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ABSTRACT

Symmetry-based disentangled representation learning leverages the group struc-
ture of environment transformations to uncover the latent factors of variation.
Prior approaches to symmetry-based disentanglement have required strong prior
knowledge of the symmetry group’s structure, or restrictive assumptions about
the subgroup properties. In this work, we remove these constraints by proposing a
method whereby an embodied agent autonomously discovers the group structure
of its action space through unsupervised interaction with the environment. We
prove the identifiability of the true symmetry group decomposition under minimal
assumptions, and derive two algorithms: one for discovering the group decom-
position from interaction data, and another for learning Linear Symmetry-Based
Disentangled (LSBD) representations without assuming specific subgroup prop-
erties. Our method is validated on three environments exhibiting different group
decompositions, where it outperforms existing LSBD approaches.

1 INTRODUCTION

An important property of a representation is its disentanglement, as it enables a form of interpretabil-
ity (Higgins et al., 2017), fairness (Locatello et al., 2019a), improved transferability (Lee et al., 2021;
Bengio et al., 2020), and the ability to directly manipulate the latent space (Kim & Mnih, 2018; Chen
et al., 2016). For this reason, many unsupervised disentangled representation learning methods have
been proposed, initially relying on Variational Autoencoders (VAEs) (Kim & Mnih, 2018; Kumar
et al., 2018; Higgins et al., 2017) or Generative Adversarial Networks (GANs) (Chen et al., 2016).
Locatello et al. (2019b) showed that unsupervised disentanglement requires additional prior knowl-
edge or inductive biases. Thus, several approaches, relying on different additional assumptions,
address the question of unsupervised disentangled representation learning.
Learning disentangled representations relies on the assumption that there exist true underlying fac-
tors of variation in the environment (Bengio et al., 2013), and aims to infer them from available
observations. The symmetry-based approach of Higgins et al. (2018) proposes to achieve such
disentanglement by exploiting the subgroup decomposition of the group of environment transfor-
mations, called symmetries. Each subgroup is associated with a specific part of the representation.
When a symmetry from a particular subgroup is applied, only the corresponding part of the repre-
sentation varies. Caselles-Dupré et al. (2019) demonstrated that symmetry-based disentanglement
is only possible when access is granted to transitions (initial observation, transformation, resulting
observation). Several notable works follow this approach (Quessard et al., 2020; Tonnaer et al.,
2022). However, they all rely on restrictive assumptions regarding the nature of the symmetry group
or prior knowledge about its structure. This paper aims to overcome these limitations by designing
algorithms and providing proofs for the autonomous discovery of the symmetry group structure, and
its exploitation for disentangled representation learning.
Such an approach to disentanglement, based on an embodied agent shaping its representations
through sensorimotor interaction, could be seen as a computational formalization of the discov-
ery of sensorimotor contingencies (O’regan & Noë, 2001). One prior relevant work in this line of
research was proposed by Godon et al. (2020), addressing the problem of structuring the symmetry
group of a naive agent through sensory prediction. Compared to the algorithm presented in this
article, actions in these frameworks are usually not refering to the exact same notion, a particular
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attention being given to the agent body redundancies in its interaction. Consequently, such works
cannot be directly applied to symmetry-based disentangled representation learning.

Our contributions are as follows:

• We prove, under certain assumptions, the identifiability of the ground-truth group decomposi-
tion of the symmetry group from a dataset of transitions.

• We derive from this theorem an algorithm for the discovery of the symmetry group decompo-
sition.

• We introduce a novel method for learning a LSBD representation directly from a group de-
composition, without imposing any structural assumptions on the subgroups, and we provide
theoretical guarantees of disentanglement under specific assumptions.

• We combine these two algorithms and show experimentally that the full method outperforms
other LSBD methods on three datasets with different group structures.

2 PRELIMINARIES

y´ c`

GX

GY

Figure 1: Colored Flatland environment. The group of symme-
tries can be decomposed as G “ Gx ˆ Gy ˆ Gc corresponding
respectively to the cyclic groups of translations on the horizontal
axis/vertical axis, and in a list of predefined colors. The agent has
access to several symmetries (or actions) Gx “ tx`, x´u Ă Gx,
Gy “ ty`, y´u Ă Gy , and Gc “ tc`, c´u Ă Gc.

Gˆ Z Z

WGˆ W

f

¨W

idG ˆ f

¨Z

Figure 2: Equivariance prop-
erty.

We consider the framework of Linear Symmetry-Based Disentanglement (LSBD) (Higgins et al.,
2018), which provides a formal definition of disentanglement suitable for deriving identifiability
results and guiding the design of representation learning algorithms. Let W denote the set of possible
environmental states. We define a generative process b : W Ñ X that maps a state to an observation,
and an encoder h : X Ñ Z that maps observations into a latent representation. The overall mapping
is then given by f “ h ˝ b : W Ñ Z . We assume that b is an intrinsic (and unknown) property of
the environment, while h is agent-specific and can be learned.
We further assume the existence of a symmetry group G acting on W . A key assumption is that G
satisfies the standard group axioms: the existence of an identity element, closure under composition,
and the existence of inverses. This group structure enables the definition of a group action ¨W :
GˆW Ñ W , which maps each pair pg, wq P GˆW to a transformed world state w1 P W resulting
from the application of g. The agent is endowed with an action set G Ă G that contains only a subset
of the full group. Crucially, G is not required to form a group itself, in particular, the agent’s actions
may not be reversible, and the identity element of G may not be included in G.
We also assume that the group G admits a decomposition into a direct product of subgroups, i.e.,
G “ G1 ˆ¨ ¨ ¨ˆGK . For example, in the Flatland environment illustrated in Figure 1, the symmetry
group G can be decomposed into three subgroups corresponding to cyclic groups of horizontal
translations, vertical translations, and color shifts.
Definition 1 (Linear Symmetry Based Disentanglement). A representation h is said to be symmetry-
based disentangled (SBD) with respect to xW, b,

ś

kGky if:

1. There exists a group action ¨Z : Gˆ Z Ñ Z ,

2. Equivariance holds: @g P G,w P W , we have g ¨Z fpwq “ fpg ¨W wq,

3. There exists a decomposition Z “ Z1 ‘ ¨ ¨ ¨ ‘ ZK and group actions ¨k : Gk ˆ Zk Ñ Zk
such that

pg1, . . . , gKq ¨Z pz1, . . . , zKq “ pg1 ¨1 z1, . . . , gK ¨K zKq,

2
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4. The function h is injective

Moreover, the representation is said to be linearly disentangled (LSBD) if ¨Z is linear, i.e. there
exists a representation ρ : G Ñ GLpZq such that g ¨Z z “ ρpgqz.

The original definition provided in (Higgins et al., 2018) does not explicitly state the fourth condi-
tion requiring the encoder h to be injective. However, this constraint is implicitly assumed within
the LSBD framework; without it, any constant mapping would trivially satisfy the LSBD criteria.
Caselles-Dupré et al. (2019) demonstrated that learning an LSBD representation is impossible with-
out incorporating additional information, and proposed leveraging transitions of the form px, g, x1q

rather than relying solely on passive observations x. This perspective naturally aligns with the rein-
forcement learning setting, where agents can actively interact with the environment by performing
actions that induce state transitions. Accordingly, in the remainder of this work, we refer to symme-
tries g as actions.

3 RELATED WORK

Several methods have been proposed to learn LSBD representations, all relying on auto-encoder ar-
chitectures. Forward-VAE (Caselles-Dupré et al., 2019) augments the evidence lower bound (ELBO)
of a VAE with a latent-space action loss. Disentanglement is encouraged by constraining the matri-
ces ρpgq to follow a predefined structure, which requires prior knowledge of the subgroup decompo-
sition of the symmetry group, as well as the minimal number of latent dimensions assigned to each
subgroup. Another method, proposed by Quessard et al. (2020), referred to as SO-Based Disentan-
gled Representation Learning (SOBDRL), aims to learn representations with a prediction loss that
aim to infer the next observation x1 from px, gq. The action matrices are parameterized as elements
of the special orthogonal group SOpdq, the disentanglement is encouraged with a regularization
term that minimizes the number of latent dimensions involved in each transformation, encourag-
ing transformations constrained to SOp2q. LSBD-VAE, introduced by Tonnaer et al. (2022), relies
on the ∆-VAE architecture (Rey et al., 2019), which supports latent spaces defined over arbitrary
manifolds. In this framework, both the group decomposition G “ G1 ˆ ¨ ¨ ¨ ˆ GK and its repre-
sentation ρ are assumed to be known a priori. This prior knowledge allows the model to align the
latent geometry with the group structure and to incorporate an action-aligned loss term, in the spirit
of Forward-VAE. Homomorphism AutoEncoder (HAE), proposed by Keurti et al. (2023), assumes
that G is a Lie group and that the agent has access to φpgq, where φ is an unknown non-linear
mapping. The action representation is learned from this mapping by jointly predicting both current
and future states in the observation and latent spaces. Disentanglement is encouraged by enforcing
a block-diagonal structure on the action matrices.

We observe that all state-of-the-art methods rely on assumptions regarding the structure of the sym-
metry group or its subgroups. In contrast, the goal of this work is to relax these assumptions by
introducing a symmetry-based disentangled representation learning approach that does not require
any prior knowledge of the group decomposition.

4 METHODS

We suppose that the available actions G are a subset of the whole group action G and that there is a
dataset D of transitions px, g, x1q where g P G are the indices of the actions taken by the agent. We
aim to learn an LSBD representation h. Our method consists of three steps:

1. We learn an entangled representation i.e. a representation satisfying only points 1, 2 and 4 of
Definition 1 to learn an action representation ρ : G Ñ GLpZq and an encoder h : X Ñ Z .

2. From ρ and h we compute a decomposition G “ G1 ˆ ¨ ¨ ¨ ˆ GK by regrouping actions using
a custom pseudo-distance based on group theory.

3. From this decomposition we learn a disentangled representation.

3
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4.1 (STEP 1) LEARN AN ENTANGLED REPRESENTATION

Our objective is to learn an encoder h : X Ñ Z “ Rd and an action representation
ρψ : G Ñ Rdˆd satisfying the equivariance property defined in Definition 1. As there is
no prior knowledge about th action matrices, each matrix ρψpgq is directly parameterized by
d2 learnable scalars, resulting in a total of |G| ˆ d2 parameters. To perform this step, we
introduce a method referred to as Action-based VAE (A-VAE), which builds upon the varia-
tional autoencoder (VAE) framework (Kingma & Welling, 2014; Rezende et al., 2014). The
goal is to map each observation x P X to a latent representation in Z “ Rd. Let τ “

px, g, x1q denote a transition, and let z and z1 be the corresponding latent representations of x
and x1, respectively. The model architecture is illustrated in Figure 3 and defined as follows:

Z 1

X
X 1

pψ,ϕpz1
| x, gq

pθpx1
| z1

q
G

qϕpz1
| x1

q

Figure 3: Graphical model

• pθpX 1|z1q “ N
`

µθpz1q, Diagpσθpz1q2q
˘

, (1)

• pψ,ϕpZ 1|x, gq “ N
`

ρψpgqµϕpxq, Id
˘

, (2)

• qϕpZ 1|x1q “ N
`

µϕpx1q, Diagpσϕpx1q2q
˘

. (3)

In contrast to the standard VAE, we condition the prior distri-
bution over Z 1 on both the past observation x and the action g.
To maximize the expected log-likelihood Erlog ppτqs with respect to the model parameters θ, ϕ, and
ψ, we derive the corresponding evidence lower bound (ELBO) for our graphical model. As shown
in Appendix B, we obtain (up to an additive constant):

log ppτq ě ´1
2 }ρψpgqµϕpxq ´ µϕpx1q}

2
´ 1

2}σϕpx1q}2 `
ř

i log σϕpx1qi

)

action part

´Ez1„qϕpz1|x1q

«

ř

i log σθpz1qi `

›

›

›

›

x1 ´ µθpz1q

σθpz1q

›

›

›

›

2
ff

)

reconstruction part

(4)

Analogously to β-VAE (Higgins et al., 2017), we introduce a weighting coefficient to balance the
two components of the objective, resulting in the loss function L “ LREC ` λACTLACT. Each of
the three conditional distributions in the model is implemented using deep neural networks trained
via backpropagation. The model parameters θ, ϕ, and ψ are optimized to maximize the ELBO.
As in standard VAEs, we apply the reparameterization trick to enable gradient-based optimization
through the reconstruction term. In practice, the standard deviations σθ and σϕ are fixed. Details of
the neural network architectures are provided in Appendix I.2.

