Under review as a conference paper at ICLR 2026

DISENTANGLED REPRESENTATION LEARNING
THROUGH UNSUPERVISED SYMMETRY GROUP DIS-
COVERY

Anonymous authors
Paper under double-blind review

ABSTRACT

Symmetry-based disentangled representation learning leverages the group struc-
ture of environment transformations to uncover the latent factors of variation.
Prior approaches to symmetry-based disentanglement have required strong prior
knowledge of the symmetry group’s structure, or restrictive assumptions about
the subgroup properties. In this work, we remove these constraints by proposing a
method whereby an embodied agent autonomously discovers the group structure
of its action space through unsupervised interaction with the environment. We
prove the identifiability of the true symmetry group decomposition under minimal
assumptions, and derive two algorithms: one for discovering the group decom-
position from interaction data, and another for learning Linear Symmetry-Based
Disentangled (LSBD) representations without assuming specific subgroup prop-
erties. Our method is validated on three environments exhibiting different group
decompositions, where it outperforms existing LSBD approaches.

1 INTRODUCTION

An important property of a representation is its disentanglement, as it enables a form of interpretabil-
ity (Higgins et al.,|2017), fairness (Locatello et al.|[2019a)), improved transferability (Lee et al., 2021}
Bengio et al.||2020), and the ability to directly manipulate the latent space (Kim & Mnih, 2018} |Chen
et al.}2016). For this reason, many unsupervised disentangled representation learning methods have
been proposed, initially relying on Variational Autoencoders (VAEs) (Kim & Mnih, 2018; Kumar,
et al |2018; Higgins et al., |2017) or Generative Adversarial Networks (GANs) (Chen et al., [2016).
Locatello et al.[(2019b)) showed that unsupervised disentanglement requires additional prior knowl-
edge or inductive biases. Thus, several approaches, relying on different additional assumptions,
address the question of unsupervised disentangled representation learning.

Learning disentangled representations relies on the assumption that there exist true underlying fac-
tors of variation in the environment (Bengio et al.| [2013), and aims to infer them from available
observations. The symmetry-based approach of Higgins et al.| (2018) proposes to achieve such
disentanglement by exploiting the subgroup decomposition of the group of environment transfor-
mations, called symmetries. Each subgroup is associated with a specific part of the representation.
When a symmetry from a particular subgroup is applied, only the corresponding part of the repre-
sentation varies. |Caselles-Dupré et al.| (2019) demonstrated that symmetry-based disentanglement
is only possible when access is granted to transitions (initial observation, transformation, resulting
observation). Several notable works follow this approach (Quessard et al., 2020; Tonnaer et al.,
2022). However, they all rely on restrictive assumptions regarding the nature of the symmetry group
or prior knowledge about its structure. This paper aims to overcome these limitations by designing
algorithms and providing proofs for the autonomous discovery of the symmetry group structure, and
its exploitation for disentangled representation learning.

Such an approach to disentanglement, based on an embodied agent shaping its representations
through sensorimotor interaction, could be seen as a computational formalization of the discov-
ery of sensorimotor contingencies (O’regan & Noé|, 2001). One prior relevant work in this line of
research was proposed by |Godon et al.|(2020), addressing the problem of structuring the symmetry
group of a naive agent through sensory prediction. Compared to the algorithm presented in this
article, actions in these frameworks are usually not refering to the exact same notion, a particular
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attention being given to the agent body redundancies in its interaction. Consequently, such works
cannot be directly applied to symmetry-based disentangled representation learning.

Our contributions are as follows:

* We prove, under certain assumptions, the identifiability of the ground-truth group decomposi-
tion of the symmetry group from a dataset of transitions.

* We derive from this theorem an algorithm for the discovery of the symmetry group decompo-
sition.

* We introduce a novel method for learning a LSBD representation directly from a group de-
composition, without imposing any structural assumptions on the subgroups, and we provide
theoretical guarantees of disentanglement under specific assumptions.

* We combine these two algorithms and show experimentally that the full method outperforms
other LSBD methods on three datasets with different group structures.

2 PRELIMINARIES
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Figure 1: Colored Flatland environment. The group of symme-
tries can be decomposed as G = G, x Gy x G corresponding .
respectively to the cyclic groups of translations on the horizontal GxZ—— Z
axis/vertical axis, and in a list of predefined colors. The agent has
access to several symmetries (or actions) G, = {z*, 27} c G, Figure 2: Equivariance prop-
Gy, ={yt, vy} cGyandG. = {ct,c7} c G.. erty.

We consider the framework of Linear Symmetry-Based Disentanglement (LSBD) (Higgins et al.|
2018)), which provides a formal definition of disentanglement suitable for deriving identifiability
results and guiding the design of representation learning algorithms. Let VV denote the set of possible
environmental states. We define a generative process b : YW — & that maps a state to an observation,
and an encoder h : X — Z that maps observations into a latent representation. The overall mapping
isthen given by f = hob: VW — Z. We assume that b is an intrinsic (and unknown) property of
the environment, while h is agent-specific and can be learned.

We further assume the existence of a symmetry group GG acting on VV. A key assumption is that G
satisfies the standard group axioms: the existence of an identity element, closure under composition,
and the existence of inverses. This group structure enables the definition of a group action -y :
G x W — W, which maps each pair (g, w) € G x W to a transformed world state w’ € W resulting
from the application of g. The agent is endowed with an action set G — G that contains only a subset
of the full group. Crucially, G is not required to form a group itself, in particular, the agent’s actions
may not be reversible, and the identity element of G may not be included in G.

We also assume that the group G admits a decomposition into a direct product of subgroups, i.e.,
G = G1 x - -- x Gk. For example, in the Flatland environment illustrated in Figure[I] the symmetry
group G can be decomposed into three subgroups corresponding to cyclic groups of horizontal
translations, vertical translations, and color shifts.

Definition 1 (Linear Symmetry Based Disentanglement). A representation h is said to be symmetry-
based disentangled (SBD) with respect to (W, b, [ |, Gi.) if:

1. There exists a group action -z : G x Z — Z,
2. Equivariance holds: Yg € G,w € W, we have g -z f(w) = f(g -w w),

3. There exists a decomposition Z = Z1 @ - - - ® Zx and group actions -, : Gy X Z, — Zj,
such that
(9155 9K) 2 (21, 2K) = (911 21, - -+, 9K K 2K )
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4. The function h is injective

Moreover, the representation is said to be linearly disentangled (LSBD) if -z is linear, i.e. there
exists a representation p : G — GL(Z) such that g -z z = p(g)=.

The original definition provided in (Higgins et al., [2018) does not explicitly state the fourth condi-
tion requiring the encoder h to be injective. However, this constraint is implicitly assumed within
the LSBD framework; without it, any constant mapping would trivially satisfy the LSBD criteria.
Caselles-Dupré et al.[(2019) demonstrated that learning an LSBD representation is impossible with-
out incorporating additional information, and proposed leveraging transitions of the form (x, g, z’)
rather than relying solely on passive observations x. This perspective naturally aligns with the rein-
forcement learning setting, where agents can actively interact with the environment by performing
actions that induce state transitions. Accordingly, in the remainder of this work, we refer to symme-
tries g as actions.

3 RELATED WORK

Several methods have been proposed to learn LSBD representations, all relying on auto-encoder ar-
chitectures. Forward-VAE (Caselles-Dupré et al.,2019) augments the evidence lower bound (ELBO)
of a VAE with a latent-space action loss. Disentanglement is encouraged by constraining the matri-
ces p(g) to follow a predefined structure, which requires prior knowledge of the subgroup decompo-
sition of the symmetry group, as well as the minimal number of latent dimensions assigned to each
subgroup. Another method, proposed by [Quessard et al.|(2020), referred to as SO-Based Disentan-
gled Representation Learning (SOBDRL), aims to learn representations with a prediction loss that
aim to infer the next observation z’ from (z, g). The action matrices are parameterized as elements
of the special orthogonal group SO(d), the disentanglement is encouraged with a regularization
term that minimizes the number of latent dimensions involved in each transformation, encourag-
ing transformations constrained to SO(2). LSBD-VAE, introduced by Tonnaer et al|(2022), relies
on the A-VAE architecture (Rey et al., [2019), which supports latent spaces defined over arbitrary
manifolds. In this framework, both the group decomposition G = G; x --- x G and its repre-
sentation p are assumed to be known a priori. This prior knowledge allows the model to align the
latent geometry with the group structure and to incorporate an action-aligned loss term, in the spirit
of Forward-VAE. Homomorphism AutoEncoder (HAE), proposed by [Keurti et al.| (2023)), assumes
that G is a Lie group and that the agent has access to ¢(g), where ¢ is an unknown non-linear
mapping. The action representation is learned from this mapping by jointly predicting both current
and future states in the observation and latent spaces. Disentanglement is encouraged by enforcing
a block-diagonal structure on the action matrices.

We observe that all state-of-the-art methods rely on assumptions regarding the structure of the sym-
metry group or its subgroups. In contrast, the goal of this work is to relax these assumptions by
introducing a symmetry-based disentangled representation learning approach that does not require
any prior knowledge of the group decomposition.

4 METHODS

We suppose that the available actions G are a subset of the whole group action G and that there is a
dataset D of transitions (x, g, 2’) where g € G are the indices of the actions taken by the agent. We
aim to learn an LSBD representation h. Our method consists of three steps:

1. We learn an entangled representation i.e. a representation satisfying only points 1, 2 and 4 of
Definition [I] to learn an action representation p : G — GL(Z) and an encoder h : X — Z.

2. From p and i we compute a decomposition G = G1 x --- x Gk by regrouping actions using
a custom pseudo-distance based on group theory.

