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ABSTRACT

Deep reinforcement learning often relies heavily on the quality of dense rewards,
which can necessitate significant engineering effort. Reusing human-designed re-
wards across similar tasks in different domains can enhance learning efficiency in
reinforcement learning. Current works have delved into an assortment of domains
characterized by divergent embodiments, differing viewpoints, and dynamic dis-
parities. However, these studies require either alignment or alignable demonstra-
tions in which states maintain a bijection, consequently restricting the applica-
bility to more generalized reward reusing across disparate domains. It becomes
crucial to identify the latent structural similarities through coarser-grained align-
ments between distinct domains, as this enables a reinforcement learning agent
to harness its capacity for abstract transfer in a manner akin to human naviga-
tion based on maps. To address this challenge, semi-alignable Markov Deci-
sion Processes (MDPs) is introduced as a fundamental underpinning to delineate
the coarse-grained latent structural resemblances amidst varying domains Sub-
sequently, the Neural Reward Translation (NRT) framework is established, which
employs reward machines to resolve cross-domain reward transfer problem within
semi-alignable MDPs, thus facilitating more versatile reward reusing that supports
reinforcement learning across diverse domains. Our methodology is corroborated
through several semi-alignable environments, highlighting NRT’s efficacy in do-
main adaptation undertakings involving semi-alignable MDPs.

1 INTRODUCTION

Deep reinforcement learning (RL) has achieved great success in games (Mnih et al., 2015; Lample &
Chaplot, 2017) and practical areas like robotic control (Kober et al., 2013), automatic driving (Zhu
et al., 2018), precision agriculture management (Li et al., 2021) etc. However, the effectiveness
of current deep reinforcement learning methods is over correlated to the quality of the reward sig-
nals. In practical applications, designing dense rewards usually requires significant engineering ef-
fort (Fickinger et al., 2021), and human-provided rewards tend to be Non-Markovian (MacGlashan
et al., 2017), which can hinder the training process.

Nevertheless, humans excel at recognizing latent structural similarities between tasks in related but
distinct domains and abstracting skills from these differences. We can learn from third-person obser-
vations—those having no explicit correspondence to our internal self-representations (Stadie et al.,
2017; Liu et al., 2018; Sermanet et al., 2018)—such as finding the path on a map and navigating
to our destination in real life or imitating experts with different embodiments (Gupta et al., 2017;
Rizzolatti & Craighero, 2004; Liu et al., 2019) in foreign environments (Liu et al., 2019). Endowing
RL agents with the ability to abstract skills and draw inferences from one domain to reuse the reward
in another will enhance learning efficiency.

Efforts for reward reusing across various domains have been ongoing for years but remain lim-
ited. Recent work has primarily focused on cross-domain imitation learning, where algorithms learn
mappings of observation and action space between expert and agent domains from demonstrations.
Existing methods typically rely on three key domain descriptors: dynamics (Liu et al., 2019), em-
bodiment (Gupta et al., 2017; Hudson et al., 2021), and viewpoint mismatch (Jiang et al., 2020;
Stadie et al., 2017). However, these preliminary methods depend on paired, time-aligned demon-
strations and can handle only one descriptor at a time. More recent work relaxes these constraints
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(b) Example of Semi-Alignable MDPs

Figure 1: Example of Semi-Alignable MDPs

by requiring only alignable expert demonstrations with various alignment self-discovery schemes,
enabling algorithms to automatically learn observation and action mappings from unpaired and un-
aligned demonstrations. For example, DAIL (Kim et al., 2020) learns cross-domain transformation
from unpaired or unaligned demonstrations with state and action using Generative Adversarial MDP
Alignment and can handle all three descriptors. Raychaudhuri et al. (2021) introduce a CycleGAN
technique to learn transformations from unpaired and unaligned demonstrations containing only ex-
pert domain states, while Fickinger et al. (2021) use the Gromov-Wasserstein distance to eliminate
the need for proxy tasks. Despite advancements in cross-domain imitation learning and reward sig-
nal reuse, these methods struggle with more general cross-domain tasks. For instance, they cannot
align tasks like Cartpole and HalfCheetah as shown in Figure 1(b). As they have different horizon
length, different and unalignable state and action space. Humans, however, can mentally build the
relation between the tasks by identifying common checkpoints by abstract thinking.

