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Abstract001

The end-to-end process of running a causal002
analysis requires knowledge about a wide range003
of estimation methods, statistical assumptions,004
and a technical understanding of the phenom-005
ena of interest. Recent advances in large lan-006
guage models (LLMs) can circumvent the need007
for expert knowledge by automating the infer-008
ence pipeline, thereby widening the accessibil-009
ity to causal inference tools. In this work, we010
present Causal AI Assistant (CAIA), an end-011
to-end pipeline for performing causal analysis.012
By implementing a method selection pipeline013
using a tree-of-thoughts-inspired approach, our014
pipeline leverages LLM’s reasoning capabili-015
ties to select and execute appropriate inference016
methods to generate data-driven answers to nat-017
ural language causal queries. Furthermore, we018
test our pipeline on preexisting datasets in addi-019
tion to synthetic examples and datasets drawn020
from published social science studies. We show021
through extensive evaluation that our pipeline022
approach outperforms existing work in auto-023
mated causal inference.024

1 Introduction025

Recent advances in large language models (LLMs)026

offer a promising avenue for enhancing causal in-027

ference, including automating the estimation of028

causal effects. LLMs facilitate automation in sev-029

eral ways. First, their knowledge can be used to030

construct causal graphs relevant to a given phe-031

nomenon (Kiciman et al., 2024; Vashishtha et al.,032

2023). These graphs can help estimate causal ef-033

fects between variables of interest (Pearl, 2009).034

Second and more relevant to our work, LLMs facil-035

itate causal data analysis by assisting in implement-036

ing econometric and statistical methods to datasets037

of interest (Liu et al., 2024c; Ji et al., 2025).038

Current works leveraging LLMs for data-driven039

causal analysis focus on settings where the users040

specify the estimand/method, and the LLM han-041

dles the implementation (Liu et al., 2024a). How- 042

ever, choosing the appropriate estimand/method is 043

often the most challenging step in the causal in- 044

ference pipeline, where experts draw upon their 045

knowledge about a wide range of techniques, the 046

data-generation process, and the underlying phe- 047

nomena. To address this bottleneck, Jiang et al. 048

(2024) proposed LLM4Causal, a foundation model 049

fine-tuned to perform end-to-end causal inference. 050

While promising, for causal effect estimation, 051

LLM4Causal has mainly been evaluated on tasks 052

involving the estimation of the Average Treatment 053

Effect (ATE) and Heterogeneous Treatment Effect 054

(HTE), leaving out a wide range of other estimands 055

and methods unexplored. Furthermore, its perfor- 056

mance is largely tested on synthetic datasets, which 057

may not capture the complexity of real-world sce- 058

narios. 059

More recently, Wang et al. (2025) introduced 060

Causal-Copilot, a system designed to automate 061

the causal inference pipeline. However, their 062

framework does not support widely-used econo- 063

metric methods such as Difference-in-Differences 064

(DiD) and Regression Discontinuity Design (RDD), 065

which are central to empirical research in the so- 066

cial sciences. Additionally, their evaluation has 067

focused primarily on causal discovery tasks, rather 068

than causal effect estimation. 069

To evaluate the ability of LLMs to estimate causal 070

effects from real-world datasets, it is crucial to 071

evaluate their performance across a broader set 072

of methods and scenarios. Toward this goal, we 073

introduce CausalAI Assistant (CAIA), an end- 074

to-end pipeline that supports causal analysis for 075

a diverse range of social science contexts. Given 076

a dataset, its description, and a natural language 077

query, CausalAI Assistant uses LLMs to automat- 078

ically identify and execute the most appropriate 079

inference method, then uses the resulting estimates 080

to address the user’s query. 081
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At the core of our pipeline is the Tree of Thoughts082

(ToT) prompting framework (Yao et al., 2023;083

Long, 2023). At each node, the LLM is prompted084

to assess specific features of the data, and this struc-085

tured reasoning guides method selection. This ap-086

proach not only simplifies method selection but087

also enhances the interpretability of the process.088

To assess the practical validity of our pipeline, we089

test it on existing benchmarks such as QRDATA090

(Liu et al., 2024a). QRDATA primarily consists of091

examples from textbooks, where the inference pro-092

cess is relatively more streamlined and structured.093

Real-world causal inference, however, is often less094

structured and complex. Hence, we extend our095

evaluation to case studies from academic papers096

as well as synthetic datasets mimicking real-world097

settings.098

In sum, our key contributions are:099

1. We introduce an LLM-powered end-to-end100

tool, CAIA, for estimating causal effects on a101

given dataset to generate data-driven ansters102

to use queries. CAIA automatically selects103

and implements the appropriate method and104

interprets the final numerical results in the105

context of the user query.106

2. Our pipeline leverages the Tree of Thoughts107

(ToT) prompting approach to break down the108

selection of the method and the appropriate109

variables. This decomposition simplifies the110

causal analysis steps, thereby making the re-111

sults more interpretable.112

3. We evaluate our pipeline on existing bench-113

mark datasets, causal queries based on real-114

world studies, and synthetic datasets. CAIA115

outperforms the baseline models in terms of116

method selection across all three datasets.117

Similarly, it achieves lower error rates on118

queries associated with QRData and synthetic119

dataset.120

2 Problem Formulation121

We are provided with:122

1. A dataset D = {Xi, Yi, Ti}ni=1, where Xi ∈123

Rd denotes the covariates, Ti is the treatment124

( binary or continuous), and Yi is the observed125

outcome for unit i.126

2. A description D, detailing the variables and127

the data collection mechanism.128

3. A natural language causal query q. For ex-129

ample: Does participating in the training 130

program lead to higher earnings? 131

The goal is to then generate a causality-driven an- 132

swer to the query q. 133

2.1 Causal Estimand 134

The key numerical quantity of interest are causal 135

estimands, which gives a measure of the causal 136

effect. The primary causal estimands we consider 137

are: 138

• Average Treatment Effect (ATE): E[Y (1)− 139

Y (0)] 140

• Average Treatment Effect on the Treated 141

(ATT): E[Y (1)− Y (0) | T = 1] 142

• Local Average Treatment Effect (LATE): 143

E[Y (1)− Y (0) | Compliers] 144

The reported causal estimand directly informs the 145

answer to the causal query by quantifying the 146

causal effect. Additionally, one can compute the 147

confidence interval associated with the estimates to 148

gauge its statistical reliability. 149

2.2 Inference Method Selection 150

To estimate the estimand, we must first identify the 151

appropriate inference method. This choice depends 152

largely on the characteristics of the dataset. For 153

example, if the data originates from a randomized 154

controlled trial (RCT), the treatment effect can be 155

estimated using the simple difference in means: 156

τ̂ =
1

n1

∑
i:Ti=1

Yi −
1

n0

∑
i:Ti=0

Yi (1) 157

where n1 and n0 are the number of treated and 158

control units, respectively. 159

Each method relies on specific assumptions for 160

identification. Thus, to assess the suitability of 161

a method, it is essential to test the assumptions. 162

The assumptions underlying each inference method 163

can be found in most standard causal inference 164

textbooks (Imbens and Rubin, 2015; Cunningham, 165

2021; Huntington-Klein, 2021; Hernan and Robins, 166

2025). 167

3 Methodology 168

OurModel is implemented as a modular, agent- 169

based pipeline that decomposes the overall causal 170

inference process into a sequence of well-defined 171
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Figure 1: The overall architecture of our Causal-AI
Assistant.

