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Abstract

Self-supervised heterogeneous graph learning (SHGL) has shown promising poten-
tial in diverse scenarios. However, while existing SHGL methods share a similar
essential with clustering approaches, they encounter two significant limitations: (i)
noise in graph structures is often introduced during the message-passing process
to weaken node representations, and (ii) cluster-level information may be inade-
quately captured and leveraged, diminishing the performance in downstream tasks.
In this paper, we address these limitations by theoretically revisiting SHGL from
the spectral clustering perspective and introducing a novel framework enhanced by
rank and dual consistency constraints. Specifically, our framework incorporates
a rank-constrained spectral clustering method that refines the affinity matrix to
exclude noise effectively. Additionally, we integrate node-level and cluster-level
consistency constraints that concurrently capture invariant and clustering informa-
tion to facilitate learning in downstream tasks. We theoretically demonstrate that
the learned representations are divided into distinct partitions based on the number
of classes and exhibit enhanced generalization ability across tasks. Experimental
results affirm the superiority of our method, showcasing remarkable improvements
in several downstream tasks compared to existing methods.

1 Introduction

Self-supervised heterogeneous graph learning (SHGL) aims to effectively process diverse types of
nodes and edges in the heterogeneous graph, producing low-dimensional representations without the
need for human annotations [72, 71, 25]. Thanks to its remarkable capabilities, SHGL has attracted
significant interest and has been utilized in a broad array of applications, including recommendation
systems [44, 12], social network analysis [45, 9], and molecule design [68, 59].

Existing SHGL methods can be broadly classified into two groups, i.e., meta-path-based methods and
adaptive-graph-based methods. Meta-path-based methods typically utilize pre-defined meta-paths to
explore relationships among nodes that may share the same label in the heterogeneous graph [18, 74].
However, building meta-paths requires extensive prior knowledge and incurs additional computation
costs [69]. To address these drawbacks, adaptive-graph-based methods dynamically assign significant
weights to node pairs likely to share the same label, using the adaptive graph structure rather than
traditional meta-paths [30]. Both groups of SHGL methods facilitate message-passing among nodes
within the same class, either through meta-path-based graphs or adaptive graph structures. As a
result, this process minimizes intra-class differences and promotes a clustered pattern in the learned
representations, aligning these methods closely with conventional clustering techniques.
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Q̂

Heterogeneous 

fEncoder 

Heterogeneous 

fEncoder 

Multi-Layer 

gPerceptron

……

Orthogonalization 

Layer

p
Projection
head p

Projection
head

Orthogonali

zation Layer

Orthogonali

zation Layer

~
Z

Argmax

Matmul

Cluster Pooling
Z

.3 .4

.9 -.4

-.4 .8.4

.9

.3

.3 .4

.9 -.4

-.4 .8.4

.9

.3

······ 

.3 .4

.9 -.4

-.4 .8.4

.9

.3

······ ······

H

Q

Q
~

Y

Heterogeneous 

fEncoder 

Multi-Layer 

gPerceptron

…

p
Projection
head

Orthogonal 

Layer

Orthogonal 

Layer

sp

cc

nc

Orthogonal 

Layer

Orthogonal 

Layer

Projection
qhead

Projection
qhead

S
h
ar

e

sp

cc

S

Ŷ
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Figure 1: The flowchart of SCHOOL, which first employs the Multi-Layer Perception gϕ to derive
semantic representations H, followed by obtaining orthogonal cluster assignment matrix Y and
orthogonal H. Subsequently, SCHOOL filters noisy connections by deriving the rank-constrained
affinity matrix S, which is further used to multiply with H and then obtain node representations Z.
Meanwhile, SCHOOL employs a heterogeneous encoder fθ to aggregate information across node
types, yielding heterogeneous representations Z̃. Finally, SCHOOL incorporates spectral loss Lsp to
optimize Y to fit eigenvectors of the Laplacian matrix of S. Moreover, SCHOOL designs node-level
(i.e., Lnc) and cluster-level (i.e., Lcc) consistency constraints on projected representations (i.e., Q
and Q̃) and cluster representations Q̂ to capture the invariant and clustering information, respectively.

Despite the effectiveness of previous SHGL methods, they encounter two limitations. First, previous
methods conduct message-passing relying on meta-path-based graphs and adaptive graph structures,
which inevitably include noise, i.e., connections among nodes from different classes [18, 58]. Conse-
quently, such noise compromises the identifiability of node representations after the message-passing
process. Second, while previous methods exhibit clustering characteristics, they typically emphasize
the node-level consistency only, neglecting to capture and leverage the cluster-level information
effectively [57, 30]. This may not fully exploit the potential benefits of clustering for representation
learning, thereby diminishing the performance of downstream tasks.

Based on the above analysis, it is feasible to analyze previous SHGL methods from a clustering
perspective thanks to their close connection to clustering techniques and further optimize the graph
structures to mitigate noisy connections as well as harness the cluster-level information to enhance
previous SHGL. To achieve this, there are three key challenges, i.e., (i) How to formally understand
previous SHGL methods from the clustering perspective? (ii) With insights from the clustering
analysis, how to learn an adaptive graph structure that effectively captures intra-class connections
while filtering out inter-class noise? (iii) How to enable the effective incorporation of cluster-level
information in the heterogeneous graph to boost the performance of downstream tasks?

In this paper, we address the outlined challenges by first theoretically revisiting previous SHGL
methods from a clustering perspective and then introducing a novel framework, termed Spectral
Clustering-inspired HeterOgeneOus graph Learning (SCHOOL for short), that incorporates rank-
constrained spectral clustering and dual consistency constraints, as depicted in Figure 1. Specifically,
we start by proving that existing SHGL can be reformulated as spectral clustering with an additional
regularization term under the assumption of orthogonality, thus addressing challenge (i) and laying the
foundational theory for our approach. Next, to tackle challenge (ii), we propose an efficient spectral
clustering technique that includes a rank constraint on the affinity matrix, aiming to effectively
mitigate noisy connections among different classes. Furthermore, to resolve challenge (iii), we
design dual consistency constraints at both node and cluster levels to capture invariant and clustering
information, respectively, which reduces the intra-cluster differences and enhances the performance
of downstream tasks. Finally, theoretical analysis indicates that the learned representations are
divided into distinct partitions corresponding to the number of classes, and are demonstrated superior
generalization ability compared to those derived from previous SHGL methods.
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Compared to previous SHGL works, our contributions can be summarized as follows:

• To the best of our knowledge, we make the first attempt to theoretically revisit previous
SHGL methods from the spectral clustering perspective in a unified manner.

• We adaptively learn a rank-constrained affinity matrix to mitigate noisy connections inherent
in previous SHGL methods. Moreover, we introduce dual consistency constraints to capture
both invariant and clustering information to enhance the effectiveness of our method.

• We theoretically demonstrate that the proposed method divides the learned representations
into distinct partitions based on the number of classes, instead of dimensions in previous
SHGL methods. Furthermore, the representations obtained by this method exhibit enhanced
generalization ability compared to those derived from previous SHGL methods.

• We experimentally manifest the effectiveness of the proposed method across a variety of
downstream tasks, using both heterogeneous and homogeneous graph datasets, compared to
numerous state-of-the-art methods.

2 Method

Notations. Let G = (V, E ,X, T ,R) represent a heterogeneous graph, where V and E indicate set
of nodes and set of edges, respectively. X = {xi}ni=1 denotes the matrix of node features, where n
indicates the number of nodes. Moreover, T and R indicate set of node types and set of edge types,
respectively. Given the heterogeneous graph G, most existing SHGL methods utilize meta-paths or
adaptive graph structures to explore connections among nodes within the same class, thus exhibiting
the characteristics of clustering and obtaining discriminative representations. To gain a deeper insight
of previous SHGL methods, we first propose to revisit them from a clustering perspective as follows.

2.1 Revisiting Previous SHGL Methods from Spectral Clustering

As mentioned above, previous SHGL methods tend to conduct clustering implicitly, relying on
meta-path-based graphs or adaptive graph structures. For example, given an academic heterogeneous
graph with several node types (i.e., paper, author, and subject), for the meta-path-based methods, if
two papers belong to the same class, there may exist a meta-path “paper-subject-paper” to connect
them (i.e., two papers are grouped into the same subject). Similarly, for the adaptive-graph-based
methods, when two papers belong to the same class, the adaptive graph structures likely assign large
weights to connect them. Therefore, representations of nodes within the same class will be close to
each other after the message-passing process, thus implicitly presenting a clustered pattern.

Based on the above observation, actually, we can further theoretically understand previous SHGL
methods from the clustering perspective. To do this, we first give the following definition.

Definition 2.1. (Spectral Clustering) Given the Laplacian matrix L, the optimization problem of the
spectral clustering can be described as follows:

min
H

Tr
(
HTLH

)
s.t., HTH = I, (1)

where L = D−W, W ∈ Rn×n is a data similarity matrix, D is a diagonal matrix whose entries
are column sums of W, H ∈ Rn×d is a representations matrix, Tr(·) indicates the matrix trace, and
I indicates the identity matrix.

According to Definition 2.1, for both meta-path-based methods [31, 57, 58] and adaptive-graph-based
SHGL methods [30], we then have Theorem 2.2, whose proof can be found in Appendix C.1.

Theorem 2.2. Assume the learned representations H are orthogonal, optimizing previous meta-path-
based and adaptive-graph-based SHGL methods is equivalent to performing spectral clustering with
additional regularization, i.e.,

min
H

LSHGL
∼= min

H
Tr(HT L̂H) +R(H) s.t., HTH = I, (2)

where R(·) indicates the regularization term, L̂ indicates the Laplacian matrix of the meta-path-based
graph or the adaptive graph structure.
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Theorem 2.2 reveals the connection between previous SHGL and the spectral clustering as well as
indicates that previous SHGL heavily relies on the Laplacian matrix of meta-path-based graph or
adaptive graph structure. Moreover, based on Theorem 2.2, we can further bridge previous SHGL
and the graph-cut algorithm [54] as follows, whose proof can be found in Appendix C.2.
Theorem 2.3. Under the same assumption in Theorem 2.2, optimizing previous meta-path-based
and adaptive-graph-based SHGL methods is approximate to performing the RatioCut (V1, . . . , Vd)
algorithm that divides the learned representations into d partitions {V1, . . . , Vd}, i.e.,

min
H

LSHGL
∼= min

H
RatioCut (V1, . . . , Vd) , (3)

where d indicates the dimension of representations H.

