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Abstract

The end-to-end process of running a causal
analysis requires knowledge about a wide range
of estimation methods, statistical assumptions,
and a technical understanding of the phenom-
ena of interest. Recent advances in large lan-
guage models (LLMs) can circumvent the need
for expert knowledge by automating the infer-
ence pipeline, thereby widening the accessibil-
ity to causal inference tools. In this work, we
present Causal Al Assistant (CAIA), an end-
to-end pipeline for performing causal analysis.
By implementing a method selection pipeline
using a tree-of-thoughts-inspired approach, our
pipeline leverages LLM’s reasoning capabili-
ties to select and execute appropriate inference
methods to generate data-driven answers to nat-
ural language causal queries. Furthermore, we
test our pipeline on preexisting datasets in addi-
tion to synthetic examples and datasets drawn
from published social science studies. We show
through extensive evaluation that our pipeline
approach outperforms existing work in auto-
mated causal inference.

1 Introduction

Recent advances in large language models (LLMs)
offer a promising avenue for enhancing causal in-
ference, including automating the estimation of
causal effects. LLMs facilitate automation in sev-
eral ways. First, their knowledge can be used to
construct causal graphs relevant to a given phe-
nomenon (Kiciman et al., 2024; Vashishtha et al.,
2023). These graphs can help estimate causal ef-
fects between variables of interest (Pearl, 2009).
Second and more relevant to our work, LLMs facil-
itate causal data analysis by assisting in implement-
ing econometric and statistical methods to datasets
of interest (Liu et al., 2024c; Ji et al., 2025).

Current works leveraging LL.Ms for data-driven
causal analysis focus on settings where the users
specify the estimand/method, and the LLM han-

dles the implementation (Liu et al., 2024a). How-
ever, choosing the appropriate estimand/method is
often the most challenging step in the causal in-
ference pipeline, where experts draw upon their
knowledge about a wide range of techniques, the
data-generation process, and the underlying phe-
nomena. To address this bottleneck, Jiang et al.
(2024) proposed LLM4Causal, a foundation model
fine-tuned to perform end-to-end causal inference.
While promising, for causal effect estimation,
LLM4Causal has mainly been evaluated on tasks
involving the estimation of the Average Treatment
Effect (ATE) and Heterogeneous Treatment Effect
(HTE), leaving out a wide range of other estimands
and methods unexplored. Furthermore, its perfor-
mance is largely tested on synthetic datasets, which
may not capture the complexity of real-world sce-
narios.

More recently, Wang et al. (2025) introduced
Causal-Copilot, a system designed to automate
the causal inference pipeline. However, their
framework does not support widely-used econo-
metric methods such as Difference-in-Differences
(DiD) and Regression Discontinuity Design (RDD),
which are central to empirical research in the so-
cial sciences. Additionally, their evaluation has
focused primarily on causal discovery tasks, rather
than causal effect estimation.

To evaluate the ability of LLMs to estimate causal
effects from real-world datasets, it is crucial to
evaluate their performance across a broader set
of methods and scenarios. Toward this goal, we
introduce CausalAl Assistant (CAIA), an end-
to-end pipeline that supports causal analysis for
a diverse range of social science contexts. Given
a dataset, its description, and a natural language
query, CausalAl Assistant uses LLMs to automat-
ically identify and execute the most appropriate
inference method, then uses the resulting estimates
to address the user’s query.



At the core of our pipeline is the Tree of Thoughts
(ToT) prompting framework (Yao et al., 2023;
Long, 2023). At each node, the LLM is prompted
to assess specific features of the data, and this struc-
tured reasoning guides method selection. This ap-
proach not only simplifies method selection but
also enhances the interpretability of the process.
To assess the practical validity of our pipeline, we
test it on existing benchmarks such as QRDATA
(Liu et al., 2024a). QRDATA primarily consists of
examples from textbooks, where the inference pro-
cess is relatively more streamlined and structured.
Real-world causal inference, however, is often less
structured and complex. Hence, we extend our
evaluation to case studies from academic papers
as well as synthetic datasets mimicking real-world
settings.

In sum, our key contributions are:

1. We introduce an LLM-powered end-to-end
tool, CAIA, for estimating causal effects on a
given dataset to generate data-driven ansters
to use queries. CAIA automatically selects
and implements the appropriate method and
interprets the final numerical results in the
context of the user query.

2. Our pipeline leverages the Tree of Thoughts
(ToT) prompting approach to break down the
selection of the method and the appropriate
variables. This decomposition simplifies the
causal analysis steps, thereby making the re-
sults more interpretable.

3. We evaluate our pipeline on existing bench-
mark datasets, causal queries based on real-
world studies, and synthetic datasets. CAIA
outperforms the baseline models in terms of
method selection across all three datasets.
Similarly, it achieves lower error rates on
queries associated with QRData and synthetic
dataset.

2 Problem Formulation

We are provided with:

1. A dataset D = {X;,Y;, T;}" ,, where X; €
R? denotes the covariates, 7} is the treatment
(' binary or continuous), and Y; is the observed
outcome for unit <.

2. A description D, detailing the variables and
the data collection mechanism.

3. A natural language causal query q. For ex-

ample: Does participating in the training
program lead to higher earnings?

