Under review as a conference paper at ICLR 2026

SNAP: GENERALIZABLE ZERO-SHOT PREDICTION OF
NEURAL ARCHITECTURE PERFORMANCE VIA SEMAN-
TIC EMBEDDING AND GRAPH LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural Architecture Search (NAS) is a powerful approach to discovering high-
performing CNN architectures, but most existing methods incur significant com-
putational costs due to extensive training or sampling. Zero-shot NAS predic-
tors offer an efficient alternative by predicting architecture performance with-
out additional training. However, current methods often yield suboptimal pre-
dictions—frequently outperformed by basic metrics like parameter counts or
FLOPs—and struggle to generalize across different search spaces or unseen op-
erators. To address these limitations, we propose SNAP(Semantic Neural Archi-
tecture Predictor), a novel zero-shot neural predictor that leverages a transformer-
based semantic embedding of operator descriptions combined with a Graph Con-
volutional Network (GCN) for architecture performance prediction. Unlike tradi-
tional model-based predictors, SNAP requires only a single initial training phase
on NASBench-101, after which it effectively generalizes to arbitrary new search
spaces and previously unseen operators without fine-tuning. Extensive experi-
ments across diverse NAS benchmarks demonstrate SNAP’s state-of-the-art rank
correlation and superior generalization capabilities. Furthermore, SNAP achieves
more than 35 x search efficiency improvements, discovering competitive architec-
tures with 93.75% CIFAR-10 accuracy on NAS-Bench-201 and 74.9% ImageNet
top-1 accuracy on the DARTS space, positioning it as a robust and generalizable
foundation for efficient neural architecture search.

1 INTRODUCTION

Deep convolutional neural networks (CNNs) have achieved remarkable performance across diverse
domains, including computer vision, speech recognition, and object detection Krizhevsky et al.
(2012); ILin et al.| (2015);|Q1ao et al.| (2022); Kaeley et al.|(2023)). CNN architectures were manually
designed, demanding significant time, expertise, and computational resources, particularly when tar-
geting specialized hardware with stringent constraints He et al.| (2016);|Sandler et al.|(2019). Neural
Architecture Search (NAS) systematically explores optimal architectures given performance and
computational constraints |Lin et al.[(2020); Zoph & Le|(2017). Early NAS methods relied predom-
inantly on reinforcement learning (RL) or evolutionary algorithms, requiring extensive sampling,
training, and evaluation, thus incurring substantial computational costs [Liberis et al.|(2021).

To reduce these costs, zero-cost proxies have been proposed, providing lightweight performance
estimates through fast computations like forward passes on small minibatches, gradient-based indi-
cators, or kernel methods |White et al.|(2023)); Krishnakumar et al. (2022); Mellor et al. (2021)); Q1ao
et al.|(2024a}b). Despite their efficiency, zero-cost proxies frequently underperform simple heuristics
like parameter count or FLOPs, suffer from data dependency, and generalize poorly across diverse
search spaces. Additionally, their reliance on similar information sources results in correlated and
redundant predictions.

Model-based predictors have emerged as an alternative, employing trained machine learning mod-
els—such as Gaussian processes Lévesque et al.|(2017) or deep neural networks|Shi et al.[(2020)—to
forecast architecture performance based on structural attributes. Although more accurate, these
methods typically require extensive training data from numerous fully evaluated architectures, mak-

Under review as a conference paper at ICLR 2026

ing them computationally costly and limiting their generalization to new search spaces or unseen
operators without extensive retraining.

To bridge this gap, we introduce SNAP (Semantic Neural Architecture Predictor), a novel
zero-shot neural predictor explicitly designed to generalize robustly to unseen operators and
search spaces without retraining. SNAP uniquely combines transformer-based semantic em-
beddings of textual operator descriptions with a Graph Convolutional Network (GCN) predic-
tor, effectively merging the advantages of zero-cost proxies and traditional model-based pre-
dictors. To facilitate future research, we provide open-source access to our implementation.

The main contributions of our work are: SNAP vs Proxies on 4 Datasets

* We propose SNAP, a universally applicable
zero-shot neural predictor capable of general-
izing effectively to unseen operators and new
search spaces without retraining. SNAP inte-
grates transformer-based semantic embeddings,
DAG-based architectural representations, and a
GCN predictor.

* SNAP is comprehensively evaluated across 12
NAS benchmarks, demonstrating superior rank
correlation, remarkable generalizability, and in-
dependence from traditional proxies.

flops epe_nas fisher grasp

SNAP

» Extensive experiments confirm SNAP’s state-
of-the-art predictive performance and efficiency,
achieving more than 35x speedup over exist-
ing zero-shot methods and traditional NAS ap-
proaches. SNAP identifies competitive architec-
tures achieving 93.75% accuracy on CIFAR-10
(NAS-Bench-201) and 74.9% top-1 accuracy on
ImageNet (DARTS).

Figure 1: Spearman’s correlation be-
tween SNAP and 4 other proxies (the
higher the better).

2 BACKGROUND AND RELATED WORK

2.1 NEURAL ARCHITECTURE SEARCH (NAS)

NAS is an important technique in automating the design of neural architectures for a given task
White et al| (2023). A typical NAS contains a search strategy that selects candidate architectures
from a predefined search space and an estimation strategy that enables the performance estimation
for candidates.

Search space can be categorized as the following types: macro search space [Kandasamy et al.|
(2019), chain-structures search space[Sandler et al|(2019), cell-based search space|Liu et al.| (2018c);
Ying et al.| (2019); [Dong & Yang| (2020), and hierarchical search space [Liu et al.|(2018b). Among
those, cell-based search space is the most popular one in NAS [White et al.| (2023). The searchable
cells (a directed acyclic graph (DAG) of operations) make up the microstructure of the search space
while the macrostructure (that defines the number of cells and how they stack together) is fixed. For
example, NAS-Bench-101 contains 423,624 unique architectures, and each cell
consists of 7 nodes (each node is chosen from three operators). In NAS-Bench-201
(2020), there are 15,625 cell candidates and each cell consists of four nodes (each node chosen from
five operators). In contrast, the DARTS search space is more expansive, featuring
approximately 10'® architectures. It consists of two cells, each containing seven nodes. The first two
nodes receive inputs from previous layers, and the following four nodes can be any DAG structure,
each having two incident edges. The last node serves as the output node, and each edge can take on
one of eight operations. In this work, we perform our experiments on those three search spaces to
evaluate our proposed SNAP flow.

The search strategy in NAS has been widely explored. There are well-known black-box opti-
mizations, such as random selection with full training, reinforcement learning, evolution, Bayesian

Under review as a conference paper at ICLR 2026

Ly —d— i
“Conv3x3-BN-ReLU" ./" o .*\.. (I / "'""' \ 5 /
“Skip Connection” \ / (s " comvax3 ruldull convix1
@ i
“Average pooling 3x3" (. “‘p”l - mlau.l Tram
“Conv1x1- BN ReLU" ISente s () E GCN-based g
Transformer conv1x1 : Performance |
Operators Descrlptlons (Fine-tuned) Operator m ' Predictor
in Natural Language Embedding outpd ‘_(_s_{‘{'ﬂ_’:_’_’f’_f_‘-"_’f{’_)‘,‘
*
————————————————————— - ‘ Predict
Neo New Search Space 4 % ~
D e S ! v
! Prevmusly Unseen Operators ' l itializati H i]
1 1
I .\ Op_n ')
] OPE , Selection H Crossover Y
1 .\. S Opli 1 l . = l Final Neural Cell NAS benchmarks with ground truth
| opi |} Evolutionary Searching O R (NASBench101, NASBench201, etc.)