Theorem 2.3 further indicates that previous SHGL methods divide the learned representations into
d partitions, where d is generally much larger than the number of classes. Therefore, Theorem 2.3
connects the traditional graph-cut algorithm with existing SHGL methods, which requires custom
analysis. As a result, we theoretically revisit previous SHGL methods from spectral clustering as well
as graph-cut perspectives and build the connections between them, thus solving the challenge (i).

2.2 Rank-Constrained Spectral Clustering

Based on the connections between previous SHGL methods and the spectral clustering as well as the
graph-cut algorithm, we have the observations as follows. First, according to Theorem 2.2, previous
SHGL methods conduct spectral clustering based on the Laplacian matrix of meta-path-based graph
or adaptive graph structure, which may not guarantee optimality and could potentially contain noisy
connections, thus affecting the spectral clustering. Second, according to Theorem 2.3, previous
SHGL methods conduct the graph-cut to divide the learned representations into d partitions, which
are generally not equal to the number of classes c. As a result, optimizing previous SHGL methods
becomes a hard or even error problem, and the learned representations can not be clustered well.
Therefore, it is intuitive to mitigate noise in the adaptive graph structure as well as divide the learned
representations into exactly c partitions to improve existing SHGL methods.

Specifically, in this paper, we propose to learn an adaptive affinity matrix with the rank constraint
to mitigate noisy connections as much as possible. To do this, we first employ the Multi-Layer
Perceptron (MLP) as the encoder gϕ ∈ Rf×d1 to obtain the semantic representations H by:

H = σ(gϕ(X)), (4)

where f and d1 are the dimensions of node features and representations, respectively, and σ is the
activation function. After that, we propose to learn an adaptive affinity matrix S ∈ Rn×n based
on the semantic representations. Intuitively, in a uncorrelated representations subspace, a smaller
distance ∥hi − hj∥22 between semantic representations should be assigned a larger probability sij .
Therefore, it is a natural approach to learn the affinity matrix S by:

minS
∑n

i,j=1(∥hi − hj∥22sij + αs2ij) s.t.,∀i, sTi 1 = 1, 0 ≤ si ≤ 1, (5)

where α is a non-negative parameter. In Eq. (5), the first term encourages the affinity matrix to assign
large weights to node pairs with small distances. Moreover, the second term avoids the trivial solution
that only the nearest node can be the neighbor of vi with probability 1. However, similar to previous
SHGL methods, usually the affinity matrix learned by Eq. (5) can not reach the ideal case (i.e., having
no noisy connections among different classes and containing exactly c connected components). As
a result, the noisy connections in the affinity matrix may induce a negative interference during the
message-passing process. To solve this issue, we first introduce the following lemma in [32].
Lemma 2.4. The multiplicity c of the eigenvalue 0 of the Laplacian matrix LS is equal to the number
of connected components in the affinity matrix S.

Lemma 2.4 indicates that if the rank of LS equals to n− c, then the affinity matrix S contains exactly
c connected components to achieve the ideal scenario, where LS = D− S+ST

2 , and D is the degree
matrix of S+ST

2 . Based on Lemma 2.4, we can solve the above issue by adding the rank constraint on
the affinity matrix, i.e., enforcing the smallest c eigenvalues of LS to be 0:

rank(LS) = n− c ⇒ min

c∑
i=1

τi (LS) , (6)
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where τi(LS) is the i-th smallest eigenvalue of LS and τi(LS) ≥ 0 because LS is positive semi-
definite. Moreover, according to Ky Fan’s Theorem [5], the constraint in Eq. (6) can be rewritten in
the spectral clustering form as follows (derivation listed in Appendix C.5).

c∑
i=1

τi (LS) = min
FTF=I

Tr(FTLSF) = min
FTF=I

1

2

∑
i,j

sij ∥fi − fj∥22 , (7)

where F ∈ Rn×c is formed by part eigenvectors of LS after the eigendecomposition. Therefore,
based on Eq. (7), we can add the rank constraint on the affinity matrix and reformulate Eq. (5) as:

minS,F
∑n

i,j=1(∥hi − hj∥22sij + αs2ij + β ∥fi − fj∥22 sij)
s.t., ∀i, sTi 1 = 1, 0 ≤ si ≤ 1,FTF = I,

(8)

where β is a non-negative parameter. Eq. (8) can be solved by applying the alternating optimization
approach. Specifically, when S is fixed, Eq. (8) becomes minFTF=I

∑n
i,j=1 ∥fi − fj∥22 sij =

2minFTF=I Tr(F
TLSF), whose optimal solution F is the eigenvectors of LS corresponding to the

c smallest eigenvalues. When F is fixed, denote dij = ∥hi − hj∥22 + β ∥fi − fj∥22, Eq. (8) can be
written in the vector form, i.e.,

min
sTi 1=1,0≤si≤1,

∥si +
1

2α
di∥22. (9)

According to the Lagrangian function of Eq. (9) and the KKT condition [3], we can obtain the
closed-form solution of the element sij in the affinity matrix, i.e.,

sij = (− 1

2α
dij + λ)+, (10)

where λ is a non-negative parameter, and (·)+ indicates max{·, 0}. In practice, a sparse affinity matrix
usually obtains better performance and reduces computation costs. Therefore, we only calculate sij
between node vi and its k nearest neighbors. Then parameters α and λ can be further determined,
details listed in Appendix C.6.

However, when fixing S and optimizing F in Eq. (8), computation costs of obtaining eigenvectors
F remain prohibitive due to the cubic time complexity of the eigendecomposition. To address this
issue, we propose to replace the eigendecomposition with a projection head and orthogonal layer
[42]. Specifically, we first employ the projection head pφ ∈ Rd1×c to map semantic representations
to the cluster assignment space P ∈ Rn×c, i.e.,

P = σ(pφ(H)), (11)

where σ is the activation function. After that, we employ an orthogonal layer to derive the orthogonal
cluster assignment matrix Y ∈ Rn×c (orthogonal derivation listed in Appendix C.7), i.e.,

Y =
√
nP
(
R−1

)
, (12)

where R is an upper triangular matrix obtained from the QR decomposition [6] (i.e., P = ER and
ETE = I) on the full rank P. Similarly, we can also implement the orthogonal layer to achieve the
uncorrelation (i.e., HTH = I) on the representations subspace.

As a result, the projection head and the orthogonal layer act as a linear transformation to achieve the
orthogonality constraint on Y. To replace the eigendecomposition, the cluster assignment matrix Y
should further fit the eigenvectors F in Eq. (8). To do this, we design a spectral loss Lsp to optimize
the parameters in pφ to simulate the spectral clustering of the third term in Eq. (8), i.e.,

Lsp =
1

n2

∑n
i,j=1 sij ∥yi − yj∥22 − γH(Y), (13)

where γ is a non-negative parameter, H(Y) = −
∑c

i=1P (yi)logP (yi) is the entropy of cluster
assignment probabilities P (yi) = 1

n

∑n
j=1y

i
j , and yi

j indicates the i-th column and j-th row of y.
According to Eq. (7), the first term in Eq. (13) simulates the spectral clustering to enforce the learned
cluster assignment matrix Y to approximate eigenvectors F, and the second term is a widely used
regularization term [1, 14] to avoid the trivial solution that most nodes are assigned to the same cluster.
Therefore, when S is fixed, we optimizing Y to approach the optimal F by achieving orthogonality
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with Eq. (12), and fitting eigenvectors F with Eq. (13). As a result, this reduces the cubic time
complexity of eigendecomposition to O(nd2 + nc2 + nkd+ nkc+ c3 + d3), where d2, c2 < n, thus
is linear to the sample size, details are shown in Appendix B.2. Finally, the proposed method still
optimizes the affinity matrix S and eigenvectors F in Eq. (8) in an alternating approach, i.e., fix F
and then obtain the closed-form solution of S, and fix S and then optimize parameters (i.e., gϕ and
pφ) to update Y to approach the optimal F.

Therefore, the proposed method obtains the affinity matrix with exactly c connected components
to mitigate noisy connections in an effective and efficient way. Then we can obtain the node
representations Z = SH, which is expected to conduct message-passing among nodes within the
same class. Moreover, we can bridge the connections between the proposed method and the spectral
clustering as well as the graph-cut algorithm as follows, whose proof can be found in Appendix C.3.

Theorem 2.5. Optimizing the spectral loss Lsp leads to performing the spectral clustering based on
the affinity matrix S with c connected components and conducting RatioCut (V1, . . . , Vc) algorithm
to divide the learned representations into c partitions, i.e.,

minLsp ⇒ minTr(YTLSY) ⇒ minRatioCut(V1, . . . , Vc). (14)

Theorem 2.5 indicates that the proposed method conducts the spectral clustering as previous SHGL
methods, but is performed on an affinity matrix with exactly c connected components (verified in
Section 3.2.3), thus mitigating noisy connections from different classes and solving the challenge (ii).
Moreover, the proposed method divides the learned representations into c partitions, which is a better
optimization goal than previous SHGL methods to obtain discriminative representations.

2.3 Dual Consistency Constraints

The message-passing among nodes within the same class reduces intra-class differences and enhances
node representations Z. Meanwhile, the message-passing among nodes from different types also
contributes to obtaining task-related contents and benefits downstream tasks [69]. To do this, we
propose to aggregate the information of nodes from different types in the heterogeneous graph with a
heterogeneous encoder fθ ∈ Rf×d1 .

Specifically, for the node vi, we concatenate the information of itself and its relevant one-hop
neighbors (i.e., nodes of other types) based on edge types in R, and then derive the heterogeneous
representations Z̃ by:

z̃i =
1

|R|
∑
r∈R

σ(fθ(xi)||
∑

vj∈Ni,r

fθ(xj)), (15)

where σ is the activation function, |R| indicates the number of edge types, Ni,r indicates the set of
one-hop neighbors of node vi based on the edge type r ∈ R, fθ(·) indicates the linear transformation,
and ·||· indicates the concatenation operation. Therefore, the heterogeneous representations Z̃
aggregate the information of nodes from different types to introduce more task-related contents.