3. From this decomposition we learn a disentangled representation.
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4.1 (STEP 1) LEARN AN ENTANGLED REPRESENTATION

Our objective is to learn an encoder h : X — Z = R? and an action representation
py © G — R? satisfying the equivariance property defined in Definition As there is
no prior knowledge about th action matrices, each matrix p,(g) is directly parameterized by
d? learnable scalars, resulting in a total of |G| x d? parameters. To perform this step, we
introduce a method referred to as Action-based VAE (A-VAE), which builds upon the varia-
tional autoencoder (VAE) framework (Kingma & Welling| 2014; Rezende et al. [2014). The
goal is to map each observation x € X to a latent representation in Z = R? Let 7 =
(z,g,2") denote a transition, and let z and 2’ be the corresponding latent representations of x
and a/, respectively. The model architecture is illustrated in Figure [3| and defined as follows:

* po(X'|2") = N(no(z'), Diag(og(2')?)), (1) pu.s(2 | @, 9)

* py.o(Z'|x,9) = N(py(9)pg(x), Id), 2) po(a’ | 2
* qy(Z2']a") = N(/L(/)(I'),Diag((f@(:p’)z)), 3)

qs(2" | ')

In contrast to the standard VAE, we condition the prior distri- Figure 3: Graphical model
bution over Z’ on both the past observation z and the action g.

To maximize the expected log-likelihood E[log p(7)] with respect to the model parameters 6, ¢, and
1), we derive the corresponding evidence lower bound (ELBO) for our graphical model. As shown
in Appendix B} we obtain (up to an additive constant):

logp(T) = =3 lpu(9)us(@) — pe(@)|* = 5los(@)|? + 3, log o(a); } action part

’r 12
—Eogy(z)e) lZz logog(2'); + xét(’/()z) 1 } reconstruction part
oglz

“4)

Analogously to 5-VAE (Higgins et al] [2017), we introduce a weighting coefficient to balance the
two components of the objective, resulting in the loss function £ = Lggc + AacrLacr- Each of
the three conditional distributions in the model is implemented using deep neural networks trained
via backpropagation. The model parameters 6, ¢, and v are optimized to maximize the ELBO.
As in standard VAEs, we apply the reparameterization trick to enable gradient-based optimization
through the reconstruction term. In practice, the standard deviations oy and o are fixed. Details of
the neural network architectures are provided in Appendix

4.2 (STEP 2) LEARN THE GROUP STRUCTURE

Once the action representation p,, and the encoder h = g have been learned, we aim to leverage
them to recover the group decomposition G = G; x --- x Gi. By abuse of notation, we will treat
the direct factors GG; as subgroups of G.

4.2.1 ASSUMPTIONS

Assumption 1. The environment is fully observable i.e. the observation function b : W — X is
injective.

It is a strong assumption, however it is necessary as we have the following result:

Theorem 1. For a SBD representation to exist, it is necessary for the observation function b to be
injective (up to an interaction equivalence class).

The definition of the interaction equivalence class and the proof of the theorem are provided in
Appendix [G] The key idea is that components of the world state that do not influence the agent’s
interaction can be discarded, yielding an equivalent environment from the agent’s perspective. In
this reduced environment, the observation function must be injective for a SBD representation to
exist. Although this assumption is not always stated explicitly, it is in fact a necessary condition for
all SBD representation learning algorithms and is not specific to our method.

The next two assumptions are assumptions specific to the proposed algorithm, and are intended to



Under review as a conference paper at ICLR 2026

replace the stronger prior assumption commonly made in the SBD literature consisting in providing
prior knowledge of the group decomposition. We first assume that each action belongs to a unique
subgroup G';. We refer to this property as disentanglement of the action set with respect to [ [, G/
It is a strong assumption but we demonstrate empirically in Appendix [H.2]that related SBD methods
make a similar implicit assumption.

Assumption 2. G is disentangled with respect to G = Hk Gy. Thatis, G = Gy U --- U Gg with
Vk, G < Gy.

We argue that this assumption alone is not sufficient to recover

the correct decomposition. To illustrate this point, consider two ‘ ‘

distinct environments analogous to Flatland shown Figure f} (a) *l\ ()
a 2 x 3 cyclic grid ie. G* = Z/27Z x 7Z/37Z with actions &( i ‘

G* = {z*} U {yT} and (b) a 6 x 1 cyclic grid i.e. G* = Z/67Z ~

with actions G® = {2x%,3z7}. Both environments satisfy As- 3zt
sumption 2] and can share the same representation, as there exists ‘ @\]\ ‘ ‘ ‘ )
an isomorphism from G to G® that maps each element of G to a o0t

corresponding element in G®. From the agent’s perspective, these
two situations are indistinguishable in the .absence of additional Figure 4: Two isomorphic
assumptions. Ideally, we seek an assumption that both covers a . g

. ; L . group actions satisfying As-
wide range of practical scenarios, i.e. action sets G, and enables sumpti on
a computationally tractable procedure for recovering the group
decomposition. Among the various options considered, we adopt the following assumption, as it
offers a favorable trade-off between situation coverage and computational feasibility:

Assumption 3. Forall g,g' € G, if they belong to the same subgroup then there exists u € G and
m € [1, M] such that we have either g = u™¢’, g = g'u™, ¢’ = gu™ or ¢’ = u™yg.

Combined with Assumption[2] it is straightforward to show that the implication of Assumption[3|is in
fact an equivalence. As a result, we obtain a simple and practical criterion for determining whether
two actions belong to the same subgroup. In terms of situation coverage, as soon as M > 2,
Assumption E] holds in common cases such as when G; contains an action and its inverse, when
Gr = G, or when G, = G. In practice, the action sets considered in the experimental sections
of state-of-the-art SBDRL algorithms typically fall into one of these categories. In the scenario
illustrated in Figure @] Assumption [3] allows us to assume that situation (b) will never occur, our
method will thus assume that the environment corresponds to case (a).

4.2.2 ALGORITHM

We now introduce a method to recover the group decomposition i.e. to cluster the available actions
into subgroups. Given an encoding function h : X — R? and a matrix A € R%*?, we define the
following semi-norm:

[Alln = Eq [[ AR(z)]] (5)

From this and Assumption [3] we define the following pseudo-distance to determine whether two
actions belong to the same subgroup. We write A, instead of p,;(g) for simplicity and readability:

dolg,g) = min min {4, — A7 Ay li [ Ag = Ay AT Ini | Ay = AT Agllns | Ay = A, AT}
me[1,M]
(6)
Theorem 2. If the Assumption|l|to|3|are satisfied, the dataset contains all the possible transitions,
W is finite and the A-VAE loss converges toward its minimum, then at some point of the training,
two available actions will belong to the same subgroup if and only if their distance with respect to
dg is below a specific threshold 1 computed from h and p.

Based on Theorem we design a clustering algorithm that groups together actions g and g’ when-
ever dg(g,9’) < n. The choice of the threshold 7, the details of the algorithm, and the proof are
provided in Appendix[C]

Once the group decomposition has been recovered, a suitable disentangled representation learning
algorithm can be applied. For example, if G = {g1,97 '} U {g2,95 '}, then G is isomorphic to
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a subgroup of SO(2) x SO(2), and Forward-VAE (Caselles-Dupr¢ et al., [2019) can be employed
with an appropriate parameterization. However, as discussed in Section [3] existing LSBD methods
still rely on some form of prior knowledge about the group structure. In the following section, we
address this limitation by introducing a new disentangled representation learning algorithm that does
not require such prior information.

4.3 (STEP 3) LEARN A DISENTANGLED REPRESENTATION

Now that we have the symmetry group decomposition, we aim to find a linear disentangled repre-
sentation i.e. a decomposition Z = Z; @ - - - @ Zi and an action representation p = p1 @ - - - D px
such that for each action ¢ = (¢1,...,9x) € G and latent factor z = (z1,...,2x) we have

o915+ 9K5) (2155 2K) = (pr(g1)21, -+ -5 P (9K ) 2K)-

This definition allows the Z; to be any sub-vector spaces of Z as long as they form a direct sum, they
are not required to be orthogonal. In our method, we additionally choose to search for representa-
tions where the disentanglement aligns with Cartesian axes of the latent space Z = Z; x --- x Zg.
This choice is motivated by the fact that, under most widely accepted definitions of disentangle-
ment, each latent dimension is expected to encode information about at most one ground-truth
factor of variation (Wang et al., 2024). Consequently p(g1,...,9x)(21,...,2K) = p(g)z with

z = concat(z1, ..., 2k ) and p(g) = diag(p1(g1), - - ., pr(9K)) A

Thanks to Assumption[2] each action is known to belong to a unique sub-
group. Consequently, for any g € G and k&’ # k, we have py/(g) equal [r
to the identity transformation. In matrix terms, this implies that each ac- - | o ~
m A
tion is represented by the identity matrix, except for a single block along 1 B n
the diagonal, as illustrated in F1gurew1th the matrix A. (in practice, the
indices of the matrix may be permuted, however for the sake of clarity,
we illustrate only the case in which the active dimensions are adjacent).
Learning the structure of these matrices amounts to assigning each latent
dimension 7 to a unique subgroup Gy. Let m, € {0,1}? denote the bi- Figure 5: Masking used
nary indicator vector encoding the set of dimensions assigned to the k-th  to build disentangled ac-
subgroup, such that >, 7, ; = 1. tion matrices

Tk 7rk7TkT,

To enforce the desired block structure in the action matrices, we apply the mask 7,7, to unstruc-
tured action matrices A as illustrated in Figure[5] Let k(g) denote the index of the subgroup to which
the action g belongs, and let ® denote the element-wise product. The structured action matrix A, is
then defined as:

Ag =Wk(g)ﬂ'l;r(g)@Ag+(1—7Tk(g)7l';cr(g))@l @)

To learn the vectors 7, we employ a continuous relaxation. Specifically, we use d softmax op-
erations to ensure that 7, ; € [0,1] with >, m,; = 1. In order to promote disentanglement, we
introduce an additional term in the A-VAE loss function that encourages the vectors 7 to be close
to be binary. A natural approach is to minimize the entropy H(7) = >, H(m. ;). However, empir-
ical observations show that directly minimizing this entropy causes it to collapse to zero before the
other loss components begin to decrease, leading to a random dimension assignment. To address this
issue, we define the disentanglement loss as Lprs = Y, |H(m. ;) — C|, where C'is a target entropy
value that is gradually annealed from its maximum to zero during training. We refer to this method
as the Group-Masked Action-based VAE (GMA-VAE). The following result, proven in Appendix D]
formalizes the disentanglement guarantee:

Theorem 3. If Assumptions |I|to [3| are satisfied, the dataset contains all the transitions and G is
finite, then the encoders minimising the GMA-VAE loss are LSBD representations with respect to
W, b, [ 1,,{Gk)) with {Gy,) representing the subgroup generated by Gj,.

