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Abstract

In this paper, we present Eagle, a suite of
large language models (LLMs) designed for
the Arabic language, built on Mistral, LLaMA?2,
and LLaMA3. We pre-train these models on
the Oasis dataset, containing approximately
35 billion Arabic tokens, and further enhance
through instruction fine-tuning and reinforce-
ment learning with Al feedback. We also intro-
duce Amwaj, an Arabic embedding model for
retrieval-augmented generation, and AraPO,
a novel alignment method for improved Ara-
bic culture alignment. To evaluate our mod-
els, we present OpenArabicEval, a diverse
benchmark of 32 datasets covering compre-
hensive multiple-choice evaluation, natural lan-
guage understanding, natural language gener-
ation, and long context evaluation. Extensive
testing on OpenArabicEval demonstrates our
models’ exceptional performance and robust-
ness across various NLP tasks, highlighting
their effectiveness in processing Arabic. Ope-
nArabicEval is the first benchmark to feature
long context evaluation for Arabic LLMs.

1 Introduction

LLMs have revolutionized the field of natural lan-
guage processing (NLP) by enabling the creation
of systems capable of understanding and gener-
ating human language with remarkable accuracy
and fluency. These models, built on sophisticated
neural network architectures, are trained on vast
amounts of text data, allowing them to learn the in-
tricacies of language, including grammar, context,
and semantics. LLMs lies in the Transformer archi-
tecture, introduced by Vaswani et al. (2017), which
leverages self-attention mechanisms to handle long-
range dependencies in text effectively. This ar-
chitecture underpins many state-of-the-art models,
such as OpenAI’s GPT-2 (Radford et al., 2019)
and GPT-3 (Brown et al., 2020b) and Google’s
BERT (Devlin et al., 2019), which have demon-
strated unprecedented capabilities in various NLP

tasks, from machine translation to conversational
agents.

One of the key strengths of LLMs is their adapt-
ability to different languages. This adaptability is
crucial for developing applications that cater to a
global audience. For instance, multilingual mod-
els like GPT-4 (OpenAl, 2023a), Bloom(Workshop
etal., 2023), XGLM (Lin et al., 2022), mGPT (Shli-
azhko et al., 2023), Nemotron (Parmar et al., 2024),
and LLaMA-3 (Al@Meta, 2024) are designed to
understand and generate text in multiple languages,
overcoming the challenges posed by linguistic di-
versity. These models are pre-trained on large mul-
tilingual corpora, enabling them to capture the nu-
ances of various languages and dialects.

Arabic encompasses a collection of languages
and dialects, some of which (e.g., Moroccan Arabic
and Egyptian Arabic) are not mutually intelligible.
Classical Arabic (CA), the variety used in ancient
Arabic poetry and the Qur’an, continues to coexist
with other varieties today. Modern Standard Ara-
bic (MSA) is a more contemporary form of Arabic,
typically used in pan-Arab media, government, and
formal education across the Arab world (Badawi,
1973). Dialectal Arabic (DA) refers to the various
Arabic dialects. These dialects are often catego-
rized regionally (e.g., Gulf, Levantine, Nile Basin,
and North African (Habash, 2010; Abdul-Mageed,
2015)), but they can also be defined at the coun-
try or even provincial levels (e.g., (Bouamor et al.,
2018; Abdul-Mageed et al., 2020b, 2021b, 2020a)).

The adaptability of generative LMs to spe-
cific languages such as Arabic involves further-
pretraining existing LLLMs on language-specific
data. This process enhances their performance
on tasks related to that language, making them
more effective for practical applications such as lan-
guage translation, sentiment analysis, and question-
answering systems (Nagoudi et al., 2023; El-
madany et al., 2022). Additionally, techniques like
transfer learning and zero-shot learning further en-



hance the versatility of these models, allowing them
to generalize knowledge across languages and do-
mains (Nagoudi et al., 2022a). Arabic, with its rich
morphology and diverse dialects, presents unique
challenges for NLP. Traditional NLP models often
struggles with Arabic due to its script, right-to-left
writing direction, and extensive inflectional system.
However, advancements in transformer-based ar-
chitectures have facilitated the creation of highly
effective Arabic GPT models. Arabic GPT models
such as, Jasmine (Nagoudi et al., 2022a), AceGPT
(Huang et al., 2023) and Jais (Sengupta et al., 2023)
are pre-trained on large, diverse Arabic text corpora
to capture the syntactic, semantic, and contextual
nuances of the language. The pre-training phase
involves predicting the next word in a sentence,
which enables the model to learn language patterns
and context effectively.

In this paper we presents an extensive suite of
LLMs specifically designed for the Arabic lan-
guage. Our contributions are as follows: (1)
We introduce Eagle, three cutting-edge, power-
ful Arabic LLMs built on Mistral-7B (Jiang et al.,
2023), LLaMA2-7B (Touvron et al., 2023a), and
LLaMA3-8B (Zhang et al., 2024). (2) Oasis: An ef-
ficient training dataset for Arabic Large Language
models that include three subsets: Pretraining, In-
struction and Reward modelling (3) Amwaj, two
robust Arabic embedding models for enhanced Ara-
bic language understanding, (4) OpenArabicEval,
a comprehensive and diverse benchmark for eval-
uating Arabic LLMs, and (5) A novel alignment
method AraPO for Arabic cultural alignment.