Given node representations Z and heterogeneous representations Z̃, most previous SHGL methods
utilize the node-level consistency constraint (e.g., Info-NCE loss [36]) to capture the invariant
information between them and enhance the effectiveness [57, 30]. In addition, according to Theorem
2.2, previous SHGL methods actually perform spectral clustering to learn node representations.
However, previous SHGL methods fail to utilize the cluster-level information outputted by the
spectral clustering, thus weakening the downstream task performance. To solve this issue, we design
dual consistency constraints to capture the invariant information as well as the clustering information
between Z and Z̃.

Specifically, we first employ a projection head qγ ∈ Rd1×d2 to map both Z and Z̃ into the same
latent space, i.e., Q = qγ(Z) and Q̃ = qγ(Z̃), where d2 is the projected dimension. Then we
follow previous works [57, 58] to design a node-level consistency constraint to capture the invariant
information between Q and Q̃, i.e.,

Lnc = ∥Q− Q̃∥2F + η log
∑d

i,j=1 e
cij , (16)
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where C = QTQ+ Q̃T Q̃, and η is a non-negative parameter. Similar to previous works, the first
term in Eq. (16) enforces representations in Q̃ agree with the corresponding representations in Q,
thus capturing the invariant information between them. The second term enables different dimensions
of Q and Q̃ to uniformly distribute over the latent space to avoid collapse.

In addition to the node-level consistency constraint, we further design the cluster-level consistency
constraint to capture the clustering information from the cluster assignment matrix Y. To do
this, we first obtain the cluster indicator matrix Ŷ based on the cluster assignment matrix Y,
i.e., Ŷ = argmax(Y). After that, we conduct average pooling on node representations that possess
the same cluster indicator to obtain the j-th cluster representation q̂j , i.e.,

q̂j =
1

|Vj |
∑

vi∈Vj
qi, (17)

where Vj indicates the set of nodes whose cluster indicators equal to j, and |Vj | indicates the number
of nodes in Vj . Then we design a cluster-level consistency constraint on cluster representations Q̂
and projected representations Q̃ to capture the clustering information, i.e.,

Lcc =
∑n

i=1 ∥q̃i − q̂yi
∥22, (18)

where q̂yi indicates the cluster representation whose label equals to yi. Eq. (18) enables the projected
representation q̃i and the cluster representation q̂yi to align each other. As a result, representations
capture the clustering information based on cluster indicators and reduce intra-cluster differences to
improve the performance of downstream tasks, thus solving challenge (iii).

We integrate the spectral loss in Eq. (13), the node-level consistency constraint in Eq. (16), with the
cluster-level consistency constraint in Eq. (18) to have the objective function as:

J = Lsp + µLnc + δLcc, (19)

where µ and δ are non-negative parameters. Finally, we concatenate node representations Z with
heterogeneous representations Z̃ to obtain representations for downstream tasks. Actually, for the
learned representations, we have the following Theorem, whose proof can be found in Appendix C.4.

Theorem 2.6. The proposed method with dual consistency constraints achieves a lower boundary of
the model complexity C and a higher generalization ability boundary G than previous SHGL with
the node-level consistency constraint only, i.e.,

inf(CSCHOOL) < inf(CSHGL), sup(GSCHOOL) > sup(GSHGL), (20)

where inf(·) and sup(·) indicates lower bound and upper bound, respectively.

Theorem 2.6 indicates that the representations learned by the dual consistency constraints can be
theoretically proved to exhibit superior generalization ability than the representations learned by
previous SHGL methods with the node-level consistency constraint only, thus are expected to perform
better in different downstream tasks (verified in Section 3.2).

3 Experiments

In this section, we conduct experiments on both heterogeneous and homogeneous graph datasets
to evaluate the proposed method in terms of different downstream tasks (i.e., node classification
and node clustering), compared to both heterogeneous and homogeneous graph methods. Detailed
settings are shown in Appendix D, and additional results are shown in Appendix E.

3.1 Experimental Setup

3.1.1 Datasets

The used datasets include four heterogeneous graph datasets and two homogeneous graph datasets.
Heterogeneous graph datasets include three academic datasets (i.e., ACM [56], DBLP [56], and
Aminer [11]), and one business dataset (i.e., Yelp [27]). Homogeneous graph datasets include two
sale datasets (i.e., Photo and Computers [43]).
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Table 1: Classification performance (i.e., Macro-F1 and Micro-F1) on heterogeneous graph datasets.

Method ACM Yelp DBLP Aminer

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

DeepWalk 73.9±0.3 74.1±0.1 68.7±1.1 73.2±0.9 88.1±0.2 89.5±0.3 54.7±0.8 59.7±0.7
GCN 86.9±0.2 87.0±0.3 85.0±0.6 87.4±0.8 90.2±0.2 90.9±0.5 64.5±0.7 71.5±0.9
GAT 85.0±0.4 84.9±0.3 86.4±0.5 88.2±0.7 91.0±0.4 92.1±0.2 63.8±0.4 70.6±0.7

Mp2vec 87.6±0.5 88.1±0.3 78.2±0.8 83.6±0.9 85.7±0.3 87.6±0.6 58.7±0.5 65.3±0.6
HAN 89.4±0.2 89.2±0.2 90.5±1.2 90.7±1.4 91.2±0.4 92.0±0.5 65.3±0.7 72.8±0.4
HGT 91.5±0.7 91.6±0.6 89.9±0.5 90.2±0.6 90.9±0.6 91.7±0.8 64.5±0.5 71.0±0.7
DMGI 89.8±0.1 89.8±0.1 82.9±0.8 85.8±0.9 92.1±0.2 92.9±0.3 63.8±0.4 67.6±0.5
DMGIattn 88.7±0.3 88.7±0.5 82.8±0.7 85.4±0.5 90.9±0.2 91.8±0.3 62.4±0.9 66.8±0.8
HDMI 90.1±0.3 90.1±0.3 80.7±0.6 84.0±0.9 91.3±0.2 92.2±0.5 65.9±0.4 71.7±0.6
HeCo 88.3±0.3 88.2±0.2 85.3±0.7 87.9±0.6 91.0±0.3 91.6±0.2 71.8±0.9 78.6±0.7
HGCML 90.6±0.7 90.7±0.5 90.7±0.8 91.0±0.7 91.9±0.8 93.2±0.7 70.5±0.4 76.3±0.6
CPIM 91.4±0.3 91.3±0.2 90.2±0.5 90.3±0.4 93.2±0.6 93.8±0.8 70.1±0.9 75.8±1.1
HGMAE 90.5±0.5 90.6±0.7 90.5±0.7 90.7±0.5 92.9±0.5 93.4±0.6 72.3±0.9 80.3±1.2
HERO 92.2±0.5 92.1±0.7 92.4±0.7 92.3±0.6 93.8±0.6 94.4±0.4 75.1±0.7 84.5±0.9
SCHOOL 92.7±0.6 92.6±0.5 93.0±0.7 92.8±0.4 94.0±0.3 94.7±0.4 77.5±0.9 86.8±0.7

3.1.2 Comparison Methods

The comparison methods include eleven heterogeneous graph methods and twelve homogeneous
graph methods. The former includes two semi-supervised methods (i.e., HAN [56] and HGT [13]),
one traditional unsupervised method (i.e., Mp2vec [4]), and eight self-supervised methods (i.e., DMGI
[38], DMGIattn [38], HDMI [18], HeCo [57], HGCML [58], CPIM [31], HGMAE [48], and HERO
[30]). The latter includes two semi-supervised methods (i.e., GCN [20] and GAT [50]), one traditional
unsupervised method (i.e., DeepWalk [41]), and nine self-supervised methods, (i.e., DGI [51], GMI
[40], MVGRL [8], GRACE [75], GCA [76], G-BT [2], COSTA [70], DSSL [61], and LRD [63]).

For a fair comparison, we follow [4, 56, 27, 28] to select meta-paths for previous meta-path-based
SHGL methods. Moreover, we follow [29] to implement homogeneous graph methods on heteroge-
neous graph datasets by separately learning the representations of each meta-path-based graph and
further concatenating them for downstream tasks. In addition, we replace the heterogeneous encoder
fθ with GCN to implement the proposed method on homogeneous graph datasets because there is
only one node type in the homogeneous graph. Moreover, we follow previous works [76] to generate
two different views for the homogeneous graph by removing edges and masking features. The code
of the proposed method is released at https://github.com/YujieMo/SCHOOL.

3.2 Results Analysis

3.2.1 Effectiveness on Heterogeneous and Homogeneous Graph

We first evaluate the effectiveness of the proposed method on the heterogeneous graph datasets and
report the results of node classification and node clustering in Table 1 and Appendix E, respectively.
Obviously, the proposed method obtains better performance on both node classification and node
clustering tasks than comparison methods.

Specifically, first, for the node classification task, the proposed method consistently outperforms the
comparison methods by large margins. For example, the proposed method on average, improves by
1.1%, compared to the best SHGL method (i.e., HERO), on four heterogeneous graph datasets. The
reason can be attributed to the fact that the proposed method adaptively learns a rank-constrained
affinity matrix to mitigate noisy connections among different classes, thus reducing intra-class
differences. Second, for the node clustering task, the proposed method also obtains promising
improvements. For example, the proposed method on average, improves by 3.1%, compared to the
best SHGL method (i.e., HGMAE), on four heterogeneous graph datasets. This demonstrates the
superiority of the proposed method, which simulates the spectral clustering with the spectral loss and
conducts the cluster-level consistency constraint to further utilize the clustering information. As a
result, the effectiveness of the proposed method is verified on different downstream tasks.

8

https://github.com/YujieMo/SCHOOL


Table 2: Classification performance (i.e., Macro-F1 and Micro-F1) of each component in the objective
function J on all heterogeneous graph datasets.