tasks (Figure 1). It consists of three stages: pre-172

processing, causal inference, and final interpreta-173

tion. Additionally, each stage consists of distict174

components that perform a specific function. This175

decomposition enhances interpretability by allow-176

ing users to trace how a causal estimate is derived.177

.178

3.1 Overview of the Three-Stage Agentic179

Workflow180

3.2 Stage 1: Preprocessing181

The preprocessing stage performs preliminary anal-182

ysis of the input dataset and the user query. It183

identifies key variables and characteristics of the184

datasets, such as treatment and outcome variables,185

presence of valid instrument variables, presence of186

observation timings, etc. The tasks in this stage are187

performed using three agents.188

3.2.1 Agent 1a: Input Parser189

This agent parses the user’s natural language query190

and the description of the dataset. Additionally, it191

checks the query for any references to treatment192

and outcome variables. Likewise, the parser also193

obtains the data from the user specified path.194

3.2.2 Agent 1b: Dataset Analyzer195

This agent conducts a comprehensive examination196

of the provided data set. Identifies column names,197

infers data types, quantifies missing values, and198

computes summary statistics. Beyond basic pro-199

filing, the agent explores potential relationships 200

within the data, such as correlations, and attempts 201

to identify features pertinent to causal inference, in- 202

cluding candidate treatment and outcome variables, 203

temporal structures, and possible instrumental vari- 204

ables. The heuristics act as a fallback mechanism in 205

cases where the LLM fails to identify the variables. 206

3.2.3 Agent 1c: Query Interpreter 207

This agent bridges the gap between the user’s con- 208

ceptualization of the causal query and the actual 209

data. Building on the output of the parser and an- 210

alyzer, it prompts the LLM to determine which 211

columns correspond to the treatment, outcome, and 212

control variables. In addition, it guides the LLM 213

to identify the presence of instrumental variables, 214

running variables that govern treatment assignment, 215

observed confounders, and time-related variables 216

that indicate the timing of observations. It also 217

prompts the LLM to infer the nature of the data - 218

whether it is observational or experimental - based 219

on the dataset and query context. 220

Figure 2: Illustration of the decision tree used in method
selection.

3.3 Stage 2: Causal Inference 221

In this stage, we leverage the results of preprocess- 222

ing stage to select the appropriate causal inference 223

method, validate its assumptions, and execute the 224

estimation 225

3.3.1 Agent 2a: Method Selector 226

Method Selector agent is responsible for selecting 227

the most appropriate causal inference method to 228

answer the user’s query. It uses a decision tree 229

structure (Figure 2), where each node checks for 230

a key characteristic of the data or query, such as 231

whether the data are observational or experimental, 232
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the presence of discontinuities or the availability233

of instrumental variables. Based on these checks,234

the tree guides the selection process toward a suit-235

able method, which corresponds to the leaf nodes236

(Full decision tree method selection process can be237

refereed in Appendix C).238

3.3.2 Agent 2b: Method Validator239

In this phase, we perform checks to gauge the240

reliability of the method. Method-specific diag-241

nostic checks are conducted to ensure the valid-242

ity of the underlying assumptions. Violation of243

the assumptions compromise the result of the esti-244

mates. The nature of these checks varies by method245

— for example, the parallel trends assumption is246

tested for Difference-in-Differences, while instru-247

ment strength is assessed in Instrumental Variables248

analysis. The output of this component is a di-249

agnostic report indicating whether the necessary250

assumptions hold or not.251

3.3.3 Agent 2c: Method Executor252

Finally, this agent implements the selected causal253

inference method. For most methods, pre-defined254

code templates are used with placeholders for key255

variables, which are filled using the output of the256

LLMs. However, for certain methods, such as257

propensity score matching, LLMs are more in-258

volved. For instance, we prompt the LLM to se-259

lect the variables used for computing propensity260

score. The output of this component is the esti-261

mated causal effect along with standard error, p-262

values, and confidence intervals.263

It is crucial to emphasize that the reported confi-264

dence intervals primarily quantify statistical uncer-265

tainty due to finite sampling, under the specific266

model and its assumptions. These statistical mea-267

sures do not, in isolation, confirm the overarching268

causal claim, as the validity of such claims also269

hinges critically on the appropriateness of the cho-270

sen method, the untestable identifying assumptions271

(e.g., absence of unobserved confounders, selection272

bias) and data quality.273

3.4 Stage 3: Final Interpretation274

The final component interprets the results of the275

causal analysis within the context of the original276

query and the data set. Produces a comprehensive277

answer to the causal question by presenting the esti-278

mated effect alongside any limitations and caveats279

identified through diagnostic and validity assess-280

ments. This approach guarantees that the response281

is both insightful and appropriately qualified. 282

4 Experimental Setup 283

4.1 Baseline Models 284

To evaluate the performance of our Tree-of- 285

Thoughts based approach, we compare it against 286

a baseline that uses Chain-of-Thought(Wei et al., 287

2023) prompting (Appendix section B) for end-to- 288

end causal data analysis (Liu et al., 2024a). The 289

process involves three steps: (i) providing the LLM 290

with a description and summary of the dataset, (ii) 291

supplying the causal query along with a set of can- 292

didate methods, and (iii) prompting the LLM to se- 293

lect an appropriate method and then write a code to 294

implement the method using a selection of Python 295

libraries. The prompt also includes instructions to 296

return the selected method, the causal effect esti- 297

mate, and the standard errors and confidence inter- 298

vals associated with the estimate. The key outputs 299

of interest are the estimated causal effects and the 300

inference method. 301

4.2 Implementation Details 302

Both the baseline and CAIA utilize GPT mod- 303

els (4o and 4o-mini) as the core LLM to inter- 304

pret natural language queries, dataset descriptions, 305

and summaries. For causal effect estimation, we 306

rely on the DoWhy and statsmodels libraries, us- 307

ing scikit-learn’s logistic regression for propensity 308

score estimation. The causal inference methods 309

included are Difference-in-Differences (DiD), Re- 310

gression Discontinuity Design (RDD), Ordinary 311

Least Squares (OLS), Instrumental Variables (IV), 312

Propensity Score Matching (PSM), and Inverse 313

Propensity Score Weighting (IPW). Data prepro- 314

cessing is performed with pandas and numpy. 315

All experiments are implemented in Python and 316

interface with GPT via the OpenAI API, with the 317

temperature parameter fixed at 0 to ensure repro- 318

ducibility 319

4.3 Evaluation Metrics 320

We evaluate our pipeline on two metrics. 321

• Method Accuracy (MA): The proportion of 322

cases where CAIA selects the same causal 323

inference method as specified in the reference 324

datasets or studies. Numerically, 325

MA =
1

N

N∑
i=1

1[m̂i = mi] (2) 326
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where m̂i is the method predicted by CAIA,327