The rest of the paper is organized as follows: We
discuss the literature review and related work in
Section 2, describe our training dataset (i.e., Oasis)
in Section 3, our LLMs in Section 4, and our Chat
Models in Section 5. The OpenArabicEval bench-
mark is presented in Section 6. Section 7 details
the experiment and evaluation results. Finally, we
conclude in Section 8.

2 Related Works

LLMs have undergone significant advancements in
recent years, transitioning from primarily English-
centric designs to sophisticated multilingual ar-
chitectures. This evolution is particularly no-
table within the realm of causal language models
(CLMs), which predict the next word in a sequence
based on preceding words. In this section we de-
scribe the English-Centric, multilingual, and Ara-

bic CLMs.

English-Centric CLMs. Initially, the majority
of CLMs were developed with a strong focus on
English. Models such as GPT-2 (Radford et al.,
2019) and GPT-3 (Brown et al., 2020b), developed
by OpenAl, exemplify this trend. In addition, there
are many open-source LLMs such as LLaMA (Tou-
vron et al., 2023b,a), Mistral (Jiang et al., 2023),
and Gemma (Team et al., 2024) have demonstrated
remarkable proficiency in in natural language un-
derstanding and generation, but their performance
in non-English languages was often limited due
to the predominance of English in their training
data (Zhang et al., 2023).

Mulilingual CLMs. The increasing global de-
mand for multilingual Al applications has spurred
the development of LLMs that can handle multi-
ple languages proficiently. This shift is not just
about expanding vocabulary; it involves training
models on diverse linguistic structures, syntaxes,
and cultural contexts. mBERT (Devlin et al., 2019),
XLM-R (Conneau et al., 2020), mBART (Liu et al.,
2020) and mT5 (Xue et al., 2021) are notable exam-
ples for encode-only and encode-decoder, trained
on extensive multilingual datasets to achieve ro-
bust performance across a wide range of languages.
More recently, developing multilingual CLMs in-
volves several challenges, such as managing the
variance in language structures and ensuring equi-
table performance across languages with differing
amounts of available data. Techniques like tok-
enization strategies, transfer learning, and the use
of large-scale multilingual corpora have been em-
ployed to address these issues. Additionally, mod-
els like GPT-4 (OpenAl, 2023a), Bloom (Work-
shop et al., 2023), XGLM (Lin et al., 2022), mGPT
(Shliazhko et al., 2023), Nemotron (Parmar et al.,
2024), and LLaMA-3 (Al@Meta, 2024) have incor-
porated cross-lingual training methods to enhance
their multilingual capabilities.

Arabic CLMs. As the CLMs have demonstrated
significant proficiency in various NLP tasks, adapt-
ing pre-existing LLMs is the recent trending ap-
proach to building language specific LLMs. This
can be achieved by using two main ingredients:
a robust base LLM, such as LLaMA or Mistral,
and a large corpus from target language. Recent
work in Arabic LLMs has shown promising results.
For instance, Jasmine (Nagoudi et al., 2022a) is a
robust Arabic text decoder capable of handling Ara-



bic text generation and classification tasks. Mean-
while, models like AceGPT (Huang et al., 2023)
and Jais (Sengupta et al., 2023) have followed the
instruction fine-tuning approach of ChatGPT (Chat-
GPT, 2024), introducing language decoders based
on LLaMA?2 (Touvron et al., 2023b) that can follow
instructions and maintain coherent conversations
in Arabic. These advancements, along with con-
tributions from the open-source community, have
set new standards and opened up new opportunities
for research in the NLP field.

3 OQasis

In this section we introduce the most efficient train-
ing dataset for Arabic LLMs. We have three sub-
sets of Oasis: Pretraining, Instruction and Reward
modelling.

3.1 Pretraining Dataset

Our pretraining dataset boasts a rich linguistic di-
versity, including all categories of Arabic, namely
Classical Arabic (CA), Dialectal Arabic (DA), and
Modern Standard Arabic (MSA). The following
details provide an overview of our data sources.
MSA and DIA Data. We use a large and diverse
100 GB of Arabic text, amounting to 35 billion to-
kens. This data is aggregated from various sources:
AraNews,»(Nagoudi et al., 2020), El-Khair(El-
Khair, 2016), Gigaword,! OSCAR (Sudrez et al.,
2019), OSTIAN (Zeroual et al., 2019), Wikipedia
Arabic, and Hindawi Books.2 We also derived
ArabicWeb22 (A) and (B) from the open source
Arabic text 20223, AraNews,, (Nagoudi et al.,
2020), El-Khair (El-Khair, 2016), Gigaword,* OS-
CAR (Suérez et al., 2019), OSIAN (Zeroual et al.,
2019), 101 Billion Arabic words (Aloui et al.,
2024), Wikipedia Arabic, and Hindawi Books.?
We also derived ArabicWeb22 (A) and (B) from
the open source Arabic text 2022.% This pretrain-
ing dataset was cleaned, filtered and deduplicated
using Bhatia (2023).

