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Abstract

Reinforcement learning from human feedback001
(RLHF) and, at its core, reward modeling have002
become a crucial part of training powerful large003
language models (LLMs). One commonly over-004
looked factor in training high-quality reward005
models (RMs) is the effect of the base model,006
which is becoming more challenging to choose007
given the rapidly growing pool of LLMs. In008
this work, we present a systematic analysis of009
the effect of base model selection on reward010
modeling performance. Our results show that011
the performance can be improved by up to 14%012
compared to the most common (i.e., default)013
choice. Moreover, we showcase the strong sta-014
tistical relation between some existing bench-015
marks and downstream performances. We also016
demonstrate that the results from a small set017
of benchmarks could be combined to boost the018
model selection (+18% on average in the top019
5-10). Lastly, we illustrate the impact of differ-020
ent post-training steps on the final performance021
and explore using estimated data distributions022
to reduce performance prediction error.023

1 Introduction024

Reinforcement learning from human feedback025

(RLHF) (Stiennon et al., 2020; Ouyang et al., 2022;026

Bai et al., 2022) has been a critical part of recent027

advancements in large language models (LLMs)028

such as OpenAI’s O1 (OpenAI, 2024), Anthropic’s029

Claude (Anthropic, 2024), and Google’s Gem-030

ini (Gemini Team, 2023). At the core of RLHF031

methods, Reward Models (RMs) are used to guide032

the LLM (i.e., policy) training by scoring generated033

responses (Schulman et al., 2017; Ahmadian et al.,034

2024). Most commonly, RMs are evaluated on035

RewardBench1 (Lambert et al., 2024b), consisting036

of 2985 binary preference tasks, 23 subtasks, and037

four subcategories. The RewardBench leaderboard038

reflects a bias toward a single model family, with039

1allenai/reward-bench

Figure 1: Ratio of the base models used in the top 30
entries of RewardBench (Dec 2024). Almost all the
entries are trained on top of a small set of base models
(e.g., Llama-3.x models comprise 50% of the entries).

more than 50% of the top 30 entries (see Figure 1) 040

built on top of a Llama-3.x model (Dubey et al., 041

2024) However, relying on a single model fam- 042

ily without exploration is inherently suboptimal, 043

regardless of Llama-3.x models’ quality. 044

Considering this suboptimality, we hypothesize 045

that the base model is a critical hyperparameter 046

that substantially impacts the downstream perfor- 047

mance. To test this hypothesis, we compare 40 048

popular models across various sizes and families 049

(see Appendix C for more details). Our experi- 050

ments show that replacing the popular base model 051

(i.e., LLama-3.x) with the best model of similar 052

size leads to gains ranging from 3% to 14%. While 053

these results prove our hypothesis, running such 054

a search over the plethora of available models is 055

extremely expensive. This obstacle inspires the 056

need for robust approaches that could either limit 057

the search perimeter or help us make a selection 058

apriori. However, the criteria for selecting a model 059

apriori are often unclear and multifaceted. 060

Prior works in RLHF (Stiennon et al., 2020; Gao 061

et al., 2023a) have examined the relation between 062

the model size and performance. Moreover, recent 063

works (Ruan et al., 2024; Polo et al., 2024) have 064
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used compute metrics (e.g., training tokens) and065