4.2 (STEP 2) LEARN THE GROUP STRUCTURE

Once the action representation ρψ and the encoder h “ µθ have been learned, we aim to leverage
them to recover the group decomposition G “ G1 ˆ ¨ ¨ ¨ ˆ GK . By abuse of notation, we will treat
the direct factors Gi as subgroups of G.

4.2.1 ASSUMPTIONS

Assumption 1. The environment is fully observable i.e. the observation function b : W Ñ X is
injective.

It is a strong assumption, however it is necessary as we have the following result:

Theorem 1. For a SBD representation to exist, it is necessary for the observation function b to be
injective (up to an interaction equivalence class).

The definition of the interaction equivalence class and the proof of the theorem are provided in
Appendix G. The key idea is that components of the world state that do not influence the agent’s
interaction can be discarded, yielding an equivalent environment from the agent’s perspective. In
this reduced environment, the observation function must be injective for a SBD representation to
exist. Although this assumption is not always stated explicitly, it is in fact a necessary condition for
all SBD representation learning algorithms and is not specific to our method.
The next two assumptions are assumptions specific to the proposed algorithm, and are intended to

4
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replace the stronger prior assumption commonly made in the SBD literature consisting in providing
prior knowledge of the group decomposition. We first assume that each action belongs to a unique
subgroup Gi. We refer to this property as disentanglement of the action set with respect to

ś

kGk.
It is a strong assumption but we demonstrate empirically in Appendix H.2 that related SBD methods
make a similar implicit assumption.
Assumption 2. G is disentangled with respect to G “

ś

kGk. That is, G “ G1 Y ¨ ¨ ¨ Y GK with
@k, Gk Ă Gk.

y`

x`

(a)

–

2x`

3x`

(b)

Figure 4: Two isomorphic
group actions satisfying As-
sumption 2.

We argue that this assumption alone is not sufficient to recover
the correct decomposition. To illustrate this point, consider two
distinct environments analogous to Flatland shown Figure 4: (a)
a 2 ˆ 3 cyclic grid i.e. Ga “ Z{2Z ˆ Z{3Z with actions
Ga “ tx`u Y ty`u and (b) a 6 ˆ 1 cyclic grid i.e. Gb “ Z{6Z
with actions Gb “ t2x`, 3x`u. Both environments satisfy As-
sumption 2 and can share the same representation, as there exists
an isomorphism fromGa toGb that maps each element of Ga to a
corresponding element in Gb. From the agent’s perspective, these
two situations are indistinguishable in the absence of additional
assumptions. Ideally, we seek an assumption that both covers a
wide range of practical scenarios, i.e. action sets G, and enables
a computationally tractable procedure for recovering the group
decomposition. Among the various options considered, we adopt the following assumption, as it
offers a favorable trade-off between situation coverage and computational feasibility:
Assumption 3. For all g, g1 P G, if they belong to the same subgroup then there exists u P G and
m P J1,MK such that we have either g “ umg1, g “ g1um, g1 “ gum or g1 “ umg.

Combined with Assumption 2, it is straightforward to show that the implication of Assumption 3 is in
fact an equivalence. As a result, we obtain a simple and practical criterion for determining whether
two actions belong to the same subgroup. In terms of situation coverage, as soon as M ě 2,
Assumption 3 holds in common cases such as when Gi contains an action and its inverse, when
Gk “ Gk, or when Gk “ G˚

k . In practice, the action sets considered in the experimental sections
of state-of-the-art SBDRL algorithms typically fall into one of these categories. In the scenario
illustrated in Figure 4, Assumption 3 allows us to assume that situation (b) will never occur, our
method will thus assume that the environment corresponds to case (a).

4.2.2 ALGORITHM

We now introduce a method to recover the group decomposition i.e. to cluster the available actions
into subgroups. Given an encoding function h : X Ñ Rd and a matrix A P Rdˆd, we define the
following semi-norm:

}A}h “ Ex r}Ahpxq}s . (5)

From this and Assumption 3, we define the following pseudo-distance to determine whether two
actions belong to the same subgroup. We write Ag instead of ρψpgq for simplicity and readability:

dGpg, g1q “ min
uPG

mPJ1,MK

min
!

}Ag ´Amu Ag1 }h; }Ag ´Ag1Amu }h; }Ag1 ´Amu Ag}h; }Ag1 ´AgA
m
u }h

)

.

(6)
Theorem 2. If the Assumption 1 to 3 are satisfied, the dataset contains all the possible transitions,
W is finite and the A-VAE loss converges toward its minimum, then at some point of the training,
two available actions will belong to the same subgroup if and only if their distance with respect to
dG is below a specific threshold η computed from h and ρψ .

Based on Theorem 2, we design a clustering algorithm that groups together actions g and g1 when-
ever dGpg, g1q ď η. The choice of the threshold η, the details of the algorithm, and the proof are
provided in Appendix C.

Once the group decomposition has been recovered, a suitable disentangled representation learning
algorithm can be applied. For example, if G “ tg1, g

´1
1 u Y tg2, g

´1
2 u, then G is isomorphic to

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

a subgroup of SOp2q ˆ SOp2q, and Forward-VAE (Caselles-Dupré et al., 2019) can be employed
with an appropriate parameterization. However, as discussed in Section 3, existing LSBD methods
still rely on some form of prior knowledge about the group structure. In the following section, we
address this limitation by introducing a new disentangled representation learning algorithm that does
not require such prior information.

4.3 (STEP 3) LEARN A DISENTANGLED REPRESENTATION

Now that we have the symmetry group decomposition, we aim to find a linear disentangled repre-
sentation i.e. a decomposition Z “ Z1 ‘ ¨ ¨ ¨ ‘ZK and an action representation ρ “ ρ1 ‘ ¨ ¨ ¨ ‘ ρK
such that for each action g “ pg1, . . . , gKq P G and latent factor z “ pz1, . . . , zKq we have
ρpg1, . . . , gKqpz1, . . . , zKq “ pρ1pg1qz1, . . . , ρKpgKqzKq.

This definition allows the Zi to be any sub-vector spaces of Z as long as they form a direct sum, they
are not required to be orthogonal. In our method, we additionally choose to search for representa-
tions where the disentanglement aligns with Cartesian axes of the latent space Z “ Z1 ˆ ¨ ¨ ¨ ˆZK .
This choice is motivated by the fact that, under most widely accepted definitions of disentangle-
ment, each latent dimension is expected to encode information about at most one ground-truth
factor of variation (Wang et al., 2024). Consequently ρpg1, . . . , gKqpz1, . . . , zKq “ ρpgqz with
z “ concatpz1, . . . , zKq and ρpgq “ diagpρ1pg1q, . . . , ρKpgKqq.

πk πkπ
J
k

A

Ã

Figure 5: Masking used
to build disentangled ac-
tion matrices

Thanks to Assumption 2, each action is known to belong to a unique sub-
group. Consequently, for any g P Gk and k1 ‰ k, we have ρk1 pgq equal
to the identity transformation. In matrix terms, this implies that each ac-
tion is represented by the identity matrix, except for a single block along
the diagonal, as illustrated in Figure 5 with the matrix Ã. (in practice, the
indices of the matrix may be permuted, however for the sake of clarity,
we illustrate only the case in which the active dimensions are adjacent).
Learning the structure of these matrices amounts to assigning each latent
dimension i to a unique subgroup Gk. Let πk P t0, 1ud denote the bi-
nary indicator vector encoding the set of dimensions assigned to the k-th
subgroup, such that

ř

k πk,i “ 1.

To enforce the desired block structure in the action matrices, we apply the mask πkπJ
k to unstruc-

tured action matricesA as illustrated in Figure 5. Let kpgq denote the index of the subgroup to which
the action g belongs, and let d denote the element-wise product. The structured action matrix Ãg is
then defined as:

Ãg “ πkpgqπ
J
kpgq dAg ` p1 ´ πkpgqπ

J
kpgqq d I (7)

To learn the vectors πk, we employ a continuous relaxation. Specifically, we use d softmax op-
erations to ensure that πk,i P r0, 1s with

ř

k πk,i “ 1. In order to promote disentanglement, we
introduce an additional term in the A-VAE loss function that encourages the vectors πk to be close
to be binary. A natural approach is to minimize the entropy Hpπq “

ř

iHpπ:,iq. However, empir-
ical observations show that directly minimizing this entropy causes it to collapse to zero before the
other loss components begin to decrease, leading to a random dimension assignment. To address this
issue, we define the disentanglement loss as LDIS “

ř

i |Hpπ:,iq ´C|, where C is a target entropy
value that is gradually annealed from its maximum to zero during training. We refer to this method
as the Group-Masked Action-based VAE (GMA-VAE). The following result, proven in Appendix D,
formalizes the disentanglement guarantee:
Theorem 3. If Assumptions 1 to 3 are satisfied, the dataset contains all the transitions and G is
finite, then the encoders minimising the GMA-VAE loss are LSBD representations with respect to
xW, b,

ś

kxGkyy with xGky representing the subgroup generated by Gk.

5 RESULTS

5.1 EXPERIMENTS

Metrics: To evaluate the disentanglement, we use the Independence (Inde) metric (Painter et al.,
2020) that was specifically designed for the LSBD framework; we will also use classical disentan-
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glement metrics: β-VAE (Higgins et al., 2017), Mutual Information Gap (MIG) (Chen et al., 2018),
DCI disentanglement metric (Eastwood & Williams, 2018), Modularity (Mod) (Ridgeway & Mozer,
2018) and SAP (Kumar et al., 2018). All these metrics take values between 0 and 1 and are meant
to be maximised.

Algorithms: We categorize the baseline methods into three classes: (1) Supervised methods where
the action representation ρ is given. The only supervised method is LSBD-VAE (Tonnaer et al.,
2022). (2) Self-supervised methods where ρ is learned as in SOBDRL (Quessard et al., 2020).
We introduce a modified LSBD-VAE in which the action representation ρ is learned rather than
provided, we refer to this variant as method LSBD-VAE˚. As also reported in Tonnaer et al. (2022),
we were unable to obtain satisfactory results with Forward-VAE (Caselles-Dupré et al., 2019) on
our datasets, therefore it is not included among the baselines. HAE (Keurti et al., 2023) is not
compatible with action representations based solely on discrete indices, and is therefore considered
unrelated to our setting. (3) Unsupervised methods which rely solely on observations rather than
transitions. This category includes classical disentanglement approaches: β-VAE (Higgins et al.,
2017), Factor-VAE (Kim & Mnih, 2018) and DIP-VAE I/II (Kumar et al., 2018).

Latent dimension: For A-VAE we arbitrarily chose a latent dimension of 13, for the LSBD methods
we chose the minimal dimension depending on the method and the symmetry group. Those minimal
dimensions are discussed in Appendix E.