CA Data. Our primary source for CA data is
the Open Islamicate Texts Initiative (OpenITI) cor-
pus (v1.6) (Nigst et al., 2020). The corpus com-
prises 11, 195 premodern Islamic books, primarily

"https://catalog.ldc.upenn.edu/LDC2009T30.
Zhttps://www.hindawi.org/books.
3https://data.baai.ac.cn/details/Arabic Text-2022
“LDC Catalog Link

3 OpenlITI corpus (v1.6) (Nigst et al., 2020).

8 ArabicText-2022 data

sourced from Shamela Library,” the Al-Jami Al-
Kabir collection (JK),? texts digitized by the Jor-
danian publisher Markaz Al-Turath, and the Shia
Library.?

3.2 Instruction Dataset

Table 1 presents the composition of the Oasis s
dataset, aggregating a wide array of data sources
and sample sizes. To build the Oasis instruct
dataset, we first collected all open-source high-
quality Arabic NLU (Elmadany et al., 2022) and
NLG (Nagoudi et al., 2023) datasets. We also use
the Arabic split of the Multilingual SIFT dataset by
Chen et al. (2023); Huang et al. (2024).To further
enrich our dataset, we follow the methodology of
(Teknium, 2023) to build the Arabic Generation
Dataset. This is generated synthetically using mul-
tiple different datasets as seed data. We also collect
high-quality human answers to various common
questions from https://mawdoo3. com/. Finally,
we built a long context Arabic instruction dataset
which has an average length of 60k tokens per sam-
ple. The methodology to build this dataset was
inspired by (Zhang et al., 2024). Finally, we use
the Human Inst dataset from (Alwajih et al., 2024)
to further improve the model. We have 9.5k anno-
tations from 6 different countries; this dataset was
built as a part of a larger ongoing project.

3.3 Reward Dataset

Creating a Reward Dataset (RD) is crucial for
training reward models that can effectively steer
LLMs to produce high-quality responses that
align with human preferences. The process in-
volves generating some rejected samples for the
human-accepted samples to train models effec-
tively. Hence, we generate the rejected samples
for our reward dataset using 4 different models
and randomly select one from the four genera-
tions. We use the following models: AceGPT-13B
Chat (Huang et al., 2024), Command-R+, GPT-
3.5-Turbo (Brown et al., 2020a) and GPT-4-Turbo
(OpenAl, 2023a).

4 Arabic Language Models

Traditional approaches to training LLMs have

either involved training entire models on vast

datasets, which is computationally expensive (Sen-

gupta et al., 2023), or continuously pre-training on
"https://shamela.ws.

8http://kitab-project.org/docs/openI TL.
*https://shiaonlinelibrary.com.
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Task #Datasets  Source #Samples
AG Inst. 1 Our Paper 981k
ORCA 60 Elmadany et al. (2022) 500k
Quora QA 1 Huang et al. (2024) 247k
Transliteration 3 Ameur et al. (2019); Talafha et al. (2021); Merhav and Ash (2018) 209K
MultiSIFT 3 Huang et al. (2024) 114k
Summarization 5 Chouigui et al. (2021); Bhattacharjee et al. (2021); Varab and Schluter (2021); Hasan et al. (2021); Gaanoun et al. (2022) 75k
Diacritization 1 Fadel et al. (2019) 50k
Style transfer 2 Mubarak (2018); Alhafni et al. (2022) 40k

7 Mozannar et al. (2019); Lewis et al. (2020); Artetxe et al. (2020); Roy et al. (2020); Ismail and Nabhan Homsi (2018); Hardalov et al. (2020) 29.6k
MT 6 Eisele and Chen (2010); Ziemski et al. (2016); Seddah et al. (2020); Outchakoucht and Es-Samaali (2021); Nagoudi et al. (2022b); Bouamor et al. (2014) 21.7k
Mawdoo QA 1 Our Paper 20k
GEC 3 Mohit et al. (2014); Rozovskaya et al. (2015); Habash and Palfreyman (2022) 19.4k
AYA 1 Aryabumi et al. (2024) 11.5k
CIDAR 1 Alyafeai et al. (2024) 10k
LC Inst. 1 Our Paper 10k
Human Inst. 1 Our Paper 9.5k
Paraphrasing 3 Cer et al. (2017); Alian et al. (2019); Scherrer (2020) 2.1k
Total 101 2.3M
Enhanced 101 2.2M

Table 1: Oasisypst Dataset. Here LC Inst. Refers to Long context instructions.

