
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SNAP: GENERALIZABLE ZERO-SHOT PREDICTION OF
NEURAL ARCHITECTURE PERFORMANCE VIA SEMAN-
TIC EMBEDDING AND GRAPH LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural Architecture Search (NAS) is a powerful approach to discovering high-
performing CNN architectures, but most existing methods incur significant com-
putational costs due to extensive training or sampling. Zero-shot NAS predic-
tors offer an efficient alternative by predicting architecture performance with-
out additional training. However, current methods often yield suboptimal pre-
dictions—frequently outperformed by basic metrics like parameter counts or
FLOPs—and struggle to generalize across different search spaces or unseen op-
erators. To address these limitations, we propose SNAP(Semantic Neural Archi-
tecture Predictor), a novel zero-shot neural predictor that leverages a transformer-
based semantic embedding of operator descriptions combined with a Graph Con-
volutional Network (GCN) for architecture performance prediction. Unlike tradi-
tional model-based predictors, SNAP requires only a single initial training phase
on NASBench-101, after which it effectively generalizes to arbitrary new search
spaces and previously unseen operators without fine-tuning. Extensive experi-
ments across diverse NAS benchmarks demonstrate SNAP’s state-of-the-art rank
correlation and superior generalization capabilities. Furthermore, SNAP achieves
more than 35× search efficiency improvements, discovering competitive architec-
tures with 93.75% CIFAR-10 accuracy on NAS-Bench-201 and 74.9% ImageNet
top-1 accuracy on the DARTS space, positioning it as a robust and generalizable
foundation for efficient neural architecture search.

1 INTRODUCTION

Deep convolutional neural networks (CNNs) have achieved remarkable performance across diverse
domains, including computer vision, speech recognition, and object detection Krizhevsky et al.
(2012); Lin et al. (2015); Qiao et al. (2022); Kaeley et al. (2023). CNN architectures were manually
designed, demanding significant time, expertise, and computational resources, particularly when tar-
geting specialized hardware with stringent constraints He et al. (2016); Sandler et al. (2019). Neural
Architecture Search (NAS) systematically explores optimal architectures given performance and
computational constraints Lin et al. (2020); Zoph & Le (2017). Early NAS methods relied predom-
inantly on reinforcement learning (RL) or evolutionary algorithms, requiring extensive sampling,
training, and evaluation, thus incurring substantial computational costs Liberis et al. (2021).

To reduce these costs, zero-cost proxies have been proposed, providing lightweight performance
estimates through fast computations like forward passes on small minibatches, gradient-based indi-
cators, or kernel methods White et al. (2023); Krishnakumar et al. (2022); Mellor et al. (2021); Qiao
et al. (2024a;b). Despite their efficiency, zero-cost proxies frequently underperform simple heuristics
like parameter count or FLOPs, suffer from data dependency, and generalize poorly across diverse
search spaces. Additionally, their reliance on similar information sources results in correlated and
redundant predictions.

Model-based predictors have emerged as an alternative, employing trained machine learning mod-
els—such as Gaussian processes Lévesque et al. (2017) or deep neural networks Shi et al. (2020)—to
forecast architecture performance based on structural attributes. Although more accurate, these
methods typically require extensive training data from numerous fully evaluated architectures, mak-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ing them computationally costly and limiting their generalization to new search spaces or unseen
operators without extensive retraining.

To bridge this gap, we introduce SNAP (Semantic Neural Architecture Predictor), a novel
zero-shot neural predictor explicitly designed to generalize robustly to unseen operators and
search spaces without retraining. SNAP uniquely combines transformer-based semantic em-
beddings of textual operator descriptions with a Graph Convolutional Network (GCN) predic-
tor, effectively merging the advantages of zero-cost proxies and traditional model-based pre-
dictors. To facilitate future research, we provide open-source access to our implementation.

AUTO
EN

C

NB20
1-I

MGNT

NB20
1-C

F1
0

NB30
1-C

F1
0

gr
as

p
fis

he
r

ep
e_

na
s

flo
ps

SN
AP

-0.12 0.55 0.51 0.34

-0.58 0.48 0.50 -0.28

0.00 0.33 0.70 0.00

-0.02 0.67 0.69 0.42

0.42 0.69 0.80 0.66

SNAP vs Proxies on 4 Datasets

0.4

0.2

0.0

0.2

0.4

0.6

Figure 1: Spearman’s correlation be-
tween SNAP and 4 other proxies (the
higher the better).

The main contributions of our work are:

• We propose SNAP, a universally applicable
zero-shot neural predictor capable of general-
izing effectively to unseen operators and new
search spaces without retraining. SNAP inte-
grates transformer-based semantic embeddings,
DAG-based architectural representations, and a
GCN predictor.

• SNAP is comprehensively evaluated across 12
NAS benchmarks, demonstrating superior rank
correlation, remarkable generalizability, and in-
dependence from traditional proxies.

• Extensive experiments confirm SNAP’s state-
of-the-art predictive performance and efficiency,
achieving more than 35× speedup over exist-
ing zero-shot methods and traditional NAS ap-
proaches. SNAP identifies competitive architec-
tures achieving 93.75% accuracy on CIFAR-10
(NAS-Bench-201) and 74.9% top-1 accuracy on
ImageNet (DARTS).

2 BACKGROUND AND RELATED WORK

2.1 NEURAL ARCHITECTURE SEARCH (NAS)

NAS is an important technique in automating the design of neural architectures for a given task
White et al. (2023). A typical NAS contains a search strategy that selects candidate architectures
from a predefined search space and an estimation strategy that enables the performance estimation
for candidates.

Search space can be categorized as the following types: macro search space Kandasamy et al.
(2019), chain-structures search space Sandler et al. (2019), cell-based search space Liu et al. (2018c);
Ying et al. (2019); Dong & Yang (2020), and hierarchical search space Liu et al. (2018b). Among
those, cell-based search space is the most popular one in NAS White et al. (2023). The searchable
cells (a directed acyclic graph (DAG) of operations) make up the microstructure of the search space
while the macrostructure (that defines the number of cells and how they stack together) is fixed. For
example, NAS-Bench-101 Ying et al. (2019) contains 423,624 unique architectures, and each cell
consists of 7 nodes (each node is chosen from three operators). In NAS-Bench-201 Dong & Yang
(2020), there are 15,625 cell candidates and each cell consists of four nodes (each node chosen from
five operators). In contrast, the DARTS search space Liu et al. (2018c) is more expansive, featuring
approximately 1018 architectures. It consists of two cells, each containing seven nodes. The first two
nodes receive inputs from previous layers, and the following four nodes can be any DAG structure,
each having two incident edges. The last node serves as the output node, and each edge can take on
one of eight operations. In this work, we perform our experiments on those three search spaces to
evaluate our proposed SNAP flow.