Environments: Similarly to Flatland (Caselles-Dupré et al., 2018), our first environment consists
of a disk moving along the x and y axes over a black background as illustrated Figure 1. Additionaly
to the groups acting on the position of the disk, a third group acts on the color feature and can be
either a cyclic shift of the RGB channels, corresponding to GC “ Z{3Z with GC “ tc´, c`u,
or a full permutation group over the RGB channels, i.e., GC “ S3 with GC “ S˚

3 . The second
environment is based on the COIL dataset (Nene et al., 1996), which contains images of objects
captured from multiple viewpoints. Each observation consists of n adjacent objects. Each object
i P J1, nK can be rotated through ki discrete angles, forming a cyclic rotation group GRi “ Z{kiZ,
with the action set GRi “ tr´

i , r
`
i u. In addition, the objects can be permuted via the symmetric

group GS “ Sn. Finally, we use the 3DShapes dataset (Burgess & Kim, 2018), which consists of
rendered images of a 3D object placed in a colored room. The data is generated from six discrete
ground-truth factors: wall hue, object hue, background hue, object scale, object shape, and viewing
angle. For each factor i, we define a cyclic symmetry groupGi “ Z{kiZ and an action set consisting
of two shifts, Gi “ tg´

i , g
`
i u, corresponding to increments and decrements along the factor axis.

5.2 ACTION CLUSTERING

To evaluate the action clustering performance of Step 2, we use the Flatland environment with cyclic
color shifts (FLC) and color permutations (FLP), as well as the COIL dataset with two (COIL2) and
three (COIL3) objects. Our algorithm successfully recovers the ground-truth group decomposition
in 100% of runs. The average group distances across random seeds are reported in Appendix H.5. In
these experiments, the datasets include all possible transitions, and the available actions are simple
(e.g., an action and its inverse). To assess the robustness of our method, we consider more challeng-
ing settings with both complex action sets and limited transition coverage. For this purpose, we use
the COIL environment with three or four objects and random action sets G satisfying Assumptions 2
and 3, those environments are given appendix I.1. In this setting, for each state w P W , we ran-
domly sample na ď |G| available actions to be used in the dataset. The results show that, as soon as
na ě 2, the method consistently recovers the correct group decomposition. Importantly, the same
hyperparameters are used across all of these experiments.

5.3 DISENTANGLEMENT

To evaluate the disentanglement we use the same environments as before, the disentangled results
are shown Figure 6. For more clarity we do not present the disentanglement of unsupervised meth-
ods as they perform significantly worse than LSBD methods. Detailed results are available in Ap-
pendix H.3.

The first observation is that all methods perform poorly in MIG and SAP as these two metrics require
each ground truth factor of variation to be encoded in a unique dimension. However, linear disen-
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Figure 6: Median of disentanglement metrics. Vertical lines indicates the 25th to 75th percentile

tanglement mostly requires features to be encoded in at least two dimensions. The only exception is
COIL2 as the permutation group S2 can be encoded in only one dimension with our method. The
second observation is that our method performs almost perfectly for the other metrics and yields a
disentanglement comparable to the supervised method LSBD-VAE.

5.4 LONG-TERM PREDICTION
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Figure 7: Median of long-
term prediction error, the
shaded area indicates the 25th
to 75th percentile

We aim to investigate the effect of disentanglement on long-term
prediction accuracy. To this end, we use the trained models to pre-
dict a final observation given an initial observation and a sequence
of actions. For the COIL2 dataset, SOBDRL fails to consistently
learn a disentangled representation. We therefore separate the seeds
into two groups: those where disentanglement is achieved and those
where it is not. On the COIL3 dataset, SOBDRL is unable to dis-
entangle the representation at all, as the method is not suited to
permutation-based symmetries. We also omit the results of LSBD-
VAE˚ on COIL3, as it fails to consistently produce accurate predic-
tions even for single-step transitions.

Figure 7 shows the prediction error as a function of the sequence
length. We observe a drop in the prediction error of SOBDRL on
COIL2. This behavior comes from the fact that disentangled ac-
tions of SOBDRL are SOp2q rotations. In one of the seeds, the
action that swaps the two objects has a larger angular error than
the other actions, causing the corresponding latent dimensions to
diverge first. However, due to the cyclic nature of SOp2q, the ac-
cumulated angular errors eventually cancel out, completing a full
rotation and temporarily restoring the correct latent representation.

Overall, three types of behavior emerge from the results. First, en-
tangled self-supervised methods (A-VAE and SOBDRL) achieve
good short-term predictions but quickly diverge as the sequence
length increases. In particular, the A-VAE curve ends early because the latent representations even-
tually diverge to NaN values. Second, disentangled self-supervised methods (GMA-VAE, SOB-
DRL and LSBD-VAE˚) achieve significantly better long-term predictions. Finally, the supervised
method LSBD-VAE achieves perfect prediction performance regardless of sequence length. This is
explained by the fact that, with access to ground-truth action matrices, the model satisfies exactly
AgAg1 “ Agg1 , making multi-step prediction no more difficult than single-step prediction.

5.5 GENERALIZATION

To assess how disentanglement impacts generalization, we train each model on COIL2 and COIL3
using restricted datasets. We first consider the independant and identicaly distributed (iid) setting,
in which the training and test sets follow the same distribution. Specifically, for each state, we
uniformly sample na “ |G|{2 actions to include in the training data. The second experiment assesses
the out-of-distribution (ood) generalization capabilities of the models. In this setting, the training
set is restricted to transitions in which only the right-most object is allowed to rotate. We evaluate
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the prediction error on both seen and unseen transitions, the results are reported in Table 1 using the
format seen / unseen prediction error. We highlight in bold the methods for which the error increases
by less than 5% between seen and unseen transitions. In both experiments, we observe that all
disentangled methods generalize well, while most entangled methods exhibit poor generalization,
particularly in the ood setting.

Table 1: iid and ood prediction error, the format used is seen / unseen prediction

iid ood
COIL2 COIL3 COIL2 COIL3

LSBD-VAE 7.8e-5 / 7.9e-5 1.1e-4 / 1.1e-4 7.6e-5 / 7.6e-5 9.9e-5 / 9.9e-5
LSBD-VAE˚ 8.7e-5 / 8.8e-5 8.8e-5 / 8.8e-5

SOBDRL Disentangled 1.7e-4 / 1.7e-4 5.1e-5 / 5.1e-5
Entangled 1.7e-4 / 3.7e-3 2.5e-4 / 2.5e-4 5.7e-5 / 0.02 2.5e-4 / 0.01 .

GMA-VAE 6.1e-5 / 6.2e-5 1.1e-4 / 1.1e-4 6.2e-5 / 6.2e-5 1.1e-4 / 1.1e-4
A-VAE 7.7e-5 / 7.8e-5 2.9e-4 / 8.7e-4 6.7e-5 / 0.05 2.9e-4 / 0.05 .

6 ALTERNATIVE DISENTANGLED REPRESENTATION LEARNING PARADIGMS

This section shortly reviews two other related but different paradigms for disentangled representa-
tion learning. First, the causal representation learning approach (Schölkopf et al., 2021) proposes to
ground the latent variables in the causal generative processes of the environment and seeks represen-
tations that correspond to underlying causal factors and their relations. Several identifiability results
have been derived in this framework, relying on different assumptions, for instance regarding the
available actions (or interventions) (Brehmer et al., 2022), the structure of the causal graph (Lippe
et al., 2023), prior knowledge of the intervention targets (Lippe et al., 2022), or other inductive bi-
ases such as the sparsity of the causal graph (Lachapelle et al., 2022), or the transferability of causal
representations (Bengio et al., 2020). Symmetry-based and causality-based disentanglement share
some similarities (mathematically grounded, exploit interventions or actions) but have very different
assumptions, justifying our choice not to include this framework in our comparisons.

Another line of work is object-centric representation learning with actions, where the goal is to learn
a factorized representation of objects and optionally their underlying dynamics. While promising,
these methods often rely on assumptions about the observations’ structure, for instance assuming
that objects and their interactions are confined to a localized region of the image (Locatello et al.,
2020; Zhu et al., 2018; Greff et al., 2019; Kipf et al., 2022). Moreover, the question of disentangling
the different features representing each object is often left aside. This field of research is not as
focused on idenfiability proofs, but has shown strong empirical results in more complex and realistic
environments.

7 CONCLUSION

We introduced two independent algorithms: an action clustering method based on A-VAE, which
provably recovers the ground-truth symmetry group structure, and a symmetry-based disentangled
representation learning method, GMA-VAE, which achieves performance comparable to LSBD-
VAE, even though the latter assumes prior knowledge of the action representations. Both of our
methods rely on a strong assumption which requires the available actions to be disentangled. How-
ever, to the best of our knowledge, related state-of-the-art LSBD approaches also implicitly de-
pend on this assumption to consistently learn a disentangled representation. While this restricts the
applicability of the method to certain environments, it enables theoretical guarantees for both the
action clustering and the disentanglement process. We further evaluate LSBD representations on
downstream tasks and show that disentangled representations lead to significantly better long-term
prediction performance and generalization, particularly in out-of-distribution scenarios.

A limitation of our approach compared to existing methods is that the full pipeline requires training
two neural networks from scratch. A future work would be to initialize GMA-VAE with the pre-
trained encoder from A-VAE, or develop an end-to-end method that unifies the action clustering and
representation learning steps into a single optimization process.
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8 REPRODUCIBILITY STATEMENT

All the previous results are reproducible using the code provided in the supplementary material.
It includes all necessary components to generate the datasets, run the training procedures with the
same hyperparameters and initialization seeds, and reproduce the figures.
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A MATHEMATICAL BACKGROUND

Vector Subspaces. Let V be a vector space over a field R. A subset W Ď V is called a vector
subspace if it is closed under vector addition and scalar multiplication; that is, for all u, v P W and
λ P R, we have u` v P W and λu P W .

Direct Sums of Subspaces. Let V be a vector space and let W1,W2 Ď V be subspaces. We say
that V is the direct sum of W1 and W2, denoted V “ W1 ‘ W2, if every v P V can be uniquely
written as v “ w1 ` w2 with w1 P W1 and w2 P W2, and W1 XW2 “ t0u.

Eigenvalues and Eigenspaces. Let T : V Ñ V be a linear operator on a vector space V . A scalar
λ P R is an eigenvalue of T if there exists a non-zero vector v P V such that T pvq “ λv. The
corresponding set of vectors Eλ :“ tv P V | T pvq “ λvu is called the eigenspace associated with
λ, and is a subspace of V . The set of eignvalues is called the spectrum.

Groups. A group is a setG equipped with a binary operation px, yq ÞÑ xy satisfying the following
axioms:

• (Associativity) pxyqz “ xpyzq for all x, y, z P G;

• (Identity element) There exists an element e P G such that ex “ xe “ x for all x P G;

• (Inverse element) For every x P G, there exists x´1 P G such that xx´1 “ x´1x “ e.

We often denote by G˚ “ Gzteu the set of non-identity elements of G.

Examples of Groups.

• The cyclic group Z{nZ of integers modulo n.

• The symmetric group Sn of permutations of n elements.

• The general linear group GLpV q of invertible linear transformations on a vector space V .

• The special orthogonal group SOpnq of nˆ n orthogonal matrices with determinant 1.

Direct Product of Groups. Given two groups G1 and G2, their direct product is the group G “

G1 ˆG2 with the operation defined componentwise:

pg1, g2qph1, h2q :“ pg1h1, g2h2q.

Each groupGi is referred to as a direct factor ofG. By abuse of notation, G1 is often identified with
the subgroup G1 ˆ te2u Ď G, where e2 is the identity element of G2.