In this paper, we introduce semi-alignable MDPs, where an abstract alignment exists between tasks,
as illustrated in Figure 2. By further abstracting tasks to focus on skills and sub-tasks, semi-alignable
MDPs allow high-level mapping across domains, more similar to human learning processes. Our
goal is to establish a framework that learns these high-level mappings within more generalized semi-
alignable MDPs and reuses rewards to enhance training efficiency in new domains. To achieve this,
we must abstract tasks for obtaining alignable skill and abstract spaces. Reward Machines (RMs)
provide a bridge to uncover task structures with non-Markovian reward functions using high-level
events and abstract checkpoints (Icarte et al., 2022). We propose the Neural Reward Translation
(NRT) method to solve the reward transfer problem within semi-alignable MDPs. NRT leverages
RMs to distill abstract alignments and transfer reward signals between domains.

The primary contributions of this paper are as follows:

1) The definition of semi-alignable MDPs is first introduced to theoretically support more general
domain knowledge transfer than classical alignable MDPs in cross-domain reinforcement learning;

2) Based on semi-alignable MDPs and reward machine, a novel framework called Neural Reward
Translation is established to solve reward transfer problem in more general cross domain setting
within semi-alignable MDPs.

3) Serval semi-alignable environment is proposed to show the performance of Neural Reward Trans-
lation in cross domain transferring learning task with environments under semi-alignment MDPs.

Moreover, we address the significant human engineering efforts involved in creating hand-crafted
reward machines by integrating an LLM-based framework to construct them, leveraging domain
knowledge from resources such as task manuals, as detailed in the Appendix.

2 RELATED WORKS

2.1 DOMAIN TRANSFER IN REINFORCEMENT LEARNING

Various works have been attempted in transfer learning in the reinforcement learning area (Taylor
& Stone, 2009; Zhu et al., 2020). To deal with transferring learning between different domains,
primitive methods always try to use the hand-craft features along with a distance metric between
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the imitation agent and the expert. For example, Ammar & Taylor (2011) defines a common state
space between MDPs from the two domains and uses it to learn a map between the two domains’
states. Ammar et al. (2015) uses unsupervised manifold alignment to learn a linear map between
states with similar local geometric properties.

Recent works divide the domain transfer into three types: dynamics (Liu et al., 2019), embodi-
ment (Gupta et al., 2017; Hudson et al., 2021), and viewpoint mismatch (Jiang et al., 2020; Stadie
et al., 2017). Generally, they obtain states corresponding to the proxy tasks and paired, time-
aligned demonstrations and use them to learn a state map or state encoder by deep learning methods.
DAIL (Kim et al., 2020) proposed a universal framework for all three types and used GAMA to self-
learn the alignment between MDPs in different domains. Furthermore, xDIO (Raychaudhuri et al.,
2021) uses a CycleGAN to learn the alignment with state-only demonstrations. GWIL (Fickinger
et al., 2021) uses the Gromov-Wasserstein distance to eliminate the need for proxy tasks.

Current domain transfer methods all consider the MDPs which are alignable. However, alignable
MDPs from two different domains are still luxurious in real-world applications. In this paper, we
aim to distill the abstract alignment from semi-alignable expert demonstrations and transfer it to the
imitation agent by an additional reward signal. In this way, we don’t ever need the alignable MDPs,
which will bring a more general domain transfer in the reinforcement learning area.

2.2 REWARD MACHINE

Reward machine is a kind of finite state machine first introduced by Icarte, Rodrigo Toro, et al (Icarte
et al., 2018), which is established to reveal the structure of non-Markovian reward functions of
tasks that are encoded with high-level events(i.e., propositional variables). Icarte et al. (2018) also
combined Q-learning and reward machine, proposed the first reinforcement leanring method within
reward machine, QRM. Later, Icarte et al. (2022) proposed counterfactual experiences for reward
machines(CRM), a modified version of QRM which learns one Q-function taking reward machine
states as a part of the inputs and is more suitable when combined with deep neural network. Icarte
et al. (2022) proposed hierarchical reinforcement learning for reward machines (HRM), which can
be effective at quickly learning good policies for reinforcement learning task, but might converge
to sub-optimal solutions. Icarte et al. (2023) propose a discrete optimization problem for learning
reward machines from experience in a partially observable environment.

