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Abstract

The growing number of adversarial attacks in recent years gives attackers an
advantage over defenders, as defenders must train detectors after knowing the types
of attacks, and many models need to be maintained to ensure good performance in
detecting any upcoming attacks. We propose a way to end the tug-of-war between
attackers and defenders by treating adversarial attack detection as an anomaly
detection problem so that the detector is agnostic to the attack. We quantify the
statistical deviation caused by adversarial perturbations in two aspects. The Least
Significant Component Feature (LSCF) quantifies the deviation of adversarial
examples from the statistics of benign samples, and Hessian Feature (HF) reflects
how adversarial examples distort the landscape of the models’ optima by measuring
the local loss curvature. Empirical results show that our method can achieve an
overall ROC AUC of 94.9%, 89.7%, and 97.9% on CIFAR10, CIFAR100, and
SVHN, respectively. Code available https://github.com/cplusx/HEAD

1 Introduction

Despite the success of deep neural networks (DNNs) in computer vision [23, 46, 17], natural language
processing [18, 51, 11] and speech recognition [9, 56], DNNs are notoriously vulnerable to adversarial
attacks[48] that inject carefully crafted imperceptible perturbations into the input and are able to
deceive the model with a great chance of success.

There are three main orthogonal approaches for combating adversarial attacks — (i) Using adversarial
attacks as a data augmentation mechanism by including adversarially perturbed samples in the training
data to induce robustness in the trained model [30, 57, 58, 59, 5, 55, 3, 54]; (ii) Preprocessing the
input data with a denoising function or deep network [27, 8, 13, 15, 34] to counteract the effect of
adversarial perturbations; and (iii) Training an auxiliary network to detect adversarial examples and
deny providing inference on adversarial samples [35, 26, 42, 43, 14, 28, 29, 25, 6, 16, 10, 1]. Our
work falls under adversarial example detection as it does not require retraining the main network (as
in adversarial training) nor degrade the input quality (as in preprocessing defenses).

Existing adversarial example detection methods [28, 29, 25, 6, 16] need to train auxiliary networks
in a binary classification manner (e.g. benign versus adversarial attack(s)). The shortcoming of this
strategy is that the detector is trained on specific attack(s) that are available and known at training time.
To ensure good detection performance at inference time, the detection network needs to be trained on
a large number of attacks. Otherwise, the detection network will perform poorly on attacks unseen
during training (i.e. out of domain) or even on attacks seen during training due to overfitting [40].
We argue that a good adversarial detection method should be able to detect any adversarial attack,
even if the defender is unaware of the type of adversarial attack. To this end, we propose to frame the
adversarial sample detection as an anomaly detection problem, in which only one detection model is
constructed and trained on only benign samples, such that the detection model is attack-agnostic.
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We propose an anomaly detection framework for identifying adversarial examples by measuring
the statistical deviations caused by adversarial perturbations. We consider the deviation of two
complementary features that reflect the interaction of adversarial perturbation with the data and
models. The first feature is Least Significant Component Feature (LSCF), which maps data to a
subspace where the distribution of benign images is compact, while the distribution of adversarial
images is spread. The second feature is Hessian Feature (HF), which uses the second order derivatives
as a measure of the distortion caused by adversarial perturbation to the model’s loss landscape. Our
results underscore the utility of each of the two features and their complementary nature.

The contributions of this paper are:

1. An anomaly detection framework for adversarial detection that measures statistical deviation
caused by adversarial perturbations on two proposed features, LSCF and HF, which are theoreti-
cally justified and capture the interaction of adversarial perturbations with data and model.

2. Empirical analysis demonstrating the effectiveness of our method on detecting eight different
adversarial attacks on three datasets, achieving AUC of up to 94.9%.

3. Comprehensive evaluation of our method analyzing its computational efficiency, sensitivity to
hyper parameters, cross-model generalization, and closeness to binary classification upper bound.

2 Attack-Agnostic Adversarial Detection

2.1 Challenges And Rationale
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Figure 1: Upperbound in eq. (2) and de-
viations of pi caused by FGSM, Gaus-
sian and Uniform perturbation, average
over 1000 CIFAR10 images.