Subgroup generated. For a subset S Ă G, we note xSy the smallest subgroup of G that contains
S. We have xSy “ tsε11 s

ε2
2 ¨ ¨ ¨ sεkk | k P N, si P S, εi P t˘1uu and if G is finite we have xSy “

ts1s2 ¨ ¨ ¨ sk | k P N, si P Su

Group Representations. A representation of a group G on a vector space V is a map

ρ : Gˆ V Ñ V

such that for all g, h P G and v P V , by denoting g ¨ v for ρpg, vq we have

e ¨ v “ v and g ¨ ph ¨ vq “ pghq ¨ v

Equivalently, a representation can be described as a group homomorphism

ρ : G Ñ GLpV q, where ρpgqpvq :“ ρpg, vq.

The representation ρ : G Ñ GLpV q is injective if and only if its kernel, defined as kerpρq :“ tg P

G | ρpgq “ IdV u, is reduced to the identity element teu. In this case, we write ρ : G ãÑ GLpV q

and refer to it as a faithful representation.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Direct Sum of Representations. Let pρ1, V1q and pρ2, V2q be two representations of a group G.
Their direct sum is the representation

ρ1 ‘ ρ2 : G Ñ GLpV1 ‘ V2q

defined by
pρ1 ‘ ρ2qpgqpv1, v2q :“ pρ1pgqv1, ρ2pgqv2q.

The space V1 ‘ V2 is then said to carry the direct sum representation of G.

B ELBO DERIVATION

We focus on the transition τ “ px, g, x1q. We have:

• pθpX 1|z1q “ N
`

µθpz1q, Diagpσθpz1q2q
˘

• pψ,ϕpZ 1|x, gq “ N
`

ρψpgqµϕpxq, Id
˘

• qϕpZ 1|x1q “ N
`

µϕpx1q, Diagpσϕpx1q2q
˘

We will use several times the fact that if Y „ N pµ,Diagpσq2q then log ppyq “ ´
ř

i log σi ´

1
2

›

›

y´µ
σ

›

›

2

2
` cste with the element-wise division in the norm.

Our initial goal is to optimize the log-likelihood log ppτq “ log pψ,ϕpx, g, x1q “ log pψ,ϕpx1|x, gq `

cst. Indeed, we consider that the model has no prior (or a constant prior) on px, gq and therefore
focus on optimizing the log-likelihood log pψ,ϕpx1|x, gq:

log pψ,ϕpx1 | x, gq “ Ez1„qϕpz1|x1q

„

log

ˆ

pψ,ϕpx1 | x, gq
qϕpz1 | x1q

qϕpz1 | x1q

˙ȷ

“ Ez1„qϕpz1|x1q

„

log

ˆ

ppx1 | z1, x, gqpψ,ϕpz1 | x, gq

ppz1 | x1, x, gq
¨
qϕpz1 | x1q

qϕpz1 | x1q

˙ȷ

According to Bayes formula

“ Ez1„qϕpz1|x1q

„

log
qϕpz1 | x1q

ppz1 | x1, x, gq

ȷ

` Ez1„qϕpz1|x1q

„

log
pψ,ϕpz1 | x, gq

qϕpz1 | x1q

ȷ

` Ez1„qϕpz1|x1q

“

log ppx1 | z1, x, gq
‰

“ DKL

`

qϕpz1 | x1q}ppz1 | x1, x, gq
˘ (

ě 0

´DKL

`

qϕpz1 | x1q}pψ,ϕpz1 | x, gq
˘

` Ez1„qϕpz1|x1q

“

log pθpx1 | z1q
‰

According to Figure 3

ě ´DKL

`

qϕpz1 | x1q}pψ,ϕpz1 | x, gq
˘

` Ez1„qϕpz1|x1q

“

log pθpx1 | z1q
‰

The lower bound we have derived is composed of two lines. The first line corresponds to the KL
divergence between two multivariate normal distributions and thus has an analytical expression. We
have (up to an additive constant):

´DKL

`

qϕpz1 | x1q}pψ,ϕpz1 | x, gq
˘

“ ´
1

2

›

›ρψpgqµϕpxq ´ µϕpx1q
›

›

2
´
1

2

›

›σϕpx1q
›

›

2
`

ÿ

i

log σϕpx1qi

The second line is equal to (up to an additive constant):

´Ez1„qϕpz1|x1q

«

ÿ

i

log σθpz1qi `

›

›

›

›

x1 ´ µθpz1q

σθpz1q

›

›

›

›

2
ff
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Putting everything together, we obtain:

log ppτq ě ´1
2 }ρψpgqµϕpxq ´ µϕpx1q}

2
´ 1

2}σϕpx1q}2 `
ř

i log σϕpx1qi

)

action part

´Ez1„qϕpz1|x1q

«

ř

i log σθpz1qi `

›

›

›

›

x1 ´ µθpz1q

σθpz1q

›

›

›

›

2
ff

)

reconstruction part

`C

C ACTION CLUSTERING ALGORITHM AND PROOF OF THEOREM 2

Let G “ G1 Y ¨ ¨ ¨ Y GK Ă G with @k Gk Ă Gk denote the ground-truth decomposition of the
available action set. Our objective is to design an algorithm that recovers this decomposition based
on dG.

C.1 ALGORITHM

Let A P Rdˆd, we denote by ~A~ “ maxzPRdzt0u }A}{}z} the spectral norm. We chose the
following algorithm:

• Compute the variables

– r “ maxgPG t~Ag~u the maximal spectral norm,
– ε “ maxpw,g,w1qPD }Agfpwq ´ fpw1q} the action loss upperbound,

– η “ ε
´

1 `
řM
i“0 r

i
¯

the threshold

• Start with unitary clusters: K̂ “ |G| and Ĝi “ tgiu

• Iteratively merge the clusters i and j minimising their distance dpĜi, Ĝjq :“
maxgiPĜi;gjPĜj

dGpgi, gjq

• Stop whenever the distance is above the treshold η.

What if the identity action e belong the available action set G ? After a succesful convergence of the
method, for all g P G we have dGpe, gq « 0 since g “ g1e. As a result, e is merged with another
element at the first iteration and it will not influence the following computations of dpĜi, Ĝjq. As e
can be assigned to any subgroup, its presence does not impact on the performance or correctness of
the overall method.

C.2 PROOF OF CONVERGENCE

We aim to show that if Assumption 1 to 3 are satisfied, the dataset contains all the transitions, W is
finite and A-VAE loss converge toward its minimum, then clustering algorithm will necessarily find
the ground-truth decomposition at some point of the training.

For clarity, we assume that every composition of dG in Assumption 3 is of the form g “ umg1. The
proves can easily be adapted for the other forms.

Proposition 1. Under Assumptions 2 and 3, two actions g, g1 P G belong to the same subgroup if
and only if there exists m P J1,MK and u P G such that g “ umg1.

Proof. The forward implication is given by Assumption 3. For the backward implication we distin-
guish two cases:

1. If one of element is the identity action e, then e belong the same subgroup of every action

2. If both elements differ from e, then according to Assumption 2 there exists a, b and c
such that g P G˚

a , g1 P G˚
b and um P Gc. Therefore g P Gc ˆ G˚

b zteu and then Ga X

pGc ˆGbq ‰ teu, if we had a ‰ b, this would contradict the direct decomposition of G.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

If the standard deviation of noises of A-VAE are fixed, then the loss for a transition px, g, x1q is equal
to

L “ λACT
›

›ρψpgqµϕpxq ´ µϕpx1q
›

›

2
` Ez1„qϕpx1q

”

›

›x1 ´ µθpz1q
›

›

2
ı

Unlike a β-VAE, which requires a trade-off between the regularisation and the reconstruction, this
loss can have both the action loss and the reconstruction loss converging toward 0.

When the action loss converges toward zero, we straightforwardly have ε :“
maxpw,gqPWˆG }Agfpwq ´ fpg ¨ wq} Ñ 0 as it is its upper-bound. Additionally, since the
coefficients of the action matrices are bounded in our implementation, r is also bounded. As a
result, the term η converges toward zero during training.

We also have the following result:
Proposition 2. If the reconstruction loss converges toward zero, then

δ :“ min
w‰w1

}fpwq ´ fpw1q} Ñ `8

Proof. Let h : X Ñ Z be the encoder and d : Z Ñ X be the decoder. Let w1 ‰ w2 P W with
xi “ bpwiq and zi “ hpxiq, as b is injective we have x1 ‰ x2. As the reconstruction loss converges
toward 0 and the dataset contains all the transitions and therefore all the observations, we have

Ez„N pzi,Diagpσ2qq

“

}xi ´ dpzq}2
‰

Ñ 0

Let denote z˚ “ pz1 ` z2q{2, ∆ “ }z1 ´ z2}, B “ Bpz˚, 1q the ball of radius 1 centered at z˚ and
V pdq its volume. Let us denote ppRq “ 1

p
?
2πσqd

exp
´

´ R2

2σ2

¯

the minimum value of the Gaussian
density over a ball of radius R. We aim to show that if the reconstruction loss is sufficiently low,
then ∆ must be sufficiently large for the contribution of the reconstruction over the ball to become
negligible.

B

`
z˚

z1` z2`
∆

Since convergence in L2 in probability implies convergence in L1 in probability, for any ϵ ą 0, at
some point of the training there is

ż

zPRd

N pz; zi, Diagpσ2qq}xi ´ dpzq}dz ď ϵ

We have

ϵ ě

ż

zPRd

N pz; zi, Diagpσ2qq}xi ´ dpzq}dz

ě

ż

zPB

N pz; zi, Diagpσ2qq}xi ´ dpzq}dz

ě p

ˆ

∆

2
` 1

˙
ż

zPB

}xi ´ dpzq}dz

by definition of p, since for any z P B, }zi ´ z} ď }zi ´ z˚} ` }z˚ ´ z} ď ∆{2 ` 1
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Therefore, by summing the two equations, we obtain:

2ϵ ě p

ˆ

∆

2
` 1

˙
ż

zPB

p}x1 ´ dpzq} ` }x2 ´ dpzq}q dz

ě p

ˆ

∆

2
` 1

˙
ż

zPB

}x1 ´ x2}dz with triangular inequality

ě p

ˆ

∆

2
` 1

˙

V pdq}x1 ´ x2}

Using the definition of p and isolating ∆ “ }z1 ´ z2}, we obtain

}z1 ´ z2} ě 2σ

d

2 log

ˆ

1

ϵ

V pdq}x1 ´ x2}

2p
?
2πσqd

˙

´ 2

ÝÝÝÑ
ϵÑ0

`8

Therefore }z1 ´ z2} Ñ `8 as the reconstruction loss converges toward 0. Finally, as W is finite,
we have minw‰w1 }fpwq ´ fpw1q} Ñ `8.

Consequently, at some point of the training, the inequality δ ą 2η holds.
Proposition 3. If δ ą 2η then g and g1 belong to the same subgroup if and only if dGpg, g1q ď η

Proof. Suppose that g, g1 P G belong to the same subgroup, therefore there exists u P G and m P

J1,MK such that g “ umg1. Let w P W

}Agfpwq ´Amu Ag1fpwq} ď }Agfpwq ´ fpg ¨ wq}

` }fpumg1 ¨ wq ´Aufpum´1g1 ¨ wq}

` ¨ ¨ ¨

` }Am´1
u fpug1 ¨ wq ´Amu fpg1 ¨ wq}

` }Amu fpg1 ¨ wq ´Amu Ag1fpwq}

ď }Agfpwq ´ fpg ¨ wq}

` }fpumg1 ¨ wq ´Aufpum´1g1 ¨ wq}

` ¨ ¨ ¨

` ~Au~m´1 ¨ }fpug1 ¨ wq ´Aufpg1 ¨ wq}

` ~Au~m ¨ }fpg1 ¨ wq ´Ag1fpwq}

ď ε`

m
ÿ

i“0

riε

ď η

After applying expectation over w we find dGpg, g1q ď }Ag ´Amu Ag1 }h ď η

Let us now suppose that g, g1 P G do not belong to same subgroup, therefore for all u P G and
m P J1,MK we have

δ ď }fpg ¨ wq ´ fpumg1 ¨ wq}

ď }fpg ¨ wq ´Agfpwq}

` }Agfpwq ´Amu Ag1fpwq}

` }Amu Ag1fpwq ´ fpumg1 ¨ wq}

ď ε` }Agfpwq ´Amu Ag1fpwq} `

m
ÿ

i“0

riε
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ď }Agfpwq ´Amu Ag1fpwq} ` η

Therefore }Agfpwq ´Amu Ag1fpwq} ě δ ´ η ą η, after applying expectation over w and min over
u and m we get dGpg, g1q ą η

Therefore, at some point of the training, two actions belong to the same subgroup if and only if their
distance with repect to dG is below the threshold η. As a consequence, the clustering algorithm de-
scribed previously successfully recovers the ground-truth decomposition, hence proving Theorem 2.