Additionally, reward machine has been used for solving problems in robotics (Camacho et al., 2021;
DeFazio & Zhang, 2021; Shah et al., 2020), multi-agent reinforcement learning (Neary et al., 2021),
lifelong reinforcement learning (Zheng et al., 2022) and offline reinforcement leanring (Sun & Wu,
2023). Unlike these works, our paper aims to use reward machine to uncover reinforcement learning
task structure and try to transfer the reward signal between tasks with different domains.

Alignable MDPs Semi-alignable MDPs

... ......

Figure 2: The difference between alignable MDPs and semi-alignable MDPs. In alignable MDPs,
there exists injections between state space S and action space x within Mx and My . For

Semi-alignable MDPs, there exists injections between abstract state y space and skill space W
within Mx and My . (The symbol ”≥” means an MDP reduction from Mx to My , while the symbol

”⪰” means an MDP semi-reduction from Mx to My .)
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3 SEMI-ALIGNABLE MDPS

Before introducing the Neural Reward Translation. We first lay the definitions and properties on
semi-alignable MDPs. To help describe the high-level action and state (’skill’ and ’goal’) in the
semi-alignable MDPs shown in Figure. 2. We extend the infinite horizon Markov Decision Process
(MDP) M to let it be expressed as a tuple (S, x, y,W, P, r, P ) where S is the state space, x is the
action space, P is the transition function r is the reward function. y and W are extended by us,
where y is the abstract state space and W is the skill space. Generally, a domain fully characterizes
the embodied agent and the environment dynamics, but without desired behaviors. By this way, we
define an MDP in one domain X for a task T as MT

x = (Sx, Ax, Bx,Wx, Px, r
T
x , Px). Likewise, an

MDP in another domain Y for the proxy task can be define as MT
y = (Sy, Ay, By,WyPy, r

T
y , Py).

(Kim et al., 2020) has proposed MDPs alignability theory and MDP reduction where an MDP
reduction from Mx to My holds a tuple which maps preserve dynamics, which means for any
(sx, ax, sy, ay) ∈ Sx × §x × Sy × §y , there exists an ϕ, which let Py(sy, ay) = ϕ(Px(sx, ax)).
We further define the MDP semi-reduction and semi-alignable MDPs.
Definition 1. An MDP semi-reduction from MT

x = (Sx, Ax, Bx,Wx, Px, r
T
x , Px) to MT

y =

(Sy, Ay, By,WyPy, r
T
y , Py) is a tuple r = (ϕ, ψ) where ϕ : Bx → By , ψ : Wx → Wy , which

preserve:

• πw-optimality: ∀(bx, wx, by, wy) ∈ Bx ×Wx ×By ×Wy:

OMy (ϕ(bx), ψ(wx)) = 1 ⇒ OMx(bx, wx) = 1,

OMy
(by, wy) = 1 ⇒ ϕ−1(by) ̸= ∅, ψ−1(wy) ̸= ∅.

• y-dynamic: ∀(bx, wx, by, wy) ∈ Bx ×Wx ×By ×Wy such that OMy
(by, wy) = 1, bx ∈

ϕ−1(by), wx ∈ ϕ−1(wy):

PB
y (by, wy) = ϕ(PB

x (bx, wx)).

This definition is a direct expansion of the MDP reduction. Following it, we can get the definition
of the semi-alignable:
Definition 2. Two MDPs Mx, My are semi-alignable if and only if Mx ⪰My or My ⪰Mx, where
Mx and My are any two MDPs in domain X and domain Y while Mx ⪰My means there is a tuple
(ϕ, ψ) which can make the semi-reduction from Mx to My .

However, direct finding the semi-reduction between MT
x and MT

y because the abstract state space y
and the skill space W in both domains are indeterminate. In this paper, Neural Reward Translation
(NRT) uses Reward Machine (RM) to indirectly build the relationship on MDPs within different
domains, then transfer the reward from one task to another to improve the training efficiency.