A fundamental assumption of existing adversarial attack
detection [35, 26, 42, 43, 14, 28, 29, 25, 6, 16, 10, 1] as
well as adversarial augmentation methods [28, 29, 25,
6, 16] is that adversarial attacks are known and samples
can easily be generated using these attacks to train the
detector or augment the main model being defended. This
assumption, however, is not realistic, since more often
than not the defender does not know the attacks a priori
and therefore samples cannot be easily generated to train
a supervised adversarially-augmented detector. This mo-
tivates us to frame the adversarial detection as an anomaly
detection problem. More formally, the task of the defender
is to protect the model trained on only benign examples
X against adversarial examples X̂ that are unknown dur-
ing training. The trained anomaly detector D will give a
score s(x) = D(f(x)) for each testing sample x, indicat-
ing the likelihood that x is an adversarial attack, where
f ∈ Rm × Rn is a feature extraction function and m and
n are the dimensions of input and feature spaces, respec-
tively. For f , we propose two complementary features that
reflect the interaction between adversarial perturbation and dataset (Least Significant Component
Feature) as well as DNN models (Hessian Feature). We call our features HEAD, which stands for
Hessian and Eigen-decomposition-based Adversarial Detection.

2.2 Least Significant Component Feature (LSCF)

We suspect that global image context features will not work well for detecting adversarial attacks,
since they tend to miss subtleties introduced by the adversarial perturbations. Therefore, we extract
LSCF that is sensitive to small imperceptible image noise. We use principal component analysis
(PCA) to project the raw benign images to a space with orthonomal basis (i.e. eigenvectors) in which
different dimensions are linearly uncorrelated. Rather than retaining the projections that correspond
to the largest eignvalues (i.e. eigenfaces [50]), we retain the projections on the directions with smallest
eignvalues. Hence, the features are the least significant components of the data.

Formally, let the training data D ∈ RN×m be of N samples and m input dimensions. Its covariance
matrix C = D⊤D/(N − 1) can be decomposed into C = VLV⊤, where the columns of V =
[v1v2...vm] are the eigenvetors of C, and L is a diagonal matrix having eigenvalues of C in
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Figure 2: Distribution of images’ mapping on three eigen-
vectors of Principal Components (upper) and Least Sig-
nificant Components (bottom) with PGD10 (ϵ=8/255) on
CIFAR10.
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Figure 3: The Hessian modulus distri-
bution of benign and PGD10 (ϵ=8/255)
CIFAR10. bx_ry is block x ReLU y in
VGG16.

descending order on its diagonal (i.e., diag(L) = [λ1λ2...λm], λi ≥ λi+1∀i ∈ {1..m − 1}). The
LSCF of image x is transformed by the eigenvectors v that have the smallest eigenvalues.

fLSCF (x) = x⊤v ∈ R1×d (1)

where d is the dimension of LSCF and v = [vmvm−1...vm−d+1] ∈ Rm×d is the last d columns of
V. We explain the reason for mapping images on the least significant eigenvectors by estimating
an upper bound on the expected deviation caused by perturbation for different eigenvectors. Let
pi = x⊤vi be the mapping of image x, and p′i = (x+∆x)⊤vi be the mapping of the adversarially
perturbed image on the ith eigenvector, respectively. Since the transformation is linear, we have
∆pi = ∆x⊤vi. The variance of pi measures the spread of data in vi’s direction and hence has
Var(pi) = λi, while the variance of p′i has an upper bound in eq. (2) (See proof in the Appendix A).

Var(p′i) ≤ λi + ∥∆x∥2 (2)

The empirical analysis in Figure 1 suggests that the actual variance of projected perturbed images on
the least significant eigenvector is much closer to that upper bound than random noises.

When the difference between Var(p′i) and Var(pi) is large, we can easily distinguish benign images
from adversarial images by mapping them onto eigenvector vi. We quantify this difference by the
ratio of Var(p′i)/Var(pi), which has an upper bound of 1+∥∆x∥2/λi. Since the perturbation budget
∥∆x∥ is predefined, the value of λi determines the differentiability between p′i and pi. The smaller
the value of λi, the easier to distinguish adversarial from benign images. As a result, mapping
data onto the least significant components gives highest the distinguishability. Figure 2 visualizes
the distributions of projected values for 1,000 adversarial and benign images on major and least
significant principal components. We can see that the distributions are indistinguishable in the major
PCA components, but are clearly distinguishable in the least significant components.