In practice we found that using η “ σ the fixed latent noise standard deviation as a threshold yielded
better empirical results. Consequently, we use this value for η in all our experiments.

D PROOF OF THEOREM 3

If the standard deviation of noises of GMA-VAE are fixed, then the loss for a transition px, g, x1q

equals:

Lpx, g, x1q “ λDIS
ÿ

i

Hpπ:,iq ` λACT
›

›ρψpgqµϕpxq ´ µϕpx1q
›

›

2
` Ez1„qϕpx1q

”

›

›x1 ´ µθpz1q
›

›

2
ı

Let us suppose that G is finite, that the dataset contains all possible transitions, and that the losses
of GMA-VAE have converged to their global minimum of 0. We aim to prove that the encoder is a
LSBD representation.

We cannot directly prove that it is disentangled with respect to xW, b,
ś

kGky, as we cannot build
a representation of an action that is not generated by the available action set. Instead, we aim to
prove that the encoder is disentangled with respect to xW, b,

ś

kxGkyy with xGky being the subgroup
generated by Gk. Similarly, we cannot prove that it is disentangled over all Z . Therefore, as done
by Keurti et al. (2023), we restrict the latent space to V “ spanpfpWqq Ă Z
We proceed by proving that the learned representation satisfies all the criteria listed in Definition 1:

(1) There exists a group action ¨Z : Gˆ V Ñ V

First, note that
ś

kxGky “ xGy. Let g P xGy, as G is finite, we can write g “ gp1q ¨ ¨ ¨ gpnq with
@i, gpiq P G, the group action is given by:

g ¨Z z “ ρpgqz with ρpgq “
ź

i

Ãgpiq

Note that the definition of ρpgq depends on the decomposition of g, which is not necessarily
unique. Since any decomposition would be satisfying and G is finite, we can arbitrarily chose one
decomposition for each g.

The fact that ¨Z is a group action is given thanks to the equivariance and is proven below.

(2) Equivariance holds: @pg, wq P xGy ˆ W, g ¨Z fpwq “ fpg ¨W wq

As the action loss is equal to zero we have:

@pg, wq P G ˆ W, g ¨Z fpwq “ fpg ¨W wq

Let g “
ś

i g
piq P xGy with gpiq P G and w P W . We apply recursively the previous equivariance to

get g ¨Z fpwq “ fpg ¨W wq, hence proving the equivariance over all xGy ˆ W .

We now prove that ¨Z is indeed a group action thanks to the equivariance property. For all w P W
and g, g1 P xGy:

• g ¨Z fpwq “ fpg ¨W wq P V

18
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• e ¨Z fpwq “ fpe ¨W wq “ fpwq

•

g1 ¨Z pg ¨Z fpwqq “ g1 ¨Z fpg ¨W wq

“ fpg1 ¨W pg ¨W wqq

“ fppg1gq ¨W wq

“ pg1gq ¨Z fpwq

As fpWq generates V , for all z P V and g, g1 P xGy we have:

• g ¨Z z P V
• e ¨Z z “ z

• g1 ¨Z pg ¨Z zq “ pg1gq ¨Z z

(3) There exists a decomposition V “ V1 ‘ ¨ ¨ ¨ ‘ VK and group actions ¨k : Gk ˆ Vk Ñ Vk such
that:

pg1, . . . , gKq ¨Z pz1, . . . , zKq “ pg1 ¨1 z1, . . . , gK ¨K zKq

As the disentanglement loss is equal to zero, the masks are binary i.e. πk P t0, 1ud. Therefore the
matrices Ãg for g P G satisfy the block structure illustrated in Figure 5. Additionally if gk P xGky it
can be decomposed into gk “ g

p1q

k ¨ ¨ ¨ g
pnkq

k with gpiq
k P Gk and therefore ρpgkq “

ś

i Ãgpiq

k

share the
same block structure. Finally, for each g “ pg1, . . . , gKq P xGy, ρpgq “

ś

k ρpgkq is block diagonal
up to a permutation of the indices.

Let us first find a decomposition and group actions over Z . We take Zk “ spantei | πk,i “ 1u with
ei the standard basis vectors, this choice reflects the objective of achieving disentanglement along
the Cartesian axes. Hence we have Z “ Z1 ‘ ¨ ¨ ¨ ‘ ZK and zk “ πk d z.

Additionally we take gk ¨k zk “ ρpgkqzk, we have ρpgkqzk P Zk as ρpgkq is the identity on the
complement subspace of Zk. We therefore have for each g “ pg1, . . . , gKq P xGy and z P Z:

ρpgq z1

“

ρpg1q z1

P Z1

Figure 8: Matrix representation of ρpgqzk “ ρpgkqzk P Zk,
here the two first dimensions corresponds to Z1 and the re-
maining two to Z2.

.

g ¨Z z “ ρpgqz

“ ρpgq

˜

ÿ

k

zk

¸

“
ÿ

k

ρpgqzk

“
ÿ

k

ρpgkqzk

“
ÿ

k

gk ¨k zk

“ pg1 ¨1 z1, . . . , gK ¨K zKq

Let us prove that the decomposition and group actions restricted on V are satisfying. Let’s take
Vk “ spantfpwqk | w P Wu “ V X Zk with fpwqk the projection of fpwq on Zk, therefore the
Vk are in direct sum. Moreover we have for all w P W , fpwq “

ř

k fpwqk with fpwqk P Vk and
therefore V “ V1 ‘ ¨ ¨ ¨ ‘ VK .

Additionally, for all g P xGy and fpwq P V we have g ¨Z fpwq “ fpg ¨W wq meaning that for all
component k we have gk ¨k zk “ fpg ¨W wqk P Vk. Finally, as previously done for ¨Z , it can be
shown that ¨k : Gk ˆ Vk Ñ Vk are group actions.

(4) The representation h is injective:
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As the reconstruction loss is equal to zero, the distance between the encoding of two world states
has a lower bound as shown is the proof of Proposition 2.

(5) The group action ¨Z is linear:

As highlighted by Keurti et al. (2023), the restriction of ρ on V written ρV : G Ñ GLpVq is a
morphism and we have g ¨Z z “ ρVpgqz. This can be proven similarly to the argument used to show
that ¨Z is a group action. Hence proving the representation is linear on V .

E MINIMAL LINEAR REPRESENTATION DIMENSION

Let G a group, we seek the minimal dimension such that there exists an injective morphism into
invertible matrices δpGq “ mintd | Dρ : G ãÑ GLpRdqu. We also seek δSOpGq the minimal
dimension for special orthogonal matrices δSOpGq “ mintd | Dρ : G ãÑ SOpdqu.

We get the following results:

G δ δSO
Z 1 2

Z{2Z 1 2
Z{nZ, n ě 3 2 2

S2 1 2
S3 2 3
S4 3 3

Sn, n ě 5 n´ 1 n´ 1 or n

E.1 FINITE CYCLIC GROUP i.e. ROTATION GROUP

Proof. LetG a finite cyclic group of cardinal n ě 2 i.e. G – Z{nZ. There are two cases to consider:

n “ 2: Then G “ te, gu with g2 “ e. Therefore δpGq “ 1 because the isomorphism ρ “ te ÞÑ

p1q; g ÞÑ p´1qu is satisfying. Furthermore δSOpGq ą 1 as SOp1q “ tp1qu can only express the
trivial group.

n ą 2: Suppose δpGq “ 1, then for each element g P G there exists a scalar λg P R such that
ρpgq “ pλgq. Therefore for all g and k ě 0 we have gk P G and then λkg P tλg1 | g1 P Gu which is
finite set. Therefore λg P t´1, 1u, consequently for all g P G, ρpg2q “ pλ2gq “ p1q and then g2 “ e.
This is contradictory, therefore δpGq ě 2.

We show that δpGq “ 2: let h be a generator of G i.e. for all g P G, there exists kg P

J0, nJ such that hkg “ g. The following rotation matrix is a satisfying morphism ρpgq “
ˆ

cosp2πkg{nq ´ sinp2πkg{nq

sinp2πkg{nq cosp2πkg{nq

˙

. Finally δpGq “ 2 and therefore δSOpGq “ 2

E.2 INFINITE CYCLIC GROUP

Proof. Let G be an infinite cyclic group i.e. G – Z. Let h be a generator G, therefore for all g P G,
there exists kg P Z such that g “ hkg . We have δpGq “ 1 and then for all x ą 0, x ‰ 1, the
representation ρ : g P G ÞÑ pxkq is satisfying.

As previously, we have δSOpGq ą 1 and for any θ R 2πQ, the representation ρpgq “
ˆ

cospkgθq ´ sinpkgθq

sinpkgθq cospkgθq

˙

P SOp2q is satisfying. Finally δSOpGq “ 2.

E.3 PERMUTATION GROUP

Proof. Let G “ Sn with n ě 2 the permutation group.
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Generalities: We know that there exists an injective morphism ρ : Sn ãÑ Opn ´ 1q thanks to its
standard representation, therefore δpSnq ď n´ 1. Furthermore we can inject Opn´ 1q into SOpnq

using g ÞÑ

ˆ

ρpgq 0
0 det ρpgq

˙

. And then δSOpSnq ď n.

n “ 2: We have S2 – Z{2Z, as previously δpS2q “ 1 and δSOpS2q “ 2.

n “ 3: Similarly to previously δpS3q ą 1 and δSOpS3q ą 1. Moreover there is no injection
S3 ãÑ SOp2q as S3 would be commutative. Therefore δpS3q “ 2 and δSOpS3q “ 3

n “ 4: S4 is isomorphic to a subgroup of SOp3q as it can be seen as the symmetry group of the
tetrahedron. Moreover their is no injection S4 ãÑ GLpR2q as S4 would be cyclic or dihedral. Then
δpS4q “ δSOpS4q “ 3.

n ě 5: The minimal dimension for a linear representation in C of Sn is n ´ 1 (Rasala, 1977).
Therefore the minimal dimension in R is at least n ´ 1 i.e. δpGq ě n ´ 1. Consequently δpSnq “

n´ 1 and δSOpSnq P tn´ 1, nu

F SOpdq PARAMETERIZATION IS NOT ENOUGH FOR LINEAR
DISENTANGLEMENT

Here, we aim to show that using a structured action parameterization, as done in SOBDRL and
LSBD-VAE˚, is not sufficient to obtain a disentangled representation, even when applying the regu-
larization used in SOBDRL. This limitation also applies to the block-diagonal parameterization used
in Homomorphism AutoEncoder (Keurti et al., 2023). Assume that the underlying group action is
composed of two cyclic direct factors, i.e., G “ G1 ˆG2, and that G is isomorphic to a subgroup of
SOp2q ˆ SOp2q. Our goal is to learn a disentangled representation of this subgroup. Moreover, we
require the learned representation to be injective as any constant morphism would be disentangled.
A SOpdq-based method may use this prior knowledge by parameterizing the action matrices with

ρ : g P G ÞÑ Rpθg, θ
1
gq :“

ˆ

R2pθgq 0
0 R2pθ1

gq

˙

with R2pθq being the rotation matrix of angle θ.