and mi is the method used in the references.328

• Mean Relative Error (MRE): The average329

relative error between the estimated causal330

effects and the reference values:331

MRE =
1

N

N∑
i=1

min

Å |τ̂i − τi|
|τi|

, 1

ã
× 100%

(3)332

where τ̂i is the estimated causal effect and τi is333

the reference causal effect. The relative error334

is sensitive to outliers. To avoid the effect of335

the outliers, we cap the relative error for each336

estimate to 100%.337

4.4 Prompt Setup338

Prompt structuring is a core element of OurModel,339

enabling rigorous and reliable guidance of the340

LLM throughout the causal inference workflow.341

Each prompt is carefully constructed as a dynamic342

template that embeds relevant dataset metadata,343

variable information, and the user’s causal query,344

thereby providing clear and context-sensitive in-345

structions. We categorize these prompts into four346

principal groups: (i) Method Identification, (ii)347

Dataset Analysis, (iii) Result Interpretation, and348

(iv) Regression Analysis.349

Key elements of our prompt structure include:350

• Explicit task definition: Precise specification351

of the objective, such as method selection or352

instrument identification.353

• Comprehensive contextual input: Inclusion354

of dataset summaries, variable descriptions,355

and other metadata to anchor LLM reasoning.356

• Structured output requirements: Man-357

dating responses in standardized, machine-358

readable formats (e.g., JSON) for seamless359

downstream integration.360

• Illustrative guidance: Providing examples361

and expected formats to facilitate consistent362

and accurate model outputs.363

5 Results and Analysis364

5.1 Performance on Textbook Data365

5.1.1 Benchmark Dataset366

QRData (Liu et al., 2024b) is a benchmark dataset367

that primarily draws examples from causal infer-368

ence textbooks. The queries specify the method/es-369

timand of interest and instructs LLM to implement370

them. Since our focus is on performing end-to-end 371

causal analysis, including method and variable se- 372

lection, we modify the queries to remove mention 373

of method and categorization of variables as treat- 374

ment and outcomes. We omit 3 that are out of scope 375

for our pipeline. Likewise, we use each variant of 376

the 10 IHDP datasets to create one query. This 377

brings the total number of queries with numerical 378

answers to 39. 379

5.1.2 Result 380

Model Prompt MA MRE

gpt-4o Baseline 45 46.2
CAIA 76.9 31.6

gpt-4o-mini Baseline 36 40
CAIA 60 67

Table 1: Performance on causal queries in QRData re-
ported in terms of Method Accuracy (MA) and Mean
Relative Error (MRE) of the causal effect estimates

As shown in Table 3, CAIA outperforms the base- 381

line in method selection accuracy for both GPT-4o 382

and GPT-4o-mini across all 39 queries. For causal 383

effect estimation, CAIA with GPT-4o also achieves 384

lower mean relative error than the baseline based 385

on the results for 34 out of 39 queries. For 5 of 386

the queries, we ran into implementation errors. (de- 387

scribed in See 5.3) 388

5.2 Performance on Synthetic Data 389

5.2.1 Synthetic Data Creation 390

One of the challenges in testing our approach is the 391

limited availability of open-source datasets with 392

known causal effects. To address this limitation, we 393

create synthetic datasets for each causal inference 394

method in our pipeline. We randomly select the 395

true causal effect τ in the range (1, 10). Continuous 396

covariates are generated from a normal distribution, 397

while binary covariates and treatment assignments 398

(in binary treatment settings) are generated from a 399

binomial distribution. The outcome Y is generated 400

based on the model specification. For instance, for 401

a randomized trial, 402

Y = α+Xθ⃗ + τT + ϵ (4) 403

where ϵ ∼ N (0, 1) is the error term, θ ∼ 404

N (u, kI), and α is the intercept. Similarly, X rep- 405

resents the concatenation of binary and continuous 406

covariates, and T is the treatment variable. 407

After generating the numerical values, we employ 408

GPT-4o to create hypothetical contexts for each 409
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dataset. Specifically, we prompt GPT-4o to invent410

realistic scenarios from which the data could have411

arisen. Simultaneously, we ask GPT to generate412

headings and descriptions for the covariates, out-413

comes, and treatment variables. This process pro-414

vides meaningful backgrounds to the dataset for415

testing our pipeline’s ability to handle diverse real-416

world situations.417

5.2.2 Results418

As with the QRData benchmark, CAIA outper-419

forms the baseline in both method selection and420

causal effect estimation. We excluded four queries421

from the relative error evaluation due to implemen-422

tation failures. While the gap in method selection423

accuracy is substantial, the difference in relative424

error between the baseline and CAIA is compar-425

atively smaller. This is largely because the true426

causal effects across most queries are relatively427

small—typically in the range of 1 to 10, which re-428

duces the magnitude of differences in estimation429

error.430

Model Prompt MA MRE

gpt-4o Baseline 30 28
CAIA 73.3 22.24

gpt-4o-mini CAIA 48.65 51.9

Table 2: Performance on causal queries for synthetic
dataset, reported in terms of Method Accuracy (MA)
and Mean Relative Error (MRE) of the causal effect
estimates.

5.3 Fine-Grained Analysis on QR+Syn431

Combined432

Method Selection Accuracy For both QRData433

and synthetic data, we observe a relatively high ac-434

curacy for method selection and a low mean relative435

error. One possible reason for this is the simpli-436

fied nature of the dataset. QRData uses examples437

from causal inference textbooks. Thus, the data438

is heavily preprocessed to enable the implemen-439

tation of the inference methods. Similarly, given440

the data-generating process, all columns of syn-441

thetic datasets are numerical. Likewise, the column442

names are unambiguous and distinct, which makes443

it easier for the LLM to select the correct set of444

variables.445

Common Errors Here we briefly describe the446

common types of errors.447

• Incorrect Variable Selection: LLMs often448

misinterpret time-related covariates, such as449

year of birth or quarter, as observation times. 450

This can erroneously lead to the selection of 451

Difference-in-Differences as the causal infer- 452

ence method. Likewise, wrong columns get 453

selected as treatment and outcomes, especially 454

if the column names are ambiguous. 455

• Wrong Method Selection LLMs perceive 456

Randomized Control Trials as Encouragement 457

Designs leading to the selection of IVs instead 458

of OLS as shown in figure 3. Similarly, for 459

synthetic data, the model failed to recognize 460

IV as the preferred method in 3 cases. This 461

highlights the general difficulty of choosing 462

valid instruments based on data descriptions. 463

• Incorrect Data Formats Errors also arise due 464

to inconsistent formatting of the data. For 465

instance, certain columns are formatted in 466

strings, and packages like DoWhy needs in- 467

puts in numerical formats. 468

5.4 Ablation Study 469

5.4.1 Impact of Dataset Descriptions on 470

LLM-Guided Causal Inference 471

We conduct an ablation study to assess the impact 472

of explicit dataset descriptions in the Causal AI 473

Assistant pipeline. When prompts include detailed 474

descriptions of the semantics of the variable and 475

the study context in natural language, the LLM 476

more accurately identifies treatments, outcomes, 477

and covariates, resulting in better selection of meth- 478

ods and estimation of effects across QRData and 479

synthetic datasets. In contrast, omitting these de- 480

scriptions leads to more frequent errors, especially 481

with ambiguous or domain-specific column names. 482

These findings underscore the importance of cu- 483

rated dataset descriptions for robust and reliable 484

LLM-driven causal analysis. 485

5.4.2 Decision Tree vs. LLM-Only Method 486

Selection 487

We specifically compared the method selection 488

logic implemented within the method selector 489

agent, evaluating two distinct strategies: an explicit 490

decision tree-based approach (Figure 2) versus a 491

purely LLM-driven approach. While both strate- 492

gies performed similarly on simple queries, the 493

decision tree’s structured, rule-based logic consis- 494

tently delivered higher accuracy and interpretabil- 495

ity for complex cases involving multiple treatments 496

or interaction effects. Conversely, the LLM-only 497

approach often failed to capture critical dataset nu- 498
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ances and methodological requirements, leading to499

less reliable method selection in challenging sce-500

narios. This analysis underscores the importance501

of robust, expert-encoded logic in guiding causal502

method selection.503

Model Prompt MA

gpt-4o LLM-Only 60
Decision-Tree 76.9

Table 3: Performance comparison on Decision-Tree vs
LLM-Only approach for method selection, reported in
terms of Method Accuracy (MA)

5.5 Future Work Direction: Real-World Data504

5.5.1 Real-World Data Collection505

To evaluate our model in complex and real-world506

scenarios, we create test cases using published so-507

cial science studies. For each study, we use a sum-508

mary that captures key details about the dataset,509

including the main variables and the experimental510

procedure involved in data creation. A substantial511

portion of the studies are associated with datasets512

found in the R package causaldata. We develop513

the causal questions associated with the curated514

studies by considering the empirical answer, the515

corresponding statistical model, and its relation to516

the original study.517

5.5.2 Results518

Model Prompt MA MRE

gpt-4o
Baseline 45 46.2
CAIA 73.3 62.97

gpt-4o-mini
Baseline 36 40
CAIA 60 67

Table 4: Performance on causal queries curated from
real-world studies, reported in terms of Method Ac-
curacy (MA) and Mean Relative Error (MRE) of the
causal effect estimates.