2.3 Hessian Feature

When studying model optimization, [21, 60] observed that perturbation on model weights can improve
generalization, and [53, 49, 52] later proved that such improvement happens because the perturbation
changes the smoothness of the loss function’s landscape, which can be measured by the Hessian
matrix of the loss. Motivated by this observation, we hypothesize that the Hessian can be used to
characterize the loss landscape and find locations that are exploited by the adversarial perturbations.
In fact, the adversarial attack creation problem is very similar to the problem of model optimization
in the sense that they bear similarity to Lagrange duality.

More formally, model optimization can be expressed by Equation (3)
minimize

W
L[Y, f(W,X)] s.t. X = D (3)
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while the target of adversarial attack can be written as Equation (4)

maximize
X

L[Y, f(W∗,X)] +
∑
ui

ui∥Xi −Di∥p (4)

s.t. ui ≤ 0, ∀i ∈ [1, N ]

where L is the loss function, W is the parameters of the model f , D is the training data, Y is
the target, and W∗ is the optimized (i.e. trained) model weights that achieves inf

W
(L[Y, f(W,X)]).

If we regard the Lagrange regularizers as the adversarial perturbation constraints (i.e., l∞, l2 or
l0), Equation (4) can be seen as the adversarial attack against the dataset where L[Y, f(W∗,X)]
corresponds to maximizing the prediction error and

∑
ui

ui∥Xi −Di∥p corresponds to limiting the
perturbation budget under lp constraint.1 Such correspondence in duality motivates us to measure the
statistical deviation of the Hessian matrix to detect adversarial examples. The Hessian we use is the
second-order derivative of the loss w.r.t.the input or the outputs of the intermediate layers, i.e.

H ≡ ∂2L(x)

∂2x
where H[i, j] =

∂2L(x)

∂xi∂xj
, (5)

x is input or the outputs of the intermediate layers of the model (e.g., outputs of ReLU layers), xi and
xj are the ith and jth entry (e.g., pixels in image) of the input, respectively. Since the size Hessian
matrix is proportional to the square of the input dimension, we use the l1 modulus of the Hessian as
an approximation of the Hessian to avoid computational problems for anomaly detection models due
to the curse of high dimensionality [2]. Please note that the ground truth label is not required during
computation and any choice of label will give the same result since Hessian only show the curvature
of the loss landscape. Figure 3 shows the Hessian distribution of benign and PGD10 images. The
distributions suggest that the modulus of the Hessian can be used to separate benign and adversarial
samples. Nevertheless, our final Hessian feature includes multiple dimensions by using the moduli of
Hessian matrices for multiple network layers along with the Hessian matrix for the input.

3 Experimental Evaluation

3.1 Benchmarks and Baselines

We evaluate the performance of HEAD on CIFAR10 [22], CIFAR100 [22] (50,000 training / 10,000
testing), and SVHN [38] (73,257 training / 26,032 testing) datasets. Our HEAD-based anomaly
detectors are trained on benign images only. We base our experiments on the VGG16 [46] model.

Baseline features: We compare HEAD against one naive image feature (PCA), two hand-crafted
features (LID [29] and Mahalanobis [25]), and one learned deep feature (DSVDD [44]). We use 32
principal components for PCA. We choose LID and Mahalanobis as they do not require supervision
to compute features and hence are suitable for anomaly detection, and we follow the original papers
but change the target network to VGG16[46] to provide a fair comparison to the HEAD features.
DSVDD integrates both the feature extractor and anomaly detector. We train the feature extractor for
100 epochs and tune the anomaly detector for 50 epochs, following [44].

HEAD features: We extract a 32-dimensional LSCF feature. We compute Hessian of the loss
w.r.t. the input and the intermediate features from the ReLU layers to form a 13-dimensional Hessian
feature. The LSCF and HF are concatenated to a 45-dimensional HEAD feature for each image.

Anomaly Detectors: We train both kernel density estimator (KDE) and One-Class SVM (OCSVM)
based anomaly detectors on each set of features. For KDE, we evaluate using Gaussian, Epanechnikov,
exponential, linear, and uniform kernels. For OCSVM, we evaluate using RBF, Sigmoid, linear
and polynomial kernels. We also conduct a grid search for hyperparameters and report the best
performance, the corresponding ablation studies can be found in the Appendix D.1.