simple capabilities measured by standard bench-066

marks (e.g., MMLU (Hendrycks et al., 2021)) to067

predict emergent capabilities of LLMs. Inspired068

by these works, we use these features to systemati-069

cally analyze the base models to identify core capa-070

bilities and attributes that yield high-quality RMs.071

Our experiments show that while performances072

on many benchmarks and reward modeling have073

strong statistical correlations, they are insufficient074

for the broader model selection problem. More-075

over, we show significant improvements (+18% on076

average in the top 5-10) can be gained over any sin-077

gle benchmark-based selection, only using a small078

subset of benchmarks.079

While our analysis covers various elements, it080

does not investigate the effect of different training081

stages of a model, which have grown in numbers082

with recent advancements. Hence, we separately083

investigate the pre-training and post-training stages,084

relying on publicly available intermediate check-085

points (Lambert et al., 2024a). For the post-training086

stage, we demonstrate the positive impact of the su-087

pervised fine-tuning (SFT) stage (+15.5%) while088

showcasing the negative effect of the following089

alignment steps (3-5% drop). For the pre-training090

stage, we focus on estimating (Bakman et al., 2024)091

and analyzing the data composition, which has092

emerged as a key driving factor in recent devel-093

opments (Abdin et al., 2024a,b; Yang et al., 2024).094

Our experiments show estimated distributions’ vari-095

ability across model families, which we use to re-096

duce our regression model’s error (+1.5%).097

To summarize, our contributions are as follows:098

• We showcase the significance of the base099

model choice, which could improve upon the100

most common (i.e., default) choice up to 14%101

in a size-controlled setting.102

• We analyze the statistical relation between103

performances on standard benchmarks and104

reward modeling, showcasing strong correla-105

tions (Pearson ≥ 0.8) on many while illustrat-106

ing their shortcoming in model selection (i.e.,107

small overlap on top models)108

• We show a simple performance prediction109

regression model based on benchmarks’ re-110

sults, when employed for model selection, can111

achieve +18% overlap on average over the112

top 5-10, compared to the benchmark with the113

highest correlation.114

• We showcase the positive impact of the post- 115

training stages, especially SFT, achieving up 116

to +15.5% gains on publicly available models. 117

Moreover, we expose the negative impact of 118

the standard post-SFT alignment steps, lead- 119

ing to a 3-5% performance drop. 120

• We exhibit the potential of using estimated 121

data distributions, which improves our regres- 122

sion model’s performance by +1.5%. 123

2 Related Work 124

Reward Modeling Recently, there has been a lot 125

of effort in crafting better training datasets (Liu 126

et al., 2024a; Wang et al., 2024c) and improv- 127

ing training architectures (Dorka, 2024; Lou et al., 128

2024; Zhang et al., 2024b; Wang et al., 2024a). 129

However, the core objective for reward model- 130

ing still revolves around two main approaches: 131

Bradley-Terry w/ Binary Preferences (Ziegler et al., 132

2019; Bradley and Terry, 1952) and Regression 133

w/ Multi-Attribute Scores (Wang et al., 2024e) 134

(see Section 3 for more details). For datasets, 135

RMs are commonly trained on labeled preference 136

datasets such as UltraFeedback (Cui et al., 2024), 137

HelpSteer2 (Wang et al., 2024d), and Magpie (Xu 138

et al., 2024). 139

Reward Model Evaluation Until recently, one 140

of the biggest challenges of training RMs has been 141

evaluating the trained models in isolation. The lack 142

of test sets in the released datasets made evaluation 143

difficult without going through the highly costly 144

policy training step. To overcome this issue, recent 145

works (Lambert et al., 2024b; Liu et al., 2024c; 146

Gureja et al., 2024) have introduced standardized 147

benchmarks for evaluating these models. Among 148

these benchmarks, RewardBench (Lambert et al., 149

2024b) is the most popular, with more than 150 150

entries at the time of writing this article. 151

3 Reward Modeling 152

3.1 Training 153

Models. For our experiments, we use 40 different 154

chat models from prominent publishers such as 155

Microsoft, Google, and Meta, with sizes ranging 156

from 494M to 10.30B (i.e., the largest model we 157

could train on our cluster). Appendix C provides 158

more details on these models. 159

Bradley-Terry w/ Binary Preferences. The 160

most popular choice for reward modeling is the 161
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(a) Bradley-Terry w/ Binary Preferences

(b) Regression w/ Multi-Attribute Scores

Figure 2: Reward Modeling Performance Gains. Relative gains are illustrated concerning the Llama-3.x model
(marked as red) within the same group.

Bradley-Terry (BT) (Bradley and Terry, 1952;162

Ziegler et al., 2019) model. The underlying as-163

sumption of BT is that for a pair of responses164

Y = (y1, y2), the human preference distribution ρ∗165

is generated from a latent reward function r∗(x, y),166

which we only have indirect access to. This as-167

sumption can be formalized as168

ρ∗(y1 ≻ y2|x) =
exp(r∗(x, y1))∑Y
y exp(r∗(x, y))

. (1)169

Then, framing BT as a binary classification task, we170

can parameterize the reward function and optimize171

a negative log-likelihood loss as172

LBT = −E(x,yw,yl)∼D [log σ(ζ(x, yw)− ζ(x, yl))] (2)173

where D = {(xi, yiw, yik)}Ni=1 ∼ ρ∗ is a binary pref-174

erences dataset and ζ is an LLM with a linear head175

that outputs a single scalar as the reward value.176

To create a compatible dataset, first, an LLM177

ξ generates pairs of responses for samples from a178

given prompt dataset Dx:179

Dξ = {(x, y1, y2)|{y1, y2} ∼ ξ(x)}x∼Dx . (3)180

Then, the pairs are labeled by humans (or syntheti- 181

cally) to obtain the binary preferences: 182

D = {(x, yw, yl)|(yw ≻ yl;x)}(x,y1,y2)∼Dξ
. (4) 183

We follow a similar setup for training the re- 184

ward models as Wang et al. (2024c). Specifi- 185

cally, each model is trained for one epoch on 186

the HelpSteer2-Preference dataset, using a global 187

batch size of 64, a constant learning rate, searched 188

over {5, 6, 7, 8, 9}e − 7 ∪ {1, 2, 3, 4, 5}e − 6 for 189

each model separately, and an AdamW opti- 190

mizer (Loshchilov and Hutter, 2019) with 20 warm- 191

up steps. Each model is saved every 20 steps, and 192

the final model is chosen based on the accuracy of 193

the saved models on the validation set. 194

Regression w/ Multi-Attribute Scores. While 195

less explored compared to BT, Regression 196

reward models (Wang et al., 2024e,a,d) have 197

been posting impressive performance re- 198

cently, topping the RewardBench at multiple 199

points (e.g., ArmoRM-Llama3-8B-v0.12 and 200

2RLHFlow/ArmoRM-Llama3-8B-v0.1
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Nemotron-4-340B-Reward3). In contrast to the201