CAIA achieves an accuracy of 73.3% on real-world519

studies for method selection and outperforms the520

baseline model when using GPT-4o. However, the521

error in the causal effect estimate is very high rel-522

ative to the baseline model. A big reason for this523

is incorrect selection of variables when implement-524

ing the model. The chance of incorrect variable525

selection is higher for real studies because the raw526

dataset contains large number of columns.527

Error Type Dataset Percentage %

Variable Identification QRData 20%
Synthetic 25%

Method Selection QRData 18%
Synthetic 15%

Formulation QRData 20%
Synthetic 20%

Others QRData 42%
Synthetic 40%

Table 5: Error Analysis of Causal AI assistant with gpt-
4o on QRdata and synthetic dataset

5.5.3 Challenges and Future Work 528

One of the key challenges in working with real- 529

world studies is the structure of the raw datasets. 530

These datasets are often direct transcriptions of 531

surveys and include a large number of variables. 532

We currently use the data in its raw form, which 533

leads to the inclusion of many control covariates 534

in the model. This can adversely the accuracy of 535

the estimates in regression models. Additionally, 536

this may introduce instability. For example, in one 537

case, the selected model included complementary 538

covariates: an indicator for being born in the given 539

country was used as the treatment, while a dummy 540

variable for immigrant status was included as a con- 541

trol covariate. This led to multicollinearity issues. 542

The presence of large number of variables also 543

increases the likelihood of incorrect variable selec- 544

tion, especially when column names are similar 545

or ambiguous. Such errors in variable identifica- 546

tion can also result in the selection of inappropriate 547

causal inference methods. 548

Currently, for each specific task, we prompt the 549

LLM only once and do not apply filters to verify 550

the correctness of its output. If the initial response 551

is incorrect, the entire downstream pipeline can 552

be compromised. To address this limitation, we 553

are exploring techniques such as Chain of Verifica- 554

tion (Dhuliawala et al., 2023), which prompts the 555

LLM to re-evaluate and validate its own outputs. 556

Another promising direction involves integrating 557

pre-processing tools that can reformat raw datasets 558

into formats compatible with causal inference li- 559

braries. This could improve both variable selection 560

and model robustness. 561

6 Related Work 562

LLMs and causality The applications of LLMs 563

in causal inference are an active area of research. 564

LLMs enable the estimation of treatment effects 565

from high-dimensional textual data (Dhawan et al., 566
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2024; Imai and Nakamura, 2024). Another line567

of work uses LLMs for generating high-quality la-568

bels (Egami et al., 2024; Durvasula et al., 2025).569

Recent econometrics papers (Ludwig et al., 2025;570

Battaglia et al., 2025) provide a statistical analy-571

sis of the properties of estimators computed us-572

ing LLM-generated data. LLMs have also been573

used for causal discovery. Most papers take the574

approach where they view LLM as domain experts575

and utilize their knowledge to build expressive576

causal graphs (Kiciman et al., 2024; Choi et al.,577

2022; Long et al., 2022). Ban et al. (2023) takes578

a hybrid approach, combining LLM’s knowledge579

with classical methods to enhance causal structural580

learning. (Zečević et al., 2023) provides a more581

critical perspective on the causal graphs generat-582

ing capabilities of LLMs, conjecturing that LLMs583

may behave more like a causal parrot that mem-584

orizes causal relationships rather than inherently585

understanding them. The ability of LLMs to reason586

causally when provided with complex queries and587

models has also been studied by Jin et al. (2023)588

and Jin et al. (2024). More recent works, such as589

Jiralerspong et al. (2024), have focused on min-590

imizing the computational costs associated with591

querying.592

LLMs for data analysis and code generation593

Various studies have proposed frameworks and594

benchmark datasets to evaluate the code genera-595

tion abilities of LLMs (Huang et al., 2022; Lai596

et al., 2023; Wu et al., 2024). A thorough analy-597

sis of the code generation capabilities of GPT in598

the context of data analysis is presented in Cheng599

et al. (2023). Liu et al. (2024a) extend this line600

of work by analyzing LLMs’ code generation and601

analysis skills for answering queries that involve602

implementing statistical and causal inference mod- 603

els. Wu et al. (2024) presents fine-tuning methods 604

to enhance the analytical capabilities of LLMs for 605

more difficult tasks. Nejjar et al. (2024) and Jansen 606

et al. (2023) analyze the code generation and data 607

analysis capabilities of language models in the con- 608

text of scientific research. More recently, LLMs 609

have been applied in automating the end-to-end 610

causal inference process via LLM Co-pilots(Alaa 611

et al., 2024; Wang et al., 2025) have been proposed. 612

On the benchmarking end, datasets like DISCOV- 613

ERYBENCH (Majumder et al., 2024), BLADE (Gu 614

et al., 2024), and StatQA (Zhu et al., 2024) have 615

been proposed to assess the ability of LLMs to 616

perform data-driven analysis. 617

7 Conclusion 618

In this work, we propose CausalAI Assistant 619

(CAIA), an end-to-end framework for generating 620

causality-driven answers to user queries based on 621

an input dataset. Currently, CAIA supports meth- 622

ods primarily used in the social sciences domain 623

(Imbens, 2024). We evaluate CAIA across a range 624

of causal inference methods using three types of 625

datasets: QRData, synthetic data, and real-world 626

studies. CAIA outperforms the baseline model 627

on both QRData and synthetic datasets in terms 628

of method selection and causal effect estimation. 629

While its performance on real-world studies is com- 630

paratively lower for causal effect estimation, the 631

strong results on QRData and synthetic datasets, 632

which are more structured and cleaned, suggest 633

that CAIA’s performance can be improved on real- 634

world data through better preprocessing. 635
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Limitations636

Our work has several limitations. Some of these637

have been discussed in earlier sections, includ-638

ing the need for improved data preprocessing and639

additional verification steps to validate LLM out-640

puts. Moreover, the results reported in this study641

are based on a single run per dataset. Given the642

variability in LLM outputs, a robust evaluation643

would require running multiple trials on the in-644

put datasets. While CAIA supports a diverse set645

of causal inference methods applicable to a broad646

range of datasets, our current focus has been pri-647

marily on queries and datasets from the social sci-648

ences. Causal inference is a vast field, and this649

work concentrates on a selected subset of tools and650

techniques.651

References652

Ahmed Alaa, Rachael V. Phillips, Emre Kıcıman,653
Laura B. Balzer, Mark van der Laan, and Maya Petersen.654
2024. Large language models as co-pilots for causal in-655
ference in medical studies. Preprint, arXiv:2407.19118.656
8657

Taiyu Ban, Lyvzhou Chen, Xiangyu Wang, and Huan-658
huan Chen. 2023. From query tools to causal architects:659
Harnessing large language models for advanced causal660
discovery from data. Preprint, arXiv:2306.16902. 8661

Laura Battaglia, Timothy Christensen, Stephen Hansen,662
and Szymon Sacher. 2025. Inference for regression with663
variables generated by ai or machine learning. Preprint,664
arXiv:2402.15585. 8665

Liying Cheng, Xingxuan Li, and Lidong Bing. 2023. Is666
GPT-4 a good data analyst? In The 2023 Conference on667
Empirical Methods in Natural Language Processing. 8668