Lsp Lnc Lcc
ACM Yelp DBLP Aminer

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

− − ✓ 85.9±0.3 85.8±0.6 91.8±0.6 91.3±0.5 91.0±0.2 92.1±0.4 66.8±0.7 75.5±0.9
− ✓ − 88.8±0.6 88.6±0.7 92.5±0.7 92.1±0.4 91.7±0.4 92.7±0.5 72.4±0.5 80.3±0.7
✓ − − 87.6±0.3 87.5±0.5 92.3±0.8 92.0±0.6 90.7±0.6 91.7±0.6 67.3±0.6 74.7±0.5
− ✓ ✓ 86.9±0.7 86.7±0.5 92.1±0.3 91.5±0.4 93.4±0.8 94.2±0.6 75.2±0.4 83.9±0.7
✓ − ✓ 89.0±0.5 88.9±0.4 92.4±0.5 92.0±0.3 93.5±0.6 94.2±0.4 76.2±0.5 85.2±0.8
✓ ✓ − 88.9±0.7 88.8±0.6 92.6±0.6 92.3±0.5 91.9±0.7 92.8±0.8 77.1±0.8 86.0±0.6
✓ ✓ ✓ 92.7±0.6 92.6±0.5 93.0±0.7 92.8±0.4 94.0±0.3 94.7±0.4 77.5±0.9 86.8±0.7

We further evaluate the effectiveness of the proposed method on homogeneous graph datasets and
report the results of node classification in Appendix E. We can observe that the proposed method also
achieves competitive results on the homogeneous graph datasets compared to other homogeneous
graph methods. For example, the proposed method outperforms the best self-supervised method
(i.e., LRD), on almost all homogeneous graph datasets. This indicates that the proposed method
is also available to learn the noise-free affinity matrix for homogeneous graphs as well as capture
invariant and clustering information to benefit downstream tasks. Therefore, the effectiveness of the
proposed method is verified on both heterogeneous and homogeneous graph datasets.

3.2.2 Ablation Study

The proposed method investigates the objective function J to learn the rank-constrained affinity
matrix, as well as capture invariant and clustering information. To verify the effectiveness of each
component of J (i.e., Lsp, Lnc, and Lcc), we investigate the performance of all variants on the node
classification task and report the results in Table 2.

From Table 2, we have the observations as follows. First, the proposed method with the complete
objective function obtains the best performance. For example, the proposed method on average
improves by 1.8%, compared to the best variant (i.e., without Lnc), indicating that all components
in the objective function are necessary for the proposed method. This is consistent with our claims,
i.e., it is essential to optimize the adaptive graph structure to mitigate noisy connections as well as
utilize the cluster-level information to benefit downstream tasks. Second, the variant without Lsp

achieves inferior results to the other two variants (i.e., without Lnc and without Lcc, respectively).
This can be attributed to the fact that the spectral loss Lsp enforces the cluster assignment matrix to
fit the eigenvectors, which is necessary for the closed-form solution of the affinity matrix.

3.2.3 Visualization

To verify the effectiveness of the learned affinity matrix and the representations for downstream tasks,
we visualize the affinity matrix in the heatmap and visualize the representations with t-SNE [49] on
DBLP and Aminer datasets and report the results in Figure 2.

Specifically, we randomly sample 50 nodes in each class and then visualize elements of the affinity
matrix S among sampled nodes with the heatmap, where rows and columns are reordered by node
labels. In the correlation map, the darker a pixel, the larger the value of the element of S. In Figures
2(a) and 2(c), the heatmaps exhibit that there are nearly c (i.e., the number of classes) components
in the affinity matrix, and almost all elements with large values fall in the block diagonal structure.
This indicates that the affinity matrix indeed contains c connected components to mitigate noisy
connections among different classes. Moreover, the t-SNE visualization in Figures 2(b) and 2(d)
further indicate that the learned representations can be well divided into c partitions. This is consistent
with the observation in Theorem 2.5 and verifies the effectiveness of the learned representations.

4 Conclusion

In this paper, we revisited previous SHGL methods from the perspective of spectral clustering and then
introduced a novel framework to alleviate existing issues. Specifically, we first proved that optimizing
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(a) S of DBLP (b) t-SNE of DBLP (c) S of Aminer (d) t-SNE of Aminer

Figure 2: Visualization of the affinity matrix S and t-SNE on DBLP and Aminer datasets.

previous SHGL methods is equivalent to performing spectral clustering with additional regularization
under the orthogonalization assumption. Then we proposed an efficient spectral clustering method
with the rank constraint to learn an adaptive affinity matrix and mitigate noisy connections in
previous methods. Moreover, we designed node-level and cluster-level consistency constraints to
capture invariant and clustering information, thus benefiting the performance of downstream tasks.
Theoretical analysis indicates that the learned representations are divided into distinct partitions based
on the number of classes, and are expected to achieve better generalization ability than representations
of previous SHGL methods. Comprehensive experiments verify the effectiveness of the proposed
method on both homogeneous and heterogeneous graph datasets on different downstream tasks.

Potential limitations and broader impact. Our potential limitation is that this work is designed
based on node features. However, in heterogeneous graphs, instances arise where nodes are devoid of
features. While one-hot vectors or structural embeddings can be designated as node features to tackle
this problem, we recognize the necessity of devising dedicated techniques tailored for heterogeneous
graphs with missing node features. In addition, the proposed method can also be used to deal with the
homophily problem, which aims to explore the connections within the same class. We consider these
aspects as potential directions for future research. Despite the great development of SHGL, some
theoretical foundations are still lacking. Our work theoretically connects existing SHGL methods and
spectral clustering and may open a new path to understanding and designing SHGL. Besides that, we
do not foresee any direct negative impacts on the society.
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A Related Work

This section briefly reviews topics related to this work, including self-supervised heterogeneous graph
learning in Section A.1, and spectral clustering in Section A.2.

A.1 Self-Supervised Heterogeneous Graph Learning

In recent years, self-supervised heterogeneous graph learning (SHGL) has emerged as a helpful tech-
nique to deal with the heterogeneous graph that consists of different types of entities without needing
labeled data [56, 60, 57, 55, 39, 23, 67]. As a result, SHGL captures meaningful representations of
nodes and edges, enabling better performance in downstream tasks like node classification and node
clustering. Due to its powerful capability, SHGL has been applied to various real applications, such
as social network analysis [22, 62, 10], and recommendation systems [44, 17, 15].

Existing SHGL methods can be broadly classified into two groups, i.e., meta-path-based methods and
adaptive-graph-based methods. In meta-path-based methods, several graphs are usually constructed
based on different pre-defined meta-paths to examine diverse relationships among nodes that share
similar labels [18, 74]. For example, STENCIL [74] and HDMI [18] construct meth-path-based
graphs and then conduct node-level consistency constraints (e.g., contrastive loss) between node
representations in different graphs. In addition, HGCML [58] and CPIM [31] propose to maximize
the mutual information between node representations from different meta-path-based graphs. How-
ever, pre-defined meta-paths in these methods generally require expert knowledge and prohibitive
computation costs [69]. Therefore, adaptive-graph-based methods are proposed to learn the adaptive
graph structures to capture the relationships among nodes that possess the same label, instead of
using meta-paths. For example, recently, HERO [30] made the first attempt to learn an adaptive
self-expressive matrix to capture the homophily in the heterogeneous graph, thus avoiding meta-paths.

Although existing SHGL methods (especially the adaptive-graph-based methods) have achieved
impressive performance in several tasks, the learned graph structure cannot be guaranteed optimal.
As a result, the learned graph structure may contain noisy connections from different classes to affect
the message-passing process and weaken the discriminative information in node representations.

A.2 Spectral Clustering

Spectral clustering partitions data points into clusters based on a similarity matrix derived from the
data [53, 47, 65]. Owing to its proficiency in identifying clusters with complex shapes and handling
non-linearly separable data, spectral clustering is widely used in many scenarios [73, 24, 26, 64].

The spectral clustering methods can be broadly classified into two groups, i.e., traditional spectral
clustering and deep spectral clustering. Traditional spectral clustering methods aim to group data
points that are similar to each other while being dissimilar to points in other clusters by eigendecom-
position [34, 35]. For example, CAN [34] proposes to learn the data similarity matrix and clustering
structure simultaneously with the eigendecomposition. SWCAN [35] further assigns weights for
different features to learn the similarity graph and partition samples into clusters simultaneously.
Despite its effectiveness, traditional spectral clustering generally requires expensive computation
costs, especially for large datasets. To alleviate this issue, deep spectral clustering methods have
been proposed in recent years. For example, DSC [66] employs an encoder and two decoders to
train the network, thus obtaining discriminative representations for clustering and implementing the
cluster assignment via the neural network. DSCL [21] introduces a novel metric learning framework
that leverages spectral clustering principles, thus reducing complexity to linear levels. Spectral-
Net [42] proposes to learn a mapping function via the orthogonalization network to address the
out-of-sample-extension and scalability problems.

The above methods conduct spectral clustering explicitly. Surprisingly, recent research shows that
some popular self-supervised methods also implicitly conduct spectral clustering [7, 46]. For example,
[7] demonstrates contrastive learning performs spectral clustering on the population augmentation
graph by replacing the standard InfoNCE [36] with its proposed spectral contrastive loss. [46]
demonstrates that contrastive learning with the standard InfoNCE loss is equivalent to spectral
clustering on the similarity graph. Although these methods make efforts to connect previous self-
supervised methods with spectral clustering, they cannot be easily transferred to SHGL. First, these
methods are almost based on the augmentation graph, which assumes that different augmentations
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of the same sample connect each other and thus form a graph. In contrast, in SHGL, there is no
augmentation, and the graph is constructed by connecting different samples. Second, compared to
the above methods, SHGL incorporates the message-passing process, which makes it more complex.
Therefore, connecting SHGL methods with the spectral clustering remains challenging.

B Algorithm and Complexity Analysis

This section provides the pseudo-code of the proposed method in Section B.1, and the complexity
analysis of our method in Section B.2.

B.1 Algorithm

Algorithm 1 The pseudo-code of the proposed method.