5 RESULTS

5.1 EXPERIMENTS

Metrics: To evaluate the disentanglement, we use the Independence (Inde) metric (Painter et al.,
2020) that was specifically designed for the LSBD framework; we will also use classical disentan-
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glement metrics: 5-VAE (Higgins et al.,[2017), Mutual Information Gap (MIG) (Chen et al.,|2018)),
DCI disentanglement metric (Eastwood & Williams|, 2018)), Modularity (Mod) (Ridgeway & Mozer,
2018) and SAP (Kumar et al., [2018)). All these metrics take values between 0 and 1 and are meant
to be maximised.

Algorithms: We categorize the baseline methods into three classes: (1) Supervised methods where
the action representation p is given. The only supervised method is LSBD-VAE (Tonnaer et al.,
2022). (2) Self-supervised methods where p is learned as in SOBDRL (Quessard et al., [2020).
We introduce a modified LSBD-VAE in which the action representation p is learned rather than
provided, we refer to this variant as method LSBD-VAE*. As also reported in/Tonnaer et al.[(2022),
we were unable to obtain satisfactory results with Forward-VAE (Caselles-Dupré et al., 2019) on
our datasets, therefore it is not included among the baselines. HAE (Keurti et al., [2023) is not
compatible with action representations based solely on discrete indices, and is therefore considered
unrelated to our setting. (3) Unsupervised methods which rely solely on observations rather than
transitions. This category includes classical disentanglement approaches: 3-VAE (Higgins et al.,
2017), Factor-VAE (Kim & Mnih, [2018)) and DIP-VAE I/II (Kumar et al., [2018)).

Latent dimension: For A-VAE we arbitrarily chose a latent dimension of 13, for the LSBD methods
we chose the minimal dimension depending on the method and the symmetry group. Those minimal
dimensions are discussed in Appendix [E]

Environments: Similarly to Flatland (Caselles-Dupré et al., 2018)), our first environment consists
of a disk moving along the = and y axes over a black background as illustrated Figure[I} Additionaly
to the groups acting on the position of the disk, a third group acts on the color feature and can be
either a cyclic shift of the RGB channels, corresponding to G¢ = Z/3Z with Go = {¢™,cT},
or a full permutation group over the RGB channels, i.e., Go = &3 with Go = &%. The second
environment is based on the COIL dataset (Nene et al.| [1996), which contains images of objects
captured from multiple viewpoints. Each observation consists of n adjacent objects. Each object
1 € [1,n] can be rotated through k; discrete angles, forming a cyclic rotation group Gg, = Z/k;Z,
with the action set Gr, = {r; ,r; }. In addition, the objects can be permuted via the symmetric
group G = G,,. Finally, we use the 3DShapes dataset (Burgess & Kim), [2018)), which consists of
rendered images of a 3D object placed in a colored room. The data is generated from six discrete
ground-truth factors: wall hue, object hue, background hue, object scale, object shape, and viewing
angle. For each factor i, we define a cyclic symmetry group G; = Z/k;Z and an action set consisting
of two shifts, G; = {g; , g; }, corresponding to increments and decrements along the factor axis.

5.2 ACTION CLUSTERING

To evaluate the action clustering performance of Step 2, we use the Flatland environment with cyclic
color shifts (FLC) and color permutations (FLP), as well as the COIL dataset with two (COIL2) and
three (COIL3) objects. Our algorithm successfully recovers the ground-truth group decomposition
in 100% of runs. The average group distances across random seeds are reported in Appendix[H.5] In
these experiments, the datasets include all possible transitions, and the available actions are simple
(e.g., an action and its inverse). To assess the robustness of our method, we consider more challeng-
ing settings with both complex action sets and limited transition coverage. For this purpose, we use
the COIL environment with three or four objects and random action sets G satisfying Assumptions 2]
and [3] those environments are given appendix In this setting, for each state w € W, we ran-
domly sample n, < |G| available actions to be used in the dataset. The results show that, as soon as
ng = 2, the method consistently recovers the correct group decomposition. Importantly, the same
hyperparameters are used across all of these experiments.

5.3 DISENTANGLEMENT

To evaluate the disentanglement we use the same environments as before, the disentangled results
are shown Figure[6] For more clarity we do not present the disentanglement of unsupervised meth-
ods as they perform significantly worse than LSBD methods. Detailed results are available in Ap-

pendix [H.3]
The first observation is that all methods perform poorly in MIG and SAP as these two metrics require
each ground truth factor of variation to be encoded in a unique dimension. However, linear disen-
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Figure 6: Median of disentanglement metrics. Vertical lines indicates the 25th to 75th percentile

tanglement mostly requires features to be encoded in at least two dimensions. The only exception is
COIL2 as the permutation group G5 can be encoded in only one dimension with our method. The
second observation is that our method performs almost perfectly for the other metrics and yields a
disentanglement comparable to the supervised method LSBD-VAE.

5.4 LONG-TERM PREDICTION
We aim to investigate the effect of disentanglement on long-term () COIL2
prediction accuracy. To this end, we use the trained models to pre- 10
dict a final observation given an initial observation and a sequence
of actions. For the COIL2 dataset, SOBDRL fails to consistently
learn a disentangled representation. We therefore separate the seeds
into two groups: those where disentanglement is achieved and those o , ‘ ;
where it is not. On the COIL3 dataset, SOBDRL is unable to dis- e tengn
entangle the representation at all, as the method is not suited to

permutation-based symmetries. We also omit the results of LSBD- (b) COIL3

VAE* on COIL3, as it fails to consistently produce accurate predic-
tions even for single-step transitions.

Prediction error

Figure [7] shows the prediction error as a function of the sequence
length. We observe a drop in the prediction error of SOBDRL on
COIL2. This behavior comes from the fact that disentangled ac- = = - - }
tions of SOBDRL are SO(2) rotations. In one of the seeds, the O Y seqenceteng
action that swaps the two objects has a larger angular error than MLSBD-VAE ~ BLSBD-VAE*
the other actions, causing the corresponding latent dimensions to =gggg§i EZ‘;S‘;‘:tg;ggl)ed)

diverge first. However, due to the cyclic nature of SO(2), the ac- BGMA-VAE (ours) B A-VAE (ours)
cumulated angular errors eventually cancel out, completing a full

rotation and temporarily restoring the correct latent representation.  Figure 7. Median of long-

. . term prediction error, the
Overall, three types of behavior emerge from the results. First, en-  ¢p- 404 area indicates the 25th

tangled self-supervised methods (A-VAE and SOBDRL) achieve
good short-term predictions but quickly diverge as the sequence
length increases. In particular, the A-VAE curve ends early because the latent representations even-
tually diverge to NaN values. Second, disentangled self-supervised methods (GMA-VAE, SOB-
DRL and LSBD-VAE*) achieve significantly better long-term predictions. Finally, the supervised
method LSBD-VAE achieves perfect prediction performance regardless of sequence length. This is
explained by the fact that, with access to ground-truth action matrices, the model satisfies exactly
AgAy = Agyg, making multi-step prediction no more difficult than single-step prediction.

Prediction error

to 75th percentile

5.5 GENERALIZATION

To assess how disentanglement impacts generalization, we train each model on COIL2 and COIL3
using restricted datasets. We first consider the independant and identicaly distributed (iid) setting,
in which the training and test sets follow the same distribution. Specifically, for each state, we
uniformly sample n, = |G|/2 actions to include in the training data. The second experiment assesses
the out-of-distribution (ood) generalization capabilities of the models. In this setting, the training
set is restricted to transitions in which only the right-most object is allowed to rotate. We evaluate
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the prediction error on both seen and unseen transitions, the results are reported in Table[T|using the
format seen / unseen prediction error. We highlight in bold the methods for which the error increases
by less than 5% between seen and unseen transitions. In both experiments, we observe that all
disentangled methods generalize well, while most entangled methods exhibit poor generalization,
particularly in the ood setting.

Table 1: iid and ood prediction error, the format used is seen / unseen prediction

iid \ ood
COIL2 COIL3 \ COIL2 COIL3
LSBD-VAE 7.8e-5/79e-5 1.1e-4/1.1e-4 \ 7.6e-5/7.6e-5 9.9e-5/9.9e-5
LSBD-VAE* 8.7¢-5/ 8.8e-5 8.8e-5/8.8e-5
SOBDRL Disentangled | 1.7e-4/1.7e-4 5.1e-5/5.1e-5
Entangled 1.7e-4/3.7¢-3  2.5e-4/2.5e-4 | 5.7¢-5/0.02 2.5e-4/0.01
GMA-VAE 6.1e-5/6.2e-5 1.1e-4/1.1e-4 | 6.2¢-5/6.2¢e-5 1.1e-4/1.1e-4
A-VAE 7.7¢-5/7.8e-5 29e-4/8.7e-4 | 6.7e-5/0.05 2.9e-4/0.05

6 ALTERNATIVE DISENTANGLED REPRESENTATION LEARNING PARADIGMS

This section shortly reviews two other related but different paradigms for disentangled representa-
tion learning. First, the causal representation learning approach (Scholkopf et al., |2021) proposes to
ground the latent variables in the causal generative processes of the environment and seeks represen-
tations that correspond to underlying causal factors and their relations. Several identifiability results
have been derived in this framework, relying on different assumptions, for instance regarding the
available actions (or interventions) (Brehmer et al., [2022), the structure of the causal graph (Lippe
et al., [2023), prior knowledge of the intervention targets (Lippe et al.l|2022), or other inductive bi-
ases such as the sparsity of the causal graph (Lachapelle et al.|[2022), or the transferability of causal
representations (Bengio et al., [2020). Symmetry-based and causality-based disentanglement share
some similarities (mathematically grounded, exploit interventions or actions) but have very different
assumptions, justifying our choice not to include this framework in our comparisons.

Another line of work is object-centric representation learning with actions, where the goal is to learn
a factorized representation of objects and optionally their underlying dynamics. While promising,
these methods often rely on assumptions about the observations’ structure, for instance assuming
that objects and their interactions are confined to a localized region of the image (Locatello et al.,
2020; [Zhu et al.| 2018} |Greft et al.,[2019; [Kipf et al.| |2022). Moreover, the question of disentangling
the different features representing each object is often left aside. This field of research is not as
focused on idenfiability proofs, but has shown strong empirical results in more complex and realistic
environments.