The goal is to then generate a causality-driven an-
swer to the query q.

2.1 Causal Estimand

The key numerical quantity of interest are causal
estimands, which gives a measure of the causal
effect. The primary causal estimands we consider
are:

* Average Treatment Effect (ATE): E[Y (1) —
Y(0)]

* Average Treatment Effect on the Treated
(ATT): E[Y (1) =Y (0) | T =1]

* Local Average Treatment Effect (LATE):
E[Y (1) — Y(0) | Compliers]

The reported causal estimand directly informs the
answer to the causal query by quantifying the
causal effect. Additionally, one can compute the
confidence interval associated with the estimates to
gauge its statistical reliability.

2.2 Inference Method Selection

To estimate the estimand, we must first identify the
appropriate inference method. This choice depends
largely on the characteristics of the dataset. For
example, if the data originates from a randomized
controlled trial (RCT), the treatment effect can be
estimated using the simple difference in means:

1 1
= — Y, — — Y; 1
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where n1 and ng are the number of treated and
control units, respectively.

Each method relies on specific assumptions for
identification. Thus, to assess the suitability of
a method, it is essential to test the assumptions.
The assumptions underlying each inference method
can be found in most standard causal inference
textbooks (Imbens and Rubin, 2015; Cunningham,
2021; Huntington-Klein, 2021; Hernan and Robins,
2025).

3 Methodology

OurModel is implemented as a modular, agent-
based pipeline that decomposes the overall causal
inference process into a sequence of well-defined
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Figure 1: The overall architecture of our Causal-Al
Assistant.

tasks (Figure 1). It consists of three stages: pre-
processing, causal inference, and final interpreta-
tion. Additionally, each stage consists of distict
components that perform a specific function. This
decomposition enhances interpretability by allow-
ing users to trace how a causal estimate is derived.

3.1 Overview of the Three-Stage Agentic
Workflow

3.2 Stage 1: Preprocessing

The preprocessing stage performs preliminary anal-
ysis of the input dataset and the user query. It
identifies key variables and characteristics of the
datasets, such as treatment and outcome variables,
presence of valid instrument variables, presence of
observation timings, etc. The tasks in this stage are
performed using three agents.

3.2.1 Agent la: Input Parser

This agent parses the user’s natural language query
and the description of the dataset. Additionally, it
checks the query for any references to treatment
and outcome variables. Likewise, the parser also
obtains the data from the user specified path.

3.2.2 Agent 1b: Dataset Analyzer

This agent conducts a comprehensive examination
of the provided data set. Identifies column names,
infers data types, quantifies missing values, and
computes summary statistics. Beyond basic pro-

filing, the agent explores potential relationships
within the data, such as correlations, and attempts
to identify features pertinent to causal inference, in-
cluding candidate treatment and outcome variables,
temporal structures, and possible instrumental vari-
ables. The heuristics act as a fallback mechanism in
cases where the LLM fails to identify the variables.

3.2.3 Agent 1c: Query Interpreter

This agent bridges the gap between the user’s con-
ceptualization of the causal query and the actual
data. Building on the output of the parser and an-
alyzer, it prompts the LLM to determine which
columns correspond to the treatment, outcome, and
control variables. In addition, it guides the LLM
to identify the presence of instrumental variables,
running variables that govern treatment assignment,
observed confounders, and time-related variables
that indicate the timing of observations. It also
prompts the LLM to infer the nature of the data -
whether it is observational or experimental - based
on the dataset and query context.

()
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Query : Does home visit from specilaist doctors lead to an improvement in cognitive scores?

Dataset Description :The study is designed to evaluate the effect of home visit from specialist doctors on the
cognitive test scores of premature infants. The X (x1-x25)
the children and their mothers, [...] measurements on the mother at the time she gave birth (age, marital status,
leducational attainment, [...] in which the family resided at the start of the intervention. [...]
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Figure 2: Illustration of the decision tree used in method
selection.

3.3 Stage 2: Causal Inference

In this stage, we leverage the results of preprocess-
ing stage to select the appropriate causal inference
method, validate its assumptions, and execute the
estimation

3.3.1 Agent 2a: Method Selector

Method Selector agent is responsible for selecting
the most appropriate causal inference method to
answer the user’s query. It uses a decision tree
structure (Figure 2), where each node checks for
a key characteristic of the data or query, such as
whether the data are observational or experimental,



the presence of discontinuities or the availability
of instrumental variables. Based on these checks,
the tree guides the selection process toward a suit-
able method, which corresponds to the leaf nodes
(Full decision tree method selection process can be
refereed in Appendix C).

3.3.2 Agent 2b: Method Validator

In this phase, we perform checks to gauge the
reliability of the method. Method-specific diag-
nostic checks are conducted to ensure the valid-
ity of the underlying assumptions. Violation of
the assumptions compromise the result of the esti-
mates. The nature of these checks varies by method
— for example, the parallel trends assumption is
tested for Difference-in-Differences, while instru-
ment strength is assessed in Instrumental Variables
analysis. The output of this component is a di-
agnostic report indicating whether the necessary
assumptions hold or not.