Arabic data (Huang et al., 2024), which faces lim-
itations due to an inefficient tokenizer optimized
primarily for high-resource languages. To address
these challenges, we introduce three models based
on different architectures: AraMistral, Aral.lama,
and AraMax, which are based on Mistral-7B (Jiang
et al., 2023), LLaMA2-7B (Touvron et al., 2023a),
and LLaMA3-8B (Zhang et al., 2024), respectively.
Vocabulary Extension. Our first model is
AraLlama-7B is based on LLaMA-2 (7B) (Touvron
et al., 2023a). The original LLaMA-2 vocabulary
only contains 28 Arabic letters, limiting its effec-
tiveness. Expanding the vocabulary significantly
enhances document-level understanding and encod-
ing efficiency (Li et al., 2023). We increase the vo-
cabulary size from 32,000 to 60,000 tokens, initial-
izing new embeddings using a mean method based
on the original LLaMA-2 (7B) model. This pre-
serves English proficiency while effectively trans-
ferring capabilities to the Arabic model. The model
is then trained using LoRA, utilizing all linear lay-
ers in the attention module.

Continually Pretraining. Our next model,
AraMistral-7B, is pre-trained using the Mistral-
7B (Jiang et al., 2023) model with a next token pre-
diction objective. Mistral-7B outperforms LLaMA-
2 (13B) with a slightly updated tokenizer. The
Mistral model utilizes a better representation of
Arabic characters without extending the vocabu-
lary size, as it includes only 51 Arabic tokens. For
this reason, we continued training on top of Mistral
without any vocabulary extension.

Up-Scaled Continually Pretraining. Our third
model, AraMax-8B, is based on LLaMA-3 (8B)
and utilizes an innovative method called up-scaled
pretraining. We fine-tune input and output embed-
dings, employing different learning rates for stabil-
ity to ensure AraMax retains new knowledge. Rank

Generate Quality
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Figure 1: AraPO Methodology.

Stabilized LoRA (Kalajdzievski, 2023) further sta-
bilizes training by adjusting the alpha parameter
based on rank. We train using QLoRA, focusing
on all linear layers, including embed_tokens and
Im_head, with a rank of 128 on 4 A100 GPUs.
This approach ensures that AraMax is adept at un-
derstanding new Arabic domains, handling long
context inputs, and optimizing performance and
efficiency.

5 Arabic Chat Models

This section introduces a series of chat versions
of our models specifically designed to excel in
Arabic language understanding and generation.
These models are enhanced through various tuning
and alignment techniques to improve their perfor-
mance.

Instruction Tuning. To enhance the capabilities
of our LLMs, we use our instruction tuning dataset
described in Section 3.2 to perform instruction fine-
tuning on our pre-trained model. As explained
earlier, we standardize all the datasets to have the
same prompting format.

Alignment with AI Feedback. We employ four
alignment methods to enhance the performance
of our base model: DPO (Rafailov et al., 2024),
CPO (Xu et al., 2024), SimPO (Meng et al., 2024),
and our newly proposed AraPO. AraPO leverages
a reward model based on Amwaj embeddings,
which are fine-tuned to discern and rank optimal
responses. These ranked responses are then used to
train the model utilizing a combination of SimPO



loss and negative likelihood loss. All experiments
used the AraMax model to identify the most effec-
tive method. The AraPO loss function is formu-
lated as follows:

min £(7p, U) —E(4 4, )~pllog T (yw|z)] . (1)
0 ~——

»CSimPO »CNLL

In this equation, £(myU) represents the SimPO
loss, which is designed to align the policy my with
the constant reference model U. The second term,
—E(2,y.,)~pllog T (yw|z)], is the negative likeli-
hood loss (NLL). This term measures the expected
log probability of the correct response ¥, given
the input x, averaged over the dataset D. By min-
imizing this combined loss, we aim to optimize
the model parameters 6 such that the policy not
only aligns well with the utility function but also
maximizes the likelihood of generating the correct
responses. Since SimPO also uses length normali-
sation, it is more efficient to use our case.

Using the negative likelihood loss is beneficial
because it encourages the model to assign higher
probabilities to the correct responses. This ap-
proach helps improve the model’s predictive accu-
racy and ensures that the generated responses align
more with the expected or desired outputs. Com-
bining SimPO loss with negative likelihood loss
ensures the model is optimized for alignment with
the utility function and for generating accurate re-
sponses. This approach allows us to systematically
evaluate and compare the efficacy of each align-
ment strategy in improving model performance.
Long Context Training. Since one of the applica-
tions of AraMax we have envisioned is to be able
to understand large Arabic documents, we use two
different methods to make this possible. Firstly
we extend the sequence length of AraMax from 8k
to 64k using PoSE (Zhu et al., 2023). After pre-
training, we set rope_theta to 500k to extend the
context to 64k using the Long context instructions
subset of the Oasis dataset.

6 OpenArabicEval

We propose OpenArabicEval to identify the most
effective model. The OpenArabicEval benchmark
comprises five main components: comprehensive
multiple choice evaluation, NLU, NLG, and Long
Context benchmarks. For the NLU and NLG bench-
marks, we follow the same approach as (Khondaker
et al., 2023).

