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Abstract 

Ribonucleic Acid (RNA) is the central conduit for information transfer in the cell. Identifying potential RNA targets in disease conditions is a 
challenging task, given the vast repertoire of functional non-coding RNAs in a human cell. A potential druggable target must satisfy se v eral 
criteria, including disease association, cellular accessibility, binding pock ets f or drug-lik e molecules, and minimal cross-reactivity. While se v eral 
methods exist for prediction of druggable proteins, they cannot be repurposed for RNAs due to fundamental differences in their binding modality. 
Taking all these constraints into account, a new str uct ure-based model, D r uggable R NA- Li gand binding P ocket S elector ( DRLiPS ), is developed 
here to predict binding site-le v el druggability of any given RNA target. A novel strategy for sampling negative binding sites in RNA str uct ures 
using three parallel approaches is demonstrated here to impro v e model specificity: backbone motif search, e xhaustiv e pock et prediction, and 
blind docking. An external blind test dataset has also been curated to sho w case the model’s generalizability to both experimental and modelled 
apo state RNA str uct ures. DRLiPS has achie v ed an F1-score of 0.70, precision of 0.61, specificity of 0.89, and recall of 0.73 on this external 
test dataset, outperforming two existing methods, DrugPred_RNA and RNA CavityMiner. F urther analysis indicates that the features selected for 
model-building generalize well to both apo and holo states with a backbone RMSD tolerance of 3 Å. It can also predict the effect of binding site 
single point mutations on druggability, which can aid in optimizing synthetic RNA aptamers for small molecule recognition. The DRLiPS model 
is freely accessible at https:// web.iitm.ac.in/ bioinfo2/ DRLiPS/ . 

Gr aphical abstr act 

I

R  

t  

 

 

 

R
©
T
(
o
p
j

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/53/6/gkaf239/8104000 by guest on 03 April 2025
ntroduction 

ibonucleic Acid (RNA) is the central conduit for informa-
ion transfer in the cell [ 1 ]. RNAs are known to sustain dis-
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repair proteins in cancers, hastening disease progression [ 4 ].
Consequently, RNA subtypes such as miRNA, piwiRNA, and
snoRNA have been used as biomarkers to indicate disease
progression in the cell [ 5 , 6 ]. In modern medicine, synthetic
RNAs are being utilized as vaccines and therapeutics to tar-
get the undruggable proteins at the transcript level [ 7 , 8 ]. No-
tably, the identification of siRNA and the ensuing RNA inter-
ference (RNAi) therapy has made translational repression a
successful therapeutic modality for cancers [ 9 , 10 ]. However,
despite their roles in multiple disease conditions, only coding
RNAs have been probed so far as drug targets themselves, for
small molecule discovery [ 1 ]. Ribosome-targeted antibiotics
are the predominant class of RNA-targeted drugs with FDA
approval, followed by the recent approval of Risdiplam [ 11 ],
targeting a non-coding RNA to treat spinal muscular atro-
phy (SMA). With more than 100 000 human long non-coding
RNAs (lncRNAs) in registry [ 12 ] and the prevalence of a dy-
namic tertiary structure for most of them [ 13 ], non-coding
RNAs potentially accurately capture the regulatory state of
a cell at any given time point [ 12 ]. Considering RNAs as drug
targets for small molecule discovery can significantly expand
the druggable genome space and enable the emergence of bet-
ter therapeutic options to treat undruggable diseases. How-
ever, identifying potential RNA targets in disease conditions
is a challenging task, given the vast repertoire of functional
non-coding RNAs in a human cell. 