Adversarial Attacks: Each anomaly detector is evaluated across eight standard attacks. For l∞
with max perturbation 8/255, we use (1) Fast Gradient Sign Method (FGSM) [12], (2) Projected
Gradient Descent (PGD10) [31] and (3) Basic Iterative Method (BIM) [24], both with 10 iterations.
For l2 attacks with total perturbation budget of 1, we use (4) DeepFool [37] and (5) Carlini &
Wagner [4]. For l0, we use (6) OnePixel [47] and (7) SparseFool [36] with hyperparameter lam = 3.
For combined attacks with perturbation budget of 8/255 under l∞, we use (8) AutoAttack [7].

1We slightly abuse the name of Lagrange regularizer as the norm ∥ · ∥p is not required in Lagrange duality.
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l∞ Attacks l2 Attacks l0 Attacks Combined Overall
Dataset Method PGD10 FGSM BIM DeepFool CW SparseFool OnePixel AutoAttack

CIFAR10

PCA+OCSVM 0.497 0.498 0.497 0.500 0.500 0.109 0.497 0.293 0.424
PCA+KDE 0.501 0.498 0.500 0.501 0.500 0.502 0.500 0.501 0.500
DSVDD [44] 0.569 0.614 0.566 0.505 0.507 0.901 0.505 0.958 0.641
LID+OCSVM 0.551 0.596 0.575 0.583 0.585 0.914 0.559 0.968 0.666
LID [29]+KDE 0.610 0.702 0.639 0.654 0.656 0.924 0.615 0.971 0.721
Mah.+OCSVM 0.880 0.787 0.898 0.852 0.837 0.963 0.668 0.989 0.859
Mah. [25]+KDE 0.896 0.887 0.893 0.603 0.587 0.899 0.578 0.966 0.789

HEAD+OCSVM (Ours) 0.999 0.999 0.999 0.841 0.941 0.985 0.821 0.988 0.947
HEAD+KDE (Ours) 1.000 0.999 1.000 0.846 0.943 0.986 0.825 0.989 0.949

CIFAR100

PCA+OCSVM 0.497 0.497 0.497 0.500 0.500 0.221 0.497 0.353 0.445
PCA+KDE 0.498 0.501 0.499 0.500 0.500 0.501 0.500 0.497 0.500
DSVDD 0.568 0.629 0.564 0.502 0.504 0.777 0.501 0.852 0.612
LID+OCSVM 0.570 0.579 0.581 0.504 0.501 0.758 0.520 0.845 0.607
LID+KDE 0.642 0.655 0.654 0.511 0.515 0.768 0.549 0.849 0.643
Mah.+OCSVM 0.708 0.719 0.709 0.816 0.811 0.772 0.883 0.916 0.792
Mah.+KDE 0.845 0.926 0.848 0.535 0.541 0.760 0.530 0.798 0.723

HEAD+OCSVM (Ours) 0.999 0.999 0.998 0.728 0.814 0.898 0.819 0.906 0.895
HEAD+KDE (Ours) 0.999 1.000 0.998 0.733 0.816 0.901 0.820 0.907 0.897

SVHN

PCA+OCSVM 0.499 0.501 0.499 0.500 0.500 0.242 0.497 0.342 0.448
PCA+KDE 0.500 0.499 0.499 0.499 0.499 0.501 0.500 0.495 0.499
DSVDD 0.717 0.812 0.714 0.524 0.527 0.911 0.521 0.981 0.713
LID+OCSVM 0.680 0.640 0.693 0.654 0.680 0.927 0.525 0.984 0.723
LID+KDE 0.761 0.747 0.772 0.726 0.749 0.938 0.560 0.986 0.780
Mah.+OCSVM 0.747 0.699 0.766 0.917 0.941 0.966 0.663 0.994 0.837
Mah.+KDE 0.833 0.748 0.848 0.904 0.914 0.909 0.638 0.971 0.846

HEAD+OCSVM (Ours) 1.000 1.000 1.000 0.868 0.975 0.992 0.954 0.994 0.973
HEAD+KDE (Ours) 1.000 1.000 1.000 0.917 0.979 0.994 0.946 0.994 0.979

Table 1: The ROC AUC performance on detecting eight adversarial attacks. Best performance is
reported in bold and second best with underline.