Input: Heterogeneous graph G = (V, E ,X, T ,R), non-negative parameters β, γ, η, µ and δ;
Output: Encoders gϕ, fθ;

1: Initialize parameters;
2: while not converge do
3: Obtain semantic representations H with encoder gϕ;
4: Obtain the closed-form solution of the affinity matrix S by Eq. (10);
5: Obtain the orthogonal cluster assignment matrix Y by Eq. (11) and Eq. (12);
6: Conduct the spectral loss based on Y and S by Eq. (13);
7: Obtain node representations Z by Z = SH;
8: Obtain heterogeneous representations Z̃ with encoder fθ;
9: Project node and heterogeneous representations into a latent space to obtain Q and Q̃;

10: Conduct the node-level consistency constraint between Q and Q̃ by Eq. (16);
11: Obtain cluster representations Q̂ by Eq. (17);
12: Conduct the cluster-level consistency constraint between Q̃ and Q̂ by Eq. (18);
13: Compute the objective function J by Eq. (19);
14: Back-propagate J to update model weights;
15: end while

B.2 Complexity Analysis

Based on the Algorithm 1 above, we then analyze the time complexity of the proposed method.
Recalling Eq. (10) in the main text:

sij = (− 1

2α
di + λ)+, (21)

where dij = ∥hi − hj∥22 + β ∥fi − fj∥22, where H ∈ Rn×d and F ∈ Rn×c are semantic representa-
tions and eigenvector matrix, d and c indicate number of dimensions and classes, and n indicates
the number of nodes. To reduce the computation costs, the proposed method proposes to only
calculate sij between node vi and its k nearest neighbors. Therefore, the time complexity of Eq.
(21) is O(nk). Moreover, the proposed method proposes to replace the eigendecomposition with a
projection head and orthogonalization layer to further reduce the time complexity. Specifically, the
time complexity of the orthogonal process for H and Y with the QR decomposition is O(nd2) and
O(nc2), respectively. The time complexity of the inversion process in Eq. (12) for H and F is O(d3)
and O(c3). Moreover, the time complexity of the spectral loss is O(nkc) and the time complexity
of Z = SH is O(nkd). In addition, the time complexity of node-level and cluster-level consistency
constraints are O(nd2) and O(n), respectively. Therefore, the overall complexity of the proposed
method is O(nd2 + nc2 + nkd + nkc + d3 + c3) in each epoch, where d2, c2 < n, thus is scaled
linearly with the sample size.

C Proofs of Theorems

This section provides definition, detailed proofs of Theorems, and derivation process in Section 2,
including the proofs of Theorem 2.2 in Section C.1, the proofs of Theorem 2.3 in Section C.2, the
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proofs of Theorem 2.5 in Section C.3, the proofs of Theorem 2.6 in Section C.4, the derivation of Eq.
(7) in Section C.5, the derivation of the closed-form solution and parameters in Section C.6, and the
derivation of the orthogonalization in Section C.7.

C.1 Proof of Theorem 2.2

Theorem C.1. (Restating Theorem 2.2 in the main text). Assume the learned representations H
are orthogonal, optimizing previous meta-path-based and adaptive-graph-based SHGL methods is
equivalent to performing spectral clustering with additional regularization, i.e.,

min
H

LSHGL
∼= min

H
Tr(HT L̂H) +R(H) s.t., HTH = I, (22)

where R(·) indicates the regularization term, L̂ indicates the Laplacian matrix of the meta-path-based
graph or the adaptive graph structure.

Proof. First, we prove the connection between previous meta-path-based SHGL methods and spectral
clustering. To do this, take a heterogeneous graph with two meta-paths as an example, we let
G = {G(1) ∪ G(2)} indicates the union of all meta-path-based graph views. Moreover, we denote the
representations of previous methods before the message-passing as H (generally obtained by linear
mapping from original node features). In addition, we denote the node representations of different
graph views after the message-passing as Z(r), respectively, where r = 1, 2, i.e.,

z
(r)
i = hi + {hj , vj ∈ N (vi)

(r)}, (23)

where N (vi)
(r) indicates the one-hop neighbors of node vi in the r-th meta-path-based graph.

Based on the node representations Z(r) of each graph, previous meta-path-based SHGL methods
generally propose to extract the invariant information among node representations from different
meta-path-based graphs. Here, we take the Mean Squared Error (MSE) loss as a simple example
to extract the invariance and then conduct an analysis of previous meta-path-based SHGL methods.
Therefore, the objective function of previous meta-path-based SHGL methods can be formulated as:

min
θ

n∑
i

||z(1)i − z
(2)
i ||22. (24)

Based on Eq. (23), we can rewrite Eq. (24) as:

min
θ

n∑
i

||z(1)i − z
(2)
i ||22

= min
θ

n∑
i

||hi + {hj , vj ∈ N (vi)
(1)} − hi − {hk, vk ∈ N (vi)

(2)}||22

= min
θ

n∑
i

||hi − {hk, vk ∈ N (vi)
(2)}+ {hj , vj ∈ N (vi)

(1)} − hi||22

= min
θ

n∑
i

||hi − {hk, vk ∈ N (vi)
(2)}||22 + ||{hj , vj ∈ N (vi)

(1)} − hi||22

+ 2

n∑
i

⟨(hi − {hk, vk ∈ N (vi)
(2)}) · ({hj , vj ∈ N (vi)

(1)} − hi)⟩

= min
θ

n∑
i

n∑
k

G(2)
i,k ||hi − hk||22 +

n∑
i

n∑
j

G(1)
i,j ||hi − hj ||22

+ 2

n∑
i

⟨(hi − {hk, vk ∈ N (vi)
(2)}) · ({hj , vj ∈ N (vi)

(1)} − hi)⟩

= min
θ

n∑
i

n∑
l

Gi,l||hi − hl||22 + 2

n∑
i

⟨({hi − {hk, vk ∈ N (vi)
(2))

· ({hj , vj ∈ N (vi)
(1)} − hi)⟩.

(25)
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Denote D as the degree matrix of G, denote L = D− G as the graph laplacian, and denote hi ∈ Rn

hj ∈ Rd is the i-th column and j-th row of H, according to the spectral graph analysis in [52], we
further have

(hi)TL(hi) = (hi)TD(hi)T − (hi)TG(hi)T

=

n∑
j=1

djj(h
ij)2 −

n∑
j,k=1

hijhikGjk

=
1

2
(

n∑
j=1

djj(h
ij)2 − 2

n∑
j,k=1

hijhikGjk +

n∑
k=1

dkk(h
ik)2)

=
1

2

n∑
j,k=1

Gjk(h
ij − hik)2.

(26)

Therefore, we further have
d∑

i=1

(hi)TL(hi) =
1

2

n∑
j,k=1

Gjk

d∑
i=1

(hij − hik)2. (27)

That is

Tr(HTLH) =
1

2

n∑
j,k=1

Gjk||hj − hk||22. (28)

where Tr(·) indicates the matrix trace. Therefore, based on Eq. (25) and Eq. (28), we can obtain

min
θ

n∑
i

||z(1)i − z
(2)
i ||22

= min
θ

2Tr(HTLH) + 2

n∑
i

⟨(hi − {hk, vk ∈ N (vi)
(2)}) · (hj , vj ∈ N (vi)

(1)} − hi})⟩

= min
θ

2Tr(HTLH) + 2

n∑
i,j,k

Gi,jGi,k⟨(hi − hj) · (hi − hk)⟩.

(29)

Based on the assumption that HTH = I, we can conclude that previous meta-path-based SHGL
methods, which extract the invariance among different graphs, equals the known spectral clustering
with additional regularization. Note that the MSE loss in the above example can be replaced by other
contrastive or non-contrastive loss (e.g., InfoNCE [36]), and we can easily obtain similar results.

After that, we further prove the connection between recent adaptive-graph-based SHGL methods
[30] and the spectral clustering. Denote the self-expressive matrix in [30] as S, and denote the
representations after projection by linear transformation as H. Moreover, denote DS as the degree
matrix of S and denote LS = DS − S as the graph Laplacian. Given that the self-expressive matrix
is symmetrical and non-negative, the objective function of previous adaptive-graph-based SHGL
methods can be formulated as:

min
θ,S

∥H− SH∥2F + α

n∑
i,j=1

dijsij + β

n∑
i,j=1

s2ij , (30)

where α and β are non-negative parameters, and dij indicates the distance among nodes based on H
or original node features. Based on the self-expressive constraint in the first term of Eq. (30), we have

hi =

n∑
j=1,j ̸=i

sijhj ,∀1 ≤ i ≤ n. (31)

Therefore, for any hi where i ∈ [1, n], we further have

hT
i hi =

n∑
j=1,j ̸=i

sijh
T
i hj . (32)
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Based on the constraint sTi 1 = 1, we obtain

(

n∑
j=1

sij +

n∑
j=1

sij)h
T
i hi = 2

∑
j=1,i̸=j

sijh
T
i hj . (33)

Therefore, the constraint in Eq. (31) can be transformed as:

(

n∑
j=1

sij +

n∑
j=1

sij)h
T
i hi − 2

∑
j=1,i̸=j

sijh
T
i hj = 0. (34)

In addition, we further have
n∑

i=1

((

n∑
j=1

sij +

n∑
j=1

sij)h
T
i hi − 2

∑
j=1,i̸=j

sijh
T
i hj) =

n∑
i=1

n∑
j=1

∥hi − hj∥2 sij . (35)

Similar to the proof above, we can also rewrite Eq. (30) as:

min
θ,S

2Tr(HTLH) + α
n∑

i,j=1

dijsij + β

n∑
i,j=1

s2ij . (36)

Based on the assumption that HTH = I, we can also conclude that previous adaptive-graph-based
SHGL methods are equal to the known spectral clustering with additional regularization. Therefore,
we complete the proof.

C.2 Proof of Theorem 2.3

To prove Theorem 2.3, we first give the definition of the graph-cut algorithm as follows.

Definition C.2. (Graph-Cut) For a given number k of subsets, the mincut approach simply consists
in choosing a partition V1, ..., Vd which minimizes

Cut (V1, . . . , Vd) :=
1

2

d∑
i=1

W
(
Vi, V̄i

)
,

RatioCut (V1, . . . , Vd) :=
1

2

d∑
i=1

W
(
Vi, V̄i

)
|Vi|

=

d∑
i=1

Cut
(
Vi, V̄i

)
|Vi|

,

(37)

where W(Va, Vb) :=
∑

i∈Va,j∈Vb
wij indicates the weight between different subsets, and V̄ is the

complement of V .

Theorem C.3. (Restating Theorem 2.3 in the main text). Under the same assumption in Theorem
2.2, optimizing previous meta-path-based and adaptive-graph-based SHGL methods is approximate
to performing the RatioCut (V1, . . . , Vd) algorithm that divides the learned representations into d
partitions {V1, . . . , Vd}, i.e.,

min
H

LSHGL
∼= min

H
RatioCut (V1, . . . , Vd) , (38)

where d indicates the dimension of representations H.