4 NEURAL REWARD TRANSLATION

In this section, we introduce the primary framework called Neural Reward Translation (NRT), whose
architecture is depicted in Figure 3. The NRT approach facilitates the generation of corresponding
reward machines through human-defined systems or large language models based on task manuals.
In this paper, we mainly focus on utilizing a human-defined reward machine. But we also propose an
LLM-based framework based on chain of thought (Wei et al., 2022), using GPT-4 (OpenAI, 2023)
to generate reward machines from task manuals. This framework demonstrates how state-of-the-art
AI models can effectively aid in complex task comprehension and reward structure formulation. The
framework is introduced in Appendix. Due to the presence of hemomorphic or isomorphic reward
devices within semi-alignable Markov decision processes (MDPs) in section. 4.1, we demonstrate
the efficacy of these machines in effectively translating rewards. Hemomorphic and isomorphic
reward machines extract abstract alignment from semi-alignable MDPs across various domains.
Utilizing these reward machines, seamless mapping between U ,F , and P is achievable, allowing
for state reward functions transfer from an original task’s reward machine to a target task’s reward
machine, thereby promoting training efficiency. In section. 4.1, we introduce the basic setiing of
reward machine, and in section. 4.1, we introduce the hemomorphic reward machine and isomorphic

4



Under review as a conference paper at ICLR 2024

reward machine to analyze the relationship of the reward machine for task with semi-alignable MDPs
in different domains. Then we propose the reward transfer within different domain through reward
machines.

4.1 REWARD MACHINE

Initially, we present the formulation of reward machines, which are designed to unveil the organiza-
tion of non-Markovian reward functions related to tasks characterized by high-level events. Reward
machines is typically defined as (Icarte et al., 2018):

Definition 3. (Reward Machine). Considering a collection of propositional symbols P , an assort-
ment of (environment) states S, and a range of actions x, a finite state machine reward machine
(RM) constitutes a tuple RPSA =< U, u0, F,P, δu, δr >, with: U ⊆ S representing a lim-
ited set of states, u0 ∈ U denoting an initial state, F defining a restricted set of terminal states
(F ∩ U = ∅), P signifying the set of propositional symbols, δu characterizing the reward machine
state transition function δr : U → [U × P → U ] and δr embodying the state-reward function
δr : U → [U × P × U → R].

... ......

Semi-alignable MDPs

... ......

Isomorphic reward machine

Homomorphic reward machine

 

 

Human
Defined or
Learning

From manual
by LLM 

Human
Defined or
Learning

From manual
by LLM 

Human
Defined or
Learning

From manual
by LLM 

Human
Defined or
Learning

From manual
by LLM 

Use the
transferred
reward to
promote
training 

Distill abstract alignments

Figure 3: An overview of the Neural Reward Translation (NRT) framework. For cross-domain
tasks in semi-alignable Markov Decision Processes (MDPs), a corresponding reward machine is
produced using either human-defined criteria or language models to extract abstract alignments.
Subsequently, a mapping between U ,F , and P is established based on graph isomorphism and

homomorphism theories. The state reward function is then transferred from the reward machine for
the original task to the one for the target task, enabling the reuse of rewards to facilitate training in

cross-domain tasks within semi-alignable MDPs.

Generally, using reward machines in reinforcement learning tasks requires extend the MDP.

Definition 4. (MDP with Reward Machine). An MDP integrated with a Reward Machine is repre-
sented as a tuple TRPSA

=< S, x, p, γ, P, L, U, u0, δu, δr >, where S, x, p, γ correspond to the state
space, action space, transition function, and discount in the original MDP, while P,U, u0, δu, δr are
determined by RM. Additionally, L symbolizes a labelling function L : S → P .
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A B C D E F

(a) HalfCheetah-v3 task. The target of the robot is
to reach F in finite timesteps.

(b) Reward machine for HalfCheetah-v3 task. f0 ∈
F is the terminal state.

Figure 4: Example of reward machine for HalfCheetah-v3.