binary preferences, each sample is annotated with202

multiple values along different attributes (e.g.,203

Coherence, Correctness, Verbosity, etc.). Then,204

given an input x, an output score vector y ∈ Rn,205

and an LLM ϕ, we optimize206

LR = MSE(ϕ(x)(−1)Wϕ, y) (5)207

where ϕ(x)(−1) ∈ Rdim(ϕ) is the last hidden state208

andWϕ ∈ Rdim(ϕ)×n is a trainable linear projection209

(i.e., a linear layer). This formulation leads to more210

flexible and interpretable reward models. To train211

the models, we follow a similar setup as Wang et al.212

(2024d). Specifically, each model is trained for two213

epochs on the HelpSteer2 dataset, using a global214

batch size of 64, a constant learning rate, searched215

over {1, 3, 5, 7, 9}e− {6, 7} for each model sepa-216

rately, and an AdamW optimizer with 20 warm-up217

steps. Since RewardBench only supports BT mod-218

els, for each model, we search for an optimal merge219

vector, wm, as220

ψ(x) = (ϕ(x)(−1)Wϕ))
Tw (6)221

wm = argmax
w∈S

D∑
xc,xr

1 (ψ(xc) > ψ(xr)) (7)222

where D is the validation set of HelpSteer2-223

Preference (Wang et al., 2024c), xc and xr224

are chosen and rejected responses, respectively,225

and S = {0.05k}4k=0,...,20 × {−0.05k}k=0,...,20226

(∼4M combinations). We follow the approach227

in Nemotron-4-340B-Reward to assign positive228

weights for Helpfulness, Correctness, Coherence,229

Complexity, and a negative weight for Verbosity. Fi-230

nally, we pick the model with the highest validation231

performance.232

3.2 Evaluation233

Following prior work (Wang et al., 2024d,c; Dorka,234

2024; Lou et al., 2024; Zhang et al., 2024b; Wang235

et al., 2024a) and due to its popularity (e.g., more236

than 150 entries), we evaluate our trained mod-237

els using RewardBench (Lambert et al., 2024b),238

which contains ∼3k assorted tasks from 23 differ-239

ent datasets. Each task consists of a binary pref-240

erence sample and is categorized into one of the241

following four categories: Chat, Chat-Hard, Safety,242

and Reasoning. We report the accuracy for each243

category and an overall score by averaging the ac-244

curacies.245

3nvidia/Nemotron-4-340B-Reward

3.3 Experimental Results 246

To make a fairer comparison, we partition the mod- 247

els into three groups, each representing a range of 248

roughly 3B parameters: {< 3B, (≥ 3B, < 6B),≥ 249

6B}. Then, we calculate the relative gains concern- 250

ing the Llama-3.x model for each group (i.e., the 251

default choice) within the same group. Figure 2 252

present our results models trained using Bradley- 253

Terry (w/ binary preferences) and Regression (w/ 254

multi-attribute scores). While Llama-3.x models 255

perform exceptionally well across our experiments, 256

within each group, a few models post superior per- 257

formances, with margins up to ∼14%. Specifically, 258

looking at these top performances, models from 259

the Qwen2.5 and Gemma-2 families consistently 260

improve upon the results of their Llama-3.x coun- 261

terpart, presenting reliable alternatives. Moreover, 262

these experiments showcase the potentially high 263

variances in performance within groups of models 264

with similar sizes, which, in many cases, is the 265

main limiting factor for model selection. 266

4 Benchmarks as Latent Skills Proxies 267

4.1 Statistical Correlation 268

Setup. Practitioners often test their models on 269

various benchmarks, covering many topics such as 270

reasoning, coding, etc. These benchmarks, along 271

with aggregate benchmarks such as Open LLM 272

Leaderboard (Beeching et al., 2023; Fourrier et al., 273

2024) and HELM (Cecchini et al., 2024), act as 274

a proxy measurement of the true capabilities of 275

LLMs. Consequently, many of them are often used 276

for model selection. For our analysis, we curate 277

a list of 33 common benchmarks as reported in 278

Llama-3.x (Dubey et al., 2024), Gemma-2 (Team 279

et al., 2024), Phi-3.x (Abdin et al., 2024a), and 280

Qwen2.5 (Yang et al., 2024) families (see Ap- 281

pendix B for more details). Besides these bench- 282

marks, we also include training metrics such as the 283

number of parameters and the number of training 284

tokens, as they are commonly used in formulating 285

scaling laws (Ruan et al., 2024; Polo et al., 2024). 286

Results. Figure 3 presents our correlation anal- 287

ysis between these benchmarks/metrics and the fi- 288

nal reward modeling performances4. As evident, 289

some benchmarks showcase a very high (≥ 0.8) 290

correlation, both on Pearson and Spearman, with 291

4On the Chat subcategory, all the models achieve s 90-95%
performance, which makes them challenging to distinguish
considering minor performance variances; hence, we observe
relatively low correlations across benchmarks.
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(a) Spearman Correlation

(b) Pearson Correlation

Figure 3: Statistical Correlation w.r.t. Reward Modeling Performance. The subset benchmarks of Open LLM
Leaderboard v2 (v1) are denoted with an ‡ (†). Text Colors: Red → Aggregate benchmark, Green → Training
metric.

ANLI (Williams et al., 2022) consistently beating292

other benchmarks across different subcategories.293

Significance Test. We test the significance of the294

correlation coefficient with the following statistic:295

tc =
r
√
n− 2√
1− r2

(8)296

where r is the sample correlation coefficient, and297

n is the sample size, which leads to a threshold tc298

of 0.316 (n = 40) for p-value < 0.05. Using this299

threshold, we observe that most of the benchmarks’300

correlations have statistical significance.301

Coverage Test. While a high correlation shows a302

strong statistical relationship between the two vari-303

ables, we also care about the coverage at different304

points in their rankings. Given a benchmark β and305

reward bench ρ, we formally define the coverage306

at top-k as307

C(β, ρ,L, k) =
|Tβ(L, k) ∩ Tρ(L, k)|

k
(9)308

where L is a set of LLMs and Tx(y, z) is the top309

z LLMs in y on benchmark x. To simulate a310

Figure 4: Benchmark’s Coverage. We only retain
benchmarks with at least 0.4 and 0.7 coverage at k = 5
and k = 10, respectively.

real-world search where we need high coverage 311

at higher ranks, we filter out any benchmark with 312

less than 0.4 and 0.7 coverage at k = 5 and k = 10, 313

respectively. Figure 4 illustrates the coverage val- 314

ues from k = 5 to k = 30 on the remaining 315

benchmarks (see Appendix B for more details). 316

Notably, all the benchmarks mostly follow a log- 317

linear coverage pattern concerning k, with ANLI 318

outperforming the other benchmarks. However, we 319
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Figure 5: Coefficients. Only five benchmarks are as-
signed a non-zero weight by the trained model. The
topics of these benchmarks are as follows: Coding →
MBPP+ and HumanEval+, Safety → ToxiGen, Gen-
eral → IFEval, and Training Metrics → #Params (see
Appendix B for more details).