The search strategy in NAS has been widely explored. There are well-known black-box opti-
mizations, such as random selection with full training, reinforcement learning, evolution, Bayesian

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

“Conv3x3-BN-ReLU"

“Average pooling 3x3"

“Conv1x1-BN-ReLU"…

Operators Descriptions
in Natural Language

Sentence
Transformer
(Fine-tuned)

…

…

…

d

…

…

Operator
Embedding

“Skip Connection"

input

conv3x3 residual conv1x1

avgpool residual

output

conv1x1
GCN-based

Performance
Predictor

(SNAP Proxy)

Final Neural Cell
Architecture Found

Op_n
Op_m
Op_i
Op_j

…

Previously Unseen Operators

New Search Space

NAS benchmarks with ground truth
(NASBench101, NASBench201, etc.)

Op1 Op2 Op3 … Op N

Cell 1

Cell 2

Train

Predict

Cell 3

Cell N

…

out

in

conv
3x3

conv
3x3

conv
3x3

conv
1x1

max
pool

Initialization Mutation

Evolutionary Searching
Selection Crossover

Figure 2: SNAP, featuring operator description embedding and GCN-based performance predictor

optimization, Monte Carlo tree search, etc. With these search strategies, we still need to train the
searched architecture and use the performance result to guide the search, which is a time-consuming
process. To overcome the training time bottleneck, one-shot techniques were introduced as an es-
timation strategy. These techniques involve training a single (one-shot) supernet, which is an
over-parameterized architecture that encompasses all possible architectures in the search space Cai
et al. (2019); Liu et al. (2018c). Once the supernet is trained, each architecture in the search space
can be evaluated by inheriting its weights from sampling the subnet within the supernet. Supernet
design and training often become the performance bottleneck of these approaches. Supernet training
typically dominates the NAS runtime.

2.2 ZERO-COST METHOD VS. MODEL-BASED PREDICTORS

To accelerate the search process, Zero-cost(ZC) proxies are proposed. They are lightweight metrics
calculated on a network at initialization, often using just a single mini-batch of data. These methods
evaluate intrinsic network properties without any parameter updates. For example, SNIP Lee et al.
(2019b) assesses connection sensitivity; SynFlow Abdelfattah et al. (2021) computes a synaptic
saliency score; TE-NAS Chen et al. (2021a) formulates neural networks as a Gaussian process and
analyzes randomly-initialized architectures by the spectrum of the neural tangent kernel (NTK) Jacot
et al. (2020); Xiao et al. (2020) and the number of linear regions in the input space.. While extremely
fast, these proxies are often unstable and struggle to generalize across different search spaces.

Despite the inherent limitations of zero-cost proxies, the integration of model-based prediction has
emerged as a pivotal component in guiding neural architecture search (NAS) algorithms. This ap-
proach is particularly useful when combined with Bayesian optimization and utilized as a subroutine
Kandasamy et al. (2019); Shi et al. (2020). Various types of predictor models, including Gaus-
sian processes (GP), multi-layer perceptron (MLP), long short-term memory (LSTM) networks, and
graph neural networks (GNN), have been employed. Typically, as the algorithm progresses and a
set of fully evaluated architectures becomes available, a meta-model is trained using architecture
topology as features and validation accuracies as labels. This model is then used to predict the
validation accuracy of yet-to-be-evaluated architectures. Notably, White et al. White et al. (2021)
demonstrated that augmenting the model with Jacobian covariance as an additional feature can en-
hance its performance by up to 20%. Shen et al. Shen et al. (2023) further extended this approach by
integrating zero-cost proxies into Bayesian optimization, resulting in 3-5× speedups over previous
methods.

Existing model-based predictor approaches exhibit notable biases, limiting their effectiveness to
specific search spaces and requiring fully evaluated architectures as labels. The high initialization
time is also a concern. Dudziak et al. Łukasz Dudziak et al. (2021) attempted to address this issue
by leveraging the model’s binary relation and training a prediction model through iterative data
selection. However, such models typically rely on fixed, one-hot encodings for operators, which
prevents them from generalizing to new search spaces with previously unseen operations. GRAF
Kadlecová et al. (2024) predictor demonstrated that using carefully engineered, interpretable graph
features (like operation counts and path lengths) as input to a random forest model can also yield
surprisingly strong performance predictions. While effective, this method relies on hand-crafting
features for a given search space.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Example of Operator Descriptive Sentences Vary in Length for Generating Embedding
Operators Short Sentences Medium-length Sentences Long Sentences
none “None” “Doing nothing” “A none operator that does nothing”

skip connect “Residual connection” “Identity mapping to the next layer” “A residual connection operator that adds identity mapping to the next layer”

nor conv 3x3 “Convolution 3x3” “Convolution 3 by 3 kernel, Batchnorm, ReLU”
“A two-dimensional convolutional operator with a kernel size of 3 by 3 is applied,
succeeded by a batch normalization layer, and followed by a rectified linear layer”

nor conv 1x1 “Convolution 1x1” “Convolution 1 by 1 kernel, Batchnorm, ReLU”
“A two-dimensional convolutional operator with a kernel size of 1 by 1 is applied,
succeeded by a batch normalization layer, and followed by a rectified linear layer”

avg pool 3x3 “Average pooling 3x3” “Average pooling 3 by 3 kernel” “A average pooling operator with a kernel size 3 by 3”

These limitations prompt us to explore a more robust operator encoding method that enables a pre-
trained prediction model to operate effectively in any architecture search space and accommodate
unseen operators. Essentially, we investigate the viability of relying solely on pre-trained model-
based prediction as a universal zero-shot predictor for guiding searches across diverse architecture
spaces with only one time training effort. Our SNAP directly learns the functional semantics of
the operators from their textual descriptions, allowing it to generalize to entirely new operators and
search spaces without manual feature engineering or retraining, offering a flexible and scalable path
to a universal performance predictor.

3 SNAP: A ZERO-SHOT NEURAL PREDICTOR

In this work, we propose SNAP, a novel zero-shot neural predictor for neural architecture search
(NAS). SNAP uniquely combines a transformer-based semantic embedding generator with a Graph
Convolutional Network (GCN) predictor to accurately forecast architecture performance. Unlike tra-
ditional predictors, SNAP can effectively generalize to previously unseen operators and new search
spaces without additional retraining or fine-tuning. Specifically, our transformer-based embedding
generator captures meaningful semantic features from operator descriptions, while our GCN predic-
tor—trained just once on an existing NAS benchmark—leverages these embeddings to predict the
accuracy (or ranking) of candidate architectures. As illustrated in Figure 2, the predicted rankings,
independent of new training data, guide the architecture search efficiently. Consequently, SNAP re-
quires only a single initial training phase and seamlessly transfers its predictive capability to diverse
new search spaces with no further training effort.

3.1 ARCHITECTURE REPRESENTATION

Various neural architecture search works represent their networks in the cell structure. For instance,
DARTS Liu et al. (2018c), and NATS-Bench (NAS-Bench-201) Dong & Yang (2020) define a cell-
based search space representing each architecture as a directed acyclic graph (DAG), with nodes
representing the features. NAS-Bench-101 Ying et al. (2019) on the other hand utilizes nodes to
represent layers (operators) and edges for forward dataflow propagation. BANANAS White et al.
(2020) proposed a novel path-based encoding scheme and claimed it scales better than other meth-
ods. Additionally, Yan et al. Yan et al. (2021) propose a transformer-based encoding scheme with
computation awareness. On contrary, our transformer-based neural architecture coding uses text-
based DNN operator descriptions and sentence transformer.