Suppose that the unknown ground-truth group decomposition consists of two cyclic direct factors
with n and m elements, i.e., G “ Z{nZ ˆ Z{mZ. Let g1 and g2 denote generators of each respec-
tive factor. For the action representation to be disentangled, we would ideally want something like
ρpg1q “ p2π{n, 0q and ρpg2q “ p0, 2π{mq, so that each generator only affects a single latent sub-
space. However, when using this type of parameterization as a disentanglement criterion, even with
the regularization term introduced in SOBDRL, it remains impossible to guarantee disentanglement
of the action representation. Below, we present examples of entangled representations that satisfy
the imposed parameterization but fail to be disentangled.

Case n°1: The representation such that ρpg1q “ Rp2π{n, 0q and ρpg2q “ Rp2π{m, 2π{mq is an
injective homomorphism, it was encountered during our LSBD-VAE˚ experiments. This represen-
tation is entangled with respect to the LSBD framework.

Proof. Suppose there exists a decomposition R4 “ Z1 ‘ Z2 satisfying the disentangled definition,
then ρpg2q would be the identity function on Z1 i.e. for all z1 P Z1, ρpg2qz1 “ z1. If Z1 ‰ t0u

then 1 is an eigenvalue of ρpg2q which is impossible as its spectrum is te2iπ{m, e´2iπ{mu. Therefore
Z1 “ t0u, the same reasoning can be applied on Z2, therefore Z1 ‘ Z2 “ t0u ‰ R4.

Case n°2 If n and m are coprime numbers, then the representation such that ρpg1q “ Rp2π{n, 0q

and ρpg2q “ Rp2π{m, 0q is injective as

G “
Z
nZ

ˆ
Z
mZ

–
Z

nmZ

This type of representation was encountered with SOBDRL as it minimises its disentanglement
criterion. However this representation is entangled with respect to the LSBD framework
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Proof. Suppose there exists a decomposition R4 “ Z1 ‘ Z2 respecting the definition, then ρpg1q

would be the identity on Z2 i.e. for all z2 P Z2, ρpg1qz2 “ z2 and then Z2 is a subspace of the
eigenspace of ρpg1q associated with the eigenvalue 1. This eigenspace corresponds to the two last
dimension: R4 i.e. Z2 Ă t0u ˆ t0u ˆ R2. Similarly for ρpg2q, we have Z1 Ă t0u ˆ t0u ˆ R2 and
therefore R4 ‰ Z1 ‘ Z2.

Case n°3: If n “ m “ pq a composite number with p and q coprimes, the representation
ρpg1q “ Rp2π{p, 2π{qq and ρpg2q “ Rp2π{q, 2π{pq is injective. It is like switching the two Z{qZ
components of each direct factor.

G –

G1
hkkkkkkkkikkkkkkkkj

˜

Z
pZ

ˆ
Z
qZ

¸

ˆ

G2
hkkkkkkkkikkkkkkkkj

˜

Z
pZ

ˆ
Z
qZ

¸

As for case n°1, this representation is entangled with respect to the LSBD framework

G PROOF OF THEOREM 1

Reminders:

• W the world state set

• X the observation set

• Z “ Rd latent space

• b : W Ñ X the observation function

• h : X Ñ Z the encoding function

• f “ h ˝ b : W Ñ Z
• h is disentangled with respect to xW, b,

ś

kGky if:

1. There exists ¨Z : Gˆ Z Ñ Z
2. Equivariance holds: @g P G,w P W , g ¨Z fpwq “ fpg ¨W wq

3. There exists Z “ Z1 ‘ ¨ ¨ ¨ ‘ ZK and ¨k : Gk ˆ Zk Ñ Zk such that

pg1, . . . , gKqpz1, . . . , zKq “ pg1 ¨1 z1, . . . , gK ¨K zKq

4. h is injective

Suppose there exists a SBD representation with respect to xW, b,
ś

kGky, we aim to prove that we
can build xW̃ , b̃,

ś

kGky from xW, b,
ś

kGky such that (1) the SBD representations with respect to
xW̃ , b̃,

ś

kGky are exactly the SBD representations with respect to xW, b,
ś

kGky, (2) the observa-
tion function b̃ is injective and (3) xW, b,

ś

kGky and xW̃ , b̃,
ś

kGky yield the same sensorimotor
interaction with the agent, and are thus indistinguishable

G.1 INTERACTION EQUIVALENCE

We would like to reduce W to indistinguishable cases, we therefore define the following equivalence
relation:

Definition 2. Two world states w1 and w2 are called interaction equivalent if and only if:

@g P G, bpg ¨W w1q “ bpg ¨W w2q

We denote this relation between the two world states as w1 „ w2.
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This definition implies that two states w1 and w2 that yield the same observation but can be dis-
tinguished by interacting with the environment are not equivalent. Therefore, it does not cover
situations such as object occlusions. Based on this interaction equivalence relation, we define a new
set composed of the equivalence classes:
Definition 3. We call interaction equivalent world state set and denote by W̃ the set of interaction
equivalence classes.

W̃ “ trws | w P Wu

where rws denotes the equivalence class of w according to Definition 2.

We now turn to defining appropriate functions using the interaction equivalent world state set.
Proposition 4. If w1 „ w2, then bpw1q “ bpw2q.

Proof. This can be easily derived from Definition 2 and taking g “ e the identity element.

This proposition allows us to define a new observation function on the interaction equivalent world
state set W̃:
Definition 4. We call interaction equivalent observation function and denote by b̃ the function
b̃ : W̃ Ñ X such that:

@rws P W̃, b̃prwsq “ bpwq

Proposition 5. If w1 „ w2, then @g P G, g ¨W w1 „ g ¨W w2.

Proof. Let w1 and w2 be two world states from W such that w1 „ w2. Let g P G be a symmetry.
We aim to prove that g ¨W w1 „ g ¨W w2.

Let g1 P G be a symmetry. Since G is a group, it follows that the composition g1g P G. According
to Definition 2:

bpg1g ¨W w1q “ bpg1g ¨W w2q

And, by definition of a group action:
bpg1 ¨W pg ¨W w1qq “ bpg1 ¨W pg ¨W w2qq

According to Definition 2, we thus have g ¨W w1 „ g ¨W w2.

This proposition allows us to define a new group action on the interaction equivalent world state set
W̃:
Definition 5. We call interaction equivalent group action and denote by ¨W̃ the function ¨W̃ :

Gˆ W̃ Ñ W̃ such that:
@g P G,@rws P W̃, g ¨W̃ rws “ rg ¨W ws

Proposition 6. ¨W̃ is a group action.

Proof. We need to prove two properties:

1. @rws P W̃, e ¨W̃ rws “ rws

2. @pg, g1q P G,@rws P W̃, g1 ¨W̃ pg ¨W̃ rwsq “ pg1gq ¨W̃ rws

We start with the first property. Let rws P W̃ be an interaction equivalence class. We have:
e ¨W̃ rws “ re ¨W ws according to Definition 5

“ rws since ¨W is a group action itself

For the second property, suppose pg, g1q P G and rws P W̃ . We have:
g1 ¨W̃ pg ¨W̃ rwsq “ g1 ¨W̃ rg ¨W ws according to Definition 5

“ rg1 ¨W pg ¨W wqs according to Definition 5

“ rpg1gq¨W s since ¨W is a group action

“ pg1gq ¨W̃ rws according to Definition 5
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In summary, we have proposed an equivalence relation for world states that allows us to define a new
world state set regrouping equivalent states, as well as an observation function and a group action
for this new world state set.

G.2 NECESSITY OF INJECTIVITY OF THE OBSERVATION FUNCTION

We now address the main point of this appendix, which is to show that if h is an SBD representation
with respect to xW, b,

ś

iGiy, then b̃ has to be injective. We start by first showing that SBD-ness is
implied in the interaction equivalent world.

Proposition 7. If h is SBD with respect to xW, b,
ś

iGiy, then h is SBD with respect to
xW̃, b̃,

ś

iGiy.

Proof. According to Definition 1, SBD-ness with respect to xW̃, b̃,
ś

kGky requires four properties:

1. There exists a group action ¨Z : Gˆ Z Ñ Z ,

2. Equivariance holds: @g P G, rws P W̃ , we have g ¨Z h ˝ b̃prwsq “ h ˝ b̃pg ¨W̃ rwsq,

3. There exists a decomposition Z “ Z1 ˆ ¨ ¨ ¨ ˆ ZK and group actions ¨k : Gk ˆ Zk Ñ Zk
such that

pg1, . . . , gKq ¨Z pz1, . . . , zKq “ pg1 ¨1 z1, . . . , gK ¨K zKq,

4. h is injective.

Properties 1, 3 and 4 are ensured by the fact that h is SBD with respect to xW, b,
ś

kGky. We thus
just need to prove the second property. Suppose g P G and rws P W̃ , we have:

g ¨Z h ˝ b̃prwsq “ g ¨Z h ˝ bpwq according to Definition 4
“ h ˝ bpg ¨W wq since h is SBD (equivariance property)

“ h ˝ b̃prg ¨W wsq according to Definition 4

“ h ˝ b̃pg ¨W̃ rwsq according to Definition 5

Proposition 8. Reciprocally, if h is SBD with respect to xW̃, b̃,
ś

iGiy, then h is SBD with respect
to xW, b,

ś

iGiy.

Proof. As in the previous proof, it suffices to establish equivariance in order to prove disentangle-
ment with respect to xW, b,

ś

iGiy. Let g P G and w P W :

g ¨Z h ˝ bpwq “ g ¨Z h ˝ b̃prwsq according to Definition 4

“ h ˝ b̃pg ¨W̃ rwsq since h is SBD (equivariance property)

“ h ˝ b̃prg ¨W wsq according to Definition 5
“ h ˝ bpg ¨W wq according to Definition 4

We can now introduce the main result of this appendix:

Theorem 1. If h is SBD with respect to xW, b,
ś

kGky then b̃ is injective.
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Proof. Suppose h is SBD with respect to xW, b,
ś

kGky. According to Proposition 7, h is also
SBD with respect to xW̃, b̃,

ś

kGky.

Let us assume that b̃ is not injective and show that it leads to a contradiction.

Since b̃ is not injective, there exist rw1s ‰ rw2s such that b̃prw1sq “ b̃prw2sq. Since rw1s ‰ rw2s

then let g P G be the symmetry such that bpg ¨W w1q ‰ bpg ¨W w2q. On the one hand:

bpg ¨W w1q ‰ bpg ¨W w2q ùñ b̃prg ¨W w1sq ‰ b̃prg ¨W w2sq according to Definition 2

ùñ h ˝ bprg ¨W w1sq ‰ h ˝ b̃prg ¨W w2sq since h is injective

ùñ g ¨Z h ˝ b̃prw1sq ‰ g ¨Z h ˝ b̃prw2sq equivariance property

On the other hand, since b̃prw1sq “ b̃prw2sq, then g ¨Z h ˝ b̃prw1sq “ g ¨Z h ˝ b̃prw2sq. We have a
contradiction and thus b̃ is injective.

From a prediction perspective this result is quite intuitive: for an injective encoder to allow accurate
prediction of future observations x1 from x and g, it is necessary for the observation to be unam-
biguous. From a disentanglement perspective this is a strong limitation, it means that all the features
to disentangle have to be constantly observed by the agent.

We use this result to justify the introduction of Assumption 1 to derive our algorithm for the group
decomposition. Since we have shown that LSB disentanglement is impossible when b̃ is not injec-
tive, it is a necessary assumption to assume.