7 CONCLUSION

We introduced two independent algorithms: an action clustering method based on A-VAE, which
provably recovers the ground-truth symmetry group structure, and a symmetry-based disentangled
representation learning method, GMA-VAE, which achieves performance comparable to LSBD-
VAE, even though the latter assumes prior knowledge of the action representations. Both of our
methods rely on a strong assumption which requires the available actions to be disentangled. How-
ever, to the best of our knowledge, related state-of-the-art LSBD approaches also implicitly de-
pend on this assumption to consistently learn a disentangled representation. While this restricts the
applicability of the method to certain environments, it enables theoretical guarantees for both the
action clustering and the disentanglement process. We further evaluate LSBD representations on
downstream tasks and show that disentangled representations lead to significantly better long-term
prediction performance and generalization, particularly in out-of-distribution scenarios.

A limitation of our approach compared to existing methods is that the full pipeline requires training
two neural networks from scratch. A future work would be to initialize GMA-VAE with the pre-
trained encoder from A-VAE, or develop an end-to-end method that unifies the action clustering and
representation learning steps into a single optimization process.
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8 REPRODUCIBILITY STATEMENT

All the previous results are reproducible using the code provided in the supplementary material.
It includes all necessary components to generate the datasets, run the training procedures with the
same hyperparameters and initialization seeds, and reproduce the figures.
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A  MATHEMATICAL BACKGROUND

Vector Subspaces. Let I/ be a vector space over a field R. A subset W < V is called a vector
subspace if it is closed under vector addition and scalar multiplication; that is, for all u,v € W and
AeR,wehave u +ve W and Au e W.

Direct Sums of Subspaces. Let V' be a vector space and let W1, Wa € V be subspaces. We say
that V' is the direct sum of W7 and Wy, denoted V' = W; @ Wy, if every v € V can be uniquely
written as v = w; + wy with wy € Wi and we € Wy, and W n Wy = {0}.

Eigenvalues and Eigenspaces. LetT : V' — V be a linear operator on a vector space V. A scalar
A € Ris an eigenvalue of T if there exists a non-zero vector v € V such that T'(v) = Av. The
corresponding set of vectors E := {v € V' | T'(v) = v} is called the eigenspace associated with
A, and is a subspace of V. The set of eignvalues is called the spectrum.

Groups. A group is a set G equipped with a binary operation (z,y) — xy satisfying the following
axioms:

* (Associativity) (zy)z = x(yz) forall z,y, z € G;

* (Identity element) There exists an element e € G such that ex = xe = x for all z € G,

1 1

* (Inverse element) For every € G, there exists z™! € G such that zz~! = 272 = e.

We often denote by G* = G\{e} the set of non-identity elements of G.

Examples of Groups.

* The cyclic group Z/nZ of integers modulo n.
* The symmetric group &,, of permutations of n elements.
* The general linear group GL(V') of invertible linear transformations on a vector space V.

* The special orthogonal group SO(n) of n x n orthogonal matrices with determinant 1.

Direct Product of Groups. Given two groups G; and Ga, their direct product is the group G =
G1 x G5 with the operation defined componentwise:

(91792)(h1,h2) = (91h1,92h2)~

Each group G; is referred to as a direct factor of G. By abuse of notation, (1 is often identified with
the subgroup G x {es} S G, where e5 is the identity element of Ga.

Subgroup generated. For a subset S — G, we note {.S) the smallest subgroup of G that contains
S. We have (S) = {s{'s5?---s;* | ke N,s; € S,¢; € {£1}} and if G is finite we have (S) =
{s189---sp | keN,s; € S}
Group Representations. A representation of a group G on a vector space V' is a map
p:GxV >V
such that for all g, h € G and v € V, by denoting g - v for p(g, v) we have
e-v=v and g¢g-(h-v)=(gh)-v

Equivalently, a representation can be described as a group homomorphism
p:G— GL(V), where p(g)(v) := p(g,v).

The representation p : G — GL(V') is injective if and only if its kernel, defined as ker(p) := {g €
G | p(g) = Idy}, is reduced to the identity element {e}. In this case, we write p : G — GL(V
and refer to it as a faithful representation.

13
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Direct Sum of Representations. Let (p1, V1) and (p2, V) be two representations of a group G.
Their direct sum is the representation

1 ®p2:G— GL(V;@Vs)

defined by
(P1® p2)(9)(v1,v2) := (p1(g)v1, p2(g)v2)-
The space Vi @ V4 is then said to carry the direct sum representation of G.

B ELBO DERIVATION

We focus on the transition 7 = (z, g, 2"). We have:

* po(X'|2') = N (po( )Dwg(ae(Z’)Q))

* pyo(Z'|2,9) = N(py(9)ue (), Id)

* 5(Z'|2") = N (pg(a) Dwg( 0(2)?))
We will use several times the fact that if Y ~ N (p, Diag(c)?) then logp(y) = — 3, logo; —
2|=s H; + cste with the element-wise division in the norm.

Our initial goal is to optimize the log-likelihood log p(7) = log py ¢ (x, g,2") = log py (2|2, g) +
cst. Indeed, we consider that the model has no prior (or a constant prior) on (z, g) and therefore
focus on optimizing the log-likelihood log py, (2’|, g):

[ gs(2" | 2')
logpy,¢(z" | 2,9) = E.rg,(2r)ar) | 108 (pw,¢($' | w7g)¢>]

e (2" | ')
B / ! ! / /
=E. g, (2 |l0g P |20 9yl |2,9) (= | T') According to Bayes formula
v p(¢ | 'z, g) (2" | 2")
IRICAED)
= EZ’~q¢(z’|m’) 10g ( ’ | x/ z g)
Py.o(Z | %, 9)
+ ]EZIqu)(Z/‘z/) [log o | - )

+ ]Ez’~q¢,(z’\x’) [Ing(x | Z/axag)]

= Dir (gs(z" | 2))|p(z" | &', 2,9)) } 20
— D (ap(2" | 2)[py.o (2" | 2, 9))
+E.reg, (212 [logpa(z’ | 2')]  According to Figure[3]

Dk (452" | 2")[py,s(2" | 2, 9))
+ ]Ez’~q¢(z’\:c’) [lngg(l'/ | Z/)]

The lower bound we have derived is composed of two lines. The first line corresponds to the KL
divergence between two multivariate normal distributions and thus has an analytical expression. We
have (up to an additive constant):

=Dt (a6 | 9o | 2.9) = = lpu(o)po(e) — o) [P~ o) +Zloga¢

T

The second line is equal to (up to an additive constant):

z' — pg(2')
og(z")

—Eurigy2r)er) lz log ag(2'); +

14
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Putting everything together, we obtain:

logp(r) = =3 lpu(9)us(@) — pe(@)|* = 5los(@)|? + 3, log (s } action part

o "2
—Er gy (2']ar) lZL logog(2'); + w 1 } reconstruction part
+C

C ACTION CLUSTERING ALGORITHM AND PROOF OF THEOREM [2]

LetG = Gy U --- UGk < G with Vk G, < Gy denote the ground-truth decomposition of the
available action set. Our objective is to design an algorithm that recovers this decomposition based
ondg.

C.1 ALGORITHM

Let A € RdXd., we denote by [[Af| = max.cga (o} [A]/]2] the spectral norm. We chose the
following algorithm:
* Compute the variables
- r = maxgeg {|| 4g|} the maximal spectral norm,
— € = MaX(y,g.w)ep |Agf(w) — f(w')| the action loss upperbound,

-n=¢c <1 + va:jo ri) the threshold

« Start with unitary clusters: K = |G| and G = {g;}
e Iteratively merge the clusters ¢ and j minimising their distance d(éi7ﬁj) =
maxyieéi;gjeéj dG(gi, gj)

» Stop whenever the distance is above the treshold 7.

What if the identity action e belong the available action set G ? After a succesful convergence of the
method, for all g € G we have dg(e,g) ~ 0 since g = gle. As a result, e is merged with another
element at the first iteration and it will not influence the following computations of d(gi, QJ) Ase
can be assigned to any subgroup, its presence does not impact on the performance or correctness of
the overall method.

C.2 PROOF OF CONVERGENCE

We aim to show that if Assumption to are satisfied, the dataset contains all the transitions, WV is
finite and A-VAE loss converge toward its minimum, then clustering algorithm will necessarily find
the ground-truth decomposition at some point of the training.

For clarity, we assume that every composition of d¢ in Assumptionis of the form g = u™g’. The
proves can easily be adapted for the other forms.

Proposition 1. Under Assumptions [Z]and two actions g,g' € G belong to the same subgroup if
and only if there exists m € [1, M] and u € G such that g = u™g'.

Proof. The forward implication is given by Assumption[3] For the backward implication we distin-
guish two cases:

1. If one of element is the identity action e, then e belong the same subgroup of every action

2. If both elements differ from e, then according to Assumption [2f there exists a, b and ¢
such that g € G¥, ¢’ € G and u™ € G,. Therefore g € G. x G;f\{e} and then G, N
(G x Gyp) # {e}, if we had a # b, this would contradict the direct decomposition of G.
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O

If the standard deviation of noises of A-VAE are fixed, then the loss for a transition (z, g, «’) is equal
to

£ = aor v (@)to(@) = @) + Earegyan 2 = ()]

Unlike a 8-VAE, which requires a trade-off between the regularisation and the reconstruction, this
loss can have both the action loss and the reconstruction loss converging toward 0.

When the action loss converges toward zero, we straightforwardly have ¢ =
max(y, gjewxg |Agf(w) — f(g - w)| — 0 as it is its upper-bound. Additionally, since the
coefficients of the action matrices are bounded in our implementation, r is also bounded. As a
result, the term 7 converges toward zero during training.