In this work, we represent the DNN architecture candidates using DAG with nodes representing op-
erators and edges corresponding to model data propagation flow. We then represent the graphs with
adjacent matrix and operator node embeddings, which becomes data input for our graph convolution
network (GCN)Kipf & Welling (2017) predictor. For example, consider a NAS-Bench-201 edge-
labeled cell: edges (0→2: conv3x3, 1→2: skip). This converts to a node-labeled DAG: nodes [input,
input, conv3x3, skip, output] with adjacency matrix connecting input nodes to operations, operations
to output. To make all search space comply with this representation, SNAP unifies other cell-based
search space representations as shown in Figure 2. NAS-Bench-101 was provided with the afore-
mentioned architecture graphs, therefore no transformation is needed and was used as training data.
Figure 2 shows an example on NAS-Bench-201. The final model architectures of each search space
are obtained by stacking multiple repeated cells with some other predefined cells in between. The
differences between different DNN architecture candidates are purely determined by the cell archi-
tecture (represented as graph), so we use the embedding of individual cell architectures (as graphs)
to represent the entire DNN architecture. Operator node features are encoded using a transformer
model with a fixed length embedding size. The details can be seen in the following section.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 2: Different Combination of Sentences Transformer Model and Embedding Sentence Length

Model Model Size (MB) Embedding Size Kendall’s τ Spearman’s ρ
Short Medium Long Short Medium Long

all-mpnet-base-v2 420 768 0.48 0.49 0.46 0.66 0.67 0.65
MiniLM-L6-v2 80 384 0.56(0.60*) 0.44 0.40 0.76(0.80*) 0.62 0.56

MiniLM-L6-v2-64 81 64 0.36 0.29 0.32 0.54 0.43 0.47

*Fine Tuned with Augmented DNN Operator Descriptions

3.2 OPERATOR EMBEDDING GENERATOR

In our approach, we encode model cell graphs using an adjacency matrix together with node em-
beddings. However, encoding operators demand special attention as it involves representing and
distinguishing various deep learning operators. Previous methods, which typically rely on one-hot
vectors for operator encoding, are deemed suboptimal and non-portable, especially when dealing
with unseen search spaces and operators.

Recognizing that the names of operators inherently contain valuable information, we assert that
the operator name alone can provide insight into the operation. For instance, the operator name
“CONV3x3-BN-ReLU” suggests that it contains a two-dimensional convolution with a 3x3 kernel,
followed by batch normalization and rectified linear activation. Therefore, we propose to construct
a robust embedding model capable of extracting internal semantic information from operator names
or their descriptive sentences in natural languages. For example, in the high-dimensional encoding
space, operators like conv3x3 are expected to be closer to conv5x5 than to maxpool3x3. Additionally,
if the embedding model comprehends one type of operator, it should readily extend its knowledge
to similar operators with, for example, different kernel sizes.

Certain existing works have attempted to construct embedding vectors from words or sentences,
such as GloVe Pennington et al. (2014), or employed character embeddings to capture fine-grained
semantic and syntactic regularities. However, our earlier experiments indicated that these meth-
ods face challenges when dealing with previously unseen words, particularly operators in our case.
Consequently, we have opted for Sentence Transformer Reimers & Gurevych (2019) as our primary
method for generating desired operator embeddings. As illustrated in Figure 2, the Sentence Trans-
former utilizes siamese and triplet network structures to derive semantically meaningful sentence
embeddings that can be compared using cosine similarity. A pooling operation is applied to the
output of the pre-trained transformer model to obtain a fixed-size sentence embedding. We compute
the mean of all output word vectors as the pooling strategy to generate the final operator embedding.

In our experiments, we explored different pre-trained sentence transformer models and varying
lengths of descriptive sentences for operator embedding generation. Table 1 defines three cate-
gories of operator descriptions (short, medium, and long sentences) used as input for the embedding
models. The embedding performance across these sentence variations on NAS-Bench-201 is shown
in Table 2.

We examined three pre-trained sentence transformer models: all-mpnet-base-v2, MiniLM-L6-v2,
and MiniLM-L6-v2-64 (a PCA-downsampled version of MiniLM-L6-v2), each pretrained on the
same dataset collection containing over 1 billion sentence pairs Reimers & Gurevych (2019). Train-
ing utilized a triplet objective loss function, designed to minimize the embedding distance between
similar sentence pairs and maximize the distance between dissimilar pairs:

L = max(|sa − sp| − |sa − sn|+ ϵ, 0) (1)
where sa, sp, and sn represent the embeddings of the anchor, positive, and negative sentences,
respectively; | · | denotes Euclidean distance; and the margin ϵ is set to 1.

Table 2 shows that the MiniLM-L6-v2 model with an embedding length of 384 achieves the highest
correlation coefficients (Kendall’s τ and Spearman’s ρ) specifically when short operator sentences
are used. We hypothesize this outcome arises because the semantic information required for embed-
ding DNN operators is relatively straightforward and concise. Therefore, more elaborate or longer
sentence descriptions may introduce redundant or unnecessary semantic detail, leading to embed-
ding saturation or noise. Consequently, the combination of short sentence descriptions with the
MiniLM-L6-v2 embedding model was selected for subsequent fine-tuning and further experimenta-
tion.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

To enhance the specificity of the embedding for neural architecture search, we fine-tuned the
MiniLM-L6-v2 model on a custom similarity dataset derived from PyTorch’s torch.nn docu-
mentation. Operators were categorized by functionality (e.g., convolution, pooling, normalization,
activation), and GPT-4o-generated augmented descriptions further diversified the linguistic formu-
lations within each functional class. Training involved supervised similarity pairs labeled based
on functional similarity, using a cosine similarity loss to guide the embedding alignment. Detailed
methodology for this fine-tuning process is provided in the Appendix.

3.3 GCN PREDICTOR MODEL

After completing the universal architecture encoding and operator feature embedding, we employ a
three-layer graph convolution network (GCN) Kipf & Welling (2017) as our prediction model. With
the normalization trick, GCN can be defined as

H = X ∗G GΘ = f(ĀXΘ) (2)

where Ā = D̃− 1
2 ÃD̃− 1

2 , Ã = A + In, and D̃ii =
∑

j Ãij . To prevent overfitting to a particu-
lar training search space, we incorporate graph node normalization and weight decay techniques.
Our overarching objective is to deliver a universally applicable pre-trained predictor model that re-
quires no tuning for new search spaces. Consequently, the GCN predictor model is subject to heavy
regularization. An additional crucial factor influencing our choice of GCN over other prediction
models is its capability to handle vast differences in architectures. Given the varying dimensions
of the adjacency matrix (from unseen search spaces) and operator matrix (from unseen operators),
GCN emerges as a suitable choice, demonstrating flexibility in accommodating diverse architectural
structures.
3.4 EVOLUTIONARY SEARCHING

Evolutionary and genetic algorithms have been
commonly used to optimize the NAS White
et al. (2023). To enhance the efficiency of the
search, we adopt a similar approach in Algo-
rithm 1. We first initialize the entire population
of architecture candidates with continuous pa-
rameters in the first while loop, where we map
all operators evenly into the value between 0 and
1. Then we discretized the random configura-
tions into the desired NAS architectures. Then
in the second while loop, mutation operation
and crossover operation are performed to pro-
duce a new child. After generating all the off-
spring, the selection process will kick in using
our proposed proxy, GCN Inference, to select
the elite candidates for the next generation. In
the end, we select the final returned architecture
as the search result.