Kristy Choi, Chris Cundy, Sanjari Srivastava, and Ste-669
fano Ermon. 2022. LMPriors: Pre-trained language670
models as task-specific priors. In NeurIPS 2022 Foun-671
dation Models for Decision Making Workshop. 8672

Scott Cunningham. 2021. Causal Inference: The Mix-673
tape. Yale University Press. 2674

Nikita Dhawan, Leonardo Cotta, Karen Ullrich, Rahul675
Krishnan, and Chris J. Maddison. 2024. End-to-end676
causal effect estimation from unstructured natural lan-677
guage data. In The Thirty-eighth Annual Conference on678
Neural Information Processing Systems. 7679

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu,680
Roberta Raileanu, Xian Li, Asli Celikyilmaz, and681
Jason Weston. 2023. Chain-of-verification reduces682
hallucination in large language models. Preprint,683
arXiv:2309.11495. 7684

Maya M. Durvasula, Sabri Eyuboglu, and David M.685
Ritzwoller. 2025. Counting clinical trials: New evi-686

dence on pharmaceutical sector productivity. Preprint, 687
arXiv:2405.08030. 8 688

Naoki Egami, Musashi Hinck, Brandon M. Stewart, 689
and Hanying Wei. 2024. Using imperfect surrogates 690
for downstream inference: Design-based supervised 691
learning for social science applications of large language 692
models. Preprint, arXiv:2306.04746. 8 693

Ken Gu, Ruoxi Shang, Ruien Jiang, Keying Kuang, 694
Richard-John Lin, Donghe Lyu, Yue Mao, Youran 695
Pan, Teng Wu, Jiaqian Yu, Yikun Zhang, Tianmai M. 696
Zhang, Lanyi Zhu, Mike A. Merrill, Jeffrey Heer, 697
and Tim Althoff. 2024. Blade: Benchmarking lan- 698
guage model agents for data-driven science. Preprint, 699
arXiv:2408.09667. 8 700

M.A. Hernan and J.M. Robins. 2025. Causal Infer- 701
ence: What If . Chapman & Hall/CRC Monographs on 702
Statistics & Applied Probab. CRC Press. 2 703

Junjie Huang, Chenglong Wang, Jipeng Zhang, Cong 704
Yan, Haotian Cui, Jeevana Priya Inala, Colin Clement, 705
and Nan Duan. 2022. Execution-based evaluation for 706
data science code generation models. In Proceedings 707
of the Fourth Workshop on Data Science with Human- 708
in-the-Loop (Language Advances), pages 28–36, Abu 709
Dhabi, United Arab Emirates (Hybrid). Association for 710
Computational Linguistics. 8 711

N. Huntington-Klein. 2021. The Effect: An Introduction 712
to Research Design and Causality. CRC Press. 2 713

Kosuke Imai and Kentaro Nakamura. 2024. Causal 714
representation learning with generative artificial intel- 715
ligence: Application to texts as treatments. Preprint, 716
arXiv:2410.00903. 8 717

Guido W. Imbens. 2024. Causal inference in the social 718
sciences. Annual Review of Statistics and Its Applica- 719
tion, qq:1123–152. 8 720

Guido W. Imbens and Donald B. Rubin. 2015. Causal 721
Inference for Statistics, Social, and Biomedical Sciences: 722
An Introduction. Cambridge University Press. 2 723

Jacqueline A Jansen, Artür Manukyan, Nour Al Khoury, 724
and Altuna Akalin. 2023. Leveraging large language 725
models for data analysis automation. bioRxiv. 8 726

Wenlong Ji, Weizhe Yuan, Emily Getzen, Kyunghyun 727
Cho, Michael I. Jordan, Song Mei, Jason E Weston, Wei- 728
jie J. Su, Jing Xu, and Linjun Zhang. 2025. An overview 729
of large language models for statisticians. Preprint, 730
arXiv:2502.17814. 1 731

Haitao Jiang, Lin Ge, Yuhe Gao, Jianian Wang, and 732
Rui Song. 2024. Llm4causal: Democratized causal 733
tools for everyone via large language model. Preprint, 734
arXiv:2312.17122. 1 735

Zhijing Jin, Yuen Chen, Felix Leeb, Luigi Gresele, 736
Ojasv Kamal, Zhiheng LYU, Kevin Blin, Fernando Gon- 737
zalez Adauto, Max Kleiman-Weiner, Mrinmaya Sachan, 738
and Bernhard Schölkopf. 2023. CLadder: A bench- 739
mark to assess causal reasoning capabilities of language 740
models. In Thirty-seventh Conference on Neural Infor- 741
mation Processing Systems. 8 742

9

https://arxiv.org/abs/2407.19118
https://arxiv.org/abs/2407.19118
https://arxiv.org/abs/2407.19118
https://arxiv.org/abs/2306.16902
https://arxiv.org/abs/2306.16902
https://arxiv.org/abs/2306.16902
https://arxiv.org/abs/2306.16902
https://arxiv.org/abs/2306.16902
https://arxiv.org/abs/2402.15585
https://arxiv.org/abs/2402.15585
https://arxiv.org/abs/2402.15585
https://openreview.net/forum?id=PxEhoPiBB0
https://openreview.net/forum?id=PxEhoPiBB0
https://openreview.net/forum?id=PxEhoPiBB0
https://openreview.net/forum?id=U2MnmJ7Sa4
https://openreview.net/forum?id=U2MnmJ7Sa4
https://openreview.net/forum?id=U2MnmJ7Sa4
http://www.jstor.org/stable/j.ctv1c29t27
http://www.jstor.org/stable/j.ctv1c29t27
http://www.jstor.org/stable/j.ctv1c29t27
https://openreview.net/forum?id=gzQARCgIsI
https://openreview.net/forum?id=gzQARCgIsI
https://openreview.net/forum?id=gzQARCgIsI
https://openreview.net/forum?id=gzQARCgIsI
https://openreview.net/forum?id=gzQARCgIsI
https://arxiv.org/abs/2309.11495
https://arxiv.org/abs/2309.11495
https://arxiv.org/abs/2309.11495
https://arxiv.org/abs/2405.08030
https://arxiv.org/abs/2405.08030
https://arxiv.org/abs/2405.08030
https://arxiv.org/abs/2306.04746
https://arxiv.org/abs/2306.04746
https://arxiv.org/abs/2306.04746
https://arxiv.org/abs/2306.04746
https://arxiv.org/abs/2306.04746
https://arxiv.org/abs/2306.04746
https://arxiv.org/abs/2306.04746
https://arxiv.org/abs/2408.09667
https://arxiv.org/abs/2408.09667
https://arxiv.org/abs/2408.09667
https://books.google.com/books?id=_KnHIAAACAAJ
https://books.google.com/books?id=_KnHIAAACAAJ
https://books.google.com/books?id=_KnHIAAACAAJ
https://aclanthology.org/2022.dash-1.5/
https://aclanthology.org/2022.dash-1.5/
https://aclanthology.org/2022.dash-1.5/
https://books.google.com/books?id=f0NOEAAAQBAJ
https://books.google.com/books?id=f0NOEAAAQBAJ
https://books.google.com/books?id=f0NOEAAAQBAJ
https://arxiv.org/abs/2410.00903
https://arxiv.org/abs/2410.00903
https://arxiv.org/abs/2410.00903
https://arxiv.org/abs/2410.00903
https://arxiv.org/abs/2410.00903
https://doi.org/10.1101/2023.12.11.571140
https://doi.org/10.1101/2023.12.11.571140
https://doi.org/10.1101/2023.12.11.571140
https://arxiv.org/abs/2502.17814
https://arxiv.org/abs/2502.17814
https://arxiv.org/abs/2502.17814
https://arxiv.org/abs/2312.17122
https://arxiv.org/abs/2312.17122
https://arxiv.org/abs/2312.17122
https://openreview.net/forum?id=e2wtjx0Yqu
https://openreview.net/forum?id=e2wtjx0Yqu
https://openreview.net/forum?id=e2wtjx0Yqu
https://openreview.net/forum?id=e2wtjx0Yqu
https://openreview.net/forum?id=e2wtjx0Yqu