also observe a relatively low coverage at higher320

ranks, which mitigates the effectiveness of using321

these benchmarks for model selection.322

4.2 Regression Analysis323

Setup. Considering the aforementioned low cov-324

erage in single-benchmark model selection, we hy-325

pothesize that combining the performances from326

a small set of benchmarks will yield much bet-327

ter predictive performance. To test this hypoth-328

esis, we run a 10-fold cross-validation experi-329

ment on an Elastic Net model, searching over the330

following hyperparameters: degree ∈ {1, 2, 3},331

α ∈ {0.1, 0.01, 0.001, 0.0001}, and l1_ratio ∈332

{0.0, 0.25, 0.5, 0.75, 1.0}. Then, we fit a model333

over all samples using the best hyperparameters.334

Results. Figure 5 illustrates the benchmarks with335

a non-zero weight in the final model. Mapping336

back these five benchmarks to their main topics337

(see Appendix B for more details), we observe that338

they consist of two coding (MBPP+ (Liu et al.,339

2023) and HumanEval+ (Liu et al., 2023)), one340

safety (ToxiGen (Hartvigsen et al., 2022)), and341

one general (IFEval (Zhou et al., 2023)) bench-342

marks, along with one training metric (#Params).343

This combination closely follows the subcategories344

in RewarcBench: Coding ≈ Reasoning, Safety =345

Safety, General + Training Metric ≈ Chat/Chat346

Hard. Moreover, in Figure 6, we compare the cov-347

erages of the fitted model to the standalone bench-348

marks. As evident, the trained model significantly349

improves the coverage in lower Ks, mitigating the350

Figure 6: Benchmarks vs. Predicted Score Coverage.
We only retain benchmarks with at least 0.4 and 0.7
coverage at k = 5 and k = 10, respectively.

critical problem of using standalone benchmarks. 351

These results prove our hypothesis, showcasing 352

the predictability of reward modeling performance 353

from a low-dimensional vector of prior results. 354

5 Training Stages 355

5.1 Post-training 356

Setup. Traditionally, for training RMs, practition- 357

ers have used a base model that has undergone 358

an SFT process (Stiennon et al., 2020). How- 359

ever, the recent advancements in LLMs have in- 360

troduced more stages to the training process. In 361

this section, we analyze the effect of these different 362

stages on the RMs’ performance using the pub- 363

licly available models. While publishers don’t reg- 364

ularly release the intermediate training checkpoints, 365

recent efforts in open LLMs have made some 366

of these intermediate models available for anal- 367

ysis. Specifically, for the Llama-3.1-Tulu-3-8B5 368

model, Lambert et al. (2024a) have released three 369

models from the end of each SFT, Direct Prefer- 370

ence Optimization (DPO) (Rafailov et al., 2023), 371

and Reinforcement Learning with Verifiable Re- 372

wards (RLVR) stages. Apart from the Tulu 3 model, 373

we also include two other Llama-3.1-8B-based6 374

models that have undergone the post-training 375

phase, namely: Llama-3.1-8B-Instruct7 and 376

Hermes-3-Llama-3.1-8B8 (Teknium et al., 2024). 377

Results. Table 1 presents our experimental re- 378

sults comparing different post-training stages to 379

the base model. From these results, we can observe 380

5allenai/Llama-3.1-Tulu-3-8B
6meta-llama/Llama-3.1-8B
7meta-llama/Llama-3.1-8B-Instruct
8NousResearch/Hermes-3-Llama-3.1-8B; SFT + DPO.
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Model Chat ∆ Chat Hard ∆ Safety ∆ Reasoning ∆ Score ∆

Llama-3.1-8B 93.9 - 53.7 - 64.7 - 79.1 - 72.9 -

Llama-3.1-8B-Instruct 95.3 1.5% 68.2 27.0% 84.6 30.8% 84.7 7.1% 83.2 14.1%

Hermes-3-Llama-3.1-8B 95.5 1.7% 71.3 32.8% 83.8 29.5% 74.0 -6.4% 81.1 11.2%

Llama-3.1-Tulu-3-8B-SFT 95.3 1.5% 70.8 31.8% 84.9 31.2% 85.8 8.5% 84.2 15.5%
Llama-3.1-Tulu-3-8B-DPO 94.7 0.9% 69.1 28.7% 82.3 27.2% 80.1 1.3% 81.6 11.9%
Llama-3.1-Tulu-3-8B 93.3 -0.6% 65.6 22.2% 83.5 29.1% 78.5 -0.8% 80.2 10.0%

Table 1: Post-training Performances. The ∆ columns showcase the relative change to the base model’s performance
for each category.