We also have the following result:

Proposition 2. [f the reconstruction loss converges toward zero, then

¢ := min |[f(w) — f(w)] — +o0

Proof. Leth : X — Z be the encoder and d : Z — X be the decoder. Let w; # wy € W with
x; = b(w;) and z; = h(x;), as b is injective we have x; # xo. As the reconstruction loss converges
toward 0 and the dataset contains all the transitions and therefore all the observations, we have

Ez~/\/’(zi,Diag(az)) [HII - d(Z)HQ] -0

Let denote 2* = (21 + 22)/2, A = ||z1 — 22|, B = B(z*, 1) the ball of radius 1 centered at z* and
V(d) its volume. Let us denote p(R) = ﬁ —%

density over a ball of radius R. We aim to show that if the reconstruction loss is sufficiently low,
then A must be sufficiently large for the contribution of the reconstruction over the ball to become
negligible.

exp the minimum value of the Gaussian

214 | S22

Since convergence in L? in probability implies convergence in L' in probability, for any ¢ > 0, at
some point of the training there is

N(z; 2, Diag(az))nmi —d(z)|dz < e

zeR4
‘We have
€= N (z; zi, Diag(o?))|x; — d(z)|dz
zeR4
> N(z; 2, Diag(oz))Hxi —d(z)|dz
z€EB

=p é +1 J |z, — d(z)|dz
2 z€B

by definition of p, since forany z € B, |z; — z|| < |z — 2% + |* — 2| < A2+ 1
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Therefore, by summing the two equations, we obtain:

A
2e2p (g +1) [ (o= de] + o - a) oz

A
2p( 5 +1 f |z1 — 22|dz with triangular inequality
2 2€B

A

Using the definition of p and isolating A = |z; — 25|, we obtain

1V(d —
|21 — 22| = 20\/210g (H”xlm> -2

€ 2(+2mo)d

—— +00

e—0
Therefore |21 — 22| — 400 as the reconstruction loss converges toward 0. Finally, as W is finite,
we have ming, ., | f(w) — f(w')|| — +o0.
O

Consequently, at some point of the training, the inequality 4 > 27 holds.
Proposition 3. If 6 > 21 then g and ¢’ belong to the same subgroup if and only if dc(g,9’) <1

Proof. Suppose that g, g’ € G belong to the same subgroup, therefore there exists u € G and m €
[1, M] such that g = u™g’. Letw e W

|Ag f(w) — Ay Ag f(w)]| < |Agf(w) — f(g-w)|
+f(w™g - w) — Ay f(u™ g w)
Jr “e
+ AT f(ug' - w) — AT f(g - w)|
+ AT f(g - w) — AT Ay f(w)]|
< [ Agf(w) = fg - w)|
+ | f(wmy - w) — Ay f(u" g w)|
+ AL f (ug - w) — Auf(g - w)|
+ AL -1 f (g - w) = Agr f(w)]

<e+ Zr’e
i=0

SN
After applying expectation over w we find dg(g,9’) < [|[Ag — AT Ay <1

Let us now suppose that g, ¢’ € G do not belong to same subgroup, therefore for all v € G and
m € [1, M] we have
0 <[ flg-w)— flu™g - w)|
<[f(g-w) = Agf(w)]
+ [Ag f(w) — AY' Ag f(w)]

+ AL Ag f(w) = f(u™g" - w)]

Set Ay f(w) — AT Ay f(w)] + Y r'e
=0
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< [Agf(w) = A Ag f(w)]| + 1

Therefore | A, f(w) — A Ay f(w)| = § —n > n, after applying expectation over w and min over
uwand m we get dg(g,9’) > 1

O

Therefore, at some point of the training, two actions belong to the same subgroup if and only if their
distance with repect to d¢ is below the threshold 7. As a consequence, the clustering algorithm de-
scribed previously successfully recovers the ground-truth decomposition, hence proving Theorem[2]

In practice we found that using 7 = o the fixed latent noise standard deviation as a threshold yielded
better empirical results. Consequently, we use this value for 7 in all our experiments.

D PROOF OF THEOREM [3]

If the standard deviation of noises of GMA-VAE are fixed, then the loss for a transition (z, g, z')
equals:

L(z,9.2") = Aprs Y H(m.0) + Macr |ou(giolw) = nol@)]* + Eurngyor [/ = o)

Let us suppose that G is finite, that the dataset contains all possible transitions, and that the losses
of GMA-VAE have converged to their global minimum of 0. We aim to prove that the encoder is a
LSBD representation.

We cannot directly prove that it is disentangled with respect to (W, b, [ [, Gi), as we cannot build
a representation of an action that is not generated by the available action set. Instead, we aim to
prove that the encoder is disentangled with respect to WV, b, [ [,.{G)) with (G, ) being the subgroup
generated by Gi. Similarly, we cannot prove that it is disentangled over all Z. Therefore, as done
by [Keurti et al.| (2023), we restrict the latent space to V = span(f(W)) c Z

We proceed by proving that the learned representation satisfies all the criteria listed in Definition [T}
(1) There exists a group action -z : G x YV —V

First, note that [ [,(Gr) = (G). Let g € (G), as G is finite, we can write g = gV --- g™ with
Vi, g™ € G, the group action is given by:

9z 2z = plg)z with p(g) = [ [ 4,0

Note that the definition of p(g) depends on the decomposition of g, which is not necessarily
unique. Since any decomposition would be satisfying and G is finite, we can arbitrarily chose one
decomposition for each g.

The fact that - z is a group action is given thanks to the equivariance and is proven below.
(2) Equivariance holds: ¥(g,w) € {G) x W, g -z f(w) = f(g -w w)

As the action loss is equal to zero we have:

V(g,w)e GxW, g-z fw) = f(g-ww)

Let g = [, g9 € (G) with ¢() € G and w € W. We apply recursively the previous equivariance to
getg -z f(w) = f(g -w w), hence proving the equivariance over all (G) x W.

We now prove that - =z is indeed a group action thanks to the equivariance property. For all w € W
and g, 9" € (G):

* gz flw)=flg-ww)eV
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As f(W) generates V, for all z € V and g, ¢’ € {(G) we have:

g zzeV
s ezz=2
9 z(9z2)=(99) z2
(3) There exists a decomposition V = V1 @ - - - ® Vi and group actions -, : Gy x Vi, — Vi such

that:
(917"'79K) ‘Z (217"'72K) = (91 ‘121, 9K 'K ZK)

As the disentanglement loss is equal to zero, the masks are binary i.e. 7 € {0,1}?. Therefore the

matrices flg for g € G satisfy the block structure illustrated in Figure Additionally if g € (G it

can be decomposed into g, = g,(cl) e g,g”k) with g,(f) € Gy, and therefore p(gx) = [ [, flqm share the
k

same block structure. Finally, for each g = (g1, ...,9x) € {G), p(9) = [ [, p(gx) is block diagonal
up to a permutation of the indices.

Let us first find a decomposition and group actions over Z. We take Zj, = span{e; | m;, = 1} with
e; the standard basis vectors, this choice reflects the objective of achieving disentanglement along
the Cartesian axes. Hence wehave Z2 = Z1 ®-- - ® Zx and z;, = 1, O 2.

Additionally we take gi -k 2 = p(gr)zk, we have p(gi)zr € Zi as p(gx) is the identity on the

complement subspace of Zj. We therefore have for each g = (g1,...,9x) € (G) and z € Z:
g9-z2=plg)z
= p(g) (Z Zk) o * T €&
k
= Z o(9)zk p(g) z1 p(g1) z1
k
- Zp(gk)zk Figure 8: Matrix representation of p(g)zr = p(gx)zk € Zk,
% here the two first dimensions corresponds to Z; and the re-
maining two to Z,.
= Z 9k ‘k 2k
k
=(91121,--, 9K 'K 2K)

Let us prove that the decomposition and group actions restricted on V are satisfying. Let’s take
Vi = span{f(w); | w € W} =V n Zj, with f(w)y, the projection of f(w) on Zj, therefore the
V are in direct sum. Moreover we have for all w € W, f(w) = >}, f(w) with f(w)) € V}, and
therefore V=V, ®--- ® Vk.

Additionally, for all g € {(G) and f(w) € V we have g -z f(w) = f(g -y w) meaning that for all
component k we have gi ' 2z = f(g w w)g € Vi. Finally, as previously done for -z, it can be
shown that -, : G, x V), — V), are group actions.

(4) The representation h is injective:
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As the reconstruction loss is equal to zero, the distance between the encoding of two world states
has a lower bound as shown is the proof of Proposition

(5) The group action - z is linear:

As highlighted by Keurti et al.| (2023), the restriction of p on V written py, : G — GL(V) is a
morphism and we have g -z 2z = py(g)z. This can be proven similarly to the argument used to show
that - z is a group action. Hence proving the representation is linear on V.

E MINIMAL LINEAR REPRESENTATION DIMENSION

Let G a group, we seek the minimal dimension such that there exists an injective morphism into
invertible matrices §(G) = min{d | 3p : G — GL(R?)}. We also seek dso(G) the minimal
dimension for special orthogonal matrices dso(G) = min{d | 3p : G — SO(d)}.

We get the following results:

G [ 0 d0so
7 1 2
7/27 1 2
Z/nZ,n =3 2 2
Sy 1 2
S3 2 3
S, 3 3

S,,n=5 n—1 n—1lorn

E.1 FINITE CYCLIC GROUP i.e. ROTATION GROUP

Proof. Let G afinite cyclic group of cardinal n > 2i.e. G =~ Z/nZ. There are two cases to consider:

n =2: Then G = {e, g} with g2 = e. Therefore §(G) = 1 because the isomorphism p = {e —
(1); g — (—1)} is satisfying. Furthermore dso(G) > 1 as SO(1) = {(1)} can only express the
trivial group.

n > 2: Suppose §(G) = 1, then for each element g € G there exists a scalar A, € R such that
p(g) = (Ag). Therefore for all g and k > 0 we have g* € G and then A € {\y | g’ € G} which is
finite set. Therefore A, € {—1,1}, consequently forall g € G, p(¢°) = (A\2) = (1) and then g* = e.
This is contradictory, therefore 6(G) = 2.

We show that 6(G) = 2: let h be a generator of G i.e. for all ¢ € G, there exists k, €

[0,n[ such that h¥s = g. The following rotation matrix is a satisfying morphism p(g) =
cos(2mky/n) —sin(2wky/n) . B B

( sin(2mk,/n)  cos(2nk,/n) ) Finally §(G) = 2 and therefore 050 (G) = 2

E.2 INFINITE CYCLIC GROUP

Proof. Let G be an infinite cyclic group i.e. G =~ Z. Let h be a generator G, therefore for all g € G,
there exists k, € Z such that g = h*s. We have §(G) = 1 and then for all z > 0, = # 1, the
representation p : g € G +— (2) is satisfying.