Proof. Given a partition of V with n samples into d sets V1, ..., Vd, we first define d indicator vectors
hj = (h1,j , ...,hn,j)

′ by

hi,j =

{
1/
√
|Vj | if vi ∈ Vj

0 otherwise (i = 1, . . . , n; j = 1, . . . , d) (39)

Then we set the matrix H ∈ Rn×d as the matrix containing those d indicator vectors as columns.
Observe that the columns in H are orthonormal to each other, i.e., HTH = I, where I is the identity
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matrix. Denote L as the unnormalized graph Laplacian, according to [52], we can obtain

hT
i Lhi =

1

2

|Vi∪V̄i|∑
j,k=1

wjk(hj − hk)
2

=
1

2

∑
j∈Vi,k∈V̄i

wjk

(√
|V̄i|
|Vi|

+

√
|Vi|
|V̄i|

)2

+
1

2

∑
j∈V̄i,k∈Vi

wjk

(
−

√
|V̄i|
|Vi|

−

√
|Vi|
|V̄i|

)2

= cut(Vi, V̄i)

(
|V̄i|
|Vi|

+
|Vi|
|V̄i|

+ 2

)
= cut(Vi, V̄i)

(
|Vi|+ |V̄i|

|Vi|
+

|Vi|+ |V̄i|
|V̄i|

)
= |Vi| · RatioCut(Vi, V̄i).

(40)

Moreover, we have hT
i Lhi = (HTLH)ii. Therefore, we have

Tr(HTLH) =
d∑

i=1

(HTLH)ii =
d∑

i=1

hT
i Lhi = RatioCut (V1, . . . , Vd) , (41)

where Tr(·) indicates the trace of a matrix. Therefore, minimizing the RatioCut (V1, . . . , Vk) can be
transferred to

min
V1,...,Vd

Tr(HTLH) s. t. ,HTH = I,H as defined in Eq. (39) . (42)

Then we consider relaxing the constraints of the problem by allowing the entries of the matrix H to
assume arbitrary real values. As a result, the problem is transformed into a relaxed version:

min
H∈Rn×d

Tr(HTLH) s. t. ,HTH = I. (43)

This is the standard spectral clustering, as we mentioned above. Therefore, we can obtain that
conducting spectral clustering is approximating to conducting the RatioCut algorithm. which divide
the learned representations into d partitions, where d indicates the dimension of representations. Thus,
we complete the proof.

C.3 Proof of Theorem 2.5

Theorem C.4. (Restating Theorem 2.5 in the main text). Optimizing the spectral loss Lsp leads to
performing the spectral clustering based on the affinity matrix S with c connected components and
conducting RatioCut (V1, . . . , Vc) algorithm to divide the learned representations into c partitions,
i.e.,

minLsp ⇒ minTr(YTLSY) ⇒ minRatioCut(V1, . . . , Vc). (44)

Proof. According to Ky Fan’s Theorem [5], the spectral loss Lsp can be written as:

Lsp =
1

n2

n∑
i,j=1

sij ∥yi − yj∥2 − γH(Y)

=
2

n2
Tr(YTLSY)− γH(Y).

(45)

Therefore, optimizing the proposed method with Lsp is equivalent to performing the spectral cluster-
ing with additional regularization.

Note that, under the orthogonal constraint, the minimum of Lsp is attained when the column space of
Y is the subspace of the c eigenvectors corresponding to the smallest c eigenvalues of LS. In other
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words, the learned Y can perfectly fit the eigenvectors when the minimum of Lsp is attained. Recall
the objective function in the main text, i.e.,

minS,F
∑n

i,j=1(∥hi − hj∥22sij + αs2ij + β ∥fi − fj∥22 sij)
s.t., ∀i, sTi 1 = 1, 0 ≤ si ≤ 1,FTF = I.

(46)

Therefore, when the minimum of Lsp is attained, the constraints in the above function can be satisfied,
i.e., rank(LS) = n−c holds. As a result, we can obtain the affinity matrix S with exactly c connected
components.

Moreover, according to the Theorem C.3, we have

Tr(YTLY) =

c∑
i=1

(YTLSY)ii =

c∑
i=1

yT
i LSyi = RatioCut (V1, . . . , Vc) . (47)

That is, the proposed method divides the learned representations into c partitions, where c indicates
the number of classes. Thus, we complete the proof.

C.4 Proof of Theorem 2.6

We first follow previous works [33] to define the Complexity Measure to evaluate the generalization
ability of neural networks based on the Davies Bouldin Index.
Definition C.5. (Complexity Measure) The complexity measure of neural networks can be defined as:

C =
1

k

k−1∑
i=0

max
i ̸=j

Si + Sj

Mi,j
, (48)

where

Si =
(

1
ni

∑ni

τ

∣∣Oi
τ − µi

∣∣p)1/2 for i = 1 · · · k
Mi,j = ∥µi − µj∥2 for i, j = 1 · · · k,

(49)

i and j are indices of two different classes, O(τ)
i is the output representation of the τ -th sample

belonging to class i for the given model, µi is the cluster centroid of the representations of class i, Si

is a measure of scatter within representations of class i, and Mi,j is a measure of separation between
representations of classes i and j.

Moreover, we further follow previous works [33, 16] to define the generalization bound G of a model
based on the model complexity, i.e.,
Definition C.6. (Generalization Bound) For any δ ∈ [0, 1], with probability at least 1 − δ, the
generalization bound G of a model follows the inequality, i.e.,

G ≤ 1

n

n∑
i=1

ℓ(f(xi),yi) +

√
C

n
+O(

√
log(1/δ)

n
), (50)

where (xi,yi) is a pair of labeled data, f is the model, l is the loss function, n is the number of
labeled data, C is the model complexity measure.

Based on the Definitions above, we can derive the Theorem as follows.
Theorem C.7. (Restating Theorem 2.6 in the main text). The proposed method with dual consistency
constraints achieves a lower boundary of the model complexity C and a higher generalization ability
boundary G than previous SHGL with the node-level consistency constraint only, i.e.,

inf(CSCHOOL) < inf(CSHGL), sup(GSCHOOL) > sup(GSHGL), (51)

where inf(·) and sup(·) indicates lower bound and upper bound, respectively.

Proof. We take the binary classification as an example, Eq. (48) can be rewritten as S0+S1

M0,1
. Then, for

the heterogeneous representations Z̃ learned by the heterogeneous encoder, we can obtain its cluster
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centroid µ0:

µ0 = E[z̃0i ] = E[W(Xi +
∑

j∈N (vi)

1

d
Xj)]

= W
(
P0 · µX0

+ (1− P0) · µXj

)
,

(52)

where N (vi) indicates the neighbors of vi from other type of nodes, W indicates the parameters of
the heterogeneous encoder, µX0 indicates the cluster centroid of the node features of class i, µXj

indicates the cluster centroid of the node features of other types of nodes. Similarly, we further have:

µ1 = W (P1 · µX1
+ (1− P1) · µXk

) , (53)

where µXk
indicates the cluster centroid of the node features of other types of nodes.

Therefore, we can obtain

M0,1 = ∥µ0 − µ1∥
=
∥∥W (

P0 · µX0 + (1− P0) · µXj − P1 · µX1 − (1− P1) · µXk

)∥∥ . (54)

Moreover, we have

S2
0 = E[

∥∥O0
i − µ0

∥∥2] = E
[
< O0

τ − µ0, O
0
τ − µ0 >

]
= P 2

0E[
∥∥W (

X0
i − µX0

)∥∥2] + (1− P0)
2 E[∥W(Xj

i − µXj
)∥2],

(55)

where < ·, · > is inner production. To rewrite the above function, we first derive the following
inequality, i.e.,

a2b+ (1− a)2c ≥ bc

b+ c
, (56)

where 0 ≤ a ≤ 1, and 0 ≤ b, c. To prove the inequaility in Eq. (56), we construct function
f(a) = a2b+ (1− a)2c− bc

b+c . We then take the derivative of f(a), i.e.,

f ′(a) = 2ab− 2c+ 2ac. (57)

Then we let f ′(a) = 0, and have a = c
b+c . We have

f(
c

b+ c
) =

c2b

(b+ c)2
+

b2c

(b+ c)2
− bc

b+ c
= 0. (58)

In addition, we take the second-order derivative of f(a) and obtain

f ′′(a) = 2(b+ c) ≥ 0. (59)

Therefore, f(a) is decreasing when a < c
b+c and increasing when a > c

b+c , and reaches its minimum
0 at c

b+c . As a result, f(a) ≥ 0 always holds for 0 ≤ a ≤ 1. Thus, we prove the inequality in Eq.
(56).

Given the above inequality in Eq. (56), for Eq. (55), we let σ2
0 = E[∥W(X

(i)
0 − µX0

)∥2], σ2
1 =

E[∥W(X
(i)
1 −µX1

)∥2], σ2
j = E[∥W(X

(i)
j −µXj

)∥2], and σ2
k = E[∥W(X

(i)
k −µXk

)∥2]. Moreover,
we replace a, b, and c in Eq. (56) with P0, σ2

0 , and σ2
j , respectively. Then Eq. (55) can be rewritten

as:

S2
0 = P 2

0 σ
2
0 + (1− P0)

2
σ2
j ≥

σ2
0σ

2
j

σ2
0 + σ2

j

. (60)

Similarly, we can also reach the following inequality:

S2
1 = P 2

1 σ
2
1 + (1− P1)

2
σ2
k ≥ σ2

1σ
2
k

σ2
1 + σ2

k

. (61)

Therefore, the complexity measure C can calculated by:

C =

√
S2
0 +

√
S2
1

M0,1
≥

σ0σj√
σ2
0+σ2

j

+ σ1σk√
σ2
1+σ2

k

M0,1
. (62)
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Note that the cluster-level consistency constraint minimizes the first term in the S2
0 and S2

1 (i.e., σ2
0

and σ2
1). Moreover, we can observe that Eq. (60) and Eq. (61) are the increasing function with

respect to σ0 and σ1. Therefore, minimizing the cluster-level consistency constraint is equivalent to
minimizing the lower bound of the model complexity. Therefore, the lower bound of complexity
measure C of the model with the dual consistent constraints is less than the model without it,
i.e., inf(CSCHOOL) < inf(CSHGL). As a result, according to [33], we can conclude that the
representations learned by the dual consistent constraints have a higher bound of generalization ability
than previous methods with instance-level constraint only, i.e., sup(GSCHOOL) > sup(GSHGL)
thus we complete the proof.

C.5 Derivation of Eq. (7).