H ADDITIONAL RESULTS

H.1 PREDICTION BASED MODEL SELECTION

For unsupervised disentanglement learning, choosing the model with the best disentanglement with-
out knowing the ground-truth features is a crucial and often difficult task. Several solutions have
been discussed in the state of the art to adress this issue for purely unsupervised methods (Duan
et al., 2019; Zhou et al., 2021; Holtz et al., 2022), they mostly rely on learning a batch of models
with different hyperparameters or initialisation and selecting the ones sharing some defined proper-
ties. This model selection issue arises in our method at two different stages: the action clustering
resulting of Step 2 and the representation learned by GMA-VAE.

As we are in a self-supervised framework, we investigate whether it is possible to select the model
achieving the best disentanglement (measured here with the independence metric (Painter et al.,
2020)) solely based on the prediction error. Similarly, we aim to determine whether it is possible to
identify which A-VAE model results in the correct action clustering in Step 2. To evaluate clustering
quality, we use the Adjusted Rand Index (ARI) (Hubert & Arabie, 1985), a metric to be maximized
that equals 1 if and only if the predicted clustering exactly matches the ground-truth partition (up to
a permutation).

For multiple hyperparameter configurations and random seeds, we plot for the COIL2 experiment
the metric of interest as a function of the prediction error in Figure 9.
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Figure 9: Metric of interest as a function of the prediction error

For A-VAE (left), we see that for almost all of the models, either the prediction performs well and
the action clustering retrieves the correct partition, either the model cannot predict correctly and
the action clustering retrieves a clustering only composed of singletons meaning that the ARI is
equal to zero. However, few models out still has a good prediction error with a low ARI. It is
therefore possible to train a batch of A-VAE models with different hyperparameters and initialisation
seeds and take the action clustering that is retrieved by the majority of models achieving the best
predictions.

For the disentangled representation learning algorithms (right), we can then notice that for the
LSBD-VAE˚ and SOBDRL , they are few models that achieve a good prediction without being
disentangled. However the model with the best prediction is always disentangled with a slight mar-
gin. For GMA-VAE, a good prediction always a disentanglement almost equal to 1.

H.2 ASSUMPTION 2 FOR OTHER ALGORITHMS

This section aims to demonstrate that, although not explicitly stated, related LSBD algorithms
implicitly rely on Assumption 2 (action disentanglement) to some extent.

First, Forward-VAE directly requires disentangled actions, as its action matrix parameterization is
identical to GMA-VAE, with the vectors πk P t0, 1ud provided as prior knowledge.

To evaluate the extent to which SOBDRL and LSBD-VAE˚ depend on this assumption, we modify
the COIL2 experimental setup by progressively relaxing Assumption 2. In this modified setting, each
action corresponds to an element of the product of k ě 1 distinct direct factors. We then measure the
degree of disentanglement in the learned representation using the Independence score, as a function
of the entanglement level k. The results, shown in Figure 10, indicate that the Independence score
decreases as k increases, and rapidly approaches the score obtained with fully entangled actions
(represented by the green dotted line). These findings support the claim that Assumption 2, i.e.,
k “ 1, is in fact necessary for these algorithms to learn a disentangled representation.
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Figure 10: Disentanglement according to action entanglement

H.3 DISENTANGLEMENT METRICS

We show all the disentanglement results of the different methods on the different dataset, the values
reported in the table correspond to the mean over five seeds with the 68% confidence interval. The
random method corresponds to a randomly initialised neural network that was not trained.

Table 2: Disentanglement for FlatLand with rotation colors

Ò Beta-VAE Ò Inde Ò Mod Ò DCI Ò SAP Ò MIG Ó Prediction

LSBD-VAE mean 1.00 ˘ .00 .96 ˘ .00 1.00 ˘ .00 .98 ˘ .01 .53 ˘ .05 .10 ˘ .04 1.6e-09 ˘ 4.8e-10
best 1.00 .96 1.00 1.00 .46 .23 4.8e-10

LSBD-VAE˚ mean 1.00 ˘ .00 .93 ˘ .02 .90 ˘ .06 .87 ˘ .07 .40 ˘ .03 .07 ˘ .03 9.6e-10 ˘ 5.3e-10
best 1.00 .97 1.00 .98 .53 .02 3.3e-9

SOBDRL mean .93 ˘ .03 .78 ˘ .02 .85 ˘ .04 .53 ˘ .09 .28 ˘ .04 .10 ˘ .02 2.7e-5 ˘ 2.4e-5
best .99 .84 .77 .56 .44 .02 1.6e-8

GMA-VAE mean 1.00 ˘ .00 1.00 ˘ .00 1.00 ˘ .00 1.00 ˘ .00 .54 ˘ .04 .01 ˘ .00 1.6e-10 ˘ 2.9e-11
best 1.00 1.00 1.00 1.00 .51 .00 1.3e-10

A-VAE mean .89 ˘ .05 .84 ˘ .01 .76 ˘ .01 .44 ˘ .03 .11 ˘ .02 .05 ˘ .01 6.6e-11 ˘ 1.7e-11
best .95 .82 .77 .48 .03 .05 3.0e-11

β-VAE .68 ˘ .06 .77 ˘ .01 .88 ˘ .03 .22 ˘ .05 .20 ˘ .04 .13 ˘ .03
Factor-VAE .69 ˘ .07 .69 ˘ .04 .81 ˘ .03 .24 ˘ .06 .29 ˘ .06 .16 ˘ .05
DIP-VAE I .56 ˘ .03 .67 ˘ .01 .78 ˘ .01 .12 ˘ .02 .11 ˘ .01 .04 ˘ .01
DIP-VAE II .84 ˘ .04 .62 ˘ .02 .74 ˘ .00 .17 ˘ .01 .18 ˘ .04 .05 ˘ .01

Random .41 ˘ .03 .51 ˘ .01 .61 ˘ .04 .05 ˘ .01 .05 ˘ .00 .04 ˘ .01

Table 3: Disentanglement for FlatLand with permutation colors

Ò Beta-VAE Ò Inde Ò Mod Ò DCI Ò SAP Ò MIG Ó Prediction

LSBD-VAE mean 1.00 ˘ .00 .97 ˘ .00 1.00 ˘ .00 .95 ˘ .02 .46 ˘ .04 .04 ˘ .02 4.1e-6 ˘ 7.3e-7
best 1.00 .97 1.00 .98 .59 .02 2.6e-6

LSBD-VAE˚ mean 1.00 ˘ .00 .98 ˘ .00 1.00 ˘ .00 .99 ˘ .01 .40 ˘ .06 .08 ˘ .02 3.3e-6 ˘ 2.8e-7
best 1.00 .98 1.00 1.00 .46 .00 2.7e-6

SOBDRL mean 1.00 ˘ .00 .74 ˘ .01 .79 ˘ .01 .50 ˘ .02 .25 ˘ .03 .08 ˘ .02 3.6e-3 ˘ 8.3e-7
best 1.00 .76 .80 .43 .16 .12 3.6e-3

GMA-VAE mean 1.00 ˘ .00 .99 ˘ .00 1.00 ˘ .00 .99 ˘ .01 .51 ˘ .04 .08 ˘ .01 5.8e-6 ˘ 3.1e-6
best 1.00 1.00 1.00 1.00 .59 .11 1.0e-6

A-VAE mean .87 ˘ .06 .89 ˘ .04 .92 ˘ .04 .47 ˘ .08 .15 ˘ .05 .09 ˘ .01 1.1e-6 ˘ 1.9e-7
best 1.00 .95 1.00 .47 .28 .07 1.0e-6

β-VAE .64 ˘ .03 .60 ˘ .03 .80 ˘ .02 .13 ˘ .04 .12 ˘ .02 .03 ˘ .01
Factor-VAE .77 ˘ .05 .61 ˘ .01 .79 ˘ .02 .13 ˘ .02 .17 ˘ .04 .05 ˘ .02
DIP-VAE I .60 ˘ .06 .71 ˘ .02 .87 ˘ .02 .11 ˘ .03 .10 ˘ .04 .06 ˘ .02
DIP-VAE II .70 ˘ .05 .71 ˘ .01 .81 ˘ .01 .11 ˘ .02 .10 ˘ .02 .04 ˘ .01

Random .46 ˘ .01 .59 ˘ .01 .68 ˘ .02 .05 ˘ .01 .09 ˘ .01 .03 ˘ .01
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Ò Beta-VAE Ò Inde Ò Mod Ò DCI Ò SAP Ò MIG Ó Prediction

LSBD-VAE mean 1.00 ˘ .00 .99 ˘ .00 1.00 ˘ .00 .98 ˘ .01 .31 ˘ .05 .01 ˘ .01 8.2e-5 ˘ 3.0e-6
best 1.00 .99 1.00 .92 .43 .00 7.4e-5

LSBD-VAE˚ mean 1.00 ˘ .00 .99 ˘ .00 1.00 ˘ .00 .97 ˘ .02 .25 ˘ .05 .04 ˘ .03 9.4e-5 ˘ 3.1e-6
best 1.00 .99 .98 .91 .45 .00 8.9e-5

SOBDRL mean .99 ˘ .00 .91 ˘ .05 .90 ˘ .05 .90 ˘ .05 .52 ˘ .05 .31 ˘ .06 7.2e-5 ˘ 5.0e-6
best 1.00 1.00 .98 1.00 .60 .42 5.4e-5

GMA-VAE mean 1.00 ˘ .00 1.00 ˘ .00 1.00 ˘ .00 1.00 ˘ .00 .64 ˘ .04 .46 ˘ .02 7.4e-5 ˘ 5.5e-6
best 1.00 1.00 1.00 1.00 .71 .48 6.7e-5

A-VAE mean .79 ˘ .03 .79 ˘ .03 .67 ˘ .05 .58 ˘ .03 .08 ˘ .02 .09 ˘ .03 1.0e-4 ˘ 2.5e-5
best .81 .85 .75 .55 .04 .05 7.0e-5

β-VAE .67 ˘ .03 .75 ˘ .01 .83 ˘ .01 .36 ˘ .01 .30 ˘ .01 .24 ˘ .04
Factor-VAE .81 ˘ .09 .78 ˘ .01 .87 ˘ .01 .50 ˘ .05 .34 ˘ .02 .23 ˘ .02
DIP-VAE I .74 ˘ .01 .71 ˘ .01 .83 ˘ .02 .41 ˘ .02 .32 ˘ .02 .22 ˘ .03
DIP-VAE II .84 ˘ .02 .75 ˘ .01 .83 ˘ .03 .42 ˘ .01 .37 ˘ .04 .16 ˘ .02

Random .58 ˘ .06 .64 ˘ .02 .83 ˘ .02 .27 ˘ .03 .11 ˘ .02 .13 ˘ .02

Table 4: Disentanglement for COIL2

Table 5: Disentanglement for COIL3

Ò Beta-VAE Ò Inde Ò Mod Ò DCI Ò SAP Ò MIG Ó Prediction

LSBD-VAE mean 1.00 ˘ .00 .98 ˘ .00 1.00 ˘ .00 .97 ˘ .01 .42 ˘ .04 .08 ˘ .02 1.2e-4 ˘ 5.4e-6
best 1.00 .98 1.00 .94 .40 .12 1.0e-04

LSBD-VAE˚ mean .86 ˘ .06 .92 ˘ .02 .83 ˘ .03 .75 ˘ .03 .21 ˘ .04 .12 ˘ .02 3.2e-3 ˘ 6.2e-4
best 1.00 .96 .88 .86 .28 .13 2.6e-04

SOBDRL mean .86 ˘ .09 .88 ˘ .03 .82 ˘ .05 .66 ˘ .07 .26 ˘ .08 .10 ˘ .02 4.7e-4 ˘ 1.3e-4
best .96 .91 .87 .80 .42 .12 2.6e-04

GMA-VAE mean 1.00 ˘ .00 1.00 ˘ .00 1.00 ˘ .00 1.00 ˘ .00 .35 ˘ .03 .17 ˘ .02 1.1e-4 ˘ 3.7e-6
best 1.00 1.00 1.00 1.00 .34 .13 9.9e-05