that the post-training procedure significantly im-381

proves the overall performance of RMs. However,382

the extra steps after the SFT phase decrease the383

models’ performance across all categories. This384

phenomenon could be due to the focus of these385

stages on human alignment, which slightly de-386

grades other capabilities (Korbak et al., 2022).387

Looking at the subcategories, we note that the Chat388

Hard and Safety consistently get significant per-389

formance boosts (between 22-32%) after the post-390

training procedure. We believe this is due to dense391

exposure to related samples that focus on improv-392

ing the models’ safety and complex conversational393

capabilities. Moreover, the performances on Chat394

category remain primarily unchanged (<2%), per-395

sistent with our previous observations in Section 4396

where even the worst models posted high perfor-397

mances. Finally, in the Reasoning category, while398

the initial SFT stage moderately (∼8.5%) improves399

the performance, the following stages reverse most400

of the gains. Given the focus of the RLVR stage on401

improving math capabilities, these results are some-402

what surprising. This phenomenon might be ex-403

plained by the fact that only 31% of reasoning sam-404

ples in RewardBench are math-related, compared405

to 69% targeting coding correctness. However,406

given a potential co-dependence of math and cod-407

ing capabilities, further investigation is needed on408

this phenomenon, which we leave to future works.409

5.2 Pre-training410

Setup. Prior works have examined the relation411

between eventual model capabilities and many412

LLMs’ attributes, ranging from compute (Hoff-413

mann et al., 2022) to downstream (Ruan et al.,414

2024) metrics. However, pre-training data distri-415

bution has remained a significant underexplored416

factor among these attributes, mainly due to its con-417

fidential, proprietary nature. Efforts in open LLM418

training (Liu et al., 2024d; OLMo et al., 2024)419

present an opportunity to study this factor. Recent 420

studies (Shi et al., 2024; Zhang et al., 2024a; Zhang 421

and Wu, 2024; Kim et al., 2024) have developed 422

pre-training data detection techniques by viewing it 423

as a membership inference attack (MIA) task. How- 424

ever, the curated MIA datasets lack the scale and 425

coverage needed for a comprehensive analysis of 426

the pre-training data distribution, as they have less 427

than 10k samples. To address this issue, we curate 428

a large-scale dataset by sampling 200k examples 429

from each of the Github, Book, ArXiv, Wikipedia, 430

and StackExchange subsets in SlimPajama (Sobol- 431

eva et al., 2023), resulting in a 1M sample dataset9. 432

Moreover, to detect the presence of a document in 433

an LLM, we use a truncated version (i.e., the first 434

2048 tokens) of the length-normalized sequence 435

probability (Malinin and Gales, 2021). The trunca- 436

tion helps reduce the cost of running such analysis 437

at scale, as some books have more than 170k to- 438

kens, and mitigates the noise from later tokens, as 439

LLMs have shown to have a problem making robust 440

use of tokens in the middle of long documents (Liu 441

et al., 2024b; Hsieh et al., 2024). 442

Given a document D = [ti]i=1,...,m, an LLM ϕ, 443

and a tokens limit N , we calculate a presence score 444

Sϕ as 445

Sϕ(D,N) =
1

N

N∑
i=1

log pϕ(ti|t1:i−1) . (10) 446

We use Crystal10 (Liu et al., 2024d) as our ground 447

truth LLM, as all of the SlimPajama dataset has 448

been used in its pre-training stage. Finally, for each 449

model, we reuse the extracted distribution from the 450

largest member of its family if and only if they’ve 451

been trained on the same amount of data, assuming 452

the same data was used for the pre-training stage 453

(see Appendix B for more details). 454

91.25% of all the documents in the original categories.
10LLM360/Crystal
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Figure 7: Estimated Pre-training Data Distributions. Crystal (Liu et al., 2024d) represents our ground truth, as
it has seen the entire SlimPajama dataset in the pre-training phase exactly once.

Figure 8: Jensen-Shannon Distance. The values are
based on the scores from the entire dataset.

Results. Figure 7 illustrates the score distribu-455

tions across different subsets of SlimPajama for456

seven models from different families. Notably,457

we observe a difference between the score ranges458

across the categories, even for the ground truth459

model that has seen everything once. We believe460

this is due to the potential occurrence of similar461

documents in the excluded CommonCrawl and C4462

categories. Figure 7 showcases the Jnsen-Shannon463

Distance (JSD) between different models over the464

scores of the entire 1M samples. As evident, some465

model pairs showcase significantly higher distances466

than others, showcasing a variability across mod- 467

els that can be utilized for downstream predictions. 468

We also notice that the Qwen{1.5, 2, 2.5} models 469

have the lowest non-zero distances, which suggests 470

that different generations of models released by 471

a publisher potentially have significant overlaps 472

in their pre-training data. Moreover, we expand 473

our regression analysis (see Section 4.2) by adding 474

the average scores of the categories to the already 475

established five features (see Figure 5). Our experi- 476

ments show that compared to adding these features 477

improves the mean absolute error by +1.5% (from 478

3.2% to 1.7%), compared to only using the orig- 479

inal five features, which showcases the untapped 480

potential of the pre-training data distributions. 481

6 Conclusion 482

In this paper, we presented a systematic analysis 483

of the effect of base model selection on the reward 484

modeling performance. First, we showcased the 485

significant variability of final performance by only 486

changing the base model. Then, we analyzed the 487

possibility of knowing a model’s performance apri- 488

ori, leading to a simple model with high coverage 489

across the range of models, using commonly dis- 490

closed metrics and performances. Finally, we inves- 491

tigate different training stages, showcasing 1) the 492

positive and negative effects of certain steps in post- 493

training and 2) illustrating the untapped potential 494

of using estimated pre-training data distributions. 495
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Limitations496

Training Regimen. While our experiments are497

designed to remove the effect of reward modeling498

training data (i.e., using the same small dataset for499

all models), using larger datasets might reveal un-500

known behaviors for some models. However, given501

our computational resource constraints, we leave502

these experiments to future works, as the current503

cost of our experiments is ∼4500 GPU/hours.504

Post-training. In our analysis, we observed an in-505

teresting and unintuitive phenomenon where RLHF506

and preference optimization hurt the models’ per-507

formance in the reasoning category of Reward-508

Bench. However, we only had access to a limited509

number of publicly available models; further inves-510

tigation is needed to exhibit the main reason for511

this phenomenon.512

Pre-training. Given our limited resources, we513

could only run our data distribution estimation ex-514

periments on a subset of models. Extending our515

model set in future works will boost our understand-516

ing of the effect of data distributions. Moreover,517

we relied on a relatively simple score to scale to518

the number of samples we had; further experiments519

with other methods at scale could help gain more520

insights.521
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Figure 9: Benchmark’s Coverage. We only retain
benchmarks with at least 0.4 and 0.6 coverage at k = 5
and k = 10, respectively.

A RewardBench as Ground Truth1045

Given the heavy reliance of our work on Reward-1046

Bench, we conduct an independent verification of1047

the preferences. Specifically, we sample 50 tasks1048

from the tasks that our top 10 models got wrong the1049

most. Then, we gather 3 annotations from different1050

annotators and use a majority vote to determine the1051

final preference. All annotators were senior Com-1052

puter Science PhD students specializing in NLP1053

with extensive experience working with and eval-1054

uating LLMs. Our results show an agreement of1055

98%, establishing the quality of RewardBench.1056

B Benchmarks1057

Table 2 showcases all the 32 benchmarks used in1058

our experiments. Moreover, Figure 9 illustrates1059

the coverage using an expanded set of benchmarks1060

with at least 0.4 and 0.6 coverage at k = 5 and k =1061

10, respectively.1062

C Models1063

Table 3 showcases all the 40 models used in our1064

experiments.1065

D Full Results1066

Table 5 and Table 4 present the full results using1067

the Bradley-Terry and Regression methods, respec-1068

tively.1069

E Bradley-Terry vs. Regression1070

Setup. The training method is one of the early1071

design choices for reward modeling, significantly1072

influencing the costly data curation process, as the1073

data format is often not easily transferable. While1074

Figure 10: Benchmarks vs. Predicted Score Coverage.
We only retain benchmarks with at least 0.4 and 0.6
coverage at k = 5 and k = 10, respectively.