In every step, the agent in the environment perform action a to move from s to s′ in the MDP, the
RM moves to state u′ = δu(u, L(s

′)) and the agent receives reward r̂(s, a, s′, u, u′), for helping
the reward transfer in our cross domain tasks, we design the reward function r̂ as a combination
of agent’s original reward r and the state reward function δr from reward machine as: At every
stage, the agent situated within the environment executes action a, transitioning from state s to s′
in the MDP. The RM shifts to state u′ = δu(u, L(s

′)) from u, and the agent is granted reward
r̂(s, a, s′, u, u′). To facilitate reward transfer across various domain tasks, we devise the reward
function r̂ as an amalgamation of the agent’s inherent reward r and the state reward function δr
derived from the reward machine:

r̂(s, a, s′, u, u′) = r(s, a, s′) + δr(u, u
′),where u′ = δu(u, L(s

′)). (1)

Eventually, the δr may be represented in terms of a potential-based reward shaping formulation:

δu(u, u
′) = γRϕ(u

′)− ϕ(u),where γR is the discount parameter. (2)

Furthermore, this study employs the expert of optimal value function for the agent in reinforcement
learning to compute the potential value of the reward machine state as follows:

ϕ(u) = Esi∼S [V
∗(si, ui|ui = u)]. (3)

Fig. 4 shows a reward machine example for the HalfCheetah-v3 task, where the robot aims to reach
target F in a limited number of steps. Unlike environment states (s) in reinforcement learning,
reward machines have states (u) and transitions determined by P . In Fig. 4(a), P depends on the
robot’s position relative to the target. The path is divided into six checkpoints—passing a check-
point advances the reward machine state. Ultimately, reward machines deconstruct reinforcement
learning tasks and facilitate a coarse-grained decomposition of reinforcement learning task struc-
tures, laying the groundwork for generalized cross-domain knowledge, as numerous tasks spanning
diverse domains exhibit significant disparities in their fine-grained states, actions, and transitions.
Then we introduce the concepts of hemomorphic and isomorphic reward machines to examine the
relationships between reward machines and tasks within semi-alignable Markov Decision Processes
(MDPs) in various domains. x connection between MDPs with reward machines and the extended
MDP definition described in Section 3 can be observed. The abstract state b ∈ y and the reward ma-
chine state u ∈ U both represent a coarse-grained abstract structure of the reinforcement learning
task. Consequently, we establish a bijection between the abstract state bi ∈ y and the corresponding
reward machine state u ∈ U (including terminal state f ∈ F ): bi = Θ(ui), along with a bijection
between abstract action state wi ∈ Wi and the corresponding reward machine events (propositional
symbols) pi ∈ P : wi = Γ(pi). We then propose definitions for isomorphic and homomorphic
reward machines, as depicted in Figure 3.
Definition 5. (Isomorphic reward machine). Given two reward machines Rx

PSA and Ry
PSA, Rx

PSA
and Ry

PSA are isomorphic reward machines if and only if there exists bijection h : Px → Py and
g : Ux → Uy such that pyi = h(pxi ), p

x
i = h−1(pyi ) and uyi = g(uxi ), u

x
i = g−1(uyi ).

Given the bijections bi = Θ(ui) and pi ∈ P : wi = Γ(pi) introduced before, we can leverage Theo-
rem 1 to describe the relationship amongst semi-alignable MDPs with isomorphic reward machines.
Theorem 1. If two MDPsMx andMy , Mx ⪰My andMy ⪰Mx, then their tasks have isomorphic
reward machine Rx

PSA and Ry
PSA.

We prove the theorem in Appendix. For MDPs Mx and My , if isomorphic reward machines exist
for their tasks, the reward function of a reinforcement learning agent in My can be represented as:

r̂y
δyr
(sy, ay, sy ′, uy, uy ′) = ry(sy, ay, sy ′) + δyr (u

y, uy ′), (4)

6



Under review as a conference paper at ICLR 2024

if My uses the transferred δxr , then the reward function will be:

r̂yδxr
(sy, ay, sy ′, uy, uy ′) = ry(sy, ay, sy ′) + δxr (g(u

y), g(uy ′)). (5)

As both δxr and δyr employ potential-based reward shaping, we can deduce the following equation
by examining the potential-based reward shaping properties:

T−1∑
i=0

r̂y
δyr
(syi , a

y
i , s

y
i+1, u

y
i , u

y
i+1) =

T−1∑
i=0

r̂yδxr
(syi , a

y
i , s

y
i+1, u

y
i , u

y
i+1), (6)

where T represents the task duration. The above is also established for transferring state reward
functions from My to Mx. Nevertheless, isomorphic reward machines impose a stringent condition
that necessitates a bijection between semi-alignable MDPs’ reward machines. We hence introduce
homomorphic reward machines as a more relaxed formulation.
Definition 6. (Homomorphic reward machine). Given two reward machine Ra

PSA and Rb
PSA,

Ra
PSA is Rb

PSA is Homomorphic reward machine if and only if there exists injection h : Px → Py

and g : U§ → U† let pyi = h(pxi ) and uyi = g(uxi ).