Recalling Eq. (7), i.e.,

c∑
i=1

τi (LS) = min
FTF=I

Tr(FTLSF) = min
FTF=I

1

2

∑
ij

sij ∥fi − fj∥22 , (63)

where F ∈ Rn×c is the eigenvector (i.e., FTF = I) of LS corresponding to the c eigenvalues.
We first derive the first equation. The eigendecomposition of the symmetric LS can be written as:
LS = BΛBT , where B is the eigenvector matrix and Λ is the diagonal matrix whose diagonal
elements are the eigenvalues of LS. We have:

Tr(FTLSF) = Tr(


fT1
fT2
...
fTc

LS ( f1 f2 · · · fc) )

= Tr(


fT1 LSf1 fT1 LSf2 · · · fT1 LSfc
fT2 LSf1 fT2 LSf2 · · · fT2 LSfc

...
...

. . .
...

fTc LSf1 fTc LSf2 · · · fTc LSfc

)

=
∑c

i=1 Λi,

(64)

where
∑c

i=1 Λi indicates the sum of any c eigenvalues of LS. Obviously, minFTF=I Tr(F
TLSF)

achieves its minimization when F is the eigenvectors corresponding to c smallest eigenvalues.
Therefore we have minS

∑c
i=1 τi (LS) = minFTF=I Tr(F

TLSF) and the first equation in Eq. (63)
is proved. Moreover, based on Eq. (26)-Eq. (28), we can further complete the proof the second
equation in Eq. (63).

C.6 Derivation of the Closed-Form Solution and Parameters.

We first obtain the Lagrangian function of the objective function in Eq. (9) in the main text:

L(si, λ, ε) = ∥si +
1

2α
di∥22 − λ(sTi − 1)− εTi si, (65)

where λ and εi ≥ 0 are the Lagrangian multipliers. Based on the KKT condition [3], we can obtain
the closed-form solution of the above Lagrangian function, i.e.,

sij = (− 1

2αi
dij + λi)+, (66)

where (·)+ indicates max{·, 0}. For the sparse affinity matrix S, each vector si contains k nonzero
elements only. Therefore, we have sik ≥ 0 and si,k+1 = 0. That is, − 1

2αi
dik + λi > 0 and

− 1
2αi

di,k+1 + λi ≤ 0. Then based on Eq. (66) and the constraint sTi 1 = 1, we further have

k∑
j=1

(− 1

2αi
dij + λi) = 1. (67)
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Table 3: Statistics of all datasets.
Datasets Type #Nodes #Node Types #Edges #Edge Types Target Node #Training #Test

ACM Heter 8,994 3 25,922 4 Paper 600 2,125

Yelp Heter 3,913 4 72,132 6 Bussiness 300 2,014

DBLP Heter 18,405 3 67,946 4 Author 800 2,857

Aminer Heter 55,783 3 153,676 4 Paper 80 1,000

Photo Homo 7,650 1 238,162 2 Photo 765 6,120

Computers Homo 13,752 1 491,722 2 Computer 1,375 11,002

Therefore, we obtain λi =
1
k + 1

2kαi

∑k
j=1 dij . Moreover, we have the following inequality for αi,

i.e.,
k

2
dik − 1

2

k∑
j=1

dij < αi ≤
k

2
di,k+1 −

1

2

k∑
j=1

dij . (68)

Hence, to achieve an optimal solution si contain precisely k non-zero values, we can set αi as:

αi =
k

2
di,k+1 −

1

2

k∑
j=1

dij . (69)

Then the overall α could be set to the mean of α1, α2, ..., αn. Then α can be obtained by:

α =
1

n

n∑
i=1

(
k

2
di,k+1 −

1

2

k∑
j=1

dij). (70)

C.7 Derivation of the Orthogonalization

Recalling Eq. (12) in the main text:

Y =
√
nP
(
R−1

)
, (71)

where P is the cluster assignment matrix, and R is a upper triangular matrix obtained from the QR
decomposition P = ER and ETE = I. Then we have

P
(
R−1

)
= E. (72)

We further have
YTY = nETE

= nI.
(73)

Therefore, we can obtain that Y is orthogonal.

D Experimental Settings

This section provides detailed experimental settings in Section Experiments, including the description
of all datasets in Section D.1, summarization of all comparison methods in Section D.2, evaluation
protocol in Section D.3, model architectures and settings in Section D.4, and computing resource
details in Section D.5.

D.1 Datasets

We use four public heterogeneous graph datasets and two public homogeneous graph datasets from
various domains. Heterogeneous graph datasets include three academic datasets (i.e., ACM [56],
DBLP [56], and Aminer [11]), and one business dataset (i.e., Yelp [71]). Homogeneous graph datasets
include two sale datasets (i.e., Photo and Computers [43]). Table 3 summarizes the data statistics. We
list the details of the datasets as follows.
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• ACM is an academic heterogeneous graph dataset. It contains three types of nodes (paper
(P), author (A), subject (S)), four types of edges (PA, AP, PS, SP), and categories of papers
as labels.

• Yelp is a business heterogeneous graph dataset. It contains four types of nodes (business
(B), user (U), service (S), level (L)), six types of edges (BU, UB, BS, SB, BL, LB), and
categories of businesses as labels.

• DBLP is an academic heterogeneous graph dataset. It contains three types of nodes (paper
(P), authors (A), conference (C)), four types of edges (PA, AP, PC, CP), and research areas
of authors as labels.

• Aminer is an academic heterogeneous graph dataset. It contains three types of nodes (paper
(P), author (A), reference (R)), four types of edges (PA, AP, PR, RP), and categories of
papers as labels.

• Photo and Computers are two co-purchase homogeneous graph datasets. They are two
networks extracted from Amazon’s co-purchase data. Nodes are products, and edges denote
that these products were often bought together. Products are categorized into several classes
by the product category.

Table 4: The characteristics of all comparison methods.

Methods Hetero Homo Semi-sup Self-sup/unsup Meta-path Adaptive
DeepWalk (2014) ✓ ✓

GCN (2017) ✓ ✓
GAT (2018) ✓ ✓
DGI (2019) ✓ ✓
GMI (2020) ✓ ✓

MVGRL (2020) ✓ ✓
GRACE (2020) ✓ ✓

GCA (2021) ✓ ✓
G-BT (2022) ✓ ✓

COSTA (2022) ✓ ✓
DSSL (2022) ✓ ✓
LRD (2023) ✓ ✓

Mp2vec (2017) ✓ ✓ ✓
HAN (2019) ✓ ✓ ✓
HGT (2020) ✓ ✓

DMGI (2020) ✓ ✓ ✓
DMGIattn (2020) ✓ ✓ ✓

HDMI (2021) ✓ ✓ ✓
HeCo (2021) ✓ ✓ ✓

HGCML (2023) ✓ ✓ ✓
CPIM (2023) ✓ ✓ ✓

HGMAE (2023) ✓ ✓ ✓
HERO (2024) ✓ ✓ ✓

SCHOOL (ours) ✓ ✓ ✓

D.2 Comparison Methods

The comparison methods include eleven heterogeneous graph methods and twelve homogeneous
graph methods. Heterogeneous graph methods include Mp2vec [4], HAN [56], HGT [13], DMGI
[38], DMGIattn [38], HDMI [18], HeCo [57], HGCML [58], CPIM [31], HGMAE [48], and HERO
[30]. Homogeneous graph methods include GCN [20], GAT [50], DeepWalk [41], DGI [51], GMI
[40], MVGRL [8], GRACE [75], GCA [76], G-BT [2], COSTA [70], DSSL [61], and LRD [63].
The characteristics of all methods are listed in Table 4, where “Hetero” and “Homo” indicate
the methods designed for the heterogeneous graph and homogeneous graph, respectively. “Semi-
sup", and “Self-sup/unsup" indicate that the method conducts semi-supervised learning, and self-
supervised/unsupervised learning, respectively. “Meta-path” indicates that the method requires
pre-defined meta-paths during the training process. “Adaptive” indicates that the method learns an
adaptive graph structure instead of traditional meta-paths.
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Table 5: Settings for the dimensions of encoders (i.e., gϕ ∈ Rf×d1 and fθ ∈ Rf×d1) and projection
heads (i.e., pφ ∈ Rd1×c and qγ ∈ Rd1×d2 ) on all datasets.

Settings ACM Yelp DBLP Aminer Photo Computers

f 1,902 82 334 128 745 767
d1 512 256 128 256 1024 1024
d2 64 256 256 256 256 256
c 3 3 4 4 8 10

Table 6: Clustering performance (i.e., NMI and ARI) of all methods on heterogeneous graph datasets.

Method ACM Yelp DBLP Aminer

NMI ARI NMI ARI NMI ARI NMI ARI

DeepWalk 41.6±0.5 35.3±0.6 35.1±0.8 37.7±1.1 69.0±0.2 73.3±0.3 26.2±0.3 22.4±0.4
Mp2vec 21.4±0.7 21.1±0.5 38.9±0.6 39.5±0.5 73.5±0.4 77.7±0.6 30.4±0.4 25.5±0.6

DMGI 67.8±0.9 70.2±1.0 36.8±0.6 34.4±0.7 72.2±0.8 72.8±0.9 27.3±0.9 23.1±0.8
DMGIattn 70.2±0.3 72.5±0.6 38.1±0.8 40.2±0.6 69.6±0.6 73.9±0.4 28.3±0.3 25.5±0.5
HDMI 69.5±0.5 72.3±0.7 38.9±0.6 40.7±0.8 73.1±0.3 74.4±0.4 33.5±0.4 28.9±0.5
HeCo 67.8±0.8 70.5±0.7 39.3±0.6 42.1±0.8 74.5±0.8 80.1±0.9 32.2±1.1 28.6±1.0
HGCML 69.1±0.7 71.6±0.8 37.4±0.6 39.5±0.8 74.5±0.9 75.1±1.1 35.9±0.6 31.1±0.5
CPIM 68.6±0.3 70.8±0.5 40.1±0.8 42.1±0.9 73.7±0.5 78.0±0.3 35.8±0.5 30.1±0.7
HGMAE 69.7±0.8 72.6±0.6 40.3±0.9 42.4±0.8 76.9±0.6 82.3±0.7 41.1±0.8 38.3±0.9
HERO 68.8±0.6 71.8±0.6 38.6±0.8 40.6±0.9 74.1±0.7 79.3±0.7 36.8±0.7 35.3±0.9
SCHOOL 69.6±0.7 72.7±0.5 41.2±0.9 43.5±0.6 77.1±0.6 82.5±0.5 42.4±0.6 38.8±0.8

D.3 Evaluation Protocol

We follow the evaluation in previous works [18, 37, 72] to conduct node classification and node
clustering as semi-supervised and unsupervised downstream tasks, respectively. Specifically, we first
train models with unlabeled data in a self-supervised manner and output learned node representations.
After that, the resulting representations can be used for different downstream tasks. For the node
classification task, we train a simple logistic regression classifier with a fixed iteration number, and
then evaluate the effectiveness of all methods with Micro-F1 and Macro-F1 scores. For the node
clustering task, we conduct clustering and split the learned representations into c clusters with the
K-means algorithm, then calculate the normalized mutual information (NMI) and average rand index
(ARI) to evaluate the performance of node clustering.