6.1 Comprehensive Benchmark

The comprehensive benchmark is designed to eval-
uate the performance of models in the Arabic
language across various tasks, focusing on Com-
monsense Reasoning and Multiple-Choice Ques-
tion Answering. The benchmark includes tasks
such as HellaSwag (Zellers et al., 2019) and PiQA
(Bisk et al., 2020), which test the model’s abil-
ity to complete sentences and choose plausible
physical solutions, respectively. It also features
the AI2 Reasoning Challenge (ARC) (Clark et al.,
2018) and BoolQ (Clark et al., 2019), which as-
sess scientific reasoning and comprehension skills.
The benchmark incorporates the Massive Multi-
task Language Understanding (MMLU) benchmark
(Hendrycks et al., 2021), which spans 57 differ-
ent tasks, and Truthful QA (Zellers et al., 2021),
which evaluates the model’s ability to generate
truthful responses without prior examples. The
datasets above are all translated into Arabic us-
ing GPT-4 (OpenAl, 2023b). Including Arabic
culture-specific tasks like AlGhafa (Almazrouei
et al., 2023) and ACVA (Huang et al., 2023) en-
sures that the benchmark tests models on culturally
relevant contexts and vernacular nuances, making
it a critical tool for advancing Arabic NLP research.

6.2 NLU Benchmark

This benchmark consists of 17 datasets across three
clusters: (1) Social Meaning Analysis, cluster
includes nine datasets focusing on various tasks
such as sentiment analysis (Abdul-Mageed et al.,
2021a), hate and offensive language (Mubarak
et al., 2020), dangerous speech (Alshehri et al.,
2020), sarcasm (Farha and Magdy, 2020), adult
content (Mubarak et al., 2021), irony (Ghanem
et al., 2019), and emotion, age, and gender (Mo-
hammad et al., 2018; Abdul-Mageed et al., 2020c).
(2) Dialect Identification (DI), which spans three
classification levels: binary (MSA vs. DI), coun-
try, and city level. This cluster employs vari-
ous datasets, including ArSarcasmp;,(Farha and
Magdy, 2020), AOC(Zaidan and Callison-Burch,
2014), NADI-2020 (Abdul-Mageed et al., 2020a),
MADAR (Bouamor et al., 2019), QADI (Abdelali
et al., 2020), and Habibi (El-Haj, 2020). (3) Fact
Checking. In this cluster, we investigate two tasks.
First (1) Claim Prediction, utilizing the ANS-
claim dataset (Khouja, 2020). Second (2) Machine-
Generated Text Detection (MGTD), which uses



Comprehensive Benchmark (CB)

ACV (Huang et al., 2023)
AlGhafa(Almazrouei et al., 2023)
PiQA (Bisk et al., 2020)

ARC (Clark et al., 2018)
BloolQ (Clark et al., 2019)

Truthful QA (Zellers et al., 2021)

HellaSwag (Zellers et al., 2019)
MMLU (Hendrycks et al., 2021)

Natural L

Under

ding (NLU) Bench k

Social Meaning Dialect Identification
Sentiment Analysis (Abdul-Mageed et al., 2021a)
Hate and Offensive (Mubarak et al., 2020)
Dangerous (Alshehri et al., 2020)

Sarcasm (Farha and Magdy, 2020)

Adult (Mubarak et al., 2021)

Irony (Ghanem et al., 2019)

Emotion (Mohammad et al., 2018)

Age and Gender (Abdul-Mageed et al., 2020c)

QADI (Abdelali et al., 2020)
Habibi (El-Haj, 2020)

ArSarcasmp;, (Farha and Magdy, 2020)
AOC (Zaidan and Callison-Burch, 2014)
NADI-2020 (Abdul-Mageed et al., 2020a)
MADAR (Bouamor et al., 2019)

Fact Chgecking
Claim Prediction (Khouja, 2020)
Machine-Generated Detection (Nagoudi et al., 2020)

Natural Language Generation (NLG) Benchmark

MSA and Dialectal MT
UNP Corpus (Ziemski et al., 2016)

Code-Switching

DI— English Machine Translation

DZ-FR — FR and JO-EN — EN (Nagoudi et al., 2023) MDPC (Bouamor et al., 2014)

Long Context Benchmark (Our paper)

Arabic NarrativeQA (Our paper)
Arabic PassageDomainQA (Our paper)

Arabic HotpotQA (Our paper)
Arabic MultiFieldQA (Our paper)

Arabic TriviaQA (Our paper)

Table 2: OpenArabicEval benchmark.