As previously, we have dso(G) > 1 and for any 6 ¢ 27Q, the representation p(g) =

3(kg0) —sin(k,0 L .
( zior?((kje)) c(b)lsr(ll(cgg@)) ) € SO(2) is satisfying. Finally dso (G) = 2.

E.3 PERMUTATION GROUP

Proof. Let G = G,, with n > 2 the permutation group.
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Generalities: We know that there exists an injective morphism p : &,, < O(n — 1) thanks to its
standard representation, therefore §(S,,) < n — 1. Furthermore we can inject O(n — 1) into SO(n)

: 0
using g — < P%C/) det p(g) ) And then 650 (6,,) < n.

n = 2: We have Sy = Z/2Z, as previously 6(&3) = 1 and d50(S2) = 2.

n = 3: Similarly to previously §(S3) > 1 and ds0(G3) > 1. Moreover there is no injection
G3 — SO(2) as 63 would be commutative. Therefore 6(S3) = 2 and 050 (S3) = 3

n = 4: &4 is isomorphic to a subgroup of SO(3) as it can be seen as the symmetry group of the
tetrahedron. Moreover their is no injection G4 < GL(R?) as G4 would be cyclic or dihedral. Then
6(64) = 050(64) = 3.

n > 5: The minimal dimension for a linear representation in C of &,, is n — 1 (Rasala, [1977).
Therefore the minimal dimension in R is at least n — 1 i.e. 6(G) = n — 1. Consequently 6(S,,) =
n—1and ds0(6,) € {n — 1,n} O

F SO(d) PARAMETERIZATION IS NOT ENOUGH FOR LINEAR
DISENTANGLEMENT

Here, we aim to show that using a structured action parameterization, as done in SOBDRL and
LSBD-VAE*, is not sufficient to obtain a disentangled representation, even when applying the regu-
larization used in SOBDRL. This limitation also applies to the block-diagonal parameterization used
in Homomorphism AutoEncoder (Keurti et al.| [2023). Assume that the underlying group action is
composed of two cyclic direct factors, i.e., G = G1 X G2, and that G is isomorphic to a subgroup of
SO(2) x SO(2). Our goal is to learn a disentangled representation of this subgroup. Moreover, we
require the learned representation to be injective as any constant morphism would be disentangled.
A SO(d)-based method may use this prior knowledge by parameterizing the action matrices with
p:g€G > R(0,,0)) := ( Rzggg) Rg(()9’) > with Ry () being the rotation matrix of angle 6.
g

Suppose that the unknown ground-truth group decomposition consists of two cyclic direct factors
with n and m elements, i.e., G = Z/nZ x Z/mZ. Let g; and g, denote generators of each respec-
tive factor. For the action representation to be disentangled, we would ideally want something like
p(g91) = (2m/n,0) and p(g2) = (0,27/m), so that each generator only affects a single latent sub-
space. However, when using this type of parameterization as a disentanglement criterion, even with
the regularization term introduced in SOBDRL, it remains impossible to guarantee disentanglement
of the action representation. Below, we present examples of entangled representations that satisfy
the imposed parameterization but fail to be disentangled.

Case n°l: The representation such that p(g1) = R(27/n,0) and p(g2) = R(27/m,27/m) is an
injective homomorphism, it was encountered during our LSBD-VAE* experiments. This represen-
tation is entangled with respect to the LSBD framework.

Proof. Suppose there exists a decomposition R* = Z; @ 2, satisfying the disentangled definition,
then p(g2) would be the identity function on Z; i.e. for all z; € Z1, p(g2)z1 = z1. If Z1 # {0}
then 1 is an eigenvalue of p(go) which is impossible as its spectrum is {%™/™ e~2i7/™} Therefore
Z; = {0}, the same reasoning can be applied on Z, therefore Z; ® 25 = {0} # R%. O

Case n°2 If n and m are coprime numbers, then the representation such that p(¢g1) = R(27/n,0)
and p(g2) = R(27/m, 0) is injective as

_zZz z _ Z
T nZ " mZ T nmZ

G

This type of representation was encountered with SOBDRL as it minimises its disentanglement
criterion. However this representation is entangled with respect to the LSBD framework
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Proof. Suppose there exists a decomposition R* = Z; @ Z, respecting the definition, then p(g;)
would be the identity on Z5 i.e. for all zo € Zs, p(g1)z2 = 2o and then Z5 is a subspace of the
eigenspace of p(g;) associated with the eigenvalue 1. This eigenspace corresponds to the two last
dimension: R* i.e. Zo = {0} x {0} x R2. Similarly for p(g2), we have Z; < {0} x {0} x R? and
therefore R* #« Z1 @ Zs. O

Casen®3: If n = m = pq a composite number with p and ¢ coprimes, the representation
p(q1) = R(27/p,27/q) and p(g2) = R(2w/q, 27 /p) is injective. It is like switching the two Z/qZ
components of each direct factor.

G1 G2
Z Z Z Z
G|l —=%x — | x| —=x —
pL  qZ pZ  qZ

As for case n°1, this representation is entangled with respect to the LSBD framework

G PROOF OF THEOREMI]

Reminders:

* W the world state set
* X the observation set
+ Z = R< latent space
* b: W — X the observation function
¢ h: X — Z the encoding function
e f=hob:W—>Z
* his disentangled with respect to OV, b, [ [, G if:
1. Thereexists 'z : G x Z — Z
2. Equivariance holds: Vg € G,w e W, g -z f(w) = f(gw w)
3. Thereexists Z = Z1 @ ---@® Zx and -, : G, X Z, — Z. such that
(g1,--,9x) (21, y2k) = (911 215+, 9K K 2K)
4. h is injective
Suppose theNre S:xists a SBD representation with respect to OV, b, | [, G.), we aim to prove that we
can build (W, b, [ [, Gi) from (W, b, | [, G such that (1) the SBD representations with respect to

(W ,b,]], Gi) are exactly the SBD representations with respect to (W, b, [ |, Gx), (2) the observa-

tion function b is injective and (3) (W, b, [ [, Gx) and (W, b 1] « G yield the same sensorimotor
interaction with the agent, and are thus indistinguishable

G.1 INTERACTION EQUIVALENCE

We would like to reduce )V to indistinguishable cases, we therefore define the following equivalence
relation:

Definition 2. Two world states w1 and wy are called interaction equivalent if and only if:
Vg € G,b(g ww1) = b(g -w w2)

We denote this relation between the two world states as wi ~ wo.
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This definition implies that two states w; and ws that yield the same observation but can be dis-
tinguished by interacting with the environment are not equivalent. Therefore, it does not cover
situations such as object occlusions. Based on this interaction equivalence relation, we define a new
set composed of the equivalence classes:

Definition 3. We call interaction equivalent world state set and denote by W the set of interaction
equivalence classes.

W = {[w] | we W}

where [w] denotes the equivalence class of w according to Deﬁnition

We now turn to defining appropriate functions using the interaction equivalent world state set.
Proposition 4. If wy ~ ws, then b(w) = b(w,).

Proof. This can be easily derived from Definition 2] and taking g = e the identity element. O

This proposition allows us to define a new observation function on the interaction equivalent world
state set W:
Definition 4. We call interaction equivalent observation function and denote by b the function

b: W — X such that: o
V[w] e W, b([w]) = b(w)
Proposition 5. If w; ~ we, then¥g € G, g -y w1 ~ g -y Wa.

Proof. Let w; and ws be two world states from W such that w; ~ wq. Let g € G be a symmetry.
We aim to prove that g -y w1 ~ g -yy Wa.

Let ¢’ € G be a symmetry. Since G is a group, it follows that the composition ¢’g € G. According
to Definition 2}

b(g'g -wwi) = bg'g w wa)
And, by definition of a group action:

b(g"w (g-wwi)) =b(g"w (g-wws))
According to Definition 2] we thus have g -y w1 ~ g -y wa. O

This proposition allows us to define a new group action on the interaction equivalent world state set
W:
Definition 5. We call interaction equivalent group action and denote by -;, the function -3, :
G x W — W such that:

Vg e G,V[w] eW.g W [w] = [g W w]
Proposition 6. -;, is a group action.

Proof. We need to prove two properties:
1. V[w] e W, e [w] = [w]
2. Y(g,9") € G,V[w] € W, ¢ 3, (943 [w]) = (¢9) 3 [w]

We start with the first property. Let [w] € W be an interaction equivalence class. We have:

e [w] = [e-ww] according to Definition 3]
= [w] since -y is a group action itself
For the second property, suppose (g,¢’) € G and [w] € W. We have:
9w (9% [w]) =g 4 [g-ww] according to Definition 3]
=[g" w (g -ww)] according to Definition[j]
= [( /9)'W] since -yy is a group action
=(9'9) -y [w] according to Definition[3]
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In summary, we have proposed an equivalence relation for world states that allows us to define a new
world state set regrouping equivalent states, as well as an observation function and a group action
for this new world state set.

G.2 NECESSITY OF INJECTIVITY OF THE OBSERVATION FUNCTION

We now address the main point of this appendix, which is to show that if & is an SBD representation

with respect to (W, b, [ [; G;), then b has to be injective. We start by first showing that SBD-ness is
implied in the interaction equivalent world.

Proposition 7. If h is SBD with respect to ONV,b,| [, Gi), then h is SBD with respect to
<W7 ba Hi G2>

Proof. According to Deﬁnition SBD-ness with respect to <W, b, [ [, G requires four properties:

1. There exists a group action -z : G x Z — Z,
2. Equivariance holds: Vg € G, [w] € W, we have g -z h o b([w]) = h o b(g W [w]),

3. There exists a decomposition Z = Z; x --- x Z and group actions -, : Gy X Zy — Z
such that

(91,--,9K) 2z (21, 2K) = (911 21, -+, 9K K 2K),

4. his injective.