3.2 Evaluation Results

Each anomaly detector is evaluated using the area under receiver operating characteristic curve (ROC
AUC) on all adversarial attacks. The results are summarized in Table 1. Note that the same anomaly
detector is used to detect any of the eight attacks.

We observe that, with very few exceptions, across all anomaly detection variants, HEAD-based
anomaly detectors demonstrate the best performance. In general, features that represent holistic
image features, such as PCA and DSVDD, do not perform well. The subtle and localized adversarial
perturbations are likely overlooked by these global image features. HEAD features, in particular,
perform well against both l∞ attacks and AutoAttack. We find that AutoAttack is easy to detect
for all but the PCA-based anomaly detectors. We speculate that the reason for this behavior is that
ensemble attacks leave more traces of tampering and are therefore easier to detect. HEAD features
appear to be particularly robust to l∞ attacks vis-á-vis the other approaches. Even on l2 and l0 attacks,
HEAD features perform better than most of the compared features. Across all attacks, HEAD features
achieve almost 95% AUC on CIFAR10 and SVHN, and almost 90% AUC on CIFAR100.

3.3 Cross-model Adversarial Detection

Adversarial examples generated by one model are known to be transferrable in that they can deceive
a trained model with a different architecture [39]. We validate HEAD’s ability to detect cross-model
attacks by generating adversarial images with a ResNet18 model and detecting malicious images with
a VGG16 model. For cross-model adversarial detection with LID [29] and Mahalanobis [25], we
find that the baseline anomaly detectors perform quite poorly. To provide a stronger comparison, we
instead compare against the LID and Mahalanobis supervised models. (Note that supervised models
are trained on adversarial images of VGG16 but evaluated on adversarial images of ResNet18.) The
training setting for supervised model can be found in Appendix C. For HEAD however, we use the
same anomaly detection models as in Section 3.1. As shown in Table 2, across all datasets and attacks,
HEAD based anomaly detectors significantly outperform the supervised LID and Mahalanobis feature
based models. Only on l2 DeepFool attack, Mahlanobis-based supervised model slightly outperforms
the HEAD-based anomaly detector.
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l∞ Attacks l2 Attacks l0 Attacks Combined Overall
Dataset Method PGD10 FGSM BIM DeepFool CW SparseFool OnePixel AutoAttack

CIFAR10

LID (Binary Classification) 0.594 0.901 0.588 0.617 0.652 0.830 0.677 0.876 0.717
Mah. (Binary Classification) 0.702 0.991 0.704 0.628 0.658 0.838 0.674 0.740 0.742

HEAD+OCSVM (Ours) 1.000 1.000 0.999 0.589 0.880 0.969 0.882 0.988 0.913
HEAD+KDE (Ours) 1.000 1.000 0.999 0.590 0.883 0.970 0.881 0.988 0.914

CIFAR100

LID (Binary Classification) 0.650 0.831 0.636 0.499 0.504 0.810 0.596 0.842 0.671
Mah. (Binary Classification) 0.737 0.985 0.713 0.531 0.556 0.839 0.662 0.752 0.722

HEAD+OCSVM (Ours) 0.999 0.999 0.998 0.527 0.762 0.901 0.814 0.917 0.861
HEAD+KDE (Ours) 0.999 0.999 0.998 0.530 0.765 0.905 0.815 0.919 0.866

SVHN

LID (Binary Classification) 0.776 0.777 0.788 0.593 0.609 0.931 0.583 0.890 0.743
Mah. (Binary Classification) 0.797 0.847 0.808 0.647 0.659 0.942 0.651 0.801 0.769

HEAD+OCSVM (Ours) 1.000 1.000 1.000 0.605 0.898 0.993 0.928 0.994 0.927
HEAD+KDE (Ours) 1.000 1.000 1.000 0.602 0.901 0.992 0.930 0.995 0.928

Table 2: The ROC AUC performance on detecting cross model adversarial attacks. Best performance
is reported in bold and second best with underline.