Algorithm 1 SNAP Search Algorithm
1: Input: NP population size
2: g ← 0
3: while |pop| < NP do
4: popi ← random configuration()
5: pop′i ← discretized architecture(popi)
6: end while
7: while g < gmax do
8: Vg ← mutate(popg)
9: Ug ← crossover(Vg, popg)

10: U ′
g ← discretized population(Ug)

11: fitnessg ← GCN Inference(U ′
g)

12: popg+1, fitnessg+1 ← select(popg, Ug)
13: end while
14: return Best Architecture

4 EXPERIMENT AND RESULTS ANALYSIS

In our evaluation, we tested 12 NAS benchmarks similar to NAS-Bench-Suite-Zero Krishnakumar
et al. (2022), including NAS-Bench-201 (CIFAR-10, CIFAR-100, and ImageNet16-120) Dong &
Yang (2020), NAS-Bench-301 (CIFAR-10) Zela et al. (2022), and TransNAS-Bench-101 Micro
(Jigsaw, Object Classification, Scene Classification, Autoencoder, Room Layout, Surface Normal,
and Semantic Segmentation) Duan et al. (2021). We excluded NAS-Bench-101 Ying et al. (2019)
from the comparison because it was used as training data for our GCN predictor. To prevent infor-
mation leakage and ensure a fair comparison, we removed it from subsequent evaluations.

The GCN predictor consists of three graph convolutional layers with 64 hidden dimensions each,
followed by batch normalization and ReLU activation. We use MSE regression loss, AdamW op-
timizer with learning rate 0.001, and StepLR scheduler (step size=40, gamma=0.1). The sentence
transformer operator embeddings are pre-computed and remain frozen during GCN training. The

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

model was trained for 150 epochs to ensure convergence. To minimize training cost and highlight
the effectiveness of our novel architecture and operator encoding method in generalizing to unseen
operators, the GCN was trained solely on NAS-Bench-101 (CIFAR-10) Ying et al. (2019).

4.1 GENERALIZABILITY ANALYSIS OF ZERO-SHOT METHODS ACROSS 12 BENCHMARKS

SNAP

Figure 3: Spearman’s ρ rank between proxy values and
ground truth accuracies, for 14 proxies and across 12 NAS
benchmarks (the higher the better).

In Figure 3, we present the Spear-
man’s ρ correlation between each
zero-shot method’s predictions and
the corresponding ground-truth per-
formance across multiple bench-
marks. While Jacov Mellor et al.
(2021) and Zen Score Lin et al.
(2021) show the highest correlations
among existing proxies, SNAP con-
sistently surpasses all methods.

Notably, SNAP retains robust pre-
dictive accuracy even in challenging
benchmarks, such as the Autoen-
coder and Room Layout tasks from
TransNAS-Bench-101-Micro Duan
et al. (2021), where most zero-
shot methods typically struggle.
Furthermore, on the widely used
NAS-Bench-201 Dong & Yang (2020) benchmarks, SNAP outperforms existing proxies, including
methods like Snip Lee et al. (2019a) and Grasp Wang et al. (2020). While these latter methods ex-
hibit competitive results on NAS-Bench-201, they fail to generalize effectively to other benchmarks
and can even be outperformed by simpler heuristics such as parameter counts (Params) or floating
point operations (FLOPs).

Overall, these experimental outcomes underscore that SNAP achieves not only superior average
predictive performance across diverse NAS benchmarks but also demonstrates consistently lower
variance, highlighting its exceptional generalizability and portability.

4.2 INDEPENDENT ANALYSIS OF ZERO-SHOT METHODS

TG-NAS flops params synflow fisher grasp epe_nas jacovgrad_norm nwot plain zen

TG-NAS
flops

params
synflow
fisher

g_norm
grasp
snip

epe_nas
jacov

l2_norm
nwot
plain
zen

Soft parameter count Gradient-based Covariance info Others
(Ours)

l2_normsnip

SNAP
SNAP

Figure 4: Spearman’s ρ correlation between proxy scores of
CIFAR-10 on NAS-Bench-201.

Combining multiple proxies can po-
tentially enhance the accuracy and ro-
bustness of architecture performance
predictions. However, not all proxies
contribute unique information; some
proxies may exhibit highly correlated
rankings and therefore offer minimal
complementary benefit. To explore
this, we conducted a thorough assess-
ment of proxy methods within the
NAS-Bench-201 search space across
three distinct datasets (CIFAR-10,
CIFAR-100, and ImageNet16-120).
Additionally, by examining the same
search space across multiple tasks,
we sought to identify whether certain
proxies can provide universally appli-
cable, data- and task-independent rankings. Our analysis considered 14 proxies, including our pro-
posed SNAP method. Specifically, we randomly sampled 1,000 architectures within NAS-Bench-
201, computed each proxy’s score per architecture, and then calculated Spearman’s rank correlation
among the proxies.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Results of CIFAR-10, CIFAR-100 and ImageNet16-120 on NAS-Bench-201

Name of Works FLOPs
(M)

Params
(M)

Search Cost
(GPU Hours)

CIFAR-10
Accuracy (%)

CIFAR-100
Accuracy (%)

ImageNet16-120
Accuracy (%)

µNASLiberis et al. (2021) 7.78 0.073 552 86.49 58.30 27.80
DARTSLiu et al. (2018c) 82.49 0.587 3.02 88.32 67.78 34.60
GDASDong & Yang (2019) 117.88 0.83 8.03 93.36 69.64 38.87
KNASXu et al. (2021) 153.27 1.073 2.44 93.43 71.05 45.05
NASWOTMellor et al. (2021) 86.43 0.615 0.09 92.96 69.70 44.47
TE-NASChen et al. (2021a) 188.66 1.317 0.43 93.78 70.44 41.40
SNAP (ours) 113.95 0.802 0.01 93.75 70.64 44.97
Ground Truth 153.27 1.073 - 94.37 73.22 46.71

Our results reveal notable trends of high inter-correlations among certain proxies, particularly be-
tween FLOPs and parameter count (Params). This outcome aligns with intuitive expectations, as
both proxies inherently measure aspects of computational complexity. Consequently, we extended
our correlation analysis to cover all proxy pairs comprehensively, as illustrated by the correlation
heatmap in Figure 8.