Method Model ARC  Hellaswag ExamsQA  MMLU  Truthfulga ACVA  AlGhafa  CB Avg.
Llama2-7B 3242 42.76 31.39 35.34 45.90 53.22 29.42 38.64
BL Mistral-7B 38.53 45.24 32.44 34.53 49.23 63.89 29.95 41.97
Llama3-8B 40.33 51.90 39.43 42.55 51.45 68.35 30.12 46.30
AceGPT-7B-base 37.50 48.90 35.75 29.70 43.04 68.96 33.11 4242
Arabic BL  AceGPT-13B-base 39.90 51.30 39.48 40.50 46.73 75.29 30.37 46.22
Jais-13b-base 39.60 50.30 39.29 36.90 50.59 68.09 30.07 44.98
VE AralLama-7B-base  38.40 50.12 38.43 40.23 45.32 69.42 31.52 44.78
CpP AraMistral-7B-base  41.50 52.50 38.92 37.50 51.27 69.64 30.24 45.94
UPCP AraMax-8B-base 44.32 52.54 40.90 43.02 50.34 75.34 34.52 48.71

Table 3: Results of Base Model Evaluations. Here, BL stands for Baselines, Arabic BL stands for Arabic Baselines,
VE shows our vocabulary extension strategy, CP denotes continual pretraining, and UPCP denotes scaled continual

pretraining.

dataset from (Nagoudi et al., 2020).

6.3 NLG Benchmark

For NLG, we create a benchmark using a collection
of 11 datasets from different sources organized into
3 clusters. This benchmark aims to evaluate vari-
ous aspects of NLG performance, ensuring robust
and diverse assessments across multiple domains
and tasks: (1) X— MSA Machine Translation.
This cluster tests translation from four foreign lan-
guages into MSA using the United Nations Parallel
Corpus (Ziemski et al., 2016). (2) DI— English
Machine Translation translation from five Arabic
dialects into English using the Multi-dialectal Par-
allel Corpus (MDPC) (Bouamor et al., 2014). The
(3) Code-Switching task translates code-switched
Arabic dialectal text into a foreign language us-
ing datasets like DZ-FR — FR and JO-EN — EN
(Nagoudi et al., 2023).

6.4 Long Context Benchmark

The LongContext evaluation involves two set-
tings: one with the entire context and another with

Task AraMax +SFT +DPO +CPO +SimPO +AraPO

ARC 4432 4524 4824 43.89 48.33 48.44
Hellaswag 5254 5433 5543 5042 52.53 53.52
Exams 40.90 4023 4256 4144 42.03 45.53

CB MMLU 43.02 4598 453 4553 45.40 46.53
Truthfulga 50.34 4944 5342 5255 54.69 54.7

ACVA 7534 7823 7844 7593 79.44 76.55
AlGhafa 3452 3353 3555 32.89 36.9 37.66

NLG MT 2044 2254 2098  26.35 24.66 26.24
NLU Classification 4544 4690 4753 4924 45.30 50.55
Average 4521 4627 4749 4647 47.70 48.64

Table 4: Results of AraMax-8B-base model showing
the potency of our AraPQ’s alignment method.

retrieved-context using an embedding model. This
evaluation includes several datasets to assess the
model’s comprehension of extensive context. The
datasets in this cluster are NarrativeQA, HotpotQA,
TriviaQA, MultiFieldQA, and PassageRetrieval,
all of which are translated datasets using Google
Translate and shown by Alwajih et al. (2024). It
is one of the best methods to translate data. These
datasets are tested in zero-shot scenarios. Narra-
tiveQA and HotpotQA focus on reading compre-
hension and multi-hop reasoning, respectively, both
benefiting from Retrieval-Augmented Generation



Task AceGPT-7B  AceGPT-13B  Jais-13B  AraLLama AraMistral AraMax

ARC 38.50 43.80 41.10 39.45 43.20 48.44
Hellaswag 49.80 52.70 57.70 50.23 55.53 53.52
Exams 37.62 42.09 46.74 38.24 45.54 45.63
CB  MMLU 34.30 41.10 42.80 41.03 43.50 46.53
Truthfulqa 49.85 49.96 47.48 50.44 52.44 54.7
ACVA 71.81 78.42 72.56 70.45 77.06 76.55
AlGhafa 31.83 31.95 34.42 32.54 35.57 35.66

NLG MT 18.55 23.95 13.56 22.78 2391 26.24
NLU Classification 42.50 45.66 4245 45.65 46.35 50.55
Average 41.64 4551 4431 43.42 47.01 48.65

Table 5: Comparison of Chat models on OpenArabicE-
val Benchmark.

(RAG) to handle complex queries (Kocisky et al.,
2017; Yang et al., 2018). TriviaQA, which tests
the model’s ability to answer trivia questions, also
employs RAG for improved performance (Joshi
et al., 2017). MultiFieldQA, designed for under-
standing and answering questions across various
fields, and our dataset PassageDomainQA (PDQA),
which involves retrieving relevant passages from a
large multi-domain corpus, domains include News,
Finance, Legal, Medicine and Politics (Karpukhin
et al., 2020; Bai et al., 2023). PDQA dataset is built
synthetically using Command-R+ as the question
generator. We randomly sample 30 passages for
each domain and select one for generating ques-
tions using Command-R+. The task asks the model
to identify the original paragraph to which the
crafted summary corresponds. The evaluation in
both settings allows for a comprehensive analysis
of the model’s capabilities with and without an
embedding-based retrieval process.