3.4 Sensitivity and Ablation Studies

To further understand the properties of the HEAD features, we conduct experiments on CIFAR10
to evaluate (i) effectiveness of LSCF and HF, (ii) performance gap between anomaly detection and
binary classification, (iii) method sensitivity to the anomaly detectors, and (iv) method robustness
when distinguish benign noisy images and adversarial images. The result of (ii), (iii) and (iv) are
provided in the appendix D due to page limitation.

Effectiveness of LSCF And HF components of HEAD: To compare the effectiveness of LSCF and
HF we ablate on the number of feature components. Specifically, for LSCF, we use 0, 4, 16, 32, 64-
dimensional feature variants. For HF, we use 0, 1 (only input), 5 (from input to b2_r2), 9 (from input
to b4_r1) and 13-dimensional (from input to b5_r3) features. When one feature size (LSCF or HF) is
changed, we use the best number of feature components for the other feature. Results are detailed in
the Table 3. Both features show improved performance as the number of feature components increases.
We observe that LSCF and HF are complementary in that the largest performance gains are obtained
when LSCF and HF are concatenated. For LSCF, performance plateaus at 32 dimensions. Based on
this ablation study, we choose 13-dimensional HF and 32-dimensional LSCF in the experiments for
the remainder of the paper.

HF Dimension ROC AUC Improve

0 0.885 -
1 0.936 +0.051
5 0.946 +0.010
9 0.948 +0.002

13 0.949 +0.001

LSCF Dimension ROC AUC Improve

0 0.860 -
4 0.923 +0.063

16 0.939 +0.016
32 0.949 +0.010
64 0.949 +0.000

Table 3: The effectiveness of different dimensional Hessian Feature (left) and Least Significant
Component Feature (right). The performance is shown in ROC AUC over all attacks. Dimension=0
implies the feature is not used. The right column shows the incremental performance improvement
over the prior row.

4 Conclusion

We frame adversarial detection as an anomaly detection problem to better reflect the challenge of
detecting adversarial examples in real life. We propose Hessian and Eigen-decomposition-based
Adversarial Detection, which measures the statistical deviation caused by adversarial perturbation
on two complementary features: LSCF, which captures the deviation of adversarial images from the
benign data, and HF, which reflects the deformation of the model’s loss landscape at adversarialy
perturbed images. We provide the theoretical rationale behind using LSCF and HF. Empirical results
prove the effectiveness of HEAD and show that comparable performance to binary classification
based adversarial detection can be achieved with anomaly detection. Our method does not use any
outlier examples upon training anomaly detection, which could be a limitation in cases where outlier
examples are easy to obtain. We defer the study of this case to our future research.
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A Proof of Equation (2)

We prove that the variance of ith eigenvector of adversarial image Var(p′i) has an upper bound of
λi +E(∆p2i ). Assuming that the adversarial perturbation is independent from the data, we can have

Var(p′i) = Var(pi) + Var(∆pi) = λi +E(∆p2i )−E(∆pi)
2 ≤ λi +E(∆p2i ) (6)

Further, the expected deviation of perturbation E(∆p2i ) can be no larger than the norm of the
perturbation ∥∆x∥2 as shown in Equation (7)

E(∆p2i ) = E((∆x⊤vi)
2)

1⃝
≤ E(∥∆x∥2∥vi∥2) 2⃝

= E(∥∆x∥2) 3⃝
= ∥∆x∥2 (7)

where 1⃝ is due to the Cauchy–Schwarz inequality, 2⃝ holds as vi is an eigenvector with ∥vi∥ = 1,
and 3⃝ holds since for adversarial attacks, the injected perturbation budget ∥∆x∥ is the same for all
images (if the maximum budget is always achieved). By combining Equations (6) and (7), we obtain
that Var(p′i) can be no larger than λi + ∥∆x∥2.