3.3.3 Agent 2c: Method Executor

Finally, this agent implements the selected causal
inference method. For most methods, pre-defined
code templates are used with placeholders for key
variables, which are filled using the output of the
LLMs. However, for certain methods, such as
propensity score matching, LLMs are more in-
volved. For instance, we prompt the LLM to se-
lect the variables used for computing propensity
score. The output of this component is the esti-
mated causal effect along with standard error, p-
values, and confidence intervals.

It is crucial to emphasize that the reported confi-
dence intervals primarily quantify statistical uncer-
tainty due to finite sampling, under the specific
model and its assumptions. These statistical mea-
sures do not, in isolation, confirm the overarching
causal claim, as the validity of such claims also
hinges critically on the appropriateness of the cho-
sen method, the untestable identifying assumptions
(e.g., absence of unobserved confounders, selection
bias) and data quality.

3.4 Stage 3: Final Interpretation

The final component interprets the results of the
causal analysis within the context of the original
query and the data set. Produces a comprehensive
answer to the causal question by presenting the esti-
mated effect alongside any limitations and caveats
identified through diagnostic and validity assess-
ments. This approach guarantees that the response

is both insightful and appropriately qualified.

4 Experimental Setup
4.1 Baseline Models

To evaluate the performance of our Tree-of-
Thoughts based approach, we compare it against
a baseline that uses Chain-of-Thought(Wei et al.,
2023) prompting (Appendix section B) for end-to-
end causal data analysis (Liu et al., 2024a). The
process involves three steps: (i) providing the LLM
with a description and summary of the dataset, (ii)
supplying the causal query along with a set of can-
didate methods, and (iii) prompting the LLM to se-
lect an appropriate method and then write a code to
implement the method using a selection of Python
libraries. The prompt also includes instructions to
return the selected method, the causal effect esti-
mate, and the standard errors and confidence inter-
vals associated with the estimate. The key outputs
of interest are the estimated causal effects and the
inference method.

4.2 Implementation Details

Both the baseline and CAIA utilize GPT mod-
els (40 and 40-mini) as the core LLM to inter-
pret natural language queries, dataset descriptions,
and summaries. For causal effect estimation, we
rely on the DoWhy and statsmodels libraries, us-
ing scikit-learn’s logistic regression for propensity
score estimation. The causal inference methods
included are Difference-in-Differences (DiD), Re-
gression Discontinuity Design (RDD), Ordinary
Least Squares (OLS), Instrumental Variables (IV),
Propensity Score Matching (PSM), and Inverse
Propensity Score Weighting (IPW). Data prepro-
cessing is performed with pandas and numpy.

All experiments are implemented in Python and
interface with GPT via the OpenAl API, with the
temperature parameter fixed at O to ensure repro-
ducibility

4.3 Evaluation Metrics

We evaluate our pipeline on two metrics.

* Method Accuracy (MA): The proportion of
cases where CAIA selects the same causal
inference method as specified in the reference
datasets or studies. Numerically,

N
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where m; is the method predicted by CAIA,
and m; is the method used in the references.

* Mean Relative Error (MRE): The average
relative error between the estimated causal
effects and the reference values:

1 . <ﬁ'—ﬂ'! )
MRE = — Y min(———,1) x 100%
NZZ |73l

(3)
where 7; is the estimated causal effect and 7 is
the reference causal effect. The relative error
is sensitive to outliers. To avoid the effect of
the outliers, we cap the relative error for each
estimate to 100%.

4.4 Prompt Setup

Prompt structuring is a core element of OurModel,
enabling rigorous and reliable guidance of the
LLM throughout the causal inference workflow.
Each prompt is carefully constructed as a dynamic
template that embeds relevant dataset metadata,
variable information, and the user’s causal query,
thereby providing clear and context-sensitive in-
structions. We categorize these prompts into four
principal groups: (i) Method Identification, (ii)
Dataset Analysis, (iii) Result Interpretation, and
(iv) Regression Analysis.

Key elements of our prompt structure include:

» Explicit task definition: Precise specification
of the objective, such as method selection or
instrument identification.

¢ Comprehensive contextual input: Inclusion
of dataset summaries, variable descriptions,
and other metadata to anchor LLM reasoning.

e Structured output requirements: Man-
dating responses in standardized, machine-
readable formats (e.g., JSON) for seamless
downstream integration.

¢ Illustrative guidance: Providing examples
and expected formats to facilitate consistent
and accurate model outputs.

5 Results and Analysis

5.1 Performance on Textbook Data
5.1.1 Benchmark Dataset

QRData (Liu et al., 2024b) is a benchmark dataset
that primarily draws examples from causal infer-
ence textbooks. The queries specify the method/es-
timand of interest and instructs LLM to implement

them. Since our focus is on performing end-to-end
causal analysis, including method and variable se-
lection, we modify the queries to remove mention
of method and categorization of variables as treat-
ment and outcomes. We omit 3 that are out of scope
for our pipeline. Likewise, we use each variant of
the 10 IHDP datasets to create one query. This
brings the total number of queries with numerical
answers to 39.