Figure 2: SNAP, featuring operator description embedding and GCN-based performance predictor

optimization, Monte Carlo tree search, etc. With these search strategies, we still need to train the
searched architecture and use the performance result to guide the search, which is a time-consuming
process. To overcome the training time bottleneck, one-shot techniques were introduced as an es-
timation strategy. These techniques involve training a single (one-shot) supernet, which is an
over-parameterized architecture that encompasses all possible architectures in the search space |Cai
et al.| (2019); [Liu et al.| (2018c). Once the supernet is trained, each architecture in the search space
can be evaluated by inheriting its weights from sampling the subnet within the supernet. Supernet
design and training often become the performance bottleneck of these approaches. Supernet training
typically dominates the NAS runtime.

2.2 ZERO-COST METHOD VS. MODEL-BASED PREDICTORS

To accelerate the search process, Zero-cost(ZC) proxies are proposed. They are lightweight metrics
calculated on a network at initialization, often using just a single mini-batch of data. These methods
evaluate intrinsic network properties without any parameter updates. For example, SNIP [Lee et al.
(2019Db)) assesses connection sensitivity; SynFlow |Abdelfattah et al| (2021) computes a synaptic
saliency score; TE-NAS |Chen et al.| (2021a) formulates neural networks as a Gaussian process and
analyzes randomly-initialized architectures by the spectrum of the neural tangent kernel (NTK)Jacot
et al.[(2020); | Xiao et al.|(2020) and the number of linear regions in the input space.. While extremely
fast, these proxies are often unstable and struggle to generalize across different search spaces.

Despite the inherent limitations of zero-cost proxies, the integration of model-based prediction has
emerged as a pivotal component in guiding neural architecture search (NAS) algorithms. This ap-
proach is particularly useful when combined with Bayesian optimization and utilized as a subroutine
Kandasamy et al.| (2019); |Shi et al| (2020). Various types of predictor models, including Gaus-
sian processes (GP), multi-layer perceptron (MLP), long short-term memory (LSTM) networks, and
graph neural networks (GNN), have been employed. Typically, as the algorithm progresses and a
set of fully evaluated architectures becomes available, a meta-model is trained using architecture
topology as features and validation accuracies as labels. This model is then used to predict the
validation accuracy of yet-to-be-evaluated architectures. Notably, White et al. White et al.|(2021)
demonstrated that augmenting the model with Jacobian covariance as an additional feature can en-
hance its performance by up to 20%. Shen et al. [Shen et al.|(2023) further extended this approach by
integrating zero-cost proxies into Bayesian optimization, resulting in 3-5x speedups over previous
methods.

Existing model-based predictor approaches exhibit notable biases, limiting their effectiveness to
specific search spaces and requiring fully evaluated architectures as labels. The high initialization
time is also a concern. Dudziak et al. [Lukasz Dudziak et al.| (2021) attempted to address this issue
by leveraging the model’s binary relation and training a prediction model through iterative data
selection. However, such models typically rely on fixed, one-hot encodings for operators, which
prevents them from generalizing to new search spaces with previously unseen operations. GRAF
Kadlecova et al.[(2024) predictor demonstrated that using carefully engineered, interpretable graph
features (like operation counts and path lengths) as input to a random forest model can also yield
surprisingly strong performance predictions. While effective, this method relies on hand-crafting
features for a given search space.

Under review as a conference paper at ICLR 2026

Table 1: Example of Operator Descriptive Sentences Vary in Length for Generating Embedding

Operators Short S C Medium-length S ces Long Sentences
none “None” “Doing nothing” “A none operator that does nothing”
skip_connect | “Residual connection” | “Identity mapping to the next layer” “A residual connection operator that adds identity mapping to the next layer”
. . . . | “Atwo-dimensional convolutional operator with a kernel size of 3 by 3 is applied,
nor_conv_3x3 | “Convolution 3x3” “Convolution 3 by 3 kernel, Batchnorm, ReLU L 5 . f. e Pr "
succeeded by a batch normalization layer, and followed by a rectified linear layer
. . “A two-dimensional convolutional operator with a kernel size of 1 by 1 is applied,
nor_conv_1x1 | “Convolution IxI1” “Convolution 1 by 1 kernel, Batchnorm, ReLU” g . r ' 'f. o 7L »
- succeeded by a batch normalization layer, and followed by a rectified linear layer
avg_pool_3x3 | “Average pooling 3x3” | “Average pooling 3 by 3 kernel” “A average pooling operator with a kernel size 3 by 3”

These limitations prompt us to explore a more robust operator encoding method that enables a pre-
trained prediction model to operate effectively in any architecture search space and accommodate
unseen operators. Essentially, we investigate the viability of relying solely on pre-trained model-
based prediction as a universal zero-shot predictor for guiding searches across diverse architecture
spaces with only one time training effort. Our SNAP directly learns the functional semantics of
the operators from their textual descriptions, allowing it to generalize to entirely new operators and
search spaces without manual feature engineering or retraining, offering a flexible and scalable path
to a universal performance predictor.

3 SNAP: A ZERO-SHOT NEURAL PREDICTOR

In this work, we propose SNAP, a novel zero-shot neural predictor for neural architecture search
(NAS). SNAP uniquely combines a transformer-based semantic embedding generator with a Graph
Convolutional Network (GCN) predictor to accurately forecast architecture performance. Unlike tra-
ditional predictors, SNAP can effectively generalize to previously unseen operators and new search
spaces without additional retraining or fine-tuning. Specifically, our transformer-based embedding
generator captures meaningful semantic features from operator descriptions, while our GCN predic-
tor—trained just once on an existing NAS benchmark—Ieverages these embeddings to predict the
accuracy (or ranking) of candidate architectures. As illustrated in Figure [2| the predicted rankings,
independent of new training data, guide the architecture search efficiently. Consequently, SNAP re-
quires only a single initial training phase and seamlessly transfers its predictive capability to diverse
new search spaces with no further training effort.

3.1 ARCHITECTURE REPRESENTATION

Various neural architecture search works represent their networks in the cell structure. For instance,
DARTS [Liu et al.| (2018c), and NATS-Bench (NAS-Bench-201) Dong & Yang|(2020) define a cell-
based search space representing each architecture as a directed acyclic graph (DAG), with nodes
representing the features. NAS-Bench-101 |Ying et al.| (2019) on the other hand utilizes nodes to
represent layers (operators) and edges for forward dataflow propagation. BANANAS [White et al.
(2020) proposed a novel path-based encoding scheme and claimed it scales better than other meth-
ods. Additionally, Yan et al. |Yan et al.|(2021) propose a transformer-based encoding scheme with
computation awareness. On contrary, our transformer-based neural architecture coding uses text-
based DNN operator descriptions and sentence transformer.

In this work, we represent the DNN architecture candidates using DAG with nodes representing op-
erators and edges corresponding to model data propagation flow. We then represent the graphs with
adjacent matrix and operator node embeddings, which becomes data input for our graph convolution
network (GCN)Kipf & Welling| (2017) predictor. For example, consider a NAS-Bench-201 edge-
labeled cell: edges (0—2: conv3x3, 1—2: skip). This converts to a node-labeled DAG: nodes [input,
input, conv3x3, skip, output] with adjacency matrix connecting input nodes to operations, operations
to output. To make all search space comply with this representation, SNAP unifies other cell-based
search space representations as shown in Figure] NAS-Bench-101 was provided with the afore-
mentioned architecture graphs, therefore no transformation is needed and was used as training data.
Figure [2 shows an example on NAS-Bench-201. The final model architectures of each search space
are obtained by stacking multiple repeated cells with some other predefined cells in between. The
differences between different DNN architecture candidates are purely determined by the cell archi-
tecture (represented as graph), so we use the embedding of individual cell architectures (as graphs)
to represent the entire DNN architecture. Operator node features are encoded using a transformer
model with a fixed length embedding size. The details can be seen in the following section.