Properties 1, 3 and 4 are ensured by the fact that h is SBD with respect to OV, b, | [, Gi). We thus
just need to prove the second property. Suppose g € G and [w] € W, we have:

g-zhob([w]) =g-z hobw) according to Definition 4]
=hob(g-ww) since h is SBD (equivariance property)
— hob([g-ww)) according to Definition [
= hob(g -y [w]) according to Definition 5]

O

Proposition 8. Reciprocally, if h is SBD with respect to <W, b, [ [; Gi). then h is SBD with respect
to W, b, 1], Gi).

Proof. As in the previous proof, it suffices to establish equivariance in order to prove disentangle-
ment with respect to OV, b, [ [, G;). Let ge Gand w e W :

g-zhob(w)=g-zhob([w]) according to Definition 4]
= hob(g - [w]) since h is SBD (equivariance property)
— hob([g-ww)) according to Definition 3]
=hob(g-ww) according to Definition 4]

We can now introduce the main result of this appendix:

Theorem If h is SBD with respect to OV, b, [ [, Gi.) then b is injective.
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Proof. Suppose h is SBD with respect to (W, b, [ [, Gk). According to Proposition (7, h is also
SBD with respect to OV, b, [ [, G-

Let us assume that b is not injective and show that it leads to a contradiction.

Since b is not injective, there exist [w;] # [wz] such that b([w:]) = b([ws]). Since [w;] # [ws]
then let g € G be the symmetry such that b(g -\ w1) # b(g -y w2). On the one hand:

b(g -w wi) # blg wws) = b([g-wwi]) # b([g -w wa]) according to Definition 2]

— hob([g-wwi]) # hob([g-wws]) since h is injective

= g-zhob([w1]) #¢g-zhob([wz]) equivariance property

On the other hand, since b([w:1]) = b([wa]), then g -z h o b([w1]) = g -z h o b([w]). We have a
contradiction and thus b is injective.

O

From a prediction perspective this result is quite intuitive: for an injective encoder to allow accurate
prediction of future observations 2’ from z and g, it is necessary for the observation to be unam-
biguous. From a disentanglement perspective this is a strong limitation, it means that all the features
to disentangle have to be constantly observed by the agent.

We use this result to justify the introduction of Assumption [I]to derive our algorithm for the group
decomposition. Since we have shown that LSB disentanglement is impossible when b is not injec-
tive, it is a necessary assumption to assume.

H ADDITIONAL RESULTS

H.1 PREDICTION BASED MODEL SELECTION

For unsupervised disentanglement learning, choosing the model with the best disentanglement with-
out knowing the ground-truth features is a crucial and often difficult task. Several solutions have
been discussed in the state of the art to adress this issue for purely unsupervised methods (Duan
et al., 2019; [Zhou et al.| 2021} Holtz et al., |2022)), they mostly rely on learning a batch of models
with different hyperparameters or initialisation and selecting the ones sharing some defined proper-
ties. This model selection issue arises in our method at two different stages: the action clustering
resulting of Step 2 and the representation learned by GMA-VAE.

As we are in a self-supervised framework, we investigate whether it is possible to select the model
achieving the best disentanglement (measured here with the independence metric (Painter et al.
2020)) solely based on the prediction error. Similarly, we aim to determine whether it is possible to
identify which A-VAE model results in the correct action clustering in Step 2. To evaluate clustering
quality, we use the Adjusted Rand Index (ARI) (Hubert & Arabiel [1985)), a metric to be maximized
that equals 1 if and only if the predicted clustering exactly matches the ground-truth partition (up to
a permutation).

For multiple hyperparameter configurations and random seeds, we plot for the COIL2 experiment
the metric of interest as a function of the prediction error in Figure[9]
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Figure 9: Metric of interest as a function of the prediction error

For A-VAE (left), we see that for almost all of the models, either the prediction performs well and
the action clustering retrieves the correct partition, either the model cannot predict correctly and
the action clustering retrieves a clustering only composed of singletons meaning that the ARI is
equal to zero. However, few models out still has a good prediction error with a low ARL It is
therefore possible to train a batch of A-VAE models with different hyperparameters and initialisation
seeds and take the action clustering that is retrieved by the majority of models achieving the best
predictions.

For the disentangled representation learning algorithms (right), we can then notice that for the
LSBD-VAE* and SOBDRL , they are few models that achieve a good prediction without being
disentangled. However the model with the best prediction is always disentangled with a slight mar-
gin. For GMA-VAE, a good prediction always a disentanglement almost equal to 1.

H.2 ASSUMPTION[2]FOR OTHER ALGORITHMS

This section aims to demonstrate that, although not explicitly stated, related LSBD algorithms
implicitly rely on Assumption 2] (action disentanglement) to some extent.

First, Forward-VAE directly requires disentangled actions, as its action matrix parameterization is
identical to GMA-VAE, with the vectors 7, € {0, 1}% provided as prior knowledge.

To evaluate the extent to which SOBDRL and LSBD-VAE* depend on this assumption, we modify
the COIL2 experimental setup by progressively relaxing Assumption[2] In this modified setting, each
action corresponds to an element of the product of & > 1 distinct direct factors. We then measure the
degree of disentanglement in the learned representation using the Independence score, as a function
of the entanglement level k. The results, shown in Figure [I0] indicate that the Independence score
decreases as k increases, and rapidly approaches the score obtained with fully entangled actions
(represented by the green dotted line). These findings support the claim that Assumption [2} i.e.,
k =1, is in fact necessary for these algorithms to learn a disentangled representation.
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Figure 10: Disentanglement according to action entanglement

H.3 DISENTANGLEMENT METRICS

We show all the disentanglement results of the different methods on the different dataset, the values
reported in the table correspond to the mean over five seeds with the 68% confidence interval. The
random method corresponds to a randomly initialised neural network that was not trained.

Table 2: Disentanglement for FlatLand with rotation colors

1 Beta-VAE 1 Inde 1 Mod 1 DCI 1 SAP 1 MIG | Prediction
LSBD.VAR _mean | LO0OE.00 96+ 00 100EF.00 98+01 53E.05 10L .04 | 1609 £ 48e-10
best 1.00 96 1.00 1.00 46 23 4.8¢-10
% mean | 1.O0E.00 93+.02 90L.06 87+.07 40+.03 07%.03 | 96610 % 53e-10
LSBD-VAE best 1.00 o7 1.00 98 53 02 33¢-9
SOBDRL mean 93 4 .03 78 + .02 85 + .04 534+.09 28+.04 .10+.02 | 27e-5+24e5
best 99 84 77 56 A4 02 1.6e-8
GMA.VAE  mean | 100E£.00 100+£.00 100+.00 100+.00 54+.04 01 +.00 | L6e-10+29-11
best 1.00 1.00 1.00 1.00 51 .00 1.3e-10
AVAE mean 89 + .05 84 + .01 76 + .01 44+ 03  114+.02 05+.01 | 66e-11+ 1.7e-11
best 95 82 77 48 03 .05 3.0e-11
B-VAE 68 £ .06 77 £ 01 88 £ .03 22+ .05 20+ .04 .13+ .03
Factor-VAE 69 + .07 69 + .04 81+ .03 244+.06 29+.06 .16+ .05
DIP-VAE I 56 + .03 67 + .01 78 + .01 12+.02  .11+.01 .04+ .01
DIP-VAE IT 84 + .04 62 + .02 74 + .00 17 + .01 18+.04 .05+ .01
Random 4T+ 03 5T £ .01 61 £ .04 05+ 01 05F.00 .04F01
Table 3: Disentanglement for FlatLand with permutation colors
1 Beta-VAE 1 Inde 1 Mod 1 DCI 1 SAP T MIG | Prediction
LSBD.VAE _mean | LOOE00 97+00 1L00E.00 O5F 02 A46L .04 04L .02 | 4le6 73e7
best 1.00 97 1.00 98 59 02 2.6¢-6
LSBD.vAp* mean | 10000 9800 100E.00 99+01 40L.06 8+.02 | 33c6%28e7
best 1.00 98 1.00 1.00 46 .00 2.7e-6
SOBDRL mean | 1.00 +.00 .74 + .01 79 + 01 50+.02 25+.03 .08+.02 | 3.6e-3 + 8.3e-7
best 1.00 76 80 43 16 12 3.6e-3
GMAVAE  mean | LOOE£.00  99+.00 100+.00 .99+.01 .51+.04 .08%.01 | 58¢-6+3.1e-6
best 1.00 1.00 1.00 1.00 59 11 1.0e-6
AVAE mean 87 + .06 89+.04 92+.04 47+.08 .U5+.05 09+.01 | Llle6+ 1.9¢7
best 1.00 95 1.00 A7 28 07 1.0e-6
B-VAE 64 T 03 60 + 03 80+ .02 .I3+.04 .12+.02 .03%.0I
Factor-VAE 77+ .05 61+.01 79+.02 .13+.02 .17+.04 .05+.02
DIP-VAE I 60 + .06 714+.02  87+.02 11+.03 .104+.04 .06+ .02
DIP-VAE II 70 + .05 71+.01 81+ .01 114+.02 .10+.02 .04+.01
Random 46 T .01 59F 01  68Lf.02 05F00 09F0I .03%.0I
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1 Beta-VAE 1 Inde 1 Mod 1 DCI 1 SAP 1 MIG | Prediction
mean | 1.00 £ .00 99 £ .00 1.00 £ .00 O8F 01 31 L.05 .0IL.00 | 8257306
LSED-VAE ey 1.00 99 1.00 2 » 00 7.46-5
% mean | 1.00 .00 99 £ .00 1.00 .00 07 %02 25%.05 04L.03 | 94esL3.1e6
LSBD-VAE best 1.00 99 98 91 45 00 8.9¢-5
SOBDRL mean 99 + .00 91 £+ .05 90 £ .05 90 £ .05 52 £+ .05 31 + .06 7.2e-5 + 5.0e-6
best 1.00 1.00 98 1.00 .60 42 5.4e-5
GMAVAE  ™ean | 100£.00  100+£.00 100+.00 100£.00 .64+.04 46+ .02 | Tde-5 + 55e-6
best 1.00 1.00 1.00 1.00 71 48 6.7e-5
AVAE mean 79 + .03 79 + .03 67 + .05 584.03  .08+.02 .09+.03 | 1.0e-4+2.5e5
best 81 85 75 55 04 .05 7.0e-5
B-VAE 67 £ .03 75 £ 01 83 + .01 36+ .01 30+ 01 24+ .04
Factor-VAE 81+ .09 78 + .01 87 + .01 50+.05 34+.02 234.02
DIP-VAE I 74 + 01 JI+.01  83+.02  41+.02  324+.02 22+.03
DIP-VAE II 84 + .02 75+ 01  83+.03 A42+.01 37+.04 16+ .02
Random 58 £ .06 6T 02  83Ef02 27E03 I1f02 13f02
Table 4: Disentanglement for COIL2
Table 5: Disentanglement for COIL3
1 Beta-VAE 1 Inde 1 Mod 1 DCI 1 SAP 1 MIG | Prediction
mean | 100 £.00 08+ .00 1.00+F.00 97 Ff .0l .42+.04 .08L.02 | L2e-d T 54de-6
LSBD-VAE best 1.00 98 1.00 94 40 12 1.0e-04
« mean | 86+ .06 92T 02  83L.03 5% .03 21104 12L.02 | 3263 % 62e4
LSBD-VAE best 1.00 9 88 86 28 13 2.60-04
SOBDRL mean .86 + .09 .88 +.03 .82 + .05 .66 + .07 26 + .08 10 £ .02 4.7e-4 + 1.3e-4
best 96 91 87 80 42 12 2.6e-04
GMAVAE  ™ean | 100£.00  100+.00 100+.00 100+£.00 35+.03 .A7+.02 | Lle-d +37e6
best 1.00 1.00 1.00 1.00 34 13 9.9e-05
AVAE mean | .49 + .01 80+.02 61+.01 A54+.01 .03+.01 .04+.01 | 284+ 195
best 50 85 62 13 02 04 2.0e-04
BVAE 44 £ 05 8201  76+.02 10+.03 04+.01 .08%.01
Factor-VAE 74+ .02 84+.01  80+.01  28+.02 11+.02 .13+.03
DIP-VAE I A1+ .01 84+.01  78+.01  04+.00 .06+.01 .04+.00
DIP-VAE II 49 + .05 82+01  75+.01 10+.01 08+.02 .06+ .01
Random 381 .02 6L 0l 77X 0  05%.00 08%.02 .05%.0I
Table 6: Disentanglement for 3DShapes
1 Beta-VAE 1 Inde 1 Mod 1 DCI 1 SAP T MIG | Prediction
mean | .98 £ .00 98+ 00 1.00+.00 99+ .00 43+.03 .07+F.00 | 7.6e4+22e5
LSBD-VAE  pyrewen 98 99 1.00 1.00 45 04 6.80-4
« mean | .97 .00 97F 01 100X .00 95F.02 49F.04 09F.02 | Lle3 ¥ 2.6e4
LSBD-VAE best 97 98 1.00 98 59 03 8.3¢-4
SOBDRL mean 91 + .05 93 + .02 96 + .03 85+.07 41+.05 22+.05 | 2.0e-3 + 8.7e-4
best 98 97 1.00 97 31 26 9.0¢-4
GMAVAE  ™ean 98+.00 1.00+.00 1.00+.00 1.00+.00 .56+.04 .26+.02 | 6.0e-d + 3.2e-5
best 98 1.00 1.00 1.00 69 19 5.1e-4
AVAE mean 35 + .03 88 + .01 75 + .00 15+4.02  .06+.00 .04+.01 | 8led+3.6e-5
best 2 90 74 18 07 02 8.2e-4
B-VAE 52 f 04 72 £ .01 T4 L 00 22+ .04 4% 00 08L.0I
Factor-VAE 63 + .03 74 + .01 76 + .01 354+4.01  20+.05 .11+.03
DIP-VAE I 62 + .02 71+ .02 75 + .01 28+.02  A5+.01  .124.02
DIP-VAE II 67 + .03 69 + .01 75 + 01 37401 14+.01  224.02
Random 31+ 04 64 £ 01 70 £ 01 04+ .00 04+.00 04F.00