Consistent with previous literatureNing et al. (2021), synflow Abdelfattah et al. (2021) exhibited
strong correlations with FLOPs and Params, likely due to its dependence on model complexity.
Similarly, proxies derived from gradient saliency metrics, such as grad norm Abdelfattah et al.
(2021), snip Lee et al. (2019a), grasp Wang et al. (2020), nwot Mellor et al. (2021), and fisher Turner
et al. (2020), also showed substantial mutual correlation. We observed similar high correlations
between epe nas Lopes et al. (2021) and the Jacobian covariance method (jacov) Mellor et al.
(2021), likely due to their shared underlying analytical principles.

Interestingly, the zen score Lin et al. (2021) and our proposed SNAP predictor displayed the high-
est degree of independence relative to other evaluated proxies. This suggests that SNAP offers
a fundamentally distinct perspective on neural architecture evaluation, potentially complementing
and enriching existing proxy-based evaluations. Such independence indicates SNAP’s potential to
form powerful proxy combinations for more effective, generalized, and robust architecture perfor-
mance predictions. We excluded some methods from our comparisons due to practical limitations:
specifically, those requiring supernet training or lacking publicly available implementations Łukasz
Dudziak et al. (2021); Cai et al. (2019); Shi et al. (2020); Xu et al. (2020).

4.3 NAS RESULT ON NAS-BENCH-201

SNAP

SNAP

(a) CIFAR-10

SNAP

SNAP

(b) CIFAR-100

SNAP

SNAP

(c) ImageNet16-120
Figure 5: SNAP vs. Ground Truth ranking on NAS-Bench-201 Space

Figure 7 demonstrates that our SNAP is highly positively correlated with the architecture’s accuracy
ranking. Additionally, as illustrated in Table 3, our SNAP outperforms the majority of zero-shot
NAS approaches and is comparable to the state-of-the-art TE-NAS results, achieving 93.75% top-1
accuracy on CIFAR-10, while consuming only a fraction of the searching time of prior works.

Notably, despite efficiency claims of zero-shot NAS methods over conventional NAS due to avoiding
the training of sampled architectures, substantial variations in computational costs and search times
persist among these methods. For instance, TE-NAS Chen et al. (2021a) requires over 4 GPU-
hours, while ZiCo Li et al. (2023) demands more than 10 GPU-hours for an ImageNet search on
the DARTS space. These longer search times primarily arise because several zero-shot methods
necessitate multiple forward or forward-backward passes for result stabilization, often making them
data-dependent and thus limiting their generalizability.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Comparison with Recent NAS Works on ImageNet with the Mobile Setting

Name of Works Test Accuracy (%) Search Cost
(GPU Days)

Params
(M) Search MethodTop-1 Top-5

PNAS Liu et al. (2018a) 74.2 91.9 225 5.1 Bayesian Optimization
AmoebaNet-C Real et al. (2019) 75.7 92.4 3150 6.4 Evolution
NASNet-A Zoph et al. (2018) 74.0 91.6 2000+ 5.3 Reinforcement Learning

DARTS Liu et al. (2018c) 73.3 91.3 4.0 4.7 Gradient-based
SNAS Xie et al. (2018) 72.7 91.8 1.5 4.3 Gradient-based
BayesNAS Zhou et al. (2019) 73.5 91.1 0.2 3.9 Gradient-based
ProxylessNAS Cai et al. (2019) 75.1 92.5 8.3 7.1 Gradient-based
TE-NAS Dong & Yang (2019) 73.8 91.7 0.05 6.3 Theoretical Analysis
PC-DARTS Xu et al. (2020) 74.9 92.2 0.1 5.3 Gradient-based

PNASNet-5 Liu et al. (2018a) 74.2 91.9 45 5.1 Model-based Predictor
GHN Zhang et al. (2018) 73.0 91.3 0.84 5.7 Model-based Predictor
NAONet Luo et al. (2018) 74.3 91.8 200 11.35 Model-based Predictor
GeNAS Jeong et al. (2023) 75.3 92.4 0.4 5.3 Model-based Predictor
SemiNAS Luo et al. (2020b) 76.5 93.2 4 6.3 Model-based Predictor
CTNAS Chen et al. (2021b) 77.3 93.4 50.1 - Model-based Predictor

SNAP (ours) 74.9 92.2 0.0014 5.6 Model-based Predictor

In contrast, our proposed SNAP method completes the search in approximately 40 seconds, achiev-
ing more than a 10× speedup relative to other zero-shot methods, owing to its lightweight, data-
independent predictive framework. Although our predictor requires an initial computational in-
vestment for training on NASBench-101 (approximately 1.5 GPU-hours), this is a one-time cost
that enables subsequent performance predictions without additional retraining or tuning across new
search spaces and tasks.

4.4 NAS RESULT FOR IMAGENET ON THE DARTS SPACE

For the DARTS search space, the final discovered cell architecture is provided in the Appendix. After
determining the optimal cell, we constructed the final network by stacking 14 cells, initializing with
a channel count of 48. Performance comparisons of SNAP-discovered architectures against recent
NAS methods are summarized in Table 7. SNAP achieves competitive top-1 and top-5 accuracies
of 74.9% and 92.2%, respectively. Remarkably, SNAP delivers a substantial efficiency advantage,
offering more than 35× faster search times compared to previous state-of-the-art zero-shot meth-
ods and model-based predictors, completing the entire search process in less than two minutes on
a single NVIDIA RTX 4090 GPU. SNAP’s ability to generalize predictions across diverse, previ-
ously unseen search spaces without additional fine-tuning represents a significant advancement over
existing methods.

4.5 LIMITATIONS

Our SNAP predictor requires an initial training phase on NASBench-101, which involves a one-
time computational cost. Although it generalizes well to previously unseen operators, it has so
far been limited to cell-based search spaces. Extending its applicability to fundamentally different
architecture types remains an open area for future research.

5 CONCLUSION

In this work, we propose SNAP, a zero-shot neural predictor for architecture search that is broadly
applicable to new search spaces which containing previously unseen operators. SNAP integrates
text-based operator descriptions—processed by a fine-tuned sentence transformer—with a graph
convolutional network (GCN) predictor to enable architecture performance estimation. It offers
key advantages in robustness, generalizability, proxy independence, and cost-effectiveness. Our
experiments demonstrate that SNAP consistently outperforms existing proxies across a wide range
of NAS benchmarks, establishing it as a strong foundational component for efficient architecture
search. SNAP achieves more than 35× improvement in search efficiency over prior state-of-the-art
methods. Notably, it discover competitive models with 93.75% CIFAR-10 accuracy on the NAS-
Bench-201 space and 74.9% ImageNet top-1 accuracy on the DARTS space.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Mohamed S. Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak, and Nicholas D. Lane. Zero-cost
proxies for lightweight nas, 2021.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware, 2019.

Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture search on ImageNet in four
GPU hours: A theoretically inspired perspective. arXiv preprint arXiv:2102.11535, 2021a.

Yaofo Chen, Yong Guo, Qi Chen, Minli Li, Wei Zeng, Yaowei Wang, and Mingkui Tan. Contrastive
neural architecture search with neural architecture comparators. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 9502–9511, 2021b.

Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu hours. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1761–1770,
2019.