Under review as a conference paper at ICLR 2026

Table 2: Different Combination of Sentences Transformer Model and Embedding Sentence Length

. . . Kendall’s 7 Spearman’s p
Model Model Size (MB) | Embedding Size Shomt ‘ Medium ‘ Tong Short ‘ Mediom ‘ Tong
all-mpnet-base-v2 420 768 0.48 0.49 0.46 0.66 0.67 0.65
MiniLM-L6-v2 80 384 0.56(0.60") 0.44 0.40 | 0.76(0.80") 0.62 0.56
MiniLM-L6-v2-64 81 64 0.36 0.29 0.32 0.54 0.43 0.47

*Fine Tuned with Augmented DNN Operator Descriptions

3.2 OPERATOR EMBEDDING GENERATOR

In our approach, we encode model cell graphs using an adjacency matrix together with node em-
beddings. However, encoding operators demand special attention as it involves representing and
distinguishing various deep learning operators. Previous methods, which typically rely on one-hot
vectors for operator encoding, are deemed suboptimal and non-portable, especially when dealing
with unseen search spaces and operators.

Recognizing that the names of operators inherently contain valuable information, we assert that
the operator name alone can provide insight into the operation. For instance, the operator name
“CONV3x3-BN-ReLU” suggests that it contains a two-dimensional convolution with a 3x3 kernel,
followed by batch normalization and rectified linear activation. Therefore, we propose to construct
a robust embedding model capable of extracting internal semantic information from operator names
or their descriptive sentences in natural languages. For example, in the high-dimensional encoding
space, operators like conv3x3 are expected to be closer to conv5x5 than to maxpool3x3. Additionally,
if the embedding model comprehends one type of operator, it should readily extend its knowledge
to similar operators with, for example, different kernel sizes.

Certain existing works have attempted to construct embedding vectors from words or sentences,
such as GloVe [Pennington et al.| (2014), or employed character embeddings to capture fine-grained
semantic and syntactic regularities. However, our earlier experiments indicated that these meth-
ods face challenges when dealing with previously unseen words, particularly operators in our case.
Consequently, we have opted for Sentence Transformer Reimers & Gurevych|(2019) as our primary
method for generating desired operator embeddings. As illustrated in Figure 2] the Sentence Trans-
former utilizes siamese and triplet network structures to derive semantically meaningful sentence
embeddings that can be compared using cosine similarity. A pooling operation is applied to the
output of the pre-trained transformer model to obtain a fixed-size sentence embedding. We compute
the mean of all output word vectors as the pooling strategy to generate the final operator embedding.

In our experiments, we explored different pre-trained sentence transformer models and varying
lengths of descriptive sentences for operator embedding generation. Table |I| defines three cate-
gories of operator descriptions (short, medium, and long sentences) used as input for the embedding
models. The embedding performance across these sentence variations on NAS-Bench-201 is shown
in Table 2

We examined three pre-trained sentence transformer models: all-mpnet-base-v2, MiniLM-L6-v2,
and MiniLM-L6-v2-64 (a PCA-downsampled version of MiniLM-L6-v2), each pretrained on the
same dataset collection containing over 1 billion sentence pairs Reimers & Gurevych|(2019). Train-
ing utilized a triplet objective loss function, designed to minimize the embedding distance between
similar sentence pairs and maximize the distance between dissimilar pairs:

L =max(|sq — Sp| — [$a — Sn| +¢€,0) (1
where s,, sp, and s,, represent the embeddings of the anchor, positive, and negative sentences,
respectively; | - | denotes Euclidean distance; and the margin € is set to 1.

Table 2] shows that the MiniLM-L6-v2 model with an embedding length of 384 achieves the highest
correlation coefficients (Kendall’s 7 and Spearman’s p) specifically when short operator sentences
are used. We hypothesize this outcome arises because the semantic information required for embed-
ding DNN operators is relatively straightforward and concise. Therefore, more elaborate or longer
sentence descriptions may introduce redundant or unnecessary semantic detail, leading to embed-
ding saturation or noise. Consequently, the combination of short sentence descriptions with the
MiniLM-L6-v2 embedding model was selected for subsequent fine-tuning and further experimenta-
tion.

Under review as a conference paper at ICLR 2026

To enhance the specificity of the embedding for neural architecture search, we fine-tuned the
MiniLM-L6-v2 model on a custom similarity dataset derived from PyTorch’s torch.nn docu-
mentation. Operators were categorized by functionality (e.g., convolution, pooling, normalization,
activation), and GPT-4o-generated augmented descriptions further diversified the linguistic formu-
lations within each functional class. Training involved supervised similarity pairs labeled based
on functional similarity, using a cosine similarity loss to guide the embedding alignment. Detailed
methodology for this fine-tuning process is provided in the Appendix.

3.3 GCN PREDICTOR MODEL

After completing the universal architecture encoding and operator feature embedding, we employ a
three-layer graph convolution network (GCN) Kipf & Welling (2017)) as our prediction model. With
the normalization trick, GCN can be defined as

H =X x¢Go = f(AXO) (2)

where A = D_%flf)‘%, A= A+1, and D;; = Zj /L»j. To prevent overfitting to a particu-
lar training search space, we incorporate graph node normalization and weight decay techniques.
Our overarching objective is to deliver a universally applicable pre-trained predictor model that re-
quires no tuning for new search spaces. Consequently, the GCN predictor model is subject to heavy
regularization. An additional crucial factor influencing our choice of GCN over other prediction
models is its capability to handle vast differences in architectures. Given the varying dimensions
of the adjacency matrix (from unseen search spaces) and operator matrix (from unseen operators),
GCN emerges as a suitable choice, demonstrating flexibility in accommodating diverse architectural
structures.

3.4 EVOLUTIONARY SEARCHING

Evolutionary and genetic algorithms have been
commonly used to optimize the NAS |White _ _
et al.| (2023). To enhance the efficiency of the Algorithm 1 SNAP Search Algorithm

search, we adopt a similar approach in Algo- 1: Input: N P population size

rithm |1} We first initialize the entire population 2: g0

of architecture candidates with continuous pa- 3: while [pop| < NP do

rameters in the first while loop, where we map ~ 4 pop; < random_configuration()

all operators evenly into the value between Oand 5 Pop; discretized architecture(pop;)
1. Then we discretized the random configura- 6 end while

tions into the desired NAS architectures. Then ;: Whl%ﬁ 9 < gmaz do

. . . . : y < mutate(popy)

in the second while 1oop, mutation operation 9: U, « crossover(V,, pop,)

and crossover operation are performed to pro- (. U « discretized_population(U,)
duce a new child. After generating all the off- 17. fitness, < GCN_Inference(U,)
spring, the selection process will kick in using ~ 12: popy1, fitnessg+1 < select(popy, Uy)
our proposed proxy, GCN_Inference, to select 13: end while

the elite candidates for the next generation. In 14: return Best_Architecture

the end, we select the final returned architecture
as the search result.

4 EXPERIMENT AND RESULTS ANALYSIS

In our evaluation, we tested 12 NAS benchmarks similar to NAS-Bench-Suite-Zero |Krishnakumar
et al.| (2022), including NAS-Bench-201 (CIFAR-10, CIFAR-100, and ImageNet16-120) |Dong &
Yang| (2020), NAS-Bench-301 (CIFAR-10) [Zela et al.| (2022)), and TransNAS-Bench-101 Micro
(Jigsaw, Object Classification, Scene Classification, Autoencoder, Room Layout, Surface Normal,
and Semantic Segmentation) |Duan et al.| (2021). We excluded NAS-Bench-101 |Ying et al.| (2019)
from the comparison because it was used as training data for our GCN predictor. To prevent infor-
mation leakage and ensure a fair comparison, we removed it from subsequent evaluations.