5.1.2 Result

Model Prompt MA MRE
4o Baseline 45 46.2

&P CAIA 769 316

apt-do-mini Baseline 36 40

CAIA 60 67

Table 1: Performance on causal queries in QRData re-
ported in terms of Method Accuracy (MA) and Mean
Relative Error (MRE) of the causal effect estimates

As shown in Table 3, CAIA outperforms the base-
line in method selection accuracy for both GPT-40
and GPT-40-mini across all 39 queries. For causal
effect estimation, CAIA with GPT-40 also achieves
lower mean relative error than the baseline based
on the results for 34 out of 39 queries. For 5 of
the queries, we ran into implementation errors. (de-
scribed in See 5.3)

5.2 Performance on Synthetic Data

5.2.1 Synthetic Data Creation

One of the challenges in testing our approach is the
limited availability of open-source datasets with
known causal effects. To address this limitation, we
create synthetic datasets for each causal inference
method in our pipeline. We randomly select the
true causal effect 7 in the range (1, 10). Continuous
covariates are generated from a normal distribution,
while binary covariates and treatment assignments
(in binary treatment settings) are generated from a
binomial distribution. The outcome Y is generated
based on the model specification. For instance, for
a randomized trial,

Y =a+X0+7T +e (4)

where € ~ N(0,1) is the error term, 6 ~
N (u, kI), and « is the intercept. Similarly, X rep-
resents the concatenation of binary and continuous
covariates, and T is the treatment variable.

After generating the numerical values, we employ
GPT-40 to create hypothetical contexts for each



dataset. Specifically, we prompt GPT-40 to invent
realistic scenarios from which the data could have
arisen. Simultaneously, we ask GPT to generate
headings and descriptions for the covariates, out-
comes, and treatment variables. This process pro-
vides meaningful backgrounds to the dataset for
testing our pipeline’s ability to handle diverse real-
world situations.

5.2.2 Results

As with the QRData benchmark, CAIA outper-
forms the baseline in both method selection and
causal effect estimation. We excluded four queries
from the relative error evaluation due to implemen-
tation failures. While the gap in method selection
accuracy is substantial, the difference in relative
error between the baseline and CAIA is compar-
atively smaller. This is largely because the true
causal effects across most queries are relatively
small—typically in the range of 1 to 10, which re-
duces the magnitude of differences in estimation
error.

Model Prompt MA MRE
(A Baseline 30 28
gpt-20 CAIA 733 2224
gpt-4o-mini  CAIA 48.65 519

Table 2: Performance on causal queries for synthetic
dataset, reported in terms of Method Accuracy (MA)
and Mean Relative Error (MRE) of the causal effect
estimates.

5.3 Fine-Grained Analysis on QR+Syn
Combined

Method Selection Accuracy For both QRData
and synthetic data, we observe a relatively high ac-
curacy for method selection and a low mean relative
error. One possible reason for this is the simpli-
fied nature of the dataset. QRData uses examples
from causal inference textbooks. Thus, the data
is heavily preprocessed to enable the implemen-
tation of the inference methods. Similarly, given
the data-generating process, all columns of syn-
thetic datasets are numerical. Likewise, the column
names are unambiguous and distinct, which makes
it easier for the LLM to select the correct set of
variables.

Common Errors Here we briefly describe the
common types of errors.

* Incorrect Variable Selection: LLMs often
misinterpret time-related covariates, such as

year of birth or quarter, as observation times.
This can erroneously lead to the selection of
Difference-in-Differences as the causal infer-
ence method. Likewise, wrong columns get
selected as treatment and outcomes, especially
if the column names are ambiguous.

* Wrong Method Selection LLMs perceive
Randomized Control Trials as Encouragement
Designs leading to the selection of I'Vs instead
of OLS as shown in figure 3. Similarly, for
synthetic data, the model failed to recognize
1V as the preferred method in 3 cases. This
highlights the general difficulty of choosing
valid instruments based on data descriptions.

* Incorrect Data Formats Errors also arise due
to inconsistent formatting of the data. For
instance, certain columns are formatted in
strings, and packages like DoWhy needs in-
puts in numerical formats.

5.4 Ablation Study

5.4.1 Impact of Dataset Descriptions on
LLM-Guided Causal Inference

We conduct an ablation study to assess the impact
of explicit dataset descriptions in the Causal Al
Assistant pipeline. When prompts include detailed
descriptions of the semantics of the variable and
the study context in natural language, the LLM
more accurately identifies treatments, outcomes,
and covariates, resulting in better selection of meth-
ods and estimation of effects across QRData and
synthetic datasets. In contrast, omitting these de-
scriptions leads to more frequent errors, especially
with ambiguous or domain-specific column names.
These findings underscore the importance of cu-
rated dataset descriptions for robust and reliable
LLM-driven causal analysis.

5.4.2 Decision Tree vs. LLM-Only Method
Selection

We specifically compared the method selection
logic implemented within the method selector
agent, evaluating two distinct strategies: an explicit
decision tree-based approach (Figure 2) versus a
purely LLM-driven approach. While both strate-
gies performed similarly on simple queries, the
decision tree’s structured, rule-based logic consis-
tently delivered higher accuracy and interpretabil-
ity for complex cases involving multiple treatments
or interaction effects. Conversely, the LLM-only
approach often failed to capture critical dataset nu-



ances and methodological requirements, leading to
less reliable method selection in challenging sce-
narios. This analysis underscores the importance
of robust, expert-encoded logic in guiding causal
method selection.