Zhijing Jin, Jiarui Liu, Zhiheng LYU, Spencer Poff,743
Mrinmaya Sachan, Rada Mihalcea, Mona T. Diab, and744
Bernhard Schölkopf. 2024. Can large language mod-745
els infer causation from correlation? In The Twelfth746
International Conference on Learning Representations.747
8748

Thomas Jiralerspong, Xiaoyin Chen, Yash More, Vedant749
Shah, and Yoshua Bengio. 2024. Efficient causal750
graph discovery using large language models. Preprint,751
arXiv:2402.01207. 8752

Emre Kiciman, Robert Ness, Amit Sharma, and Chen-753
hao Tan. 2024. Causal reasoning and large language754
models: Opening a new frontier for causality. Transac-755
tions on Machine Learning Research. Featured Certifi-756
cation. 1, 8757

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,758
Ruiqi Zhong, Luke Zettlemoyer, Wen-Tau Yih, Daniel759
Fried, Sida Wang, and Tao Yu. 2023. DS-1000: A760
natural and reliable benchmark for data science code761
generation. In Proceedings of the 40th International762
Conference on Machine Learning, volume 202 of Pro-763
ceedings of Machine Learning Research, pages 18319–764
18345. PMLR. 8765

Xiao Liu, Zirui Wu, Xueqing Wu, Pan Lu, Kai-Wei766
Chang, and Yansong Feng. 2024a. Are LLMs capable767
of data-based statistical and causal reasoning? bench-768
marking advanced quantitative reasoning with data. In769
Findings of the Association for Computational Linguis-770
tics: ACL 2024, pages 9215–9235, Bangkok, Thailand.771
Association for Computational Linguistics. 1, 2, 4, 8772

Xiao Liu, Zirui Wu, Xueqing Wu, Pan Lu, Kai-Wei773
Chang, and Yansong Feng. 2024b. Are LLMs capable774
of data-based statistical and causal reasoning? bench-775
marking advanced quantitative reasoning with data. In776
Findings of the Association for Computational Linguis-777
tics ACL 2024, pages 9215–9235, Bangkok, Thailand778
and virtual meeting. Association for Computational Lin-779
guistics. 5780

Xiaoyu Liu, Paiheng Xu, Junda Wu, Jiaxin Yuan, Yifan781
Yang, Yuhang Zhou, Fuxiao Liu, Tianrui Guan, Hao-782
liang Wang, Tong Yu, Julian McAuley, Wei Ai, and783
Furong Huang. 2024c. Large language models and784
causal inference in collaboration: A comprehensive sur-785
vey. Preprint, arXiv:2403.09606. 1786

Jieyi Long. 2023. Large language model guided tree-of-787
thought. Preprint, arXiv:2305.08291. 2788

Stephanie Long, Tibor Schuster, and Alexandre Piché.789
2022. Can large language models build causal graphs?790
In NeurIPS 2022 Workshop on Causality for Real-world791
Impact. 8792

Jens Ludwig, Sendhil Mullainathan, and Ashesh Ram-793
bachan. 2025. Large language models: An applied794
econometric framework. Preprint, arXiv:2412.07031.795
8796

Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv797
Agarwal, Bhavana Dalvi Mishra, Abhijeetsingh Meena,798

Aryan Prakhar, Tirth Vora, Tushar Khot, Ashish Sab- 799
harwal, and Peter Clark. 2024. Discoverybench: To- 800
wards data-driven discovery with large language models. 801
Preprint, arXiv:2407.01725. 8 802

Mohamed Nejjar, Luca Zacharias, Fabian Stiehle, and 803
Ingo Weber. 2024. Llms for science: Usage for code 804
generation and data analysis. J. Softw. Evol. Process, 805
37(1). 8 806

Judea Pearl. 2009. Causality: Models, Reasoning and 807
Inference, 2nd edition. Cambridge University Press, 808
USA. 1 809

Aniket Vashishtha, Abbavaram Gowtham Reddy, Abhi- 810
nav Kumar, Saketh Bachu, Vineeth N Balasubramanian, 811
and Amit Sharma. 2023. Causal inference using llm- 812
guided discovery. Preprint, arXiv:2310.15117. 1 813

Xinyue Wang, Kun Zhou, Wenyi Wu, Har Simrat 814
Singh, Fang Nan, Songyao Jin, Aryan Philip, Saloni 815
Patnaik, Hou Zhu, Shivam Singh, Parjanya Prashant, 816
Qian Shen, and Biwei Huang. 2025. Causal-copilot: 817
An autonomous causal analysis agent. Preprint, 818
arXiv:2504.13263. 1, 8 819

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 820
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and 821
Denny Zhou. 2023. Chain-of-thought prompting elic- 822
its reasoning in large language models. Preprint, 823
arXiv:2201.11903. 4 824

Xueqing Wu, Rui Zheng, Jingzhen Sha, Te-Lin Wu, 825
Hanyu Zhou, Tang Mohan, Kai-Wei Chang, Nanyun 826
Peng, and Haoran Huang. 2024. DACO: Towards 827
application-driven and comprehensive data analysis via 828
code generation. In The Thirty-eight Conference on 829
Neural Information Processing Systems Datasets and 830
Benchmarks Track. 8 831

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 832
Thomas L. Griffiths, Yuan Cao, and Karthik 833
Narasimhan. 2023. Tree of thoughts: Deliberate prob- 834
lem solving with large language models. Preprint, 835
arXiv:2305.10601. 2 836

Matej Zečević, Moritz Willig, Devendra Singh Dhami, 837
and Kristian Kersting. 2023. Causal parrots: Large 838
language models may talk causality but are not causal. 839
Transactions on Machine Learning Research. 8 840

Yizhang Zhu, Shiyin Du, Boyan Li, Yuyu Luo, and Nan 841
Tang. 2024. Are large language models good statisti- 842
cians? Preprint, arXiv:2406.07815. 8 843

10

https://openreview.net/forum?id=vqIH0ObdqL
https://openreview.net/forum?id=vqIH0ObdqL
https://openreview.net/forum?id=vqIH0ObdqL
https://arxiv.org/abs/2402.01207
https://arxiv.org/abs/2402.01207
https://arxiv.org/abs/2402.01207
https://openreview.net/forum?id=mqoxLkX210
https://openreview.net/forum?id=mqoxLkX210
https://openreview.net/forum?id=mqoxLkX210
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://doi.org/10.18653/v1/2024.findings-acl.548
https://doi.org/10.18653/v1/2024.findings-acl.548
https://doi.org/10.18653/v1/2024.findings-acl.548
https://doi.org/10.18653/v1/2024.findings-acl.548
https://doi.org/10.18653/v1/2024.findings-acl.548
https://doi.org/10.18653/v1/2024.findings-acl.548
https://doi.org/10.18653/v1/2024.findings-acl.548
https://doi.org/10.18653/v1/2024.findings-acl.548
https://doi.org/10.18653/v1/2024.findings-acl.548
https://doi.org/10.18653/v1/2024.findings-acl.548
https://arxiv.org/abs/2403.09606
https://arxiv.org/abs/2403.09606
https://arxiv.org/abs/2403.09606
https://arxiv.org/abs/2403.09606
https://arxiv.org/abs/2403.09606
https://arxiv.org/abs/2305.08291
https://arxiv.org/abs/2305.08291
https://arxiv.org/abs/2305.08291
https://openreview.net/forum?id=LQQoJGw8JD1
https://arxiv.org/abs/2412.07031
https://arxiv.org/abs/2412.07031
https://arxiv.org/abs/2412.07031
https://arxiv.org/abs/2407.01725
https://arxiv.org/abs/2407.01725
https://arxiv.org/abs/2407.01725
https://doi.org/10.1002/smr.2723
https://doi.org/10.1002/smr.2723
https://doi.org/10.1002/smr.2723
https://arxiv.org/abs/2310.15117
https://arxiv.org/abs/2310.15117
https://arxiv.org/abs/2310.15117
https://arxiv.org/abs/2504.13263
https://arxiv.org/abs/2504.13263
https://arxiv.org/abs/2504.13263
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://openreview.net/forum?id=NrCPBJSOOc
https://openreview.net/forum?id=NrCPBJSOOc
https://openreview.net/forum?id=NrCPBJSOOc
https://openreview.net/forum?id=NrCPBJSOOc
https://openreview.net/forum?id=NrCPBJSOOc
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://openreview.net/forum?id=tv46tCzs83
https://openreview.net/forum?id=tv46tCzs83
https://openreview.net/forum?id=tv46tCzs83
https://arxiv.org/abs/2406.07815
https://arxiv.org/abs/2406.07815
https://arxiv.org/abs/2406.07815


