org/abs/1904.09675.
- Tiancheng Zhao, Ran Zhao, and Maxine Eskenazi. Learning discourse-level diversity for neural dialog models using conditional variational autoencoders. In Regina Barzilay and Min-Yen Kan (eds.), *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 654–664, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1061. URL https://aclanthology.org/P17-1061/.
- Xi Zhu, Haochen Xue, Ziwei Zhao, Wujiang Xu, Jingyuan Huang, Minghao Guo, Qifan Wang, Kaixiong Zhou, and Yongfeng Zhang. Llm as gnn: Graph vocabulary learning for text-attributed graph foundation models, 2025. URL https://arxiv.org/abs/2503.03313.

A APPENDIX

This section presents an in-depth discussion of the eleven core components of the manuscript, including the principal mathematical derivations, template methods (zero-shot prompting and molecular captioning), the proposed algorithm pseudo-codes, and detailed implementation aspects. Additionally, the complete code implementation is available here: CODE

A.1 RELATED WORK AND BACKGROUND

Graph-to-Sequence Learning: *G2S* has evolved through three stages: (i) template-based systems that verbalised graph predicates but were brittle for complex inputs Wiseman et al. (2018); Kasner & Dusek (2022); Vejvar & Fujimoto (2023); (ii) neural encoder—decoder models that learned graph embeddings, improving structural generalisation yet struggling with long-range dependencies Wiseman et al. (2017); Beck et al. (2018); Iso et al. (2019); and (iii) fine-tuned transformers, now dominant, offering superior fluency and factuality with minimal task-specific design Vaswani et al. (2023); Ribeiro et al. (2021); Jolly et al. (2021); Han & Shareghi (2022). This trajectory frames the current *G2S* landscape and motivates subsequent approaches.

PLMs for Graphs: Leveraging LLMs for graph verbalisation involves four challenges: (i) *alignment* of graph elements to words Luo et al. (2024); Zhu et al. (2025), (ii) *position* encoding under permutation invariance Black et al. (2024); Huang et al. (2024); Perozzi et al. (2024), (iii) *multi-level semantics* across nodes, edges, and subgraphs Wang et al. (2024a), and (iv) *context* retention over long spans Ding et al. (2025); Wang et al. (2024c). These define a taxonomy from Graph-to-Sequence (G2S) to Graph-to-Token (G2T) methods. Current KG-to-text models employ positional encodings, structural prompts, and multi-granularity attention Luo et al. (2024); Zhu et al. (2025); Wang et al. (2024a), reducing factual omissions but still limited by left-to-right decoding and weak global planning Wei et al. (2022); Lin et al. (2021). Diffusion LMs, with iterative denoising, could address these issues, though they remain unexplored for KG-to-text generation Li et al. (2023).

Diffusion Models for Conditional Generation: Conditional diffusion guides denoising with an input sequence encoding, extending conditional-VAE ideas Zhao et al. (2017). Early text models (Diffusion-LM Li et al. (2022), Analog Bits Chen et al. (2023)) imposed weak conditioning via classifiers or plug-in controls, while DIFFUSEQ Gong et al. (2023); Yuan et al. (2024) enabled true sequence-to-sequence conditioning in continuous space. Related frameworks also target time-series (CSDI Tashiro et al. (2021)) and speech (WaveGrad Chen et al. (2021b)). Distinct from prior G2S and diffusion-LM work, DLM4G integrates classifier-free diffusion with explicit KG conditioning, treating the graph itself as the control variable. This eliminates exposure bias and supports global planning, yielding more coherent KG verbalisation. **Molecule Captioning:** Most prior works adapt either AR or NAR generation for molecular descriptions, but these methods often inherit exposure bias (AR) or strong independence assumptions (NAR) Edwards et al. (2022); Liu et al. (2024a). Diffusion-based approaches, while promising for text generation, have not been systematically applied to graph-tosequence captioning. To clarify the conceptual distinctions, Table 1 summarizes the characteristics of major generation paradigms and highlights how DLM4G differs. In particular, our method introduces a graph-guided refinement process with graph-aware noising, enabling both factual grounding and graph edits during caption generation, a capability absent in existing paradigms.