Model Prompt MA

LLM-Only 60
Decision-Tree  76.9

gpt-40

Table 3: Performance comparison on Decision-Tree vs
LLM-Only approach for method selection, reported in
terms of Method Accuracy (MA)

5.5 Future Work Direction: Real-World Data
5.5.1 Real-World Data Collection

To evaluate our model in complex and real-world
scenarios, we create test cases using published so-
cial science studies. For each study, we use a sum-
mary that captures key details about the dataset,
including the main variables and the experimental
procedure involved in data creation. A substantial
portion of the studies are associated with datasets
found in the R package causaldata. We develop
the causal questions associated with the curated
studies by considering the empirical answer, the
corresponding statistical model, and its relation to
the original study.

5.5.2 Results

Model Prompt MA MRE
opt-4o Baseline 45 46.2
CAIA 73.3 62.97
. . Baseline 36 40
gpt-4o0-mini

CAIA 60 67

Table 4: Performance on causal queries curated from
real-world studies, reported in terms of Method Ac-
curacy (MA) and Mean Relative Error (MRE) of the
causal effect estimates.

CAIA achieves an accuracy of 73.3% on real-world
studies for method selection and outperforms the
baseline model when using GPT-40. However, the
error in the causal effect estimate is very high rel-
ative to the baseline model. A big reason for this
is incorrect selection of variables when implement-
ing the model. The chance of incorrect variable
selection is higher for real studies because the raw
dataset contains large number of columns.

Error Type Dataset Percentage %
Variable Identification (Szﬁlliaettaic %ggz
Method Selection gﬁlﬁlaetzc iﬁZZ
Formulation (Szﬁllt)haettaic gggz
Others (Szﬁllt)haetzc iggj

Table 5: Error Analysis of Causal Al assistant with gpt-
40 on QRdata and synthetic dataset

5.5.3 Challenges and Future Work

One of the key challenges in working with real-
world studies is the structure of the raw datasets.
These datasets are often direct transcriptions of
surveys and include a large number of variables.
We currently use the data in its raw form, which
leads to the inclusion of many control covariates
in the model. This can adversely the accuracy of
the estimates in regression models. Additionally,
this may introduce instability. For example, in one
case, the selected model included complementary
covariates: an indicator for being born in the given
country was used as the treatment, while a dummy
variable for immigrant status was included as a con-
trol covariate. This led to multicollinearity issues.
The presence of large number of variables also
increases the likelihood of incorrect variable selec-
tion, especially when column names are similar
or ambiguous. Such errors in variable identifica-
tion can also result in the selection of inappropriate
causal inference methods.

Currently, for each specific task, we prompt the
LLM only once and do not apply filters to verify
the correctness of its output. If the initial response
is incorrect, the entire downstream pipeline can
be compromised. To address this limitation, we
are exploring techniques such as Chain of Verifica-
tion (Dhuliawala et al., 2023), which prompts the
LLM to re-evaluate and validate its own outputs.
Another promising direction involves integrating
pre-processing tools that can reformat raw datasets
into formats compatible with causal inference li-
braries. This could improve both variable selection
and model robustness.

6 Related Work

LLMs and causality The applications of LLMs
in causal inference are an active area of research.
LLMs enable the estimation of treatment effects
from high-dimensional textual data (Dhawan et al.,
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2024; Imai and Nakamura, 2024). Another line
of work uses LL.Ms for generating high-quality la-
bels (Egami et al., 2024; Durvasula et al., 2025).
Recent econometrics papers (Ludwig et al., 2025;
Battaglia et al., 2025) provide a statistical analy-
sis of the properties of estimators computed us-
ing LLM-generated data. LLMs have also been
used for causal discovery. Most papers take the
approach where they view LLM as domain experts
and utilize their knowledge to build expressive
causal graphs (Kiciman et al., 2024; Choi et al.,
2022; Long et al., 2022). Ban et al. (2023) takes
a hybrid approach, combining LLLM’s knowledge
with classical methods to enhance causal structural
learning. (Zecevié et al., 2023) provides a more
critical perspective on the causal graphs generat-
ing capabilities of LLMs, conjecturing that LL.Ms
may behave more like a causal parrot that mem-
orizes causal relationships rather than inherently
understanding them. The ability of LLMs to reason
causally when provided with complex queries and
models has also been studied by Jin et al. (2023)
and Jin et al. (2024). More recent works, such as
Jiralerspong et al. (2024), have focused on min-
imizing the computational costs associated with

querying.

LLMs for data analysis and code generation
Various studies have proposed frameworks and
benchmark datasets to evaluate the code genera-
tion abilities of LLMs (Huang et al., 2022; Lai
et al., 2023; Wu et al., 2024). A thorough analy-
sis of the code generation capabilities of GPT in
the context of data analysis is presented in Cheng
et al. (2023). Liu et al. (2024a) extend this line
of work by analyzing LLLMs’ code generation and
analysis skills for answering queries that involve

implementing statistical and causal inference mod-
els. Wu et al. (2024) presents fine-tuning methods
to enhance the analytical capabilities of LLMs for
more difficult tasks. Nejjar et al. (2024) and Jansen
et al. (2023) analyze the code generation and data
analysis capabilities of language models in the con-
text of scientific research. More recently, LLMs
have been applied in automating the end-to-end
causal inference process via LLM Co-pilots(Alaa
et al., 2024; Wang et al., 2025) have been proposed.
On the benchmarking end, datasets like DISCOV-
ERYBENCH (Majumder et al., 2024), BLADE (Gu
et al., 2024), and StatQA (Zhu et al., 2024) have
been proposed to assess the ability of LLMs to
perform data-driven analysis.