D.4 Model Architectures and Settings

As described in Section 2, the proposed method employs the MLP (i.e., gϕ) and the closed-form
solution of the affinity matrix S to obtain node representations Z. Moreover, the proposed method
employs the heterogeneous encoder (i.e., fθ) to obtain heterogeneous representations Z̃. In addition,
the proposed method employs the projection head pφ to obtain the cluster assignment matrix P.
After that, the proposed method employs projection head qγ to map the node representations and
heterogeneous representations into latent spaces. In the proposed method, projection head pφ and
qγ are simply implemented by the linear layer, followed by the ReLU activation. We report the
settings for the dimensions of encoders in Table 5. Finally, In the proposed method, all parameters
were optimized by the Adam optimizer [19] with an initial learning rate. Moreover, We use early
stopping with a patience of 30 to train the proposed SHGL model. In all experiments, we repeat the
experiments five times for all methods and report the average results.

D.5 Computing Resource Details

All experiments were implemented in PyTorch and conducted on a server with 8 NVIDIA GeForce
3090 (24GB memory each). Almost every experiment can be done on an individual 3090, and the
training time of all comparison methods as well as our method, is less than 1 hour.
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Table 7: Classification performance (i.e., Macro-F1 and Micro-F1) on homogeneous graph datasets.

Method Photo Computers

Macro-F1 Micro-F1 Macro-F1 Micro-F1

DeepWalk 87.4±0.5 89.7±0.3 84.0±0.3 85.6±0.4
GCN 90.5±0.3 92.5±0.2 84.0±0.4 86.4±0.3
GAT 90.2±0.5 91.8±0.4 83.2±0.2 85.7±0.4

DGI 89.3±0.2 91.6±0.3 79.3±0.3 83.9±0.5
GMI 89.3±0.4 90.6±0.2 80.1±0.4 82.2±0.4
MVGRL 90.1±0.3 91.7±0.4 84.6±0.6 86.9±0.5
GRACE 90.3±0.5 91.9±0.3 84.2±0.3 86.8±0.5
GCA 91.1±0.4 92.4±0.4 85.9±0.5 87.7±0.3
COSTA 91.3±0.4 92.5±0.3 86.4±0.3 88.3±0.4
DSSL 90.6±0.2 92.1±0.3 85.6±0.3 87.3±0.4
LRD 91.1±0.5 92.8±0.7 86.6±0.3 88.6±0.6
SCHOOL 91.9±0.4 93.1±0.3 85.9±0.6 88.7±0.5

(a) HDMI (SIL: 0.36) (b) HeCo (SIL: 0.33) (c) HERO (SIL: 0.34) (d) SCHOOL (SIL: 0.41)

Figure 3: Visualization plotted by t-SNE and the corresponding silhouette scores (SIL) of node
representations of the proposed SCHOOL and other SHGL comparison methods on the DBLP
dataset.

E Additional Experiments

This section provides some additional experimental results to support the proposed method, including
experiments on the effectiveness of the affinity matrix in Section E.1, visualization of the learned
representations in Section E.4, parameter analysis in Section E.5, experimental results on the node
clustering task in Table 6, and experimental results on homogeneous graph datasets in Table 7.

E.1 Effectiveness of the Rank-Constrained Affinity Matrix

The proposed method proposes to learn a rank-constrained affinity matrix with exact c components to
capture the connections within the same class while mitigating the connections from different classes.
This actually shares part of a similar idea with the self-attention mechanism, which aims to assign
weights for all sample pairs. To further verify the effectiveness of the rank-constrained affinity matrix,
we investigate the performance of the variants methods with the cosine similarity, the affinity matrix,
the self-attention mechanism, and report the results in Table 8.

Obviously, the proposed method with the affinity matrix obtains superior performance than the cosine
similarity and the self-attention mechanism on all datasets. The reason can be attributed to the fact
that the affinity matrix in the proposed method is constrained to contain exactly c components to
mitigate noisy connections from different classes. In contrast, although either the cosine similarity or
self-attention mechanisms may assign small weights for node pairs from different classes, it inevitably
introduces noise during the message-passing process to affect the quality of node representations. As
a result, the effectiveness of the rank-constrained affinity matrix is verified.

E.2 Effectiveness of the Node-level Consistency Constraint

To verify the effectiveness of the node-level consistency constraint, we conducted experiments to
replace the proposed node-level consistency constraint with the InfoNCE loss and reported the
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Table 8: Classification performance (i.e., Macro-F1 and Micro-F1) of variant methods with the affinity
matrix, cosine similarity and, self-attention mechanisms on heterogeneous graph datasets.

Method ACM Yelp DBLP Aminer

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

cosine similarity 85.3±0.9 85.1±1.1 88.2±0.4 87.7±0.7 89.3±0.7 90.5±0.8 67.6±0.5 75.4±0.6
self-attention 88.7±0.8 88.4±0.7 92.0±0.5 91.7±0.6 91.2±0.4 92.1±0.6 73.2±0.7 82.1±0.6
affinity matrix 92.7±0.6 92.6±0.5 93.0±0.7 92.8±0.4 94.0±0.3 94.7±0.4 77.5±0.9 86.8±0.7

Table 9: Classification performance (i.e., Macro-F1 and Micro-F1) of the affinity matrix and self-
attention mechanisms on heterogeneous graph datasets.

Method ACM Yelp DBLP Aminer

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

InfoNCE 91.3±1.1 91.2±0.8 92.4±0.7 92.0±0.8 94.1±0.6 94.6±0.5 76.8±0.4 85.4±0.3
Proposed 92.7±0.6 92.6±0.5 93.0±0.7 92.8±0.4 94.0±0.3 94.7±0.4 77.5±0.9 86.8±0.7

results in Table 9. From Table 9, we can find that the variant method with InfoNCE loss obtains
a similar performance to the proposed method. However, the InfoNCE loss generally requires the
time complexity of O(n2), where n is the number of nodes. This may introduce large computation
costs during the training process. In contrast, the proposed method simply designs the node-level
consistency constraint in Eq. (15) to capture the invariant information with the time complexity of
O(nd2), where d is the representation dimension and generally d2 < n.
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Figure 4: Classification performance (i.e., Macro-F1) of the proposed method under different clusters.

E.3 Effectiveness of Different Cluster Numbers

The proposed method divides the learned representations into several clusters. Generally, the number
of clusters equals to c obtains better results because, in downstream tasks, it is easier to distinguish c
clusters than a larger number of clusters. To verify it, we changed the number of clusters and reported
the results in Figure 4. Obviously, the proposed method obtains the best results when the number
of clusters equals to c and decreases as the number of classes increases. This is reasonable because
when the number of classes increases, the nodes within the same class may be assigned to different
clusters, thus making it difficult to classify them correctly.

E.4 Visualization of the Learned Representations

To further verify the effectiveness of the learned representations, we visualize node representations
of the proposed SCHOOL and other SHGL comparison methods on the DBLP dataset and report
the results and corresponding silhouette scores (SIL) in Figure 3. Obviously, in the visualization,
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Figure 5: The classification performance of the proposed method at different parameter settings
(i.e., µ, and δ) on all heterogeneous graph datasets.

the node representations learned by the proposed method exhibit better clustering status, i.e., nodes
with different class labels are more widely separated. Moreover, the representations learned by the
proposed method obtain the best silhouette score, compared to other SHGL comparison methods
(i.e., HDMI, HeCo, and HERO). The reason can be attributed to the fact that the proposed method
conducts spectral clustering explicitly, and cuts the learned graph into c components as well as further
utilizes the clustering information to facilitate downstream tasks.

E.5 Parameter Analysis

In the proposed method, we employ non-negative parameters (i.e., µ, and δ) to achieve a trade-off
between different terms of the final objective function J . To investigate the impact of µ, and δ with
different settings, we conduct the node classification on all heterogeneous graph datasets by varying
the value of parameters in the range of [10−3,103] and reporting the results in Figure 5. From Figure
5, we can find that if the values of parameters are too small (e.g., 10−3), the proposed method cannot
achieve satisfactory performance. This verifies that both node-level and cluster-level consistency
constraints are significant for the proposed method.

29



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] We discuss the limitations of the work in Section 4.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes] We provide the assumptions and complete proof in Appendix C.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes] See Section 3 and Appendix D.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes] We released codes and data at https://github.com/YujieMo/SCHOOL.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes] We specify all the training and test details in Appendix D.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes] We list the details of experiments compute resources in Appendix D.5.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes] We discuss broder impacts in Section 4.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

30

https://github.com/YujieMo/SCHOOL
https://neurips.cc/public/EthicsGuidelines


Answer: [NA]
12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]

31


	Introduction
	Method
	Revisiting Previous SHGL Methods from Spectral Clustering
	Rank-Constrained Spectral Clustering
	Dual Consistency Constraints

	Experiments
	Experimental Setup
	Datasets
	Comparison Methods

	Results Analysis
	Effectiveness on Heterogeneous and Homogeneous Graph
	Ablation Study
	Visualization


	Conclusion
	Related Work
	Self-Supervised Heterogeneous Graph Learning
	Spectral Clustering

	Algorithm and Complexity Analysis
	Algorithm
	Complexity Analysis

	Proofs of Theorems
	Proof of Theorem 2.2
	Proof of Theorem 2.3
	Proof of Theorem 2.5
	Proof of Theorem 2.6
	Derivation of Eq. (7).
	Derivation of the Closed-Form Solution and Parameters.
	Derivation of the Orthogonalization

	Experimental Settings
	Datasets
	Comparison Methods
	Evaluation Protocol
	Model Architectures and Settings
	Computing Resource Details

	Additional Experiments
	Effectiveness of the Rank-Constrained Affinity Matrix
	Effectiveness of the Node-level Consistency Constraint
	Effectiveness of Different Cluster Numbers
	Visualization of the Learned Representations
	Parameter Analysis