Also given the bijections bi = Θ(ui) and pi ∈ P : wi = Γ(pi) introduced before, we can leverage
Theorem 2 to describe the relationship amongst semi-alignable MDPs with homomorphic reward
machines.
Theorem 2. If two MDPsMx andMy ,My ⪰Mx orMx ⪰My , then their tasks have homomorphic
reward machine Rx

PSA and Ry
PSA.

We have also proven the Theorem in Appendix. A.1. For Mx and My MDPs, if Mx ⪰My , then the
reward function of a reinforcement learning agent in My is denoted in the same manner as Equa-
tion (4). When My implements the transferred state reward functions from Mx’s reward machine,
the reward function remains consistent with Equation (5) while conserving the character described
in Equation (6). Nevertheless, transferring rewards from My to Mx requires developing a piece-
wise function due to the unavailability of a bijection. The piece-wise function can be represented as
follows:

r̂xδyr (s
x, ax, sx′, ux, ux′) = rx(sx, ax, sx′) +

{
δyr (u

y, uy ′) if ux = g(uy) and ux′ = g(uy ′)

δxr (u
x, ux′) otherwise

(7)

As a result, a reward translation channel is established between semi-alignable MDPs. The reward
function is transferred between the reward machines by first constructing corresponding reward
machines manually or with LLM and then calculating the state reward function of the original task
using Equation (3). Furthermore, the relationship between corresponding reward machines from
the initial and target tasks must be constructed. Finally, rewards from different domain tasks are
translated and reused in the target task, any reinforcement learning algorithm can directly use the
translated reward and promote training.

5 EXPERIMENT

As reward machine can distill abstract alignment from semi-alignable MDPs within reinforcement
learning tasks from different domains. This experiment aims to investigate how transferring rewards
via isomorphic and homomorphic reward machines can enhance learning in reinforcement tasks
across different domains by extracting abstract alignment from semi-alignable MDPs.

5.1 EVALUATION PROTOCOL

We evaluate the NRT framework within isomorphic and homomorphic reward machines using three
experiments, where the original task is on the left and the target task is on the right. In each ex-
periment, we train a reinforcement learning policy for the original task, calculate the state reward
function δr according to Equation 3, and transfer it to the corresponding reward machine of the
target task. Then we use reinforcement learning to train the target task within transferred reward,
examine why the transferred reward translated from other domain can promote training. Detailed
description of the environments and the reward machines are mentioned in Appendix.
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Figure 5: Three experiments we consider in this paper, NChain(n=5)-to-NChain(n=9) to examines
NRT under isomorphic reward machines, Cartpole-to-HalfCheetah and

HalfCheetah-to-Atari-Freeway examines NRT under homomorphic reward machines.

0 5 10 15 20 25
Episodes

5

10

15

20

25

30

35

40

45

U
se

d 
st

ep
s

DQN
DQN+NRT
DQN+RM

(a) NChain(n=5) to NChain(n=9)

0 50000 100000 150000 200000 250000 300000
Step

0

200

400

600

800

1000

1200

U
se

d 
st

ep
s

(b) Cartpole to HalfCheetah

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

5

0

5

10

15

20

25

Va
lu

e

PPO+NRT
PPO

0 10000 20000 30000 40000 50000
Step

10.0

12.5

15.0

17.5

20.0

22.5

Va
lu

e

(c) HalfCheetah to Atari-Freeway

Figure 6: The learning curves for experiments. To provide a more intuitive demonstration of the
number of steps the agent needs to take to reach the target, we use the agent’s step numbers instead

of accumulated rewards for HalfCheetah and NChain.
1. NChain(n=5)-to-NChain(n=9): This experiment examines the effectiveness of the NRT frame-
work under isomorphic reward machines by transferring state reward functions from NChain(n=5)
to NChain(n=9). The NChain tasks involve chains of different lengths with sparse rewards given
only when the agent successfully grabs a flag.