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architecture
search. In International Conference on Learning Representations (ICLR), 2020.

Yawen Duan, Xin Chen, Hang Xu, Zewei Chen, Xiaodan Liang, Tong Zhang, and Zhenguo Li.
Transnas-bench-101: Improving transferability and generalizability of cross-task neural architec-
ture search, 2021. URL https://arxiv.org/abs/2105.11871.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks, 2020.

Joonhyun Jeong, Joonsang Yu, Geondo Park, Dongyoon Han, and YoungJoon Yoo. Genas: Neural
architecture search with better generalization. arXiv preprint arXiv:2305.08611, 2023.

Gabriela Kadlecová, Jovita Lukasik, Martin Pilát, Petra Vidnerová, Mahmoud Safari, Roman
Neruda, and Frank Hutter. Surprisingly strong performance prediction with neural graph fea-
tures. arXiv preprint arXiv:2404.16551, 2024.

Harsimrat Kaeley, Ye Qiao, and Nader Bagherzadeh. Support for stock trend prediction using trans-
formers and sentiment analysis. arXiv preprint arXiv:2305.14368, 2023.

Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric Xing. Neu-
ral architecture search with bayesian optimisation and optimal transport, 2019.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works, 2017.

Arjun Krishnakumar, Colin White, Arber Zela, Renbo Tu, Mahmoud Safari, and Frank Hutter. Nas-
bench-suite-zero: Accelerating research on zero cost proxies, 2022.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. Snip: Single-shot network pruning
based on connection sensitivity, 2019a.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
based on connection sensitivity. In ICLR, 2019b.

Julien-Charles Lévesque, Audrey Durand, Christian Gagné, and Robert Sabourin. Bayesian op-
timization for conditional hyperparameter spaces. In 2017 International Joint Conference on
Neural Networks (IJCNN), pp. 286–293. IEEE, 2017.

10

https://arxiv.org/abs/2105.11871

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Guihong Li, Yuedong Yang, Kartikeya Bhardwaj, and Radu Marculescu. Zico: Zero-shot nas via
inverse coefficient of variation on gradients, 2023.

Wei Li, Shaogang Gong, and Xiatian Zhu. Neural graph embedding for neural architecture search.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 4707–4714,
2020.

Edgar Liberis, Łukasz Dudziak, and Nicholas D. Lane. µNAS: Constrained Neural Architecture
Search for Microcontrollers. In Proceedings of the 1st Workshop on Machine Learning and Sys-
tems, EuroMLSys ’21, 2021. ISBN 9781450382984. doi: 10.1145/3437984.3458836.

Ji Lin, Wei-Ming Chen, John Cohn, Chuang Gan, and Song Han. MCUNet: Tiny deep learning on
iot devices. In Annual Conference on Neural Information Processing Systems (NeurIPS), 2020.

Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu Sun, Qi Qian, Hao Li, and Rong Jin.
Zen-nas: A zero-shot nas for high-performance deep image recognition, 2021.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects
in context, 2015.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceed-
ings of the European conference on computer vision (ECCV), pp. 19–34, 2018a.

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. Hi-
erarchical representations for efficient architecture search, 2018b.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018c.

Vasco Lopes, Saeid Alirezazadeh, and Luı́s A. Alexandre. EPE-NAS: Efficient Performance Es-
timation Without Training for Neural Architecture Search, pp. 552–563. Springer Interna-
tional Publishing, 2021. ISBN 9783030863838. doi: 10.1007/978-3-030-86383-8 44. URL
http://dx.doi.org/10.1007/978-3-030-86383-8_44.

Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimization.
Advances in neural information processing systems, 31, 2018.

Renqian Luo, Xu Tan, Rui Wang, Tao Qin, Enhong Chen, and Tie-Yan Liu. Accuracy prediction
with non-neural model for neural architecture search. arXiv preprint arXiv:2007.04785, 2020a.

Renqian Luo, Xu Tan, Rui Wang, Tao Qin, Enhong Chen, and Tie-Yan Liu. Semi-supervised neu-
ral architecture search. Advances in Neural Information Processing Systems, 33:10547–10557,
2020b.

Joseph Mellor, Jack Turner, Amos Storkey, and Elliot J. Crowley. Neural architecture search without
training, 2021.

Xuefei Ning, Changcheng Tang, Wenshuo Li, Zixuan Zhou, Shuang Liang, Huazhong Yang, and
Yu Wang. Evaluating efficient performance estimators of neural architectures, 2021.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing, 2018.

Ye Qiao, Mohammed Alnemari, and Nader Bagherzadeh. A two-stage efficient 3-d cnn frame-
work for eeg based emotion recognition. In 2022 IEEE International Conference on Industrial
Technology (ICIT). IEEE, 2022.

Ye Qiao, Haocheng Xu, Yifan Zhang, and Sitao Huang. Micronas: Zero-shot neural architecture
search for mcus, 2024a.

11

http://dx.doi.org/10.1007/978-3-030-86383-8_44

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ye Qiao, Haocheng Xu, Yifan Zhang, and Sitao Huang. Monas: Efficient zero-shot neural architec-
ture search for mcus. arXiv preprint arXiv:2408.15034, 2024b.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pp. 4780–4789, 2019.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks, 2019.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks, 2019.

Yu Shen, Yang Li, Jian Zheng, Wentao Zhang, Peng Yao, Jixiang Li, Sen Yang, Ji Liu, and Bin
Cui. Proxybo: Accelerating neural architecture search via bayesian optimization with zero-cost
proxies, 2023.

Han Shi, Renjie Pi, Hang Xu, Zhenguo Li, James Kwok, and Tong Zhang. Bridging the gap between
sample-based and one-shot neural architecture search with bonas. Advances in Neural Information
Processing Systems, 33:1808–1819, 2020.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V. Le. Mnasnet: Platform-aware neural architecture search for mobile, 2019.

Jack Turner, Elliot J. Crowley, Michael O’Boyle, Amos Storkey, and Gavin Gray. Blockswap:
Fisher-guided block substitution for network compression on a budget, 2020.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow, 2020.

Colin White, Willie Neiswanger, and Yash Savani. Bananas: Bayesian optimization with neural
architectures for neural architecture search, 2020.

Colin White, Arber Zela, Binxin Ru, Yang Liu, and Frank Hutter. How powerful are performance
predictors in neural architecture search?, 2021.

Colin White, Mahmoud Safari, Rhea Sukthanker, Binxin Ru, Thomas Elsken, Arber Zela, De-
badeepta Dey, and Frank Hutter. Neural architecture search: Insights from 1000 papers, 2023.

Lechao Xiao, Jeffrey Pennington, and Samuel Schoenholz. Disentangling trainability and general-
ization in deep neural networks. In International Conference on Machine Learning, pp. 10462–
10472. PMLR, 2020.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: stochastic neural architecture search.
arXiv preprint arXiv:1812.09926, 2018.

Jingjing Xu, Liang Zhao, Junyang Lin, Rundong Gao, Xu Sun, and Hongxia Yang. KNAS: Green
neural architecture search. In Proceedings of ICML 2021, 2021.