Figure 11: Bradley-Terry vs. Regression Perfor-
mance Difference. A positive value indicates a better
performance on the Regression method.

previous works have briefly compared Bradley- 1075

Terry vs. Regression training (Wang et al., 2024c), 1076

finding their similar performances on ∼70B mod- 1077

els, our understanding of their differences is some- 1078

what limited. In our experiments, we use the Help- 1079

Steer2 and HelpSteer2-Preference datasets, which 1080

have the same underlying samples with different 1081

annotation styles11. This setup presents an oppor- 1082

tunity to compare these two approaches fairly. 1083

Results. Figure 11 illustrates the performance 1084

difference between Bradley-Terry and Regres- 1085

sion methods across our model pool. As ev- 1086

ident, the Regression models outperform their 1087

Bradley-Terry counterparts by a large margin. 1088

We also observe that the gap is much less with 1089

stronger models (e.g., Qwen2.5-7B-Instruct and 1090

gemma-2-9b-it), which could lead to a perfor- 1091

11HelpSteer2-Preference excludes indistinguishable re-
sponses (denoted by human annotators), which Bradley-Terry
w/ Binary Preferences can not model.
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Framework Dataset Topic #Shots Models

lm_eval
(Gao et al., 2024)

leaderboard_ifeval (Zhou et al., 2023)
General

0 LGPQ
winogrande (Sakaguchi et al., 2021) 5 LGP

hellaswag (Zellers et al., 2019)

Reading Comprehension

5,10 GP
openbookqa (Mihaylov et al., 2018) 10 P

triviaqa (Joshi et al., 2017) 5 LGP
squadv2 (Rajpurkar et al., 2018) 1 L

drop (Dua et al., 2019) 3 L
boolq (Clark et al., 2019) 0 LGP

anli (Zhong et al., 2024)
Adversarial

7 P
truthfulqa_mc2 (Lin et al., 2022) 10 GP

commonsense_qa (Talmor et al., 2019)

Commonsense Reasoning

7,10 LP
piqa (Bisk et al., 2020) 0,5 GP

social_iqa (Sap et al., 2019) 0,5 GP
nq_open (Kwiatkowski et al., 2019) 5 G

agieval_en (Zhong et al., 2024)

Expert Reasoning

3,5 LGP
ai2_arc (Clark et al., 2018) 0,10,25 LGP

leaderboard_bbh (Suzgun et al., 2023) 3 LGPQ
leaderboard_gpqa (Rein et al., 2024) 0 LGPQ

leaderboard_mmlu_pro (Wang et al., 2024b) 5 LGPQ
leaderboard_musr (Gao et al., 2023b) 0 LGPQ
medqa_4options (Jin et al., 2021) 2 P
mmlu (Hendrycks et al., 2021) 5 LGP

gsm8k_cot_llama (Cobbe et al., 2021)
Math

5,8 LGPQ
leaderboard_math (Hendrycks et al., 2021) 4 LGPQ

crows_pairs_english (Nangia et al., 2020)
Safety

0 G
toxigen (Hartvigsen et al., 2022) 0 G

qasper (Dasigi et al., 2021) Long-context 0 P

leaderboard v1 (Beeching et al., 2023)
Aggregate

- LGPQ
leaderboard v2 (Fourrier et al., 2024) - LGPQ

evalplus
(Liu et al., 2023)

HumanEval (Chen et al., 2021)

Coding

0 LGPQ
HumanEval+ (Liu et al., 2023) 0 LGPQ
MBPP (Austin et al., 2021) 0 LGPQ
MBPP+ (Liu et al., 2023) 0 LGPQ

Table 2: Benchmarks. We gather a comprehensive list of 33 common benchmarks from the technical reports of
well-known models. Legened: L → Llama-3.x, G → Gemma-2, P → Phi-3.5, and Q → Qwen2.5.
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Publisher Model Release Date
(First Commit)

#Params
(B)

#Downloads
(Feb 2025) #Likes #Pre-training Tokens

(T)

Microsoft
Phi-3.5-mini-instruct 08/2024 3.82 1.143M 776 3.4

Phi-3-small-8k-instruct 05/2024 7.38 25.1k 160 4.8
Phi-3-mini-4k-instruct 04/2024 3.82 900k 1122 3.3

Google

gemma-2-9b-it 06/2024 9.24 393.4k 639 8.0
gemma-2-2b-it 07/2024 2.61 437.6k 915 2.0

gemma-1.1-7b-it 03/2024 8.54 20.7k 270 6.0
gemma-1.1-2b-it 03/2024 2.51 93.3k 154 6.0

gemma-7b-it 02/2024 8.54 62.1k 1151 6.0
gemma-2b-it 02/2024 2.51 105.8k 701 6.0

Meta

Llama-3.2-3B-Instruct 09/2024 3.21 1.497M 939 9.0
Llama-3.2-1B-Instruct 09/2024 1.24 1.523M 738 9.0

Llama-3.1-8B-Instruct 07/2024 8.03 5.669M 3546 15.0

Meta-Llama-3-8B-Instruct 04/2024 8.03 2.101M 3788 15.0

01.ai
Yi-1.5-9B-Chat 05/2024 8.83 20.9k 139 3.6
Yi-1.5-6B-Chat 05/2024 6.06 19.6k 41 3.6