The GCN predictor consists of three graph convolutional layers with 64 hidden dimensions each,
followed by batch normalization and ReLU activation. We use MSE regression loss, AdamW op-
timizer with learning rate 0.001, and StepLR scheduler (step_size=40, gamma=0.1). The sentence
transformer operator embeddings are pre-computed and remain frozen during GCN training. The

Under review as a conference paper at ICLR 2026

model was trained for 150 epochs to ensure convergence. To minimize training cost and highlight
the effectiveness of our novel architecture and operator encoding method in generalizing to unseen
operators, the GCN was trained solely on NAS-Bench-101 (CIFAR-10) (2019).

4.1

In Figure [3] we present the Spear-
man’s p correlation between each
zero-shot method’s predictions and
the corresponding ground-truth per-
formance across multiple bench-

marks. While Jacov
2021) and Zen Score |Lin et al.
2021) show the highest correlations

among existing proxies, SNAP con-
sistently surpasses all methods.

Notably, SNAP retains robust pre-
dictive accuracy even in challenging
benchmarks, such as the Autoen-
coder and Room Layout tasks from
TransNAS-Bench-101-Micro
(2021), where most zero-
shot methods typically struggle.
Furthermore, on the widely used

NAS-Bench-201 Dong & Yang

methods like Snip [Lee et al.| (201

GENERALIZABILITY ANALYSIS OF ZERO-SHOT METHODS ACROSS 12 BENCHMARKS

Spearman rank correlations between ZC proxy values and validation accuracies

:

:

| oo [JoSaN oco [
7 060 o065 057
045 068 070 057

0.75
0.69
069 072

0:72 035
6 065 (051 080 075 071 0.
045 064 046 069 065 067

0.60 0.77

Figure 3: Spearman’s p rank between proxy values and
ground truth accuracies, for 14 proxies and across 12 NAS
benchmarks (the higher the better).

2020) benchmarks, SNAP outperforms existing proxies, including
a) and Grasp|Wang et al|(2020). While these latter methods ex-

hibit competitive results on NAS-Bench-201, they fail to generalize effectively to other benchmarks
and can even be outperformed by simpler heuristics such as parameter counts (Params) or floating

point operations (FLOPs).

Overall, these experimental outcomes underscore that SNAP achieves not only superior average
predictive performance across diverse NAS benchmarks but also demonstrates consistently lower
variance, highlighting its exceptional generalizability and portability.

4.2 INDEPENDENT ANALYSIS OF ZERO-SHOT METHODS

Combining multiple proxies can po-
tentially enhance the accuracy and ro-
bustness of architecture performance
predictions. However, not all proxies
contribute unique information; some
proxies may exhibit highly correlated
rankings and therefore offer minimal
complementary benefit. To explore
this, we conducted a thorough assess-
ment of proxy methods within the
NAS-Bench-201 search space across
three distinct datasets (CIFAR-10,
CIFAR-100, and ImageNetl16-120).
Additionally, by examining the same
search space across multiple tasks,
we sought to identify whether certain
proxies can provide universally appli-

Soft p count lient-based e info Others

(ours) /—Hr—/%:—HK—H

SNAP flops params synflow fisher grad_norm snip nwot 12_norm plain zen

grasp epe_nas jacov

SNAP
flops
params
synflow

grasp “
snip
epe_nas
Jacov
12_norm
nwot

plain
zen

Figure 4: Spearman’s p correlation between proxy scores of
CIFAR-10 on NAS-Bench-201.

cable, data- and task-independent rankings. Our analysis considered 14 proxies, including our pro-
posed SNAP method. Specifically, we randomly sampled 1,000 architectures within NAS-Bench-
201, computed each proxy’s score per architecture, and then calculated Spearman’s rank correlation

among the proxies.

Under review as a conference paper at ICLR 2026

Table 3: Results of CIFAR-10, CIFAR-100 and ImageNet16-120 on NAS-Bench-201

FLOPs Params Search Cost CIFAR-10 CIFAR-100 ImageNet16-120
M) (M) (GPU Hours) Accuracy (%) Accuracy (%) Accuracy (%)

Name of Works

uNASLiberis et al.J(2021) 7.78 0.073 552 86.49 58.30 27.80
DARTSLiu et al.|(2018¢c) 82.49 0.587 3.02 88.32 67.78 34.60
GDASDong & Yang|(2019) 117.88 0.83 8.03 93.36 69.64 38.87
KNASXu et al.|(2021) 15327 1.073 2.44 93.43 71.05 45.05
NASWOT|Mellor et al.|(2021) 86.43 0.615 0.09 92.96 69.70 44.47
TE-NASChen et al.|(2021a) 188.66 1317 0.43 93.78 70.44 41.40
SNAP (ours) 113.95 0.802 0.01 93.75 70.64 44.97
Ground Truth 15327 1.073 - 94.37 73.22 46.71

Our results reveal notable trends of high inter-correlations among certain proxies, particularly be-
tween FLOPs and parameter count (Params). This outcome aligns with intuitive expectations, as
both proxies inherently measure aspects of computational complexity. Consequently, we extended
our correlation analysis to cover all proxy pairs comprehensively, as illustrated by the correlation
heatmap in Figure[§]

Consistent with previous literaturgNing et al.| (2021), synflow Abdelfattah et al.| (2021]) exhibited
strong correlations with FLOPs and Params, likely due to its dependence on model complexity.
Similarly, proxies derived from gradient saliency metrics, such as grad_norm |Abdelfattah et al.
(2021)), snip|Lee et al.[(2019a)), grasp|Wang et al.|(2020), nwot|Mellor et al.| (2021)), and fisher |[Turner
et al| (2020), also showed substantial mutual correlation. We observed similar high correlations
between epe_nas [Lopes et al| (2021)) and the Jacobian covariance method (jacov) Mellor et al.
(2021)), likely due to their shared underlying analytical principles.

Interestingly, the zen score |Lin et al|(2021)) and our proposed SNAP predictor displayed the high-
est degree of independence relative to other evaluated proxies. This suggests that SNAP offers
a fundamentally distinct perspective on neural architecture evaluation, potentially complementing
and enriching existing proxy-based evaluations. Such independence indicates SNAP’s potential to
form powerful proxy combinations for more effective, generalized, and robust architecture perfor-
mance predictions. We excluded some methods from our comparisons due to practical limitations:
specifically, those requiring supernet training or lacking publicly available implementations Fukasz
Dudziak et al.|(2021);|Cai et al.| (2019); [Shi1 et al.| (2020); | Xu et al. (2020).

4.3 NAS RESULT ON NAS-BENCH-201

Ground Truth vs. SNAP _Predicted Ranking Ground Truth vs. SNAP Predicted Ranking 5. _SNAP Predicted Ranking
16000

16000970 snap Ranking, p = 0.80, T = 0.60
deal S

14000 . 14000 a

212000 Par 3 212000

Ranki

% 10000

< 000 5 N ol 8000
3 S

& 6000 6000

>
I
TG-NAS Predicted

£ 4000

2000

=" SNAP Ranking, p = 0.80, T = 0.60
e

21 N -

6 2000 4000 6000 8000 10000 12000 14600 16000 0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000
Ground Truth Ranking Ground Truth Ranking Ground Truth Ranking

(a) CIFAR-10 (b) CIFAR-100 (c) ImageNet16-120
Figure 5: SNAP vs. Ground Truth ranking on NAS-Bench-201 Space

Figure[7|demonstrates that our SNAP is highly positively correlated with the architecture’s accuracy
ranking. Additionally, as illustrated in Table [3] our SNAP outperforms the majority of zero-shot
NAS approaches and is comparable to the state-of-the-art TE-NAS results, achieving 93.75% top-1
accuracy on CIFAR-10, while consuming only a fraction of the searching time of prior works.