A.2 SUMMARY OF DATASET AND BASELINES

Table 7: Training set statistics for comparative analysis. # triplet (m/M/avg) indicates the minimum, maximum, and average number of triplets per sample.

Dataset	# samples	# unique predicate	# unique entity	# triplet (m/M/avg)
WikiOFGraph	5.85M	140,733	8.2M	1/173/3.62
GenWiki	680K	287	86.6K	1/10/2.64
TekGen	6.31M	50,861	4.3M	1/54/1.73

WikiOFGraph: We use the WikiOFGraph dataset as described in Kim et al. (2024). This dataset comprises approximately 5.85 million graph-text pairs extracted from general-domain English Wikipedia

articles. Each graph is represented as a set of RDF-style triples, automatically mined and refined via large-language-model prompting. For example, the triple <Alan Turing, birthPlace, London> corresponds to the sentence "Alan Turing was born in London."

GenWiki: We use the "fine" split of GenWiki Jin et al. (2020), which contains 680 K graph–text pairs; we reserve 10 % of these for evaluation. The dataset covers 287 distinct predicates, with an average of 2.64 ± 1.72 triples per graph and an average text length of 26.05 ± 10.99 tokens. For instance, the graph { (Google, founder, Larry Page), (Google, founder, Sergey Brin)} maps to the sentence "Google was founded by Larry Page and Sergey Brin."

TekGen: We adopt the TekGen dataset as released in Mousavi et al. (2024), containing roughly 6.3 M aligned Wikidata triple—sentence pairs drawn from Wikipedia. It spans about 50.8 K distinct predicates and is provided in separate train/validation/test TSV files (each line a JSON object). An exemplar entry is: {"subject":"The Lion King", "predicate":"director", "object": "Roger Allers", "text": "The Lion King is an animated musical drama film directed by Roger Allers and Rob Minkoff."}

A.3 TRAINING DETAILS

918

919

920

921

922

923

924

925

926

927

928

929

930

931

933 934

935

936

937

938

939

940

941

942

943

944

945 946

947 948

949

951

952 953

954 955 *Model variants*: We train two Transformer–based denoisers: (i) a 6-encoder / 6-decoder architecture with ≈ 50 M parameters, and (ii) a 6-encoder / 9-decoder architecture with ≈ 63 M parameters. Both use GeLU activations Vaswani et al. (2023); Hendrycks & Gimpel (2023) and share all other hyper-parameters.

Diffusion setup: A fixed diffusion horizon of T=2000 timesteps is employed, following the sqrt noise schedule introduced in DiffusionLM Li et al. (2022). Inputs are tokenised with the bert-base-uncased vocabulary Devlin et al. (2019). The graph-aware noising schedule is calculated every 20,000 training steps.

Optimisation: All experiments use AdamW with a peak learning rate of 1×10^{-4} , a linear warm-up of 10,000 steps, and linear decay to zero. Gradient norms are clipped to 1.0; no label-smoothing or dropout is applied beyond the architectural dropout already reported in the main text.

Training regime: Each model is trained for up to 200,000 steps per dataset:

- The 50 M model achieves its best validation metrics after $\sim 190,000$ steps.
- The 63 M model converges at the full 200,000-steps budget.

These numbers were found to be stable across all datasets considered.