7 Conclusion

In this work, we propose CausalAlI Assistant
(CAIA), an end-to-end framework for generating
causality-driven answers to user queries based on
an input dataset. Currently, CAIA supports meth-
ods primarily used in the social sciences domain
(Imbens, 2024). We evaluate CAIA across a range
of causal inference methods using three types of
datasets: QRData, synthetic data, and real-world
studies. CAIA outperforms the baseline model
on both QRData and synthetic datasets in terms
of method selection and causal effect estimation.
While its performance on real-world studies is com-
paratively lower for causal effect estimation, the
strong results on QRData and synthetic datasets,
which are more structured and cleaned, suggest
that CAIA’s performance can be improved on real-
world data through better preprocessing.



Limitations

Our work has several limitations. Some of these
have been discussed in earlier sections, includ-
ing the need for improved data preprocessing and
additional verification steps to validate LLM out-
puts. Moreover, the results reported in this study
are based on a single run per dataset. Given the
variability in LLM outputs, a robust evaluation
would require running multiple trials on the in-
put datasets. While CAIA supports a diverse set
of causal inference methods applicable to a broad
range of datasets, our current focus has been pri-
marily on queries and datasets from the social sci-
ences. Causal inference is a vast field, and this
work concentrates on a selected subset of tools and
techniques.
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A Dataset Information

Method QRData Synthetic Real-Studies
DiD 2 10 7

RDD 2 5 4

v 2 10 2

OLS 20 10 12
Propensity Score 13 10 2

Total 39 45 27

Table 6: Number of queries by method type across

QRData, synthetic, and real-world studies

A.1 Sample of Synthetic Data Description
Created by GPT

Descriptions and variable names generated by GPT-

4o for Synthetic Data associated with Difference-in-
Differences

Dataset Name: did_canonical_data0.csv

Variable labels

D: policy_change,

post: post_policy_year

Y: health_score

X1: age

X2: BMI

X3: smoker

X4: sports_participation
X5: fast_food_consumption
unit_id: student_id

Description: The dataset comprises information
from a two-year study conducted in public schools,
investigating the effects of a new policy requiring
biannual health check-ups for students. The data
were collected from student health records, surveys
about lifestyle habits, and school administrative
databases. The student’s health score was calculated
by licensed physicians based on various medical
parameters. The student’s age and Body Mass
Index (BMI) were recorded as continuous variables.
The student’s lifestyle habits, namely whether they
smoke, participate in sports, and consume fast food,
were noted as binary variables (1 for yes, 0 for no).
Each unique student is represented by a unique
student ID.

The policy_change variable indicates whether a
student belonged to a school where the new policy
was implemented. The post_policy_year indicates
whether the data point belongs to the year after
the policy was introduced. The health_score is a
numerical score representing the student’s overall
health condition. The ’age’ represents the age of
the student. The BMI represents the Body Mass
Index of the student. The smoker variable indicates
whether the student smokes. The sports_participation
variable indicates whether the student participates
in sports. The fast food_consumption variable
indicates whether the student frequently consumes
fast food. The student _id is a unique identifier for
each student.

Query: Did the introduction of the biannual health
examination policy improve the overall health of stu-

B Pipeline prompts

B.1 Baseline prompt

Baseline prompt

You are an expert in statistics and causal reasoning.
You will answer a causal question on a tabular dataset.
The dataset is located at self.dataset_path.

The dataset has the following description:

““ self.dataset_description
To help you understand it, here is the result of
df.describe():

““df_info “*

Here are the columns and their types:

“‘ columns_and_types
Here are the first 5 rows of the dataset:

““ df.head() “

If there are less than 10 columns, here is the result of
df.cov():

““ (df.cov(numeric_only=True) if len(df.columns) <
10 else "Too many columns to compute covariance")
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Finally, here is the output of df.isnull().sum(axis =
0):

nan_per_column ¢

The causal question I would like you to answer is:
“self.query ““*

Here are some examples methods, you can choose
one from them: [

"propensity_score_weighting’ # output the ATE
"propensity_score_matching_treatment_to_control’ #
output the ATT

’linear_regression’ # output the coefficient of the vari-
able of interest

’instrumental_variable’ # output the coefficient of the
variable of interest

"matching’ # output the ATE
“difference_in_differences’ # Output the coefficient
‘regression_discontinuity_design’ # output the coeffi-
cient

’matching_treatment_to_control’ # output the ATT
’linear_regression / difference_in_means’ # output
the coefficient / DiM

1.