B Generalized Gauss-Newton Matrix for Approximating Hessian Matrix

We compute the Generalized Gauss-Newton matrix [45, 32, 33] instead to significantly speed up
calculating the Hessian. Let L be the loss, x be the variable to the loss (e.g. images) and z be the
inputs of penultimate layer (e.g. the Softmax layer in DNNs). The GGN can be computed as

G = (Jzx)
⊤ ⊗HL

z ⊗ Jzx (8)
where ⊗ is the matrix multiplication, Jzx is the Jacobian of the penultimate layer z w.r.t. the input
x and HL

z is the Hessian of loss L w.r.t. penultimate layer z. Please note that the ground truth
label is not required during computation and any choice of label will give the same result since
GGN/Hessian modulus only show the curvature of the loss landscape. Though GGN approximates
Hessian well [45, 32, 33], it is unclear how good the modulus of GGN approximates the modulus of
Hessian. We empirically show the approximation accuracy by randomly picking 1,000 samples from
CIFAR10 and computing their Hessian and GGN. Figure 4 shows the matrix modulus of Hessian and
GGN while Figure 5 summarizes the computation time of Hessian and GGN under different image
sizes. We notice that GGN is strongly correlated to Hessian, while being much more computationally
efficient to calculate. Therefore we use GNN as a substitute for Hessian [45].
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C Training Setting For Supervised Binary Classifier in Section 3.3

The supervised model is a binary classifier consisting of four fully connected layers with output
dimensions of 64, 32, 8, and 1. ReLU layers and batch normalization layers [20] are attached after
the first three fully connected layers, and Sigmoid layer after the last one. We optimize this model
with SGD [41], with learning rate = 0.001, for 100 epochs using binary cross-entropy loss.

D Additional Ablation Studies

D.1 Sensitivity to Anomaly Detector Parameters

KDE requires a choice of kernel and bandwidth, and OCSVM requires a selection of kernel and ν
value. We evaluate KDE using Gaussian, Epanechnikov, exponential, linear, and uniform kernels with
bandwidth values from 1 to 25. Figure 6 shows the overall AUCs for these parameter values. The
results indicate the choice of the kernel is not critical, since all kernels achieve similar performance
with an appropriate bandwidth choice. For OCSVM, we evaluate using RBF, Sigmoid, linear and
polynomial kernels with ν values from 0.1 to 0.9. Results are shown in Figure 7. Unlike KDE,
OCSVM is sensitive to the choice of kernel, with the RBF kernel significantly outperforming all
other kernels. That said, with an appropriate choice of hyperparameters, HEAD-based detector
performance is insensitive to the choice of anomaly detector.
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Figure 6: Ablation study of using different
KDE kernels and kernel bandwidth.
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Figure 7: Ablation study of using different
OCSVM kernels and ν values.

Noise Type Gaussian Uniform
Noise Level AUC Drop AUC Drop

0 0.949 - 0.949 -
1/255 0.929 -0.020 0.934 -0.015
2/255 0.910 -0.019 0.920 -0.014
4/255 0.886 -0.024 0.900 -0.020
8/255 0.867 -0.019 0.880 -0.020
16/255 0.834 -0.033 0.856 -0.024
32/255 0.784 -0.050 0.813 -0.043

Table 4: Performance of adversarial anomaly detector on distinguishing noisy benign images and
adversarial images.

D.2 Robustness To Harmless Random Noise

While random noise can be viewed as a perturbation to clean images, they do not generally result
in wrong predictions except at high noise levels. A good adversarial anomaly detector should be
able to distinguish noisy benign images from adversarial images. To evaluate this behavior we train
anomaly detectors on benign images (without noise) and test on noisy benign images and adversarial
images. As additive noise, we use either zero-mean Gaussian noise with standard deviation set to a
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l∞ Attacks l2 Attacks l0 Attacks Combined Overall
Dataset Method PGD10 FGSM BIM DeepFool CW SparseFool OnePixel AutoAttack

CIFAR10

HEAD+OCSVM (VGG16) 0.999 0.999 0.999 0.841 0.941 0.985 0.821 0.988 0.947
HEAD+KDE (VGG16) 1.000 0.999 1.000 0.846 0.943 0.986 0.825 0.989 0.949

HEAD+OCSVM (ResNet18) 0.999 0.999 0.999 0.786 0.915 0.969 0.893 0.983 0.943
HEAD+KDE (ResNet18) 1.000 1.000 0.999 0.790 0.916 0.970 0.894 0.983 0.944

CIFAR100

HEAD+OCSVM (VGG16) 0.999 0.999 0.998 0.728 0.814 0.898 0.819 0.906 0.895
HEAD+KDE (VGG16) 0.999 1.000 0.998 0.733 0.816 0.901 0.820 0.907 0.897