A Dataset Information844

Method QRData Synthetic Real-Studies
DiD 2 10 7
RDD 2 5 4
IV 2 10 2
OLS 20 10 12
Propensity Score 13 10 2
Total 39 45 27

Table 6: Number of queries by method type across
QRData, synthetic, and real-world studies

A.1 Sample of Synthetic Data Description845

Created by GPT846

Descriptions and variable names generated by GPT-
4o for Synthetic Data associated with Difference-in-
Differences

Dataset Name: did_canonical_data0.csv

Variable labels
D: policy_change,
post: post_policy_year
Y: health_score
X1: age
X2: BMI
X3: smoker
X4: sports_participation
X5: fast_food_consumption
unit_id: student_id

Description: The dataset comprises information
from a two-year study conducted in public schools,
investigating the effects of a new policy requiring
biannual health check-ups for students. The data
were collected from student health records, surveys
about lifestyle habits, and school administrative
databases. The student’s health score was calculated
by licensed physicians based on various medical
parameters. The student’s age and Body Mass
Index (BMI) were recorded as continuous variables.
The student’s lifestyle habits, namely whether they
smoke, participate in sports, and consume fast food,
were noted as binary variables (1 for yes, 0 for no).
Each unique student is represented by a unique
student ID.
The policy_change variable indicates whether a
student belonged to a school where the new policy
was implemented. The post_policy_year indicates
whether the data point belongs to the year after
the policy was introduced. The health_score is a
numerical score representing the student’s overall
health condition. The ’age’ represents the age of
the student. The BMI represents the Body Mass
Index of the student. The smoker variable indicates
whether the student smokes. The sports_participation
variable indicates whether the student participates
in sports. The fast_food_consumption variable
indicates whether the student frequently consumes
fast food. The student_id is a unique identifier for
each student.

Query: Did the introduction of the biannual health
examination policy improve the overall health of stu-
dents?

847

B Pipeline prompts 848

B.1 Baseline prompt 849

Baseline prompt

You are an expert in statistics and causal reasoning.
You will answer a causal question on a tabular dataset.
The dataset is located at self.dataset_path.
The dataset has the following description:
“‘ self.dataset_description “‘
To help you understand it, here is the result of
df.describe():
“‘ df_info “‘
Here are the columns and their types:
“‘ columns_and_types “‘
Here are the first 5 rows of the dataset:
“‘ df.head() “‘
If there are less than 10 columns, here is the result of
df.cov():
“‘ (df.cov(numeric_only=True) if len(df.columns) <
10 else "Too many columns to compute covariance")
“‘
Finally, here is the output of df.isnull().sum(axis =
0):
“‘ nan_per_column “‘
The causal question I would like you to answer is:
“‘ self.query “‘
Here are some examples methods, you can choose
one from them: [
’propensity_score_weighting’ # output the ATE
’propensity_score_matching_treatment_to_control’ #
output the ATT
’linear_regression’ # output the coefficient of the vari-
able of interest
’instrumental_variable’ # output the coefficient of the
variable of interest
’matching’ # output the ATE
’difference_in_differences’ # Output the coefficient
’regression_discontinuity_design’ # output the coeffi-
cient
’matching_treatment_to_control’ # output the ATT
’linear_regression / difference_in_means’ # output
the coefficient / DiM
].
Using the descriptions and information from the
dataset, implement a python code to answer the
causal question. Remember the dataset is located
at self.dataset_path. In the case you need to prepro-
cess the data, please do so in the code. The following
libraries are available to you: dowhy, pandas, numpy,
scipy, scikit-learn, statsmodels. Use the methods
from the libraries as best as you can. Don’t code
yourself that which is already implemented in the
libraries. Do not create random data. Make sure it
outputs the quantitative value in the comments of the
example method. The code you output will be exe-
cuted and you will receive the output. Please make
sure to output only one block of code, and make
sure the code prints the result you are looking for at
the end. Everything between your first codeblock:
”“‘python’ and ’“‘’ will be executed. If there is an
error, you will have several attempts to correct the
code.

850

C Decision Tree Method Selection Process 851

The method selection process in our Causal AI Assistant is 852
governed by a decision tree designed to recommend the most 853
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Figure 4: The overall architecture of our Causal-AI
Assistant.

appropriate causal inference method based on dataset charac-854
teristics and the causal query. This process is implemented855
programmatically to ensure transparency, reproducibility, and856
alignment with best practices in causal inference (Figure 4857

1. Input Requirements858

The decision tree requires the following inputs:859

• Dataset: Provided as a structured DataFrame.860
• Identified Variables: Including the treatment vari-861

able, outcome variable, covariates, and optionally, time,862
group, instrument, and running variables863

• Dataset Analysis Results: Metadata and diagnostics864
about the dataset, such as the presence of temporal struc-865
ture, variable types, and potential instruments.866

• Study Design Indicator: Whether the data originates867
from a randomized controlled trial (RCT) or an obser-868
vational study.869

• Language Model Assistance :For nuanced recommen-870
dations between similar methods (e.g., matching vs.871
weighting)872

2. Stepwise Selection Logic873

The decision tree operates through a series of prioritized, mutu-874
ally exclusive checks, each corresponding to a class of causal875
inference methods. The process is as follows:876

1. Randomized Controlled Trials (RCT)877

A. Encouragement Design (Instrumental Variable in878
RCTs): If an instrument variable (e.g., an encourage-879
ment or assignment indicator) is present and distinct880
from the treatment variable, the tree selects the Instru-881
mental Variable (IV) method. This is appropriate for882
"encouragement designs," where randomization affects883
an instrument rather than the treatment directly.884

B. With Covariates:If covariates are available, the tree885
recommends Linear Regression, leveraging covariate886
adjustment to increase the precision of the treatment887
effect estimate.888

C. No Covariates: If no covariates are present, the tree889
defaults to a simple Difference in Means estimator, com-890
paring outcomes between treatment and control groups.891

2. Observational Data 892

A. Difference-in-Differences (DiD): If the dataset exhibits 893
temporal structure (e.g., contains a time variable) and 894
the research question involves pre/post or treated/control 895
comparisons over time, the tree selects the Difference- 896
in-Differences method. If an instrument is also present, 897
IV is suggested as an alternative. 898

B. Regression Discontinuity Design (RDD): If a running 899
variable and a cutoff value are identified (indicating 900
treatment assignment based on a threshold), the tree 901
selects Regression Discontinuity Design 902