Using the descriptions and information from the
dataset, implement a python code to answer the
causal question. Remember the dataset is located
at self.dataset_path. In the case you need to prepro-
cess the data, please do so in the code. The following
libraries are available to you: dowhy, pandas, numpy,
scipy, scikit-learn, statsmodels. Use the methods
from the libraries as best as you can. Don’t code
yourself that which is already implemented in the
libraries. Do not create random data. Make sure it
outputs the quantitative value in the comments of the
example method. The code you output will be exe-
cuted and you will receive the output. Please make
sure to output only one block of code, and make
sure the code prints the result you are looking for at
the end. Everything between your first codeblock:

»“‘python’ and **““* will be executed. If there is an
error, you will have several attempts to correct the
code.

C Decision Tree Method Selection Process

The method selection process in our Causal Al Assistant is
governed by a decision tree designed to recommend the most

dents?
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Figure 4: The overall architecture of our Causal-Al
Assistant.

appropriate causal inference method based on dataset charac-
teristics and the causal query. This process is implemented
programmatically to ensure transparency, reproducibility, and
alignment with best practices in causal inference (Figure 4

1. Input Requirements

The decision tree requires the following inputs:

* Dataset: Provided as a structured DataFrame.

Identified Variables: Including the treatment vari-

able, outcome variable, covariates, and optionally, time,

group, instrument, and running variables

¢ Dataset Analysis Results: Metadata and diagnostics
about the dataset, such as the presence of temporal struc-
ture, variable types, and potential instruments.

* Study Design Indicator: Whether the data originates
from a randomized controlled trial (RCT) or an obser-
vational study.

¢ Language Model Assistance :For nuanced recommen-
dations between similar methods (e.g., matching vs.
weighting)

2. Stepwise Selection Logic

The decision tree operates through a series of prioritized, mutu-
ally exclusive checks, each corresponding to a class of causal
inference methods. The process is as follows:

1. Randomized Controlled Trials (RCT)

A. Encouragement Design (Instrumental Variable in
RCTs): If an instrument variable (e.g., an encourage-
ment or assignment indicator) is present and distinct
from the treatment variable, the tree selects the Instru-
mental Variable (IV) method. This is appropriate for
"encouragement designs," where randomization affects
an instrument rather than the treatment directly.

With Covariates:If covariates are available, the tree
recommends Linear Regression, leveraging covariate
adjustment to increase the precision of the treatment
effect estimate.

No Covariates: If no covariates are present, the tree
defaults to a simple Difference in Means estimator, com-
paring outcomes between treatment and control groups.

B.
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2. Observational Data

Difference-in-Differences (DiD): If the dataset exhibits
temporal structure (e.g., contains a time variable) and
the research question involves pre/post or treated/control
comparisons over time, the tree selects the Difference-
in-Differences method. If an instrument is also present,
1V is suggested as an alternative.

Regression Discontinuity Design (RDD): If a running
variable and a cutoff value are identified (indicating
treatment assignment based on a threshold), the tree
selects Regression Discontinuity Design

Instrumental Variable (IV): If an instrument variable
is present (and not already handled above), the tree se-
lects IV regression, which is appropriate when a valid
instrument affects treatment but not the outcome di-
rectly. If temporal structure is also present, DiD may be
suggested as an alternative.

Propensity Score Methods: If covariates are available
but no special design features (e.g., time, instrument,
running variable) are present, the tree considers propen-
sity score methods. The choice between Propensity
Score Matching (PSM) and Propensity Score Weighting
(PSW) is informed by dataset characteristics such as
group sizes, covariate balance, and sample size. Option-
ally, a language model may be used to recommend the
most suitable approach based on summary statistics.
Fallback — Correlation Analysis: If none of the above
conditions are met (e.g., no covariates, no design struc-
ture, no instrument), the tree defaults to correlation anal-
ysis. This is accompanied by a warning that such anal-
ysis does not support causal claims and is subject to
confounding bias.

3. Extensibility

The decision tree is implemented as a modular, extensible
system. New methods or decision rules can be incorporated as
the field evolves or as new requirements emerge. The logic is
encoded in a transparent, auditable manner, ensuring that the
rationale for each method selection is clear and reproducible.



D Causal AI Assistant Run Output

Example of Run using Causal Al assistant

Dataset Description: The CSV file ihdp_4.csv
contains data obtained from the Infant Health and
Development Program (IHDP). The study is designed
to evaluate the effect of home visit from specialist
doctors on the cognitive test scores of premature
infants. The confounders x (x1-x25) correspond to
collected measurements of the children and their
mothers, including measurements on the child (birth
weight, head circumference, weeks born preterm,
birth order, first born, neonatal health index, sex,
twin status), as well as behaviors engaged in during
the pregnancy (smoked cigarettes, drank alcohol,
took drugs) and measurements on the mother at the
time she gave birth (age, marital status, educational
attainment, whether she worked during pregnancy,
whether she received prenatal care) and the site (8
total) in which the family resided at the start of the
intervention. There are 6 continuous covariates and
19 binary covariates.

Dataset Name: ihdp_4.csv

Query: What is the effect of home visits on the
cognitive test scores of children who actually
received the intervention?