Yi-6B-Chat 11/2023 6.06 9.3k 65 3.0

Alibaba

Qwen2.5-7B-Instruct 09/2024 7.62 1.275M 459 18.0
Qwen2.5-3B-Instruct 09/2024 3.09 326.5k 158 18.0
Qwen2.5-1.5B-Instruct 09/2024 1.54 592.5k 299 18.0
Qwen2.5-0.5B-Instruct 09/2024 0.49 696.2k 198 18.0

Qwen2-7B-Instruct 06/2024 7.62 821.4k 611 7.0
Qwen2-1.5B-Instruct 06/2024 1.54 187.9k 134 7.0
Qwen2-0.5B-Instruct 06/2024 0.49 170.3k 174 12.0

Qwen1.5-7B-Chat 01/2024 7.72 25.5k 165 4.0
Qwen1.5-4B-Chat 01/2024 3.95 5.6k 38 2.4
Qwen1.5-1.8B-Chat 01/2024 1.84 11.2k 48 2.4
Qwen1.5-0.5B-Chat 01/2024 0.62 556.2k 76 2.4

Mistral AI
Mistral-7B-Instruct-v0.3 05/2024 7.25 1.755M 1293 8.0
Mistral-7B-Instruct-v0.2 12/2023 7.24 3.586M 2634 8.0
Mistral-7B-Instruct-v0.1 09/2023 7.24 1.332M 1547 8.0

Stability AI stablelm-2-1_6b-chat 04/2024 1.64 4.4k 32 2.0

Nvidia
Mistral-NeMo-Minitron-8B-Instruct 10/2024 8.41 3.1k 71 15.0

Nemotron-Mini-4B-Instruct 09/2024 4.20 0.1k 147 8.0

Ai2
Llama-3.1-Tulu-3-8B-SFT 11/2024 8.03 23.4k 21 15.0
Llama-3.1-Tulu-3-8B-DPO 11/2024 8.03 28.5k 22 15.0
Llama-3.1-Tulu-3-8B 11/2024 8.03 12.7k 139 15.0

TII

Falcon3-10B-Instruct 12/2024 10.30 37,9k 87 16.0
Falcon3-7B-Instruct 12/2024 7.46 45.2k 49 14.0
Falcon3-3B-Instruct 12/2024 3.23 30.5k 23 14.1
Falcon3-1B-Instruct 12/2024 1.67 31.4k 32 14.1

Table 3: Models. We curate an inclusive list of 40 models from prominent model providers.
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Publisher Model Chat Chat Hard Safety Reasoning Score

Microsoft
Phi-3.5-mini-instruct 96.1 62.3 77.2 76.9 78.1

Phi-3-small-8k-instruct 89.7 66.7 76.4 57.0 72.4
Phi-3-mini-4k-instruct 96.4 58.6 77.2 83.6 78.9

Google

gemma-2-9b-it 95.8 74.1 88.4 94.3 88.1
gemma-2-2b-it 94.7 56.8 79.9 80.7 78.0

gemma-1.1-7b-it 97.2 61.0 81.1 79.5 79.7
gemma-1.1-2b-it 89.4 46.3 74.6 50.5 65.2

gemma-7b-it 93.3 60.5 83.4 78.1 78.8
gemma-2b-it 92.2 42.5 67.0 56.7 64.6

Meta

Llama-3.2-3B-Instruct 95.3 68.6 87.7 59.3 77.7
Llama-3.2-1B-Instruct 93.3 42.3 65.4 70.2 67.8

Llama-3.1-8B-Instruct 95.3 68.2 84.6 84.7 83.2

Meta-Llama-3-8B-Instruct 93.9 75.4 86.6 81.2 84.3

01.AI
Yi-1.5-9B-Chat 95.8 69.5 80.1 88.7 83.5
Yi-1.5-6B-Chat 93.3 63.4 77.2 78.3 78.0

Yi-6B-Chat 93.3 56.4 71.5 67.4 72.2

Alibaba

Qwen2.5-7B-Instruct 94.7 72.8 87.8 90.7 86.5
Qwen2.5-3B-Instruct 92.7 63.4 82.0 85.3 80.8
Qwen2.5-1.5B-Instruct 92.7 56.4 80.7 84.8 78.6
Qwen2.5-0.5B-Instruct 89.9 45.6 51.9 48.4 59.0

Qwen2-7B-Instruct 95.3 66.4 78.4 84.0 81.0
Qwen2-1.5B-Instruct 92.7 47.8 72.0 79.0 72.9
Qwen2-0.5B-Instruct 92.2 39.9 54.7 60.7 61.9

Qwen1.5-7B-Chat 93.3 51.8 74.6 81.3 75.2
Qwen1.5-4B-Chat 91.1 50.9 78.0 77.6 74.4
Qwen1.5-1.8B-Chat 90.8 40.1 56.4 64.8 63.0
Qwen1.5-0.5B-Chat 91.3 43.2 58.0 58.0 62.6

Mistral AI
Mistral-7B-Instruct-v0.3 94.1 62.3 75.1 84.1 78.9
Mistral-7B-Instruct-v0.2 93.0 59.9 78.2 79.5 77.6
Mistral-7B-Instruct-v0.1 92.7 58.8 71.1 71.8 73.6

Stability AI stablelm-2-1_6b-chat 90.5 47.4 59.3 69.0 66.5

Nvidia
Mistral-NeMo-Minitron-8B-Instruct 93.6 61.0 82.6 82.9 80.0

Nemotron-Mini-4B-Instruct 93.0 61.4 75.0 82.0 77.8

Ai2
Llama-3.1-Tulu-3-8B-SFT 95.3 70.8 84.9 85.8 84.2
Llama-3.1-Tulu-3-8B-DPO 94.7 69.1 82.3 80.1 81.6
Llama-3.1-Tulu-3-8B 93.3 65.6 83.5 78.5 80.2

TII

Falcon3-7B-Instruct 96.6 64.0 89.7 80.4 82.7
Falcon3-3B-Instruct 95.0 53.9 78.1 73.9 75.2
Falcon3-1B-Instruct 84.6 31.6 53.2 46.2 53.9
Falcon3-10B-Instruct 95.5 67.3 89.5 91.1 85.9