Notably, despite efficiency claims of zero-shot NAS methods over conventional NAS due to avoiding
the training of sampled architectures, substantial variations in computational costs and search times
persist among these methods. For instance, TE-NAS |Chen et al.| (2021a)) requires over 4 GPU-
hours, while ZiCo |Li et al.| (2023) demands more than 10 GPU-hours for an ImageNet search on
the DARTS space. These longer search times primarily arise because several zero-shot methods
necessitate multiple forward or forward-backward passes for result stabilization, often making them
data-dependent and thus limiting their generalizability.

Under review as a conference paper at ICLR 2026

Table 4: Comparison with Recent NAS Works on ImageNet with the Mobile Setting

Test Accuracy (%) Search Cost Params

Name of Works Top-1 Top-5 (GPUDays) (M) Search Method
PNAS|Liu et al.|(2018a) 74.2 91.9 225 5.1 Bayesian Optimization
AmoebaNet-C|Real et al.|(2019) 75.7 92.4 3150 6.4 Evolution
NASNet-A [Zoph et al.|[(2018) 74.0 91.6 2000+ 53 Reinforcement Learning
DARTS |Liu et al.|(2018c) 73.3 91.3 4.0 4.7 Gradient-based
SNAS Xie et al.[(2018) 72.7 91.8 1.5 43 Gradient-based
BayesNAS|Zhou et al.|(2019) 73.5 91.1 0.2 3.9 Gradient-based
ProxylessNAS|Cai et al.|[(2019) 75.1 92.5 8.3 7.1 Gradient-based
TE-NAS Dong & Yang|(2019) 73.8 91.7 0.05 6.3 Theoretical Analysis
PC-DARTS|Xu et al.[(2020) 74.9 92.2 0.1 5.3 Gradient-based
PNASNet-5|Liu et al.|(2018a) 74.2 91.9 45 5.1 Model-based Predictor
GHN Zhang et al.|(2018) 73.0 91.3 0.84 5.7 Model-based Predictor
NAONet|Luo et al.|[(2018) 74.3 91.8 200 11.35 Model-based Predictor
GeNAS|Jeong et al.|(2023) 75.3 92.4 0.4 53 Model-based Predictor
SemiNAS|Luo et al.|(2020b) 76.5 93.2 4 6.3 Model-based Predictor
CTNAS |Chen et al.[(2021b) 71.3 93.4 50.1 - Model-based Predictor
SNAP (ours) 74.9 92.2 0.0014 5.6 Model-based Predictor

In contrast, our proposed SNAP method completes the search in approximately 40 seconds, achiev-
ing more than a 10x speedup relative to other zero-shot methods, owing to its lightweight, data-
independent predictive framework. Although our predictor requires an initial computational in-
vestment for training on NASBench-101 (approximately 1.5 GPU-hours), this is a one-time cost
that enables subsequent performance predictions without additional retraining or tuning across new
search spaces and tasks.

4.4 NAS RESULT FOR IMAGENET ON THE DARTS SPACE

For the DARTS search space, the final discovered cell architecture is provided in the Appendix. After
determining the optimal cell, we constructed the final network by stacking 14 cells, initializing with
a channel count of 48. Performance comparisons of SNAP-discovered architectures against recent
NAS methods are summarized in Table [/| SNAP achieves competitive top-1 and top-5 accuracies
of 74.9% and 92.2%, respectively. Remarkably, SNAP delivers a substantial efficiency advantage,
offering more than 35x faster search times compared to previous state-of-the-art zero-shot meth-
ods and model-based predictors, completing the entire search process in less than two minutes on
a single NVIDIA RTX 4090 GPU. SNAP’s ability to generalize predictions across diverse, previ-
ously unseen search spaces without additional fine-tuning represents a significant advancement over
existing methods.

4.5 LIMITATIONS

Our SNAP predictor requires an initial training phase on NASBench-101, which involves a one-
time computational cost. Although it generalizes well to previously unseen operators, it has so
far been limited to cell-based search spaces. Extending its applicability to fundamentally different
architecture types remains an open area for future research.

5 CONCLUSION

In this work, we propose SNAP, a zero-shot neural predictor for architecture search that is broadly
applicable to new search spaces which containing previously unseen operators. SNAP integrates
text-based operator descriptions—processed by a fine-tuned sentence transformer—with a graph
convolutional network (GCN) predictor to enable architecture performance estimation. It offers
key advantages in robustness, generalizability, proxy independence, and cost-effectiveness. Our
experiments demonstrate that SNAP consistently outperforms existing proxies across a wide range
of NAS benchmarks, establishing it as a strong foundational component for efficient architecture
search. SNAP achieves more than 35x improvement in search efficiency over prior state-of-the-art
methods. Notably, it discover competitive models with 93.75% CIFAR-10 accuracy on the NAS-
Bench-201 space and 74.9% ImageNet top-1 accuracy on the DARTS space.

Under review as a conference paper at ICLR 2026

REFERENCES

Mohamed S. Abdelfattah, Abhinav Mehrotra, Lukasz Dudziak, and Nicholas D. Lane. Zero-cost
proxies for lightweight nas, 2021.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware, 2019.

Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture search on ImageNet in four
GPU hours: A theoretically inspired perspective. arXiv preprint arXiv:2102.11535, 2021a.

Yaofo Chen, Yong Guo, Qi Chen, Minli Li, Wei Zeng, Yaowei Wang, and Mingkui Tan. Contrastive
neural architecture search with neural architecture comparators. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 9502-9511, 2021b.

Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu hours. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1761-1770,
2019.

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architecture
search. In International Conference on Learning Representations (ICLR), 2020.

Yawen Duan, Xin Chen, Hang Xu, Zewei Chen, Xiaodan Liang, Tong Zhang, and Zhenguo Li.
Transnas-bench-101: Improving transferability and generalizability of cross-task neural architec-
ture search, 2021. URL https://arxiv.org/abs/2105.11871.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks, 2020.

Joonhyun Jeong, Joonsang Yu, Geondo Park, Dongyoon Han, and YoungJoon Yoo. Genas: Neural
architecture search with better generalization. arXiv preprint arXiv:2305.08611, 2023.

Gabriela Kadlecova, Jovita Lukasik, Martin Pilat, Petra Vidnerova, Mahmoud Safari, Roman
Neruda, and Frank Hutter. Surprisingly strong performance prediction with neural graph fea-
tures. arXiv preprint arXiv:2404.16551, 2024.

Harsimrat Kaeley, Ye Qiao, and Nader Bagherzadeh. Support for stock trend prediction using trans-
formers and sentiment analysis. arXiv preprint arXiv:2305.14368, 2023.

Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric Xing. Neu-
ral architecture search with bayesian optimisation and optimal transport, 2019.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works, 2017.

Arjun Krishnakumar, Colin White, Arber Zela, Renbo Tu, Mahmoud Safari, and Frank Hutter. Nas-
bench-suite-zero: Accelerating research on zero cost proxies, 2022.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Nambhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. Snip: Single-shot network pruning
based on connection sensitivity, 2019a.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
based on connection sensitivity. In ICLR, 2019b.

Julien-Charles Lévesque, Audrey Durand, Christian Gagné, and Robert Sabourin. Bayesian op-
timization for conditional hyperparameter spaces. In 2017 International Joint Conference on
Neural Networks (IJCNN), pp. 286-293. IEEE, 2017.