7 Experiments

We train three models of varying architectures:
LLama2 (Touvron et al., 2023a), Mistral (Jiang
et al., 2023) and LLama3 (AI@Meta, 2024). Our
implementation has three stages: Base model pre-
training, Instruction alignment for Chat models and
Long context extension.

Pre-trained Models Evaluation. In Table 3, we
show the results for evaluation of the pre-trained
base models we have considered LLama2-7B (Tou-
vron et al., 2023b), Mistral-7B (Jiang et al., 2023)
and LLama3-8B (AI@Meta, 2024) as our baselines
along with them we also use AceGPT-7B and 13B
(Huang et al., 2024) and Jais 13B (Sengupta et al.,
2023) as our Arabic baselines. We use different
pretraining methods for other models, depending
on which strategy suits them the best. For LLama2,
we use the vocabulary extension method because
its tokenizer is incapable of understanding complex
Arabic texts. Hence, we extend the vocabulary to
60k. We continually pre-train from the available

checkpoint using our high-quality dataset for Mis-
tral. Finally, we also train the embedding layers for
LLama3 as it has a significantly bigger tokenizer
of 128k tokens to ensure the models learn the new
distribution of the tokens used for the Arabic lan-
guage. As seen from Table 3, we see that our Ara-
Max model significantly outperforms all the other
models with an average Comprehensive benchmark
score of 48.71, AraMistral follows it with an av-
erage score of 45.94, and finally, our vocabulary
extended model Aral.LLama has an average score
of 44.78.

Chat Models Evaluation. In Table 5, we present
the performance of various chat models on the Ope-
nArabicEval benchmark, focusing on their average
scores across multiple tasks. These models are
AralLLama, AraMistral, and AraMax, alongside
AceGPT-7B, AceGPT-13B, and Jais-13B. Here, we
compare all the instructed models to their own, en-
suring a fair comparison. The results show that
AraMax consistently achieves the highest average
score of 48.65, indicating its superior overall per-
formance. This is followed by AraMistral, with an
average score of 47.01, demonstrating its robust-
ness and effectiveness. AceGPT-13B comes next
with an average score of 45.51, showing compet-
itive performance, albeit slightly behind AraMax
and AraMistral. Jais-13B has an average score of
4431, while Aral.Lama follows with an average of
43.42. AceGPT-7B, has the lowest average score
of 41.64. Moreover, these average scores highlight
the effectiveness of AraMax in handling a diverse
range of tasks within the OpenArabicEval bench-
mark, underscoring the advantages of the model
enhancements and alignment strategies employed
in its development.

Alignment Methods Evaluation. AraPO is a
new alignment method specifically designed for
Arabic LLMs. Table 4 shows the results of eval-
uating our chat models using different alignment
methods. We compare our base model (i.e., Ara-
Max) with several alignment techniques: SFT,DPO,
CPO, SimPO, and our novel AraPO. The results
demonstrate that AraPO is an all-around alignment
method that boosts performance across different
tasks. Notably, DPO performs better at common-
sense reasoning tasks like Hellaswag and ARC,
whereas DPO leads to a decrease in score for tasks
like machine translation. CPO excels at crosslin-
gual tasks like machine translation and natural lan-
guage understanding. Also, AraPO demonstrates



Model Seq Len  NarrativeQA HotpotQA TriviaQA MultiFieldQA PDQA  Average

Jais-13b-chat 2048 9.67 12.42 78.29 33.66 43.56 35.52
- AceGPT-7B-chat 20438 16.54 10.54 74.33 25.66 53.99 36.21
Ea AraLLama-7B-Chat 2048 15.52 9.54 72.56 45.56 45.63 37.76
g AceGPT-13B-chat 2048 18.96 13.90 75.66 23.92 58.24 38.14
ﬁ,),, ArMistral-7B-Chat 4096 20.53 20.53 76.66 43.12 51.55 42.48
g AraMax-8B-Chat 8192 25.55 22.67 77.64 50.98 63.80 48.13
~ GPT-3.5-Turbo-16k 16385 31.52 55.35 91.55 74.35 56.77 6191

AraMax-8B-Chat-64K 65536 35.66 49.54 94.98 68.92 62.25 62.27
0 Jais-13b-chat 2048 10.90 17.30 78.29 35.99 46.43 37.78
é AceGPT-7B-chat 2048 21.35 11.49 75.75 26.70 56.90 38.44
% AceGPT-13B-chat 20438 19.53 16.64 76.45 28.86 61.32 40.56
5] AraLLama-7B-Chat 2048 20.25 13.58 76.65 49.86 48.03 41.67
% ArMistral-7B-Chat 4096 25.06 21.57 78.95 45.01 55.50 4522
Lb)” AraMax-8B-Chat 8192 27.58 24.44 79.11 45.18 65.46 48.35
5 GPT-3.5-Turbo-16k 16385 33.90 51.58 93.06 74.63 58.46 62.33
= AraMax-8B-Chat-64K 65536 37.07 56.14 93.48 75.68 62.32 64.94

Table 6: Results of Long context benchmark.