HEAD+OCSVM (ResNet18) 0.999 0.999 0.998 0.681 0.775 0.837 0.832 0.890 0.876
HEAD+KDE (ResNet18) 0.999 0.999 0.998 0.676 0.772 0.838 0.831 0.889 0.875

SVHN

HEAD+OCSVM (VGG16) 1.000 1.000 1.000 0.868 0.975 0.992 0.954 0.994 0.973
HEAD+KDE (VGG16) 1.000 1.000 1.000 0.917 0.979 0.994 0.946 0.994 0.979

HEAD+OCSVM (ResNet18) 1.000 1.000 1.000 0.811 0.955 0.989 0.958 0.990 0.963
HEAD+KDE (ResNet18) 1.000 1.000 1.000 0.815 0.956 0.989 0.958 0.990 0.964

Table 5: The ROC AUC performance on detecting eight adversarial attacks using VGG16 and
ResNet18.

specified noise level, or zero-mean uniform noise with maximum value equal to a specified noise
level. Table 4 details overall performance under six different noise levels using the KDE detector.
The gray band in the table represents the noise level equivalent to the perturbation budget used in
the adversarial attacks. We observe that when noise levels are low, the performance of the detectors
does not drop significantly, and remains higher than 85% AUC. Even when the noise level is double
that of the adversarial perturbation budget (i.e., noise level=16/255), the performance is still above
80% AUC. In general, HEAD-based anomaly detectors appear to be robust to random noise no larger
than perturbation budgets, while experiencing larger performance drop under strong noise (e.g., noise
level=32/255).

D.3 Generalizability To Other Network Architectures

Other than VGG16 [46], there are many network architectures, e.g., ResNet [17], DenseNet [19],
have been widely used and outperform VGG16 in many computer vision tasks. To validate the
generalizability of our method, we conduct anomaly detection on another network architecture,
ResNet18, using the same evaluation protocol in section 3.2. More specifically, we train ResNet18
models on CIFAR10, CIFAR100 and SVHN dataset, respectively, and use eight attacks to generate
corresponding adversarial images. We quantitatively evaluate the HEAD’s anomaly detection ability
by distinguishing benign images and adversarial images using ROC AUC. We use the same 32-
dimensional features for LSCFand 5-dimensional features for HF. The HFare obtained by computing
the Hessian l1 modulus of the input and intermediate features after each residual layers. table 5
presents the results of anomaly adversarial detection using VGG16 and ResNet18.

We find that HEAD obtains similar performance on l∞ and l0 attacks when using ResNet18 compare
to VGG16. While on l2 attacks, the ResNet18 based HEADcan have performance drop up to 10.2%
(DeepFool attack on SVHN). However, the overall anomaly adversarial detection performance on
ResNet18 models still reaches 94.4%, 97.6% and 96.4% on CIFAR10, CIFAR100 and SVHN,
respectively, which validates the generalizability of our method on other DNN models.

D.4 Binary Benign/Attack Classification vs. Anomaly Detection

Anomaly detection, in general, does not require examples of the outliers, i.e. the adversarial images
in this study. An interesting question is what, if any, performance improvement could be gained
by incorporating knowledge of the adversarial examples? To answer this question, we use a binary
benign/attack classifier to provide an upper bound on the performance, where we train neural networks
on benign and adversarial images as inputs with image class (benign or adversarial) as the output. The
binary classifier has the same architecture as the previously described LID and Mahalanobis models in
Section 3.3. Figure 8 compares supervised training with anomaly detection using three different input
features: LID, Mahanolobis, and HEAD. Across all input features, we find that supervised training
provides better performance over the corresponding anomaly detector. However, anomaly detection
using HEAD features of only benign samples show a much smaller performance gap with supervised
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Figure 8: The performance of adversarial detection using anomaly detection and binary classification
on CIFAR10. The results of anomaly detection and binary classification are shown in pure color bars
and shadowed bars, respectively. The overall performance for binary classification is the average
performance of eight attacks.

training, and performance is quite comparable, reinforcing the suitability of HEAD features for
adversarial image detection, since knowledge of potential attacks and the ability to generate samples
from these attacks is not practical.
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