10

https://arxiv.org/abs/2105.11871

Under review as a conference paper at ICLR 2026

Guihong Li, Yuedong Yang, Kartikeya Bhardwaj, and Radu Marculescu. Zico: Zero-shot nas via
inverse coefficient of variation on gradients, 2023.

Wei Li, Shaogang Gong, and Xiatian Zhu. Neural graph embedding for neural architecture search.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 4707-4714,
2020.

Edgar Liberis, Lukasz Dudziak, and Nicholas D. Lane. puNAS: Constrained Neural Architecture
Search for Microcontrollers. In Proceedings of the 1st Workshop on Machine Learning and Sys-
tems, EuroMLSys *21, 2021. ISBN 9781450382984. doi: 10.1145/3437984.3458836.

Ji Lin, Wei-Ming Chen, John Cohn, Chuang Gan, and Song Han. MCUNet: Tiny deep learning on
iot devices. In Annual Conference on Neural Information Processing Systems (NeurIPS), 2020.

Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu Sun, Qi Qian, Hao Li, and Rong Jin.
Zen-nas: A zero-shot nas for high-performance deep image recognition, 2021.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollar. Microsoft coco: Common objects
in context, 2015.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceed-
ings of the European conference on computer vision (ECCV), pp. 19-34, 2018a.

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. Hi-
erarchical representations for efficient architecture search, 2018b.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv: 1806.09055, 2018c.

Vasco Lopes, Saeid Alirezazadeh, and Luis A. Alexandre. EPE-NAS: Efficient Performance Es-
timation Without Training for Neural Architecture Search, pp. 552-563. Springer Interna-
tional Publishing, 2021. ISBN 9783030863838. doi: 10.1007/978-3-030-86383-8_44. URL
http://dx.doi.org/10.1007/978-3-030-86383-8_44.

Rengian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimization.
Advances in neural information processing systems, 31, 2018.

Rengian Luo, Xu Tan, Rui Wang, Tao Qin, Enhong Chen, and Tie-Yan Liu. Accuracy prediction
with non-neural model for neural architecture search. arXiv preprint arXiv:2007.04785, 2020a.

Rengian Luo, Xu Tan, Rui Wang, Tao Qin, Enhong Chen, and Tie-Yan Liu. Semi-supervised neu-
ral architecture search. Advances in Neural Information Processing Systems, 33:10547-10557,
2020b.

Joseph Mellor, Jack Turner, Amos Storkey, and Elliot J. Crowley. Neural architecture search without
training, 2021.

Xuefei Ning, Changcheng Tang, Wenshuo Li, Zixuan Zhou, Shuang Liang, Huazhong Yang, and
Yu Wang. Evaluating efficient performance estimators of neural architectures, 2021.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532-1543, 2014.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing, 2018.

Ye Qiao, Mohammed Alnemari, and Nader Bagherzadeh. A two-stage efficient 3-d cnn frame-
work for eeg based emotion recognition. In 2022 IEEE International Conference on Industrial
Technology (ICIT). IEEE, 2022.

Ye Qiao, Haocheng Xu, Yifan Zhang, and Sitao Huang. Micronas: Zero-shot neural architecture
search for mcus, 2024a.

11

http://dx.doi.org/10.1007/978-3-030-86383-8_44

Under review as a conference paper at ICLR 2026

Ye Qiao, Haocheng Xu, Yifan Zhang, and Sitao Huang. Monas: Efficient zero-shot neural architec-
ture search for mcus. arXiv preprint arXiv:2408.15034, 2024b.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pp. 4780-4789, 2019.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks, 2019.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks, 2019.

Yu Shen, Yang Li, Jian Zheng, Wentao Zhang, Peng Yao, Jixiang Li, Sen Yang, Ji Liu, and Bin
Cui. Proxybo: Accelerating neural architecture search via bayesian optimization with zero-cost
proxies, 2023.

Han Shi, Renjie Pi, Hang Xu, Zhenguo Li, James Kwok, and Tong Zhang. Bridging the gap between
sample-based and one-shot neural architecture search with bonas. Advances in Neural Information
Processing Systems, 33:1808-1819, 2020.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V. Le. Mnasnet: Platform-aware neural architecture search for mobile, 2019.

Jack Turner, Elliot J. Crowley, Michael O’Boyle, Amos Storkey, and Gavin Gray. Blockswap:
Fisher-guided block substitution for network compression on a budget, 2020.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow, 2020.

Colin White, Willie Neiswanger, and Yash Savani. Bananas: Bayesian optimization with neural
architectures for neural architecture search, 2020.

Colin White, Arber Zela, Binxin Ru, Yang Liu, and Frank Hutter. How powerful are performance
predictors in neural architecture search?, 2021.

Colin White, Mahmoud Safari, Rhea Sukthanker, Binxin Ru, Thomas Elsken, Arber Zela, De-
badeepta Dey, and Frank Hutter. Neural architecture search: Insights from 1000 papers, 2023.

Lechao Xiao, Jeffrey Pennington, and Samuel Schoenholz. Disentangling trainability and general-
ization in deep neural networks. In International Conference on Machine Learning, pp. 10462—
10472. PMLR, 2020.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: stochastic neural architecture search.
arXiv preprint arXiv:1812.09926, 2018.

Jingjing Xu, Liang Zhao, Junyang Lin, Rundong Gao, Xu Sun, and Hongxia Yang. KNAS: Green
neural architecture search. In Proceedings of ICML 2021, 2021.

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. PC-
DARTS: Partial channel connections for memory-efficient architecture search. In International
Conference on Learning Representations, 2020.

Shen Yan, Kaigiang Song, Fei Liu, and Mi Zhang. Cate: Computation-aware neural architecture en-
coding with transformers. In International Conference on Machine Learning, pp. 11670-11681.
PMLR, 2021.

Chris Ying, Aaron Klein, Esteban Real, Eric Christiansen, Kevin Murphy, and Frank Hutter. Nas-
bench-101: Towards reproducible neural architecture search, 2019.

Arber Zela, Julien Siems, Lucas Zimmer, Jovita Lukasik, Margret Keuper, and Frank Hutter. Surro-
gate nas benchmarks: Going beyond the limited search spaces of tabular nas benchmarks, 2022.
URL https://arxiv.org/abs/2008.09777.

12

https://arxiv.org/abs/2008.09777

Under review as a conference paper at ICLR 2026

Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph hypernetworks for neural architecture
search. arXiv preprint arXiv:1810.05749, 2018.

Hongpeng Zhou, Minghao Yang, Jun Wang, and Wei Pan. Bayesnas: A bayesian approach for
neural architecture search. In International conference on machine learning, pp. 7603-7613.
PMLR, 2019.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning, 2017. URL
https://arxiv.org/abs/1611.01578.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697-8710, 2018.

Lukasz Dudziak, Thomas Chau, Mohamed S. Abdelfattah, Royson Lee, Hyeji Kim, and Nicholas D.
Lane. Brp-nas: Prediction-based nas using gcns, 2021.

A APPENDIX

This documentation includes technical appendix such as additional figures or tables, and more de-
tailed analyses of experiments presented in the paper SNAP: Generalizable Zero-Shot Prediction of
Neural Architecture Performance via Semantic Embedding and Graph Learning

B GCN PREDICTOR FUNCTIONAL VALIDATION

To evaluate the applicability of the constructed GCN predictor, we partition the NAS-Bench-101
space into train/validation splits ranging from 90% to 1%. As shown in Figure [6] the predictor
maintains strong performance even when trained on as little as 1% of the architecture data, as ev-
idenced by high Kendall’s 7 and Spearman’s p correlation coefficients. Table [5] further compares
these correlation scores with those of existing zero shot methods on NAS-Bench-201, highlight-
ing the superior performance of our approach. Additionally, we investigate the impact of varying
the number of GCN layers and training hyperparameters, with results summarized in Table [6] as an
ablation study.