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. PC-
DARTS: Partial channel connections for memory-efficient architecture search. In International
Conference on Learning Representations, 2020.

Shen Yan, Kaiqiang Song, Fei Liu, and Mi Zhang. Cate: Computation-aware neural architecture en-
coding with transformers. In International Conference on Machine Learning, pp. 11670–11681.
PMLR, 2021.

Chris Ying, Aaron Klein, Esteban Real, Eric Christiansen, Kevin Murphy, and Frank Hutter. Nas-
bench-101: Towards reproducible neural architecture search, 2019.

Arber Zela, Julien Siems, Lucas Zimmer, Jovita Lukasik, Margret Keuper, and Frank Hutter. Surro-
gate nas benchmarks: Going beyond the limited search spaces of tabular nas benchmarks, 2022.
URL https://arxiv.org/abs/2008.09777.

12

https://arxiv.org/abs/2008.09777

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph hypernetworks for neural architecture
search. arXiv preprint arXiv:1810.05749, 2018.

Hongpeng Zhou, Minghao Yang, Jun Wang, and Wei Pan. Bayesnas: A bayesian approach for
neural architecture search. In International conference on machine learning, pp. 7603–7613.
PMLR, 2019.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning, 2017. URL
https://arxiv.org/abs/1611.01578.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697–8710, 2018.

Łukasz Dudziak, Thomas Chau, Mohamed S. Abdelfattah, Royson Lee, Hyeji Kim, and Nicholas D.
Lane. Brp-nas: Prediction-based nas using gcns, 2021.

A APPENDIX

This documentation includes technical appendix such as additional figures or tables, and more de-
tailed analyses of experiments presented in the paper SNAP: Generalizable Zero-Shot Prediction of
Neural Architecture Performance via Semantic Embedding and Graph Learning

B GCN PREDICTOR FUNCTIONAL VALIDATION

To evaluate the applicability of the constructed GCN predictor, we partition the NAS-Bench-101
space into train/validation splits ranging from 90% to 1%. As shown in Figure 6, the predictor
maintains strong performance even when trained on as little as 1% of the architecture data, as ev-
idenced by high Kendall’s τ and Spearman’s ρ correlation coefficients. Table 5 further compares
these correlation scores with those of existing zero shot methods on NAS-Bench-201, highlight-
ing the superior performance of our approach. Additionally, we investigate the impact of varying
the number of GCN layers and training hyperparameters, with results summarized in Table 6 as an
ablation study.

Table 5: Kendall’s τ and Spearman’s ρ correlation between various zero-shot methods on NAS-
Bench-201

Metric Params FLOPs SNIP Fisher Synflow Zen-score Grad-norm SNAP (ours)
Pham et al. (2018) Pham et al. (2018) Lee et al. (2019b) Turner et al. (2020) Tan et al. (2019) Lin et al. (2021) Abdelfattah et al. (2021)

Kendall’s τ 0.55 0.54 0.41 0.22 0.54 0.29 0.37 0.60
Spearman’s ρ 0.74 0.73 0.58 0.36 0.73 0.38 0.54 0.80

C ADDITIONAL RANKING FIGURES OF SNAP VS. GROUND TRUTH ON
NAS-BENCH-201

In this section, we present additional accuracy and ranking vs. ground truth figures for CIFAR-
10, CIFAR-100, and ImageNet16-120 datasets on the NAS-bench-201 space. The SNAP GCN
model utilized here is trained using the entire NAS-bench-101 benchmark with CIFAR-10 accuracy
results only. Figure 7 demonstrates the correlation between our SNAP predictions and the raw
model accuracies, revealing a high positive correlation. This result is consistent with our previous
ranking experiments. We believe that incorporating more diverse benchmarks, including additional
evaluation results from different datasets on the same architectures, will enhance the stability and
generalizability of our SNAP approach.

13

https://arxiv.org/abs/1611.01578

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 6: Effect of Model Settings on Kendall’s τ Ranking

GCN Layers Weight Decay Sentence Length Embedding Size Kendall’s τ

4 1e−4 Long 384 0.487
4 1e−5 Long 384 0.401
4 1e−6 Long 384 0.496
4 1e−4 Short 384 0.495
4 1e−5 Short 384 0.454
4 1e−6 Short 384 0.497
4 1e−4 Long 768 0.433
4 1e−5 Long 768 0.421
4 1e−6 Long 768 0.454
4 1e−4 Short 768 0.433
4 1e−5 Short 768 0.421
4 1e−6 Short 768 0.454
3 1e−4 Long 384 0.483
3 1e−5 Long 384 0.566
3 1e−6 Long 384 0.577
3 1e−4 Short 384 0.601
3 1e−5 Short 384 0.599
3 1e−6 Short 384 0.598
3 1e−4 Long 384 0.516
3 1e−5 Long 384 0.557
3 1e−6 Long 384 0.594
3 1e−4 Short 768 0.538
3 1e−5 Short 768 0.545
3 1e−6 Short 768 0.513

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50
Percentage of Data Used for Training

0.0

0.2

0.4

0.6

0.8

Co
rre

la
tio

n

NASBench101 GCN Functional Validation

Kendall's
Spearman's

Figure 6: GCN Predictor Functional Validation on NAS-Bench-101 Benchmark

SNAP

(a) Ground Truth vs. SNAP Pridiction

SNAP

(b) FLOPs vs. CIFAR-10 Accuracy

Figure 7: SNAP Accuracy Correlation Evaluation with Ground Truth on NAS-Bench-201 Space

D ADDITIONAL CORRELATION FIGURES WITH OTHER ZERO-SHOT
METHODS OF CIFAR-100 AND IMAGENET16-120 DATASET ON
NAS-BENCH-201

In this section, we present heatmaps showing the correlations between pairs of popular proxies,
calculated using the CIFAR-100 and ImageNet16-120 datasets as shown in figure 8. These heatmaps
reveal correlation trends that are consistent with those observed in the CIFAR-10 results.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

TG_NAS flops params synflow fisher grasp epe_nas jacovgrad_norm nwot plain zen

TG_NAS
flops

params

synflow

fisher

grad_norm

grasp

snip

epe_nas

jacov

l2_norm

nwot

plain

zen

Soft parameter count Gradient_based Covariance info Others(Ours)

l2_normsnipSNAP

SNAP

(a) Spearman’s ρ Correlation of CIFAR-100

TG_NAS flops params synflow fisher grasp epe_nas jacovgrad_norm nwot plain zen

TG_NAS
flops

params

synflow

fisher

grad_norm

grasp

snip

epe_nas

jacov

l2_norm

nwot

plain

zen

Soft parameter count Gradient_based Covariance info Others(Ours)

l2_normsnipSNAP

SNAP

(b) Spearman’s ρ Correlation of ImageNet16-120

Figure 8: Spearman’s ρ Correlation for all Pairs of Zero-shot Methods of CIFAR-100 and
ImageNet16-120 on NAS-Bench-201

E ADDITIONAL COMPARISON WITH MORE PREDICTOR-BASED NAS WORKS

In this section, we expand our comparison to include other NAS works involving training-based pre-
dictors. However, it’s worth noting that the formulation and training of these predictor models differ
from ours. They often require iterative training with new golden truth samples during the search
process. Consequently, they are not zero-shot, highly bound to specific search spaces, lack general
applicability, and remain costly to employ. To address this limitation, we propose the Transformer-
based operator embedding method. This approach enables our predictor model to be decoupled
from search spaces, thereby allowing our method to serve as a general zero-shot predictor model.
As illustrated in Table 7, our SNAP achieves significantly higher search efficiency compared to other

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

predictor-based NAS Works. Specifically, our method demonstrates search efficiency ranging from
71 times to 1.4× 105 times better, highlighting its effectiveness and scalability in NAS tasks.