A.4 ZERO-SHOT PROMPTING

```
956
               === System Prompt====
                                                                                    == System Prompt===
957
                                                                                  You are {GPT-o4-mini}, a large language model.
             You are {MODEL}, a large language model.
                                                                                  Your task is to convert a flat list of RDF-style triples into a single, fluent
              Your task is to convert a flat list of RDF-style triples into a single,
958
             fluent English description.
                                                                                  English description.
959
              === MODEL-SPECIFIC GUIDANCE ====
                                                                                     == MODEL-SPECIFIC GUIDANCE ====
960
             {MODEL GUIDANCE}
                                                                                  [• Keep your output concise.
961
                                                                                  • Use simple vocabulary and straightforward syntax.}
              ==== USER PROMPT ====
962
             Convert the following knowledge graph into a coherent English
                                                                                  ==== USER PROMPT ====
963
                                                                                  Convert the following knowledge graph into a coherent English sentence
             sentence or short paragraph.
             Triples are given in the form (<S> subject | <P> predicate | <O>
                                                                                  or short paragraph.
964
                                                                                  Triples are given in the form (<$> subject | <P> predicate | <O> object).
             object), separated by commas.
965
                                                                                  separated by commas
             Knowledge Graph:
966
             (<$> Arròs negre | <P> country | <O> Spain),
                                                                                  Knowledge Graph:
967
                                                                                  (<S> Arròs negre | <P> country | <O> Spain).
                           | <P> ethnic Group | <O> Spaniards)
             (<S> Spain
                                                                                  (<S> Spain
                                                                                               | <P> ethnic Group | <O> Spaniards)
968
              === ASSISTANT (vou) ===
969
             <your generated text here>
                                                                                  === ASSISTANT (vou) ===
                                                                                  <your generated text here>
970
```

Figure 3: Zero-Shot Prompt Template for Knowledge Graph Verbalization Across Multiple LLMs

Zero-shot prompting (illustrated in Figure 3) exploits the rich, general-purpose knowledge encoded in pretrained large language models (LLMs) to tackle novel tasks without additional fine-tuning. By casting tasks as natural-language instructions or templated prompts, models such as GPT-3 Brown et al. (2020), DeepSeek Li et al. (2024b), LLaMa-3 Touvron et al. (2023), and Qwen2.5 Zeng et al. (2024) demonstrate strong out-of-the-box performance across diverse applications. Prior work has shown that LLMs internalize extensive linguistic, factual, and procedural knowledge during self-supervised training, yielding robust zero-shot capabilities in text classification Wang et al. (2022), machine translation Raffel et al. (2020), and code generation Chen et al. (2021a). A typical zero-shot prompt comprises three components:

- 1. A *system prompt* that assigns the model's role (e.g., "You are {MODEL}, a large language model. Convert RDF triples into fluent English.").
- A model-specific guidance segment to steer style or brevity (e.g., "Keep your output concise.").
- 3. A *user prompt* presenting the task instance.

For example: Convert the following knowledge graph into a single English sentence: $\langle S \rangle$ Arròs negre $\langle P \rangle$ country $\langle O \rangle$ Spain, $\langle S \rangle$ Spain $\langle P \rangle$ ethnic Group $\langle O \rangle$ Spainards.

In this study, we evaluate four models—DeepSeek (7 B), GPT-o4-mini (8 B), LLaMa-3 (8 B), and Qwen2.5 (7 B)—to investigate how model scale, pretraining corpus, and architectural choices affect zero-shot generalization on knowledge-to-text tasks.

A.5 MOLECULE CAPTIONING

Figure 4: Qualitative Assessment of Molecule Captioning by DLM4G Given SMILES Representations

Figure 4 shows the captions produced by two variants of our model, DLM4G-1.0 (50 M parameters) and DLM4G-2.0 (63 M parameters), alongside the ground-truth description for a polybrominated biphenyl (PBB) molecule (SMILES shown beneath the 3D rendering). Both model outputs are nearly identical, correctly capturing:

- The molecule class: "polybrominated biphenyls (PBBs) comprise 209 synthetic biphenyl derivatives"
- The substitution range: "bearing 1–10 bromine atoms"
- The typical use case: "commonly used as flame-retardant additives in plastics."

Quantitatively, the two variants achieve very similar scores on all three evaluation metrics—BLEU, chrF++ and METEOR—reflecting their equivalently high factual fidelity and fluency. This example illustrates that even the smaller 50 M model matches the larger 63 M model in this task. Full dataset statistics and comprehensive metric results are provided in the main paper.