Table 5: Kendall’s T and Spearman’s p correlation between various zero-shot methods on NAS-
Bench-201

Params FLOPs SNIP Fisher Synflow Zen-score Grad-norm SNAP (ours)
Pham et al.|(2018] |Pham et al.|[(2018] |Lee et al.|(2019b} |Turner et al.|(2020] |Tan et al.|(2019] [Lin et al.|(2021] |Abdelfattah et al.|(2021]

Kendall's 0.55 0.54 0.41 0.22 0.54 0.29 0.37 0.60
Spearman’s p 0.74 0.73 0.58 0.36 0.73 0.38 0.54 0.80

Metric

C ADDITIONAL RANKING FIGURES OF SNAP vS. GROUND TRUTH ON
NAS-BENCH-201

In this section, we present additional accuracy and ranking vs. ground truth figures for CIFAR-
10, CIFAR-100, and ImageNet16-120 datasets on the NAS-bench-201 space. The SNAP GCN
model utilized here is trained using the entire NAS-bench-101 benchmark with CIFAR-10 accuracy
results only. Figure [/| demonstrates the correlation between our SNAP predictions and the raw
model accuracies, revealing a high positive correlation. This result is consistent with our previous
ranking experiments. We believe that incorporating more diverse benchmarks, including additional
evaluation results from different datasets on the same architectures, will enhance the stability and
generalizability of our SNAP approach.

13

https://arxiv.org/abs/1611.01578

Under review as a conference paper at ICLR 2026

Table 6: Effect of Model Settings on Kendall’s 7 Ranking

GCN Layers Weight Decay Sentence Length Embedding Size Kendall’s 7
4 le=* Long 384 0.487
4 le=® Long 384 0.401
4 le=6 Long 384 0.496
4 le=* Short 384 0.495
4 le=® Short 384 0.454
4 le=6 Short 384 0.497
4 le=* Long 768 0.433
4 le=® Long 768 0.421
4 le=6 Long 768 0.454
4 le=* Short 768 0.433
4 le=® Short 768 0.421
4 le=S Short 768 0.454
3 le=* Long 384 0.483
3 le=® Long 384 0.566
3 le=6 Long 384 0.577
3 le=? Short 384 0.601
3 le™? Short 384 0.599
3 le=S Short 384 0.598
3 le=* Long 384 0.516
3 le™?® Long 384 0.557
3 le=6 Long 384 0.594
3 le=* Short 768 0.538
3 le™? Short 768 0.545
3 le=6 Short 768 0.513

14

Under review as a conference paper at ICLR 2026

NASBench101 GCN Functional Validation

e —————— o——————— r——————— e ——— *
} A
/
0.8 1 s
| ' e—————-- o---——---- o--—---- *------ -0
1 ’,f._'—
.4
1/
064 L7
c y
o 1
©]
©
ol 1
£ :
8 0.4 ~ i
1
1
1
]
I
0.2 1 1
I
1
I
: -@- Kendall's T
0.0 & —% - Spearman's p

Percentage of Data Used for Training

Figure 6: GCN Predictor Functional Validation on NAS-Bench-101 Benchmark

CIFAR-10 Ground Truth vs. SNAP Pridiction
"

CIFAR-10 Ground Truth vs. SNAP Pridiction
ogas e M

0. el l 1
s X AHE it H) ¢

Y 801 ool H

80 2. Ad H] H
: i
604 l :

Ch

60

CIFAR-10_ACC

B

a0

=
®
=

g

a
S
-

20

° KT=057,5P =077 .
Py 0 50 100
FLOPS

(b) FLOPs vs. CIFAR-10 Accuracy

20 40 60
Ground Truth

(a) Ground Truth vs. SNAP Pridiction
Figure 7: SNAP Accuracy Correlation Evaluation with Ground Truth on NAS-Bench-201 Space

D ADDITIONAL CORRELATION FIGURES WITH OTHER ZERO-SHOT
METHODS OF CIFAR-100 AND IMAGENET16-120 DATASET ON

NAS-BENCH-201

In this section, we present heatmaps showing the correlations between pairs of popular proxies,
calculated using the CIFAR-100 and ImageNet16-120 datasets as shown in figure[8] These heatmaps
reveal correlation trends that are consistent with those observed in the CIFAR-10 results.

15

Under review as a conference paper at ICLR 2026

(Ours) Soft parameter count Gradient_based Covariance info Others

l A A A A

'd hYd Y4 N\ N\

SNAP flops params synflow fisher grad_nor snip grasp epe_nas jacov nwot 12_norm plain zen

SNAP
flops
params
synflow ¥ i 1.00
fisher -) X X 0.32
grad_norm
grasp
snip
epe_nas
jacov
12_norm
nwot

plain

zen

(a) Spearman’s p Correlation of CIFAR-100

(Ours) Soft parameter count Gradient_based Covariance info Others
l A A A A
'd Y4 Y4 hYd N\
SNAP flops params synflow fisher grad_nort snip grasp epe_nas jacov nwot 12_norm plain zen

SNAP -0.18 -0.12 -0.05

R -
1.00 0.99

flops
params -0. | . 1.00
synflow 0. I_ 044_ L 0. 47_ |
fisher -0. 0.28 0.30
grad_norm
grasp
snip
epe_nas
jacov
12_norm
nwot
plain

zen

(b) Spearman’s p Correlation of ImageNet16-120

Figure 8: Spearman’s p Correlation for all Pairs of Zero-shot Methods of CIFAR-100 and
ImageNet16-120 on NAS-Bench-201

E ADDITIONAL COMPARISON WITH MORE PREDICTOR-BASED NAS WORKS

In this section, we expand our comparison to include other NAS works involving training-based pre-
dictors. However, it’s worth noting that the formulation and training of these predictor models differ
from ours. They often require iterative training with new golden truth samples during the search
process. Consequently, they are not zero-shot, highly bound to specific search spaces, lack general
applicability, and remain costly to employ. To address this limitation, we propose the Transformer-
based operator embedding method. This approach enables our predictor model to be decoupled
from search spaces, thereby allowing our method to serve as a general zero-shot predictor model.
As illustrated in Table[7] our SNAP achieves significantly higher search efficiency compared to other

16

Under review as a conference paper at ICLR 2026

predictor-based NAS Works. Specifically, our method demonstrates search efficiency ranging from
71 times to 1.4 x 10° times better, highlighting its effectiveness and scalability in NAS tasks.

Table 7: Comparison with additional predictor-based NAS works on ImageNet. The use of “{”
indicates that the search is not conducted on the standard DARTS space, and we compare their
results with similar mobile settings.

Test Accuracy (%) Search Cost Params

Name of Works Search Method

Top-1 Top-5 (GPU Days) (M)
NGELI et al.|(2020) 74.7 92.1 0.1 5.1 Model-based Predictor
GHNZhang et al.|(2018) 73.0 91.3 0.84 5.7 Model-based Predictor
NAONetLuo et al.|(2018) 74.3 91.8 200 11.35 Model-based Predictor
PNASNet-5Liu et al.|(2018a) 74.2 91.9 45 5.1 Model-based Predictor
GBDT-NAS-3S"|Luo et al.|[(2020a) 76.5 93.2 4 6.4 Model-based Predictor
CTNAST Chen et al.|(2021b) 77.3 93.4 50.1 - Model-based Predictor
SemiNAS|Luo et al.|{(2020b) 76.5 93.2 4 6.3 Model-based Predictor
ZenNet-400M" [Lin et al.|(2021) 78.0 - 0.5 5.7 Zero Shot
ZiCo-450MT [Li et al.|(2023) 78.1 - 04 4.5 Zero Shot
SNAP (ours)) 74.5 91.9 0.0014 5.6 Model-based Predictor

F SENTENCE TRANSFORMER FINETUNE SETUP

To formulate supervised training pairs, we define three types of similarity relations:

* Positive pairs (similarity = 1.0): Descriptions from the same class, including original and
GPT-augmented versions (e.g., torch.nn.Conv2d, Pytorch offical description, and GPT40
augmented descriptions).