C. Instrumental Variable (IV): If an instrument variable 903
is present (and not already handled above), the tree se- 904
lects IV regression, which is appropriate when a valid 905
instrument affects treatment but not the outcome di- 906
rectly. If temporal structure is also present, DiD may be 907
suggested as an alternative. 908

D. Propensity Score Methods: If covariates are available 909
but no special design features (e.g., time, instrument, 910
running variable) are present, the tree considers propen- 911
sity score methods. The choice between Propensity 912
Score Matching (PSM) and Propensity Score Weighting 913
(PSW) is informed by dataset characteristics such as 914
group sizes, covariate balance, and sample size. Option- 915
ally, a language model may be used to recommend the 916
most suitable approach based on summary statistics. 917

E. Fallback – Correlation Analysis: If none of the above 918
conditions are met (e.g., no covariates, no design struc- 919
ture, no instrument), the tree defaults to correlation anal- 920
ysis. This is accompanied by a warning that such anal- 921
ysis does not support causal claims and is subject to 922
confounding bias. 923

3. Extensibility 924

The decision tree is implemented as a modular, extensible 925
system. New methods or decision rules can be incorporated as 926
the field evolves or as new requirements emerge. The logic is 927
encoded in a transparent, auditable manner, ensuring that the 928
rationale for each method selection is clear and reproducible. 929
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D Causal AI Assistant Run Output930

Example of Run using Causal AI assistant

Dataset Description: The CSV file ihdp_4.csv
contains data obtained from the Infant Health and
Development Program (IHDP). The study is designed
to evaluate the effect of home visit from specialist
doctors on the cognitive test scores of premature
infants. The confounders x (x1-x25) correspond to
collected measurements of the children and their
mothers, including measurements on the child (birth
weight, head circumference, weeks born preterm,
birth order, first born, neonatal health index, sex,
twin status), as well as behaviors engaged in during
the pregnancy (smoked cigarettes, drank alcohol,
took drugs) and measurements on the mother at the
time she gave birth (age, marital status, educational
attainment, whether she worked during pregnancy,
whether she received prenatal care) and the site (8
total) in which the family resided at the start of the
intervention. There are 6 continuous covariates and
19 binary covariates.
Dataset Name: ihdp_4.csv

Query: What is the effect of home visits on the
cognitive test scores of children who actually
received the intervention?

Run Logs
Invoking: ‘input_parser_tool‘ with ‘’input_text’:

’My question is: What is the effect of home visits on
the cognitive test scores of children who actually
received the intervention? The dataset is located
at: ihdp_4.csv Dataset Description: "The CSV file
ihdp_4.csv contains data obtained from the Infant
Health and Development Program (IHDP). The study
is designed to evaluate the effect of home visit from
specialist doctors on the cognitive test scores of
premature infants. [...], whether she worked during
pregnancy, whether she received prenatal care) and
the site (8 total) in which the family resided at the
start of the intervention. There are 6 continuous
covariates and 19 binary covariates. Please perform
the causal analysis following the workflow.’‘

Invoking: ‘dataset_analyzer_tool‘ with
‘’dataset_path’: ’ihdp_4.csv’, ’dataset_description’
The CSV file ihdp_4.csv contains data obtained from
[...]‘

Invoking: ‘query_interpreter_tool‘ with
‘’query_info’: ’query_text’: ’What is the ef-
fect of home visits on the cognitive test scores
of children who actually received the interven-
tion?’, ’potential_treatments’: [’home visits’],
’potential_outcomes’: [’cognitive test scores’],
’covariates_hints’: [], ’instrument_hints’: [], ’run-
ning_variable_hints’: [], ’cutoff_value_hint’: None,
’dataset_analysis’: ’dataset_info’: ’num_rows’:
747, ’num_columns’: 27, ’file_path’: ’bench-
mark/all_data_1/ihdp_4.csv’, ’file_name’:
’ihdp_5.csv’, ’columns’: [’treatment’, ’y’, ’x1’, ’x2’,
’[...]], ’potential_treatments’: [’treatment’], ’poten-
tial_outcomes’: [’y’], ’temporal_structure_detected’:
False, ’panel_data_detected’: False, ’poten-
tial_instruments_detected’: True, ’disconti-
nuities_detected’: True, ’temporal_structure’:
’has_temporal_structure’: False, ’tempo-
ral_columns’: [], ’is_panel_data’: False,
’id_column’: None, ’time_column’: None,
’time_periods’: None, ’units’: None[...]’‘
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Output Log continue

Invoking: ‘method_selector_tool‘ with ‘’vari-
ables’: ’treatment_variable’: ’treatment’, ’treat-
ment_variable_type’: ’binary’, ’outcome_variable’:
’y’, ’instrument_variable’: None, ’covariates’:
[’x1’, ’x2’, ’x3’, ’x4’, ’x5’, ’x6’, ’x7’, ’x8’, ’x9’,
’x10’], ’time_variable’: None, ’group_variable’:
None, ’running_variable’: None, ’cutoff_value’:
None, ’is_rct’: True, ’treatment_reference_level’:
’0’, ’interaction_term_suggested’: True, ’interac-
tion_variable_candidate’: ’x3’, ’dataset_analysis’:
’dataset_info’: ’num_rows’: 747, ’num_columns’:
27, ’file_path’: ’benchmark/all_data_1/ihdp_5.csv’,
’file_name’: ’ihdp_5.csv’, ’columns’: [’treatment’,
’y’, ’x1’, ’x2’, ’x3’, ’x4’, ’x5’, ’x6’, ’x7’, ’x8’,
’x9’,[....]’‘

’method_info’: ’selected_method’: ’lin-
ear_regression’, ’method_name’: ’Linear Re-
gression’, ’method_justification’: ’Data is from an
RCT and covariates are provided. Linear regression
with covariates is used to potentially increase preci-
sion.’, ’method_assumptions’: [’Linear relationship
between treatment, covariates, and outcome’, ’No
unmeasured confounders (if observational)’, ’Correct
model specification’, ’Homoscedasticity of errors’,
’Normally distributed errors (for inference)’]

Invoking: ‘method_validator_tool‘

Invoking: method_executor_tool

Executing method: linear_regression
Initializing LLM client: Provider=’openai’,
Model=’gpt-4o’
Treating ’treatment’ as numeric for Patsy formula.
Adding interaction term to formula: treatment:x3
Using formula for Linear Regression: y treatment +
x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 +
treatment:x3
OLS model fitted successfully.

Results ’effect_estimate’: 4.041754652507938,
’confidence_interval’: [3.827091973654759,
4.256417331361118], ’standard_error’:
0.10934318809454593, ’p_value’:
9.833881203649175e-170, ’method_used’: ’Linear
Regression (OLS)’, ’llm_assumption_check’:
None, ’raw_results’: None, [...] ’current_step’:
’method_execution’, ’method_execution_completed’:
’method_executed’, ’next_tool’: ’explainer_tool’,
’next_step_reason’: ’Now we need to explain the
results and their implications’

Output
The analysis of the dataset from the Infant Health and
Development Program (IHDP) using Linear Regres-
sion has provided the following insights:
Estimated Causal Effect: The effect of home vis-
its on the cognitive test scores of children who ac-
tually received the intervention is estimated to be
**4.0418**. Confidence Interval: The 95% confi-
dence interval for this estimate is [3.8271, 4.2564].
Statistical Significance: The p-value is extremely
small (p=0.0000), indicating that the effect is statisti-
cally significant.
This suggests that home visits have a substantial and
statistically significant positive effect on the cognitive
test scores of the children in the study. The analysis
assumes a linear relationship between the treatment,
covariates, and outcome, and that the data is from a
randomized controlled trial (RCT), which supports
the validity of these findings.
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