A-VAE mean .49 ˘ .01 .80 ˘ .02 .61 ˘ .01 .15 ˘ .01 .03 ˘ .01 .04 ˘ .01 2.8e-4 ˘ 1.9e-5
best .50 .85 .62 .13 .02 .04 2.0e-04

β-VAE .44 ˘ .05 .82 ˘ .01 .76 ˘ .02 .10 ˘ .03 .04 ˘ .01 .08 ˘ .01
Factor-VAE .74 ˘ .02 .84 ˘ .01 .80 ˘ .01 .28 ˘ .02 .11 ˘ .02 .13 ˘ .03
DIP-VAE I .41 ˘ .01 .84 ˘ .01 .78 ˘ .01 .04 ˘ .00 .06 ˘ .01 .04 ˘ .00
DIP-VAE II .49 ˘ .05 .82 ˘ .01 .75 ˘ .01 .10 ˘ .01 .08 ˘ .02 .06 ˘ .01

Random .38 ˘ .02 .65 ˘ .01 .77 ˘ .01 .05 ˘ .01 .08 ˘ .02 .05 ˘ .01

Table 6: Disentanglement for 3DShapes

Ò Beta-VAE Ò Inde Ò Mod Ò DCI Ò SAP Ò MIG Ó Prediction

LSBD-VAE mean .98 ˘ .00 .98 ˘ .00 1.00 ˘ .00 .99 ˘ .00 .43 ˘ .03 .07 ˘ .01 7.6e-4 ˘ 2.2e-5
best .98 .99 1.00 1.00 .45 .04 6.8e-4

LSBD-VAE˚ mean .97 ˘ .00 .97 ˘ .01 1.00 ˘ .00 .95 ˘ .02 .49 ˘ .04 .09 ˘ .02 1.1e-3 ˘ 2.6e-4
best .97 .98 1.00 .98 .59 .03 8.3e-4

SOBDRL mean .91 ˘ .05 .93 ˘ .02 .96 ˘ .03 .85 ˘ .07 .41 ˘ .05 .22 ˘ .05 2.0e-3 ˘ 8.7e-4
best .98 .97 1.00 .97 .31 .26 9.2e-4

GMA-VAE mean .98 ˘ .00 1.00 ˘ .00 1.00 ˘ .00 1.00 ˘ .00 .56 ˘ .04 .26 ˘ .02 6.0e-4 ˘ 3.2e-5
best .98 1.00 1.00 1.00 .69 .19 5.1e-4

A-VAE mean .35 ˘ .03 .88 ˘ .01 .75 ˘ .00 .15 ˘ .02 .06 ˘ .01 .04 ˘ .01 8.1e-4 ˘ 3.6e-5
best .42 .90 .74 .18 .07 .02 8.2e-4

β-VAE .52 ˘ .04 .72 ˘ .01 .74 ˘ .00 .22 ˘ .04 .14 ˘ .01 .08 ˘ .01
Factor-VAE .63 ˘ .03 .74 ˘ .01 .76 ˘ .01 .35 ˘ .01 .20 ˘ .05 .11 ˘ .03
DIP-VAE I .62 ˘ .02 .71 ˘ .02 .75 ˘ .01 .28 ˘ .02 .15 ˘ .01 .12 ˘ .02
DIP-VAE II .67 ˘ .03 .69 ˘ .01 .75 ˘ .01 .37 ˘ .01 .14 ˘ .01 .22 ˘ .02

Random .31 ˘ .04 .64 ˘ .01 .70 ˘ .01 .04 ˘ .00 .04 ˘ .00 .04 ˘ .00

H.4 ASSUMPTION 1 VERIFICATION

Here we show the results of section H.2 which aims to prove the SOBDRL and LSBD-VAE˚ im-
plicitly require a disentangled action set. We evaluate the disentanglement of those methods on the
COIL2 environment for different values of the action entanglement k in Table 7. As we can see the
disentanglement strictly decreases as actions are more entangled except for the MIG metric.
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k Beta-VAE Inde Mod DCI SAP MIG

LSBD-VAE˚
1 1.00 ˘ .00 .99 ˘ .00 1.00 ˘ .00 1.00 ˘ .00 .27 ˘ .04 .06 ˘ .03
2 .99 ˘ .00 .84 ˘ .03 .83 ˘ .04 .82 ˘ .05 .14 ˘ .02 .07 ˘ .03
3 .78 ˘ .05 .69 ˘ .03 .59 ˘ .05 .62 ˘ .05 .03 ˘ .01 .04 ˘ .01

SOBDRL
1 .99 ˘ .01 .94 ˘ .02 .94 ˘ .04 .88 ˘ .03 .39 ˘ .04 .20 ˘ .07
2 .94 ˘ .03 .83 ˘ .02 .81 ˘ .02 .70 ˘ .06 .30 ˘ .06 .04 ˘ .03
3 .74 ˘ .09 .74 ˘ .05 .68 ˘ .05 .48 ˘ .05 .23 ˘ .06 .19 ˘ .05

Table 7: Disentanglement with respect to action entanglement

H.5 dG MATRICES

Figure 11 presents the dG matrices for five different environments. Each matrix is normalized such
that the clustering threshold corresponds to a distance of 1. Each black square represents available
actions Gk associated with specific subgroups Gk. These blocks have pairwise distances strictly
below 1, whereas the distances between two actions belonging to different subgroups are strictly
greater than 1, resulting in a correct recovering of the ground-truth action partition.
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Figure 11: dG matrices averaged over 5 seeds, normalised so that the clustering threshold is 1.

I IMPLEMENTATION DETAILS

I.1 DATASETS

Here, we describe the datasets used in this paper. A visual representation of the observation and the
available actions are illustrated in Figure 12.

Our implementation of Colored Flatland consists of RGB images of size 64 ˆ 64 ˆ 3 with a ball
of radius 17 pixels. The ball can occupy 5 distinct positions along each axis, corresponding to
GX “ GY “ Z{5Z. In the cyclic color experiment (FLC), the base color is r1, 0, 0s, and the
two available actions in GC perform cyclic shifts of the active color channel in one direction. In
the permutation color experiment (FLP), the base color is r1{3, 2{3, 1s, and each available action
corresponds to a permutation of the RGB channels.

Our implementation of COIL consists of RGB images of size 64 ˆ 64nˆ 3, where n is the number
of objects present in the scene. The group actions, and consequently the number of possible ori-
entations for each object, are specified in Table 8. In this table we denote by σ a permutation that
permutes all objects, and by ri the rotation by one unit angle of the i-th object. The first two rows
of Table 8 correspond to the datasets COIL2 and COIL3, which are used in the most of the experi-
ments. The remaining rows describe additional environments used for action clustering experiments
in Section 5.2.

Our implementation of 3DShapes (Burgess & Kim, 2018) consists of RGB images of size 64ˆ64ˆ3,
showing a 3D object placed at the center of a colored room. Each original generative factor was
sub-sampled by a factor of 2, resulting in the following cardinalities: wall hue: 5, object hue; 5,
background hue: 5, object scale: 4, object shape: 2, and viewing angle: 7. For each generative
factor i, we define a cyclic symmetry group Gi “ Z{kiZ over its possible values, along with two
available actions Gi “ tg´

i , g
`
i u corresponding to unit rotation in each direction.
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(a) COIL
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(b) Colored Flatland
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(c) 3DShapes
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shape

Figure 12: Presentation of the environments

Table 8: COIL Environments used

G GS G1 G2 G3 G4 includes e ?
S2 ˆ Z

7Z ˆ Z
5Z G˚

S t´r1, r1u t´r2, r2u No
S3 ˆ Z

5Z ˆ Z
5Z ˆ Z

3Z G˚
S t´r1, r1u t´r2, r2u t´r3, r3u No

S3 ˆ Z
7Z ˆ Z

5Z ˆ Z
3Z tσu tr1, 3r1u t3r2, 4r2u tr3u Yes

S3 ˆ Z
3Z ˆ Z

7Z ˆ Z
3Z tσu t2r1, 6r1u t2r2u tr3u Yes

S4 ˆ Z
7Z ˆ Z

5Z ˆ Z
3Z ˆ Z

3Z tσ, σ´1
u tr1, 3r1u t3r2, 4r2u tr3u tr4u No

I.2 NETWORK ARCHITECTURES AND HYPERPARAMETERS

For all the experiments, dataset and method, we used Adam (Kingma & Ba, 2015) with the default
parameters given by pytorch, a batch size of 16 and the following auto-encoder architecture
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Table 9: Auto-encoder architecture used for all methods and all datasets

ENCODER
Input Size px, y, cq

Conv Channels: 32, Kernel size: 8, Stride: 4, Padding: 2, ReLU
Conv Channels: 64, Kernel size: 8, Stride: 4, Padding: 2, ReLU
Reshape Flatten into x{4 ˆ y{4 ˆ 64
Dense Dimension: 256, ReLU
Dense Dimension: depends on d and the noise parametrisation

DECODER
Input Size d
Dense Dimension: 256, ReLU
Dense Dimension: x{4 ˆ y{4 ˆ 64, ReLU
Reshape px{4, y{4, 64q

ConvT Channels: 32, Kernel size: 8, Stride: 4, Padding: 2, ReLU
ConvT Channels: c, Kernel size: 8, Stride: 4, Padding: 2, Sigmoid

An action matrix Ag of SOBDRL is parametrised by dpd ´ 1q scalars θgi,j , one angle for each pair
of plane pi, jq, the action matrix is then constructed by multiplying all the rotations matricesAg “
ś

iăj Ri,jpθ
g
i,jq. For LSBD-VAE, the block-diagonal actions matrices are already given as it is a

supervised method. For LSBD-VAE˚ the only difference is that each block is learned with a SO
parametrisation similarly to SOBDRL. For Forward-VAE and our method, the action matrices are
parametrized directly with the matrices coefficient, we used a tanH activation to ensure stability, the
only difference is that our method use dense matrix and Forward-VAE use a block-diagonal matrices
with a shape given as prior knowledge.

SOBDRL requires multi-steps trajectories pxt, gt, . . . , xt`T´1, gt`T´1, xt`T q with T ą 1. To have
a fair comparison, every experiment will use sequences with T “ 5, the other methods process
independently each transition pxt`k, gt`k, xt`k`1q.

For A-VAE and GMA-VAE, we used a fixed latent noise of standard deviation σ “ 0.1 and for the
action clustering of Step 2 we used the threshold η “ σ and M “ 2.

All hyperparameter details for each experiment are provided in the config folder of the code given
in supplementary material.

J USE OF LARGE LANGUAGE MODELS

LLMs were moderately used to help in literature reviewing and English writing.

31


	Introduction
	Preliminaries
	Related Work
	Methods
	(Step 1) Learn an entangled representation
	(Step 2) Learn the group structure
	Assumptions
	Algorithm

	(Step 3) Learn a disentangled representation

	Results
	Experiments
	Action clustering
	Disentanglement
	Long-term prediction
	Generalization

	Alternative disentangled representation learning paradigms
	Conclusion
	Reproducibility statement
	Mathematical Background
	ELBO derivation
	Action clustering algorithm and proof of Theorem 2
	Algorithm
	Proof of convergence

	Proof of theorem 3
	Minimal linear representation dimension
	Finite cyclic group i.e. Rotation group 
	Infinite cyclic group
	Permutation group

	SO(d) parameterization is not enough for linear disentanglement
	Proof of theorem 1
	Interaction equivalence
	Necessity of injectivity of the observation function

	Additional results
	Prediction based Model Selection
	Assumption 2 for other algorithms
	Disentanglement metrics
	Assumption 1 verification
	dG matrices

	Implementation details
	Datasets
	Network architectures and hyperparameters

	Use of Large Language Models