* Related pairs (similarity = 0.7): Descriptions from different classes within the same cate-
gory (e.g., torch.nn.Conv2d and torch.nn.ConvTranspose2d).

 Unrelated pairs (similarity = 0.0): Descriptions from distinct functional categories (e.g.,
torch.nn.Conv2d vs. torch.nn.BatchNorm?2d).

We fine-tune the model using cosine similarity loss, which encourages the embedding space to
reflect semantic relationships: similar operators are embedded closer together, while unrelated ones
are pushed apart. As shown in Table 8] this fine-tuning significantly improves the model’s ability
to differentiate operator semantics. For example, the similarity score between conv2x2 and “A 2D
conv layer with a 2x2 kernel” increases from 0.6052 to 0.8847, while the unrelated pair conv2x2 and
maxpool drops from 0.2102 to 0.0275. This indicates the model learns to align functionally related
operators while effectively distinguishing dissimilar ones.

Table 8: Operator Description’s Similarity Comparison Before and After Finetuning

Operators Compared Operators/Description | Similarity before Finetune | Similarity after Finetune
conv2x2 maxpool 0.2102 0.0275
conv2x2 A 2D conv layer with a 2x2 kernel. | 0.6052 0.8847
nn_Dropout nn_BatchNorm2d 0.4629 -0.1160
skip connection | residual 0.0584 09113
maxpool avgpool 0.2907 0.6741
maxpool conv2x2 0.2277 0.0011

G FINAL SEARCHED CELL ARCHITECTURE

Our final search cell architecture on DARTS space can be found in figure 9]

17

Under review as a conference paper at ICLR 2026

(a) Normal Cell (b) Reduction Cell

Figure 9: Discovered Architecture on the DARTS Space

Ground Truth vs. SNAP Predicted Ranking Ground Truth vs. SNAP Predicted Ranking
160001, SNap Ranking, p = 0.80, T = 0.60 16000 . v
— ideal LRI -

14000 . g 14000 A
© 12000 Ly % ° © 12000
£ ™ e £
& 10000 3 & 10000
3 . SH 3
S 8000 . AT el b S 8000
E P B PN E
e Al e

6000 a0 & 6000
2 S 9 o
= vl =
2 000 2 4000 .‘3. [,

2000 2000 CRE: T

. * SNAP Ranking, p = 0.80, T = 0.60
0 0 il . — Ideal
0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000
Ground Truth Ranking Ground Truth Ranking

(a) NB201-CF10 (b) NB201-CF100

Ground Truth vs. SNAP Predicted Ranking Ground Truth vs. SNAP Predicted Ranking 301

160901 . SNAP Ranking, p = 0.80, T =060 o + SNAP Ranking

14000 laal 8. L 10000 Wdeal PR -

NI e . or's
o 12000 o
£ £ so00
& 10000 8
= <
£ 000 g oo
: 8 :
& 37 &
g 6000 <Rt 9 4000
E E
;i -~ z
2 4000 .. e
2000
2000
o
B) Oy L3
0) SIhae * 0 :
o 2000 4000 6000 8000 10000 12000 14000 16000 o 2000 4000 6000 8000 10000
Ground Truth Ranking Ground Truth Ranking

(c) NB201-IMGNT (d) NB301-CF10

Figure 10: Ground Truth vs Predicted Results (Part 1 of 2)

H GROUND TRUTH AND PREDICTED RESULT COMPARISON

In Figure [I0] and Figure [TT] we compare SNAP’s predicted ranking against the true ranking across
ten benchmark tasks. The result on NAS-Bench-201 Cifar-10 and Cifar-100 exhibit very tight clus-
tering, indicating good ranking fidelity. While the result for NAS-Bench-201 Imagenet shows rel-
atively high variance, its Spearman’s p correlation is high as we have shown in the main paper.
Overall, SNAP consistently captures the relative ordering of architectures across both large-scale
image-classification benchmarks and fine-grained micro-benchmarks.

I CODE

Our code is provided in a dedicated .zip file.

18

Under review as a conference paper at ICLR 2026

Ground Truth vs. SNAP Predicted Ranking TNB101-MICRO-NORMAL

4000] ¢ SNAP Ranking o
— Ideal P
2 3000
2
B
£
£ 2000
£
&
»
2
z
£ 1000
o] 3
0 1000 2000 3000 4000

Ground Truth Ranking

(a) TNB101-MICRO-NORMAL

Ground Truth vs. SNAP Predicted Ranking TNB101-MICRO-ROOM

4000

3500

3000

S
g8 8

NAS Predicted Ranking

TG
s
8

SNAP Ranking
Ideal

2000 3000 4000
Ground Truth Ranking

(c) TNB101-MICRO-ROOM

Ground Truth vs. SNAP Predicted Ranking TNB101-MICRO-SEGMENT

4000{ * SNAP .Ranking

3000

2000

TG-NAS Predicted Ranking

1000

o 1000 2000 3000 4000
Ground Truth Ranking

(e) TNB101-MICRO-SEGMENT

Ground Truth vs. SNAP Predicted Ranking TNB101-MICRO-OBJECT

Py

4000 .

3000

2000

TG-NAS Predicted Ranking

1000

« SNAP Ranking
Ideal

o 1000 2000 3000 4000
Ground Truth Ranking

(b) TNB101-MICRO-OBJECT

Ground Truth vs. SNAP Predicted Ranking TNB101-MICRO-SCENE

4000] * SNAP Ranking -
Ideal
£ 3000
§
&
g
£ 2000
2
A
2
z
£ 1000
‘e
0
0 1000 3000 4000

2000
Ground Truth Ranking

(d) TNB101-MICRO-SCENE

Ground Truth vs. SNAP Predicted Ranking TNB101-MICRO-JIGSAW

4000] * SNAP Ranking s, -
Ideal 8
v
2 3000 ;
2 &
5
&
H
g &)
i 3
£ 2000 v
H
a
2
R R T
H 2es B4 3 -’{Jt,l'.
£ 1000 ¢ < eppSIRS NS
K g Ve,
fx- e [
. E
0 ti 4
0 1000 2000 3000 4000

Ground Truth Ranking

(f) TNB101-MICRO-JIGSAW

Figure 11: Ground Truth vs Predicted Results (Part 2 of 2)

19

	Introduction
	Background and Related Work
	Neural Architecture Search (NAS)
	Zero-cost Method vs. Model-based Predictors

	SNAP: A Zero-shot Neural Predictor
	Architecture Representation
	Operator Embedding Generator
	GCN Predictor model
	Evolutionary Searching

	Experiment and Results Analysis
	Generalizability Analysis of Zero-shot Methods Across 12 Benchmarks
	Independent Analysis of Zero-shot Methods
	NAS Result on NAS-Bench-201
	NAS Result for ImageNet on the DARTS Space
	Limitations

	Conclusion
	Appendix
	GCN Predictor Functional Validation
	Additional Ranking Figures of SNAP vs. Ground Truth on NAS-bench-201
	Additional Correlation Figures with Other Zero-shot Methods of CIFAR-100 and ImageNet16-120 Dataset on NAS-Bench-201
	Additional Comparison with More Predictor-based NAS Works
	Sentence Transformer Finetune Setup
	Final Searched Cell Architecture
	Ground Truth and Predicted Result Comparison
	Code