Run Logs

Invoking: ‘input_parser_tool‘ with “’input_text’:
’My question is: What is the effect of home visits on
the cognitive test scores of children who actually
received the intervention? The dataset is located
at: ihdp_4.csv Dataset Description: "The CSV file
ihdp_4.csv contains data obtained from the Infant
Health and Development Program (IHDP). The study
is designed to evaluate the effect of home visit from
specialist doctors on the cognitive test scores of
premature infants. [...], whether she worked during
pregnancy, whether she received prenatal care) and
the site (8 total) in which the family resided at the
start of the intervention. There are 6 continuous
covariates and 19 binary covariates. Please perform
the causal analysis following the workflow.” ¢

Invoking: ‘dataset_analyzer_tool*  with
“’dataset_path’: *ihdp_4.csv’, ’dataset_description’
The CSV file ihdp_4.csv contains data obtained from
[...]

Invoking: ‘query_interpreter_tool* with
“query_info’: ’query_text’: 'What is the ef-
fect of home visits on the cognitive test scores
of children who actually received the interven-
tion?’, ’potential_treatments’: [’home visits’],
“potential_outcomes’:  [’cognitive test scores’],
’covariates_hints’: [], ’instrument_hints’: [], 'run-
ning_variable_hints’: [], ’cutoff_value_hint’: None,

’dataset_analysis’:  ’dataset_info’: ’num_rows’:
747, ’num_columns’: 27, ’file_path’: ’bench-
mark/all_data_1/ihdp_4.csv’, ’file_name’:

’ihdp_5.csv’, "columns’: ['treatment’, ’y’, "x1°, "x2’,
’[...]], ’potential_treatments’: [’treatment’], *poten-
tial_outcomes’: ['y’], ‘temporal_structure_detected’:

False, ’panel_data_detected’: False, ’poten-
tial_instruments_detected’: True, ’disconti-
nuities_detected’: True, ’temporal_structure’:
“has_temporal_structure’: False, ’tempo-
ral_columns’: [1, ’is_panel data’: False,
’id_column’: None, ’time_column’: None,

’time_periods’: None, "units’: None|...]"¢
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Output Log continue

Invoking: ‘method_selector_tool* with “’vari-
ables’: ’treatment_variable’: ’treatment’, ’treat-
ment_variable_type’: ’binary’, ’outcome_variable’:
’y’, ’instrument_variable’:  None, ’covariates’:
[’x1’, ’x2’, ’x3’, ’x4’°, °x5’, ’x6’, ’x7’, ’x8’, ’x9’,
’x10’], ’time_variable’: None, ’group_variable’:
None, ’running_variable’: None, ’cutoff value’:
None, ’is_rct’: True, ’treatment_reference_level’:
’0’, ’interaction_term_suggested’: True, ’interac-
tion_variable_candidate’: ’x3’, ’dataset_analysis’:
’dataset_info’: ’num_rows’: 747, 'num_columns’:
27, *file_path’: benchmark/all_data_1/ihdp_5.csv’,
’file_name’: ’ihdp_5.csv’, ’columns’: [’treatment’,

v, OxD, x2, X3, x4, xS, X6, 'xT', x8',
’x9’[....]¢

’method_info’: ’selected_method’: ’lin-
ear_regression’, ’'method_name’: ’Linear Re-

gression’, “method_justification’: ’Data is from an
RCT and covariates are provided. Linear regression
with covariates is used to potentially increase preci-
sion.’, 'method_assumptions’: [’Linear relationship
between treatment, covariates, and outcome’, ’No
unmeasured confounders (if observational)’, ’Correct
model specification’, "Homoscedasticity of errors’,
’Normally distributed errors (for inference)’]

Invoking: ‘method_validator_tool*
Invoking: method_executor_tool

Executing method: linear_regression

Initializing LLM client: Provider="openai’,
Model="gpt-40’

Treating "treatment’ as numeric for Patsy formula.
Adding interaction term to formula: treatment:x3
Using formula for Linear Regression: y treatment +
x1 +x2 +x3 +x4 +x5+x6 +x7 + x8 +x9 +x10 +
treatment:x3

OLS model fitted successfully.

4.041754652507938,
[3.827091973654759,
4.256417331361118], ’standard_error’:
0.10934318809454593, p_value’:
9.833881203649175e-170, *method_used’: ’Linear
Regression  (OLS)’, ’llm_assumption_check’:
None, ’raw_results’: None, [...] ’current_step’:
"method_execution’, ‘'method_execution_completed’:
’method_executed’, ’next_tool’: ’explainer_tool’,
‘next_step_reason’: 'Now we need to explain the
results and their implications’

Results ’effect_estimate’:
’confidence_interval’:

Output

The analysis of the dataset from the Infant Health and
Development Program (IHDP) using Linear Regres-
sion has provided the following insights:

Estimated Causal Effect: The effect of home vis-
its on the cognitive test scores of children who ac-
tually received the intervention is estimated to be
*%4.0418**. Confidence Interval: The 95% confi-
dence interval for this estimate is [3.8271, 4.2564].
Statistical Significance: The p-value is extremely
small (p=0.0000), indicating that the effect is statisti-
cally significant.

This suggests that home visits have a substantial and
statistically significant positive effect on the cognitive
test scores of the children in the study. The analysis
assumes a linear relationship between the treatment,
covariates, and outcome, and that the data is from a
randomized controlled trial (RCT), which supports
the validity of these findings.
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