Table 4: Regression Performance.
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Publisher Model Chat Chat Hard Safety Reasoning Score

Microsoft
Phi-3.5-mini-instruct 61.5 51.5 63.1 61.1 59.3

Phi-3-small-8k-instruct 83.5 55.3 81.9 75.8 74.1
Phi-3-mini-4k-instruct 64.8 46.1 56.6 59.7 56.8

Google

gemma-2-9b-it 83.8 51.1 70.8 83.6 72.3
gemma-2-2b-it 84.1 46.5 67.6 81.3 69.9

gemma-1.1-7b-it 76.3 45.4 65.4 75.1 65.5
gemma-1.1-2b-it 74.0 41.9 67.0 63.2 61.5

gemma-7b-it 77.1 43.0 63.8 72.5 64.1
gemma-2b-it 79.6 39.0 65.0 63.7 61.8

Meta

Llama-3.2-3B-Instruct 70.4 47.4 50.8 58.9 56.9
Llama-3.2-1B-Instruct 57.0 51.3 58.0 56.0 55.6

Llama-3.1-8B-Instruct 78.2 62.1 69.5 65.1 68.7

Meta-Llama-3-8B-Instruct 73.2 53.9 57.2 59.1 60.9

01.AI
Yi-1.5-9B-Chat 80.7 54.8 62.8 67.4 66.4
Yi-1.5-6B-Chat 76.5 50.2 59.9 81.3 67.0

Yi-6B-Chat 71.5 52.9 67.0 71.6 65.7

Alibaba

Qwen2.5-7B-Instruct 90.5 61.8 78.1 74.1 76.1
Qwen2.5-3B-Instruct 74.0 57.0 75.1 75.8 70.5
Qwen2.5-1.5B-Instruct 80.2 49.6 58.4 78.1 66.6
Qwen2.5-0.5B-Instruct 79.1 42.5 55.3 69.5 61.6

Qwen2-7B-Instruct 85.5 51.1 57.8 76.7 67.8
Qwen2-1.5B-Instruct 70.7 47.4 56.1 69.0 60.8
Qwen2-0.5B-Instruct 70.4 48.0 57.0 67.8 60.8

Qwen1.5-7B-Chat 77.7 51.3 62.3 69.3 65.1
Qwen1.5-4B-Chat 75.4 48.9 53.0 66.6 61.0
Qwen1.5-1.8B-Chat 79.9 40.4 59.9 62.9 60.8
Qwen1.5-0.5B-Chat 71.5 44.1 60.3 54.7 57.7

Mistral AI
Mistral-7B-Instruct-v0.3 56.7 53.1 58.2 50.0 54.5
Mistral-7B-Instruct-v0.2 80.7 38.2 54.1 58.1 57.8
Mistral-7B-Instruct-v0.1 56.7 52.6 58.4 57.2 56.2

Stability AI stablelm-2-1_6b-chat 71.2 49.3 60.5 59.9 60.2

Nvidia
Mistral-NeMo-Minitron-8B-Instruct 86.3 50.2 56.9 77.4 67.7

Nemotron-Mini-4B-Instruct 81.6 49.8 63.2 50.9 61.4

Ai2
Llama-3.1-Tulu-3-8B-SFT 65.4 53.9 59.9 69.1 62.1
Llama-3.1-Tulu-3-8B-DPO 76.5 41.9 58.5 57.5 58.6
Llama-3.1-Tulu-3-8B 78.5 38.6 58.2 59.7 58.8

TII

Falcon3-7B-Instruct 50.6 57.0 50.5 74.2 58.1
Falcon3-3B-Instruct 70.4 52.4 57.2 55.3 58.8
Falcon3-1B-Instruct 65.4 44.3 50.4 59.3 54.8
Falcon3-10B-Instruct 53.1 51.5 57.4 68.8 57.7

Table 5: Bradley-Terry Performance.
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Figure 12: Principal Component’s Weights.

Figure 13: PCA Explained Variance. We find that the
top 5 PCs explain ∼96.8% of the variance; hence, the
benchmark-model matrix is low-dimensional.

mance match on 70B scale models, consistent with1092

previous findings (see Appendix D for more de-1093

tails). This observation suggests that the Regres-1094

sion method is less reliant on the quality of the base1095

model, making it a better overall choice when possi-1096

ble. Moreover, we note much more overfitting and1097

instability when training with the Bradley-Terry1098

method, making obtaining high-quality RMs more1099

challenging.1100

F Low-dimensional Capabilities1101

Setup. Prior works (Ruan et al., 2024; Polo et al.,1102

2024) have found the LLMs’ capabilities to be low-1103

dimensional, meaning that most of the variance1104

over the standard benchmarks can be explained1105

by a few principal components (PCs). Since our1106

experiments use an expanded set of benchmarks1107

(5 vs. 32), we replicate their analysis at a larger1108

scale. Moreover, Ruan et al. (2024) find that the1109

PCs are explainable, meaning specific topics, such1110

as reasoning or coding, can explain each of them.1111

Results. Figure 13 illustrates the explained vari- 1112

ance by the first five PCs (∼97%), which ver- 1113

ifies that the benchmark-model matrix is low- 1114

dimensional. Moreover, Figure 12 replicates their 1115

analysis over the expanded set of benchmarks. 1116

While some PCs showcase a strong connection to 1117

specific topics (e.g., PC4 ≈ Math + Coding), we 1118

can not assign clear-cut topics to them, in contrast 1119

to prior findings. 1120

G Implementation Details 1121

All our experiments are carried out on a server 1122

with 8 × RTX A6000 GPUs with 48GB VRAM, 1123

500GB RAM, and 64 CPU cores. Moreover, we 1124

implemented our code using Hugging Face Trans- 1125

formers (Wolf et al., 2020) and PyTorch (Paszke 1126

et al., 2019) libraries. 1127
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