Table 7: Comparison with additional predictor-based NAS works on ImageNet. The use of “†”
indicates that the search is not conducted on the standard DARTS space, and we compare their
results with similar mobile settings.

Name of Works
Test Accuracy (%) Search Cost

(GPU Days)
Params
(M)

Search Method
Top-1 Top-5

NGELi et al. (2020) 74.7 92.1 0.1 5.1 Model-based Predictor
GHNZhang et al. (2018) 73.0 91.3 0.84 5.7 Model-based Predictor
NAONetLuo et al. (2018) 74.3 91.8 200 11.35 Model-based Predictor
PNASNet-5Liu et al. (2018a) 74.2 91.9 45 5.1 Model-based Predictor
GBDT-NAS-3S† Luo et al. (2020a) 76.5 93.2 4 6.4 Model-based Predictor
CTNAS† Chen et al. (2021b) 77.3 93.4 50.1 - Model-based Predictor
SemiNAS† Luo et al. (2020b) 76.5 93.2 4 6.3 Model-based Predictor
ZenNet-400M† Lin et al. (2021) 78.0 - 0.5 5.7 Zero Shot
ZiCo-450M† Li et al. (2023) 78.1 - 0.4 4.5 Zero Shot
SNAP (ours) 74.5 91.9 0.0014 5.6 Model-based Predictor

F SENTENCE TRANSFORMER FINETUNE SETUP

To formulate supervised training pairs, we define three types of similarity relations:

• Positive pairs (similarity = 1.0): Descriptions from the same class, including original and
GPT-augmented versions (e.g., torch.nn.Conv2d, Pytorch offical description, and GPT4o
augmented descriptions).

• Related pairs (similarity = 0.7): Descriptions from different classes within the same cate-
gory (e.g., torch.nn.Conv2d and torch.nn.ConvTranspose2d).

• Unrelated pairs (similarity = 0.0): Descriptions from distinct functional categories (e.g.,
torch.nn.Conv2d vs. torch.nn.BatchNorm2d).

We fine-tune the model using cosine similarity loss, which encourages the embedding space to
reflect semantic relationships: similar operators are embedded closer together, while unrelated ones
are pushed apart. As shown in Table 8, this fine-tuning significantly improves the model’s ability
to differentiate operator semantics. For example, the similarity score between conv2x2 and “A 2D
conv layer with a 2x2 kernel” increases from 0.6052 to 0.8847, while the unrelated pair conv2x2 and
maxpool drops from 0.2102 to 0.0275. This indicates the model learns to align functionally related
operators while effectively distinguishing dissimilar ones.

Table 8: Operator Description’s Similarity Comparison Before and After Finetuning

Operators Compared Operators/Description Similarity before Finetune Similarity after Finetune
conv2x2 maxpool 0.2102 0.0275
conv2x2 A 2D conv layer with a 2x2 kernel. 0.6052 0.8847

nn Dropout nn BatchNorm2d 0.4629 -0.1160
skip connection residual 0.0584 0.9113

maxpool avgpool 0.2907 0.6741
maxpool conv2x2 0.2277 0.0011

G FINAL SEARCHED CELL ARCHITECTURE

Our final search cell architecture on DARTS space can be found in figure 9

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

c_{k-2}

0

max_pool_3x3
1sep_conv_5x5

c_{k-1}
sep_conv_5x5

2
dil_conv_5x5

3
dil_conv_3x3

sep_conv_5x5

sep_conv_5x5

c_{k}

sep_conv_3x3

(a) Normal Cell

c_{k-2}

0

dil_conv_5x5

3

sep_conv_5x5

c_{k-1} sep_conv_5x5
1dil_conv_3x3

dil_conv_5x5

2dil_conv_3x3 c_{k}

sep_conv_5x5
max_pool_3x3

(b) Reduction Cell

Figure 9: Discovered Architecture on the DARTS Space

SNAP

SNAP

(a) NB201-CF10

SNAP

SNAP

(b) NB201-CF100

SNAP

SNAP

(c) NB201-IMGNT

SNAP

SNAP

(d) NB301-CF10

Figure 10: Ground Truth vs Predicted Results (Part 1 of 2)

H GROUND TRUTH AND PREDICTED RESULT COMPARISON

In Figure 10 and Figure 11 we compare SNAP’s predicted ranking against the true ranking across
ten benchmark tasks. The result on NAS-Bench-201 Cifar-10 and Cifar-100 exhibit very tight clus-
tering, indicating good ranking fidelity. While the result for NAS-Bench-201 Imagenet shows rel-
atively high variance, its Spearman’s ρ correlation is high as we have shown in the main paper.
Overall, SNAP consistently captures the relative ordering of architectures across both large-scale
image-classification benchmarks and fine-grained micro-benchmarks.

I CODE

Our code is provided in a dedicated .zip file.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

SNAP

SNAP

(a) TNB101-MICRO-NORMAL

SNAP

SNAP

(b) TNB101-MICRO-OBJECT

SNAP

SNAP

(c) TNB101-MICRO-ROOM

SNAP

SNAP

(d) TNB101-MICRO-SCENE

SNAP

SNAP

(e) TNB101-MICRO-SEGMENT

SNAP

SNAP

(f) TNB101-MICRO-JIGSAW

Figure 11: Ground Truth vs Predicted Results (Part 2 of 2)

19

	Introduction
	Background and Related Work
	Neural Architecture Search (NAS)
	Zero-cost Method vs. Model-based Predictors

	SNAP: A Zero-shot Neural Predictor
	Architecture Representation
	Operator Embedding Generator
	GCN Predictor model
	Evolutionary Searching

	Experiment and Results Analysis
	Generalizability Analysis of Zero-shot Methods Across 12 Benchmarks
	Independent Analysis of Zero-shot Methods
	NAS Result on NAS-Bench-201
	NAS Result for ImageNet on the DARTS Space
	Limitations

	Conclusion
	Appendix
	GCN Predictor Functional Validation
	Additional Ranking Figures of SNAP vs. Ground Truth on NAS-bench-201
	Additional Correlation Figures with Other Zero-shot Methods of CIFAR-100 and ImageNet16-120 Dataset on NAS-Bench-201
	Additional Comparison with More Predictor-based NAS Works
	Sentence Transformer Finetune Setup
	Final Searched Cell Architecture
	Ground Truth and Predicted Result Comparison
	Code