H.4 ASSUMPTION 1 VERIFICATION

Here we show the results of section which aims to prove the SOBDRL and LSBD-VAE* im-
plicitly require a disentangled action set. We evaluate the disentanglement of those methods on the
COIL2 environment for different values of the action entanglement & in Table[7} As we can see the
disentanglement strictly decreases as actions are more entangled except for the MIG metric.
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k | Beta-VAE Inde Mod DCI SAP MIG
1] 100+.00 99+.00 1.00+£.00 1.004+.00 .27+.04 .06+ .03
LSBD-VAE* 2| 99+.00 .84+.03 .83+.04 82+.05 .14+.02 .07+.03
31 78+£.05 .69+.03 .59+.05 62+ .05 .03+£.01 .04+ .01
1| 994+.01 94+£.02 .94+£.04 88 +.03  39+.04 .20 +.07
SOBDRL 2| 944+£.03 .83+£.02 .81+.02 70+ .06 .30+ .06 .04+ .03
3

J4+.09  744+.05 .68+ .05 A48+.05 234+.06 .19+.05

Table 7: Disentanglement with respect to action entanglement

H.5 dg MATRICES

Figure 1] presents the d¢; matrices for five different environments. Each matrix is normalized such
that the clustering threshold corresponds to a distance of 1. Each black square represents available
actions Gy, associated with specific subgroups GGi,. These blocks have pairwise distances strictly
below 1, whereas the distances between two actions belonging to different subgroups are strictly
greater than 1, resulting in a correct recovering of the ground-truth action partition.

(a) FLC (b) FLP (c) COIL2 (d) COIL3 (e) 3DShapes
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Figure 11: dg matrices averaged over 5 seeds, normalised so that the clustering threshold is 1.

I IMPLEMENTATION DETAILS

1.1 DATASETS

Here, we describe the datasets used in this paper. A visual representation of the observation and the
available actions are illustrated in Figure

Our implementation of Colored Flatland consists of RGB images of size 64 x 64 x 3 with a ball
of radius 17 pixels. The ball can occupy 5 distinct positions along each axis, corresponding to
Gx = Gy = Z/5Z. In the cyclic color experiment (FLC), the base color is [1,0,0], and the
two available actions in G perform cyclic shifts of the active color channel in one direction. In
the permutation color experiment (FLP), the base color is [1/3,2/3,1], and each available action
corresponds to a permutation of the RGB channels.

Our implementation of COIL consists of RGB images of size 64 x 64n x 3, where n is the number
of objects present in the scene. The group actions, and consequently the number of possible ori-
entations for each object, are specified in Table [§] In this table we denote by o a permutation that
permutes all objects, and by r; the rotation by one unit angle of the ¢-th object. The first two rows
of Table 8| correspond to the datasets COIL2 and COIL3, which are used in the most of the experi-
ments. The remaining rows describe additional environments used for action clustering experiments

in Section

Our implementation of 3DShapes (Burgess & Kim,|2018) consists of RGB images of size 64 x 64 x 3,
showing a 3D object placed at the center of a colored room. Each original generative factor was
sub-sampled by a factor of 2, resulting in the following cardinalities: wall hue: 5, object hue; 5,
background hue: 5, object scale: 4, object shape: 2, and viewing angle: 7. For each generative
factor 4, we define a cyclic symmetry group G; = Z/k;Z over its possible values, along with two
available actions G; = {g; , g;" } corresponding to unit rotation in each direction.
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(a) COIL
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Figure 12: Presentation of the environments
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Table 8: COIL Environments used

G ‘ Os g1 Go s G4  includes e ?
G2 x =2 X o G& {=r1i,m}  {-7r2,m2} No
Gs x % X % X % GE {=ri,m} {-ro,r2} {—rs,r3} No
G3 x 7 X 7 X kv {c} {r1,3r1}  {3rq,4rs} {rs} Yes
G3 X 35 X 75 X 35 {c} {2r1,67r1} {2r2} {rs} Yes
GuxZxLxxl | {o,07'} {r,3m} {3r,4r} {rs} {ra} No

1.2 NETWORK ARCHITECTURES AND HYPERPARAMETERS

For all the experiments, dataset and method, we used Adam (Kingma & Bal 2015)) with the default
parameters given by pytorch, a batch size of 16 and the following auto-encoder architecture
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Table 9: Auto-encoder architecture used for all methods and all datasets

ENCODER
Input Size (z, y, c)
Conv Channels: 32, Kernel size: 8, Stride: 4, Padding: 2, ReLU
Conv Channels: 64, Kernel size: 8, Stride: 4, Padding: 2, ReLU
Reshape  Flatten into /4 x y/4 x 64
Dense Dimension: 256, ReLU
Dense Dimension: depends on d and the noise parametrisation

DECODER

Input Size d

Dense Dimension: 256, ReLU

Dense Dimension: /4 x y/4 x 64, ReLU

Reshape  (z/4, y/4, 64)

ConvT Channels: 32, Kernel size: 8, Stride: 4, Padding: 2, ReLU
ConvT Channels: ¢, Kernel size: 8, Stride: 4, Padding: 2, Sigmoid

An action matrix A, of SOBDRL is parametrised by d(d — 1) scalars Gi ;» one angle for each pair
of plane (4, j), the action matrix is then constructed by multiplying all the rotations matricesA, =
[L- ; 1, j(HZ j). For LSBD-VAE, the block-diagonal actions matrices are already given as it is a
supervised method. For LSBD-VAE* the only difference is that each block is learned with a SO
parametrisation similarly to SOBDRL. For Forward-VAE and our method, the action matrices are
parametrized directly with the matrices coefficient, we used a tanH activation to ensure stability, the
only difference is that our method use dense matrix and Forward-VAE use a block-diagonal matrices
with a shape given as prior knowledge.

SOBDRL requires multi-steps trajectories (¢, g, - - - , T4+T—1, JtaT—1, Te+1) With T > 1. To have
a fair comparison, every experiment will use sequences with T' = 5, the other methods process
independently each transition (14, Gt+k, Tt+k+1)-

For A-VAE and GMA-VAE, we used a fixed latent noise of standard deviation o = 0.1 and for the
action clustering of Step 2 we used the threshold n = ¢ and M = 2.

All hyperparameter details for each experiment are provided in the config folder of the code given
in supplementary material.

J USE OF LARGE LANGUAGE MODELS

LLMs were moderately used to help in literature reviewing and English writing.
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