6.66

Jais-13b  AceGPT-7B AceGPT-13B AraMax-8B GPT-4

Figure 2: Human Evaluation Results.

superior performance with an average score of
48.64, indicating its effectiveness as an alignment
method, particularly for Arabic language tasks.

Long Context Results. We evaluate all models
on the LongContext dataset. As shown in Table 6,
the instructed version of our model, AraMax-8B,
outperforms all other models as well as ChatGPT-3
Turbo by an average of 2.61 points. Notably, both
versions of AraMax-chat are strong performers on
the Long Context benchmark. By extending the
context length of AraMax from 8K to 64K, we
significantly improve the performance on the Long
context benchmark. Additionaly, our setting using
embedding models to retrieve only relevant data
from the provided context. There, we see that using
RAG improves performance by an average of 3
points for every model. However, this does not
discount the importance of long-context models, as
our AraMax-64K performs even better with limited

context. Models with smaller sequence lengths,
like AceGPT and Jais, struggle with answering
questions correctly, even when given a limited and
relevant context.

Human Evaluation Results. To further assess
the performance of our models, we conduct a
human evaluation using 80 questions from vari-
ous Arabic domains. Annotators were asked to
rate from 1-10 the generated answers by differ-
ent models. The results are illustrated in Figure 2.
The scores indicate that Jais-13b achieved a score
of 1.87, AceGPT-7B scored 5.75, AceGPT-13B
scored 6.66, AraMax-8B scored 7.47, and GPT-4
achieved the highest score of 8.42. These findings
highlight the superior performance of GPT-4, fol-
lowed closely by our model AraMax-8B.

8 Conclusion

In this paper, we introduce Eagle, a suite of cutting-
edge Arabic LLMs, built upon advanced English
and multilingual models like Mistral-7B, LLaMA2-
7B, and LLaMA3-7B, and trained on the diverse
35B tokens from Oasis dataset. Enhancements
through instruction fine-tuning along with novel
algorithms like AraPO, and the development of
Amwaj, an Arabic embedding model, significantly
boosted the models’ performance. We also propose
OpenArabicEval, a comprehensive benchmark for
evaluating Arabic LLMs across multiple NLP tasks.
Our flagship model, AraMax, outperform exist-
ing models in various benchmarks, and the novel
AraPO alignment method improves the models per-
formance, highlighting the potential of these ad-
vancements to enhance Arabic NLP applications
such as MT, sentiment analysis, and QA.



9 Limitations
We identify the following limitations in our work:

1. Despite our efforts to include extensive dialec-
tal texts in our pretraining data, our automated
analysis indicates that the dataset still lacks
broad coverage of certain dialects, such as
Algeria, Iraqi, Sudanese, Syrian, and Yemeni.

2. While some studies in the literature employ
word lists to filter out toxic and hateful lan-
guage from pretraining data, we do not adopt
this practice. Our goal is to develop models ca-
pable of detecting toxic and hateful language
as few-shot learners. Additionally, we believe
that using word lists, though potentially effec-
tive in removing some antisocial content, may
only provide a superficial level of data clean-
ing. Nonetheless, we emphasize that our mod-
els should be used with caution, and strategies
to mitigate social risks, biases, and toxicities
should be meticulously applied.

3. One significant disadvantage of CLMs is their
potential misuse for generating fake content
or spreading misinformation at scale, which
is one of the most dangerous applications of
these models. Consequently, we believe that
all necessary measures should be taken to reg-
ulate their use, and ourmodels are no excep-
tion. This may include implementing regula-
tions and policies that restrict these models to
pro-social applications, such as in education,
travel, and recreation. Due to these concerns,
we will release our models responsibly.

10 Ethics Statement

Energy Efficiency. Our models models, like
many CLMs, required substantial pretraining time
and are not energy efficient. We recognize this
important issue and believe that efforts to develop
energy-efficient models should continue to receive
scholarly attention.

Data. Our pretraining datasets are sourced from
the public domain and encompass diverse genres,
communities, and varieties of Arabic. As we have
demonstrated, our models have the potential to sup-
port applications across various Arabic dialects and
serve a wide range of populations. We emphasize
that all the datasets we use are collected from pub-
licly available sources, ensuring that our data col-
lection process does not violate any copyrights

Human Annotation. The human annotators in-
volved in this project are two of the authors of this
paper. Both annotators are native Arabic speak-
ers with Ph.D. degrees and extensive experience in
NLP. They are full-time employees of the research
group responsible for this work, with data annota-
tion included in their job duties. No Institutional
Review Board (IRB) review or approval was re-
quired for this project since we only use publicly
available data, which does not require access to any
social networking accounts or passwords. Addi-
tionally, no external annotators were involved in
this work.
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