2. Cartpole-to-HalfCheetah: This experiment investigates the efficacy of the NRT framework
for homomorphic reward machines by transferring state reward functions from the Cartpole task to
the HalfCheetah task, which have been modified to hold an MDP relationship of Mx ⪰ My . Both
tasks employ the same settings as their respective versions in OpenAI-Gym (Brockman et al., 2016);
however, their rewards are modified to be sparse, received only upon reaching specific goals.

3. HalfCheetah-to-Atari-Freeway: The third experiment further probes the NRT framework’s
performance under homomorphic reward machines by transferring state reward functions from the
HalfCheetah task to the Atari-Freeway task, maintaining an MDP relationship of My ⪰ Mx. The
tasks adhere to the same settings as their respective OpenAI-Gym (Brockman et al., 2016) versions,
with rewards granted depending on times of cross all lanes within 2048 timesteps.

5.2 RESULTS

Figure 6 presents a comparison of the training outcomes of NRT and baseline methods across three
distinct experiments. Figure 6(a) illustrates the NChain(n=9) task training progression, utilizing a
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Figure 7: The transferred reward machines for experiments.

previously trained NChain(n=5) agent’s state reward function due to their isomorphic reward ma-
chine structure. The experiment employed DQN as the baseline and DQN+RM (absent trained
reward functions) for ablation analysis. The findings reveal that NRT significantly enhances training
efficacy and performance in the NChain game. Additionally, Figure 7(a) displays the δr table within
the NChain reward machine, highlighting the capacity of NRT to facilitate RL agent learning via
transferred rewards between tasks within differing domains through isomorphic reward machines.

Figure 6(b) delineates the HalfCheetah task training process, deriving the state reward function
from a trained Cartpole agent’s homomorphic reward machine. Given the MDPs relationship
Mx ⪰ My , the reward function can be transmitted through corresponding reward machine map-
pings. DDPG was utilized as the baseline, while DDPG+RM (without a trained reward function)
and DDPG+Reward (only accessing rewards without reward machine states) were subjected to ab-
lation analysis. Results indicate NRT clearly improves training efficiency and performance in the
HalfCheetah task. Figure 7(b) showcases the δr table for HalfCheetah’s reward machine, providing
direct guidance to reach objectives. Consequently, NRT fosters RL agent learning by transferring
rewards through homomorphic reward machines across separate domains.

Finally, Figure 6(c) depicts the Atari-Freeway task training process, applying the state reward func-
tion obtained from a trained HalfCheetah agent’s corresponding reward machine (here we directly
employing the transferred function from Cartpole to HalfCheetah). Due to the MDPs relationship
My ⪰ Mx, Equation 7 is employed for transferring the state reward function. Figure 7(c) indicates
that rewards seemingly guide agents toward their targets. However, disparities in task structure may
lead to local optima entrapment upon reaching a positively reinforced event. Despite this limitation,
the inter-domain transferred rewards without effective injection or bijection still offers limited initial
guidance, as demonstrated by superior performance compared to the baseline within the first 50,000
steps. However, we have to admit NRT doesn’t work good without injection or bijection.

The training results demonstrate that transferring rewards via isomorphic and homomorphic reward
machines enhances learning in reinforcement tasks across different domains, improving training
efficacy and performance, but may be limited in tasks without effective injection or bijection, poten-
tially causing local optima entrapment.

6 CONCLUSION

In summary, this study presented the notion of semi-alignable MDPs to encourage broader domain
knowledge transfer in cross-domain reinforcement learning, mirroring human learning mechanisms.
x new framework, termed Neural Reward Translation (NRT), was introduced, utilizing reward ma-
chines for the abstraction and transmission of reward signals within a semi-alignable MDP context.
NRT’s performance was validated across various game environments, revealing its capacity to bol-
ster training efficacy and flexibility for RL agents in diverse domains.

Nonetheless, certain constraints were identified, particularly with tasks lacking effective injection or
bijection, where NRT might inadvertently lead to local optima entrapment. Additionally, construct-
ing suitable reward machines and discerning relationships in more complex tasks remains challeng-
ing. Future research aims to explore further cross-domain situations wherein semi-alignable MDPs
may offer valuable domain knowledge transfer, thereby expanding the applicability of NRT.
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