Target identification and validation are crucial milestones
marking the initiation of the drug design process [ 14–16 ]. A
potential drug target must satisfy several criteria, including
the presence of validated disease associations, ease of cellu-
lar accessibility, availability of binding pockets for drug-like
molecules, and the ability to elicit the desirable biological re-
sponse with minimal cross-reactivity [ 17 , 18 ]. These criteria
have been summarized into a single term in traditional liter-
ature as ‘Druggability’ [ 19 , 20 ]. The druggability of a target
biomolecule is primarily ascertained through the similarity of
the target to previously known drug targets in the pharma
industry [ 17 ]. However, this practice has resulted in an ex-
ploratory bias in the space of drug targets, with popular pro-
tein families such as G-protein coupled receptors, ion chan-
nels, kinases, and nuclear hormone receptors being the most
explored [ 21 , 22 ]. To mitigate this bias, studies at a whole
cell level, such as functional genomics assays, are performed
to establish the genotype–phenotype relationship for novel
targets and understand the effect of genetic variants on the
disease-associated pathways [ 23 , 24 ]. In contrast, phenotypic
screening with diverse small molecule microarrays helps in the
identification of both novel drug targets and starter scaffolds
with high binding affinity [ 25 , 26 ]. While current experimen-
tal methods look at the phenotypic relevance of a drug tar-
get to a disease, it is also essential to study the global struc-
tural features and binding site-level characteristics of the tar-
get molecule, to prioritize and validate their interaction with
drug-like small molecules. This is a key aspect when RNAs
are considered as drug targets due to their highly dynamic na-
ture and their potential to form multiple binding pockets for
small molecules [ 27 , 28 ]. With the available three-dimensional
structures of target-small molecule complexes in Protein Data
Bank (PDB), multiple computational methods have been de-
veloped to quantitatively measure the druggability of a target
protein or nucleic acid [ 16 , 29–41 ]. 

Existing computational methods for predicting drugga-
bility of target proteins can be sub-divided into two cate-
gories: whole target-level scoring and binding site-level scor- 
ing methods. There are relatively few whole target-level meth- 
ods in comparison with binding site-level methods. The Drug- 
nomeAI framework [ 16 ] and the PINNED method [ 41 ] are 
two recent whole-target level methods, which incorporate 
disease association, functional significance, interaction with 

other biomolecules in the cell, and gene expression-based fea- 
tures, to prioritize targets based on their druggability. While 
both methods incorporate multiple modalities of information 

to capture a target protein’s significance in the cellular and 

disease context, they cannot precisely pinpoint the binding 
site for a drug-like small molecule in the target protein. On 

the other hand, binding site-level scoring methods can take 
multiple potential binding sites within the same target pro- 
tein or across different proteins, and discriminate the highly 
druggable sites of interest. Methods inspired by the biophysi- 
cal characteristics of ligand binding, such as maximal affinity 
prediction (MAP POD 

score) [ 30 ] and nuclear magnetic reso- 
nance (NMR) hit rate prediction [ 29 , 31 ], correlate the en- 
ergetic characteristics of binding sites to their druggability.
Methods such as SiteScore [ 32 ], DoGSiteScorer [ 36 ] and Pock- 
Drug [ 38 ], are based on the shape and physicochemical char- 
acteristics of binding sites. Drug-like density (DLID) [ 33 ] and 

DrugFEATURE [ 37 ] are statistical methods which utilize the 
frequency of drug-like pockets surrounding a target pocket 
of interest and the similarity of the binding pocket micro- 
environment to known druggable pockets, respectively, to de- 
rive the scoring function. Rule-based methods utilizing a com- 
bination of physicochemical properties, such as pocket vol- 
ume, pocket depth, hydrophobicity, enclosure, and percent- 
age of charged residues, has also been proposed to identify 
druggable binding pockets [ 35 ]. All the above methods utilize 
standard datasets such as the non-redundant druggable and 

less druggable (NRDLD) binding sites [ 34 ] to train and / or 
validate their performance. 

Similarly, to predict the druggability of RNA targets, only 
two methods have been developed so far: DrugPred_RNA 

[ 39 ] and RNACavityMiner [ 40 ]. Both DrugPred_RNA and 

RNACavityMiner are binding site-level methods. However,
due to the paucity of non-redundant RNA-small molecule 
complex structures, the generalizability of existing methods 
to novel RNA structures has not been extensively validated.
Specifically, it is necessary for an RNA-specific druggability 
prediction method to generalize equally well to apo struc- 
tures, given the magnitude of conformational change expected 

upon ligand binding to the RNA, as in the case of riboswitches 
[ 42 , 43 ]. 

Considering all these constraints, a new structure-based 

model, D ruggable R NA- Li gand binding P ocket S elector ( DR- 
LiPS ), is developed in this paper to predict binding site-level 
druggability of any given RNA target. The model is trained 

on a non-redundant dataset of RNA-small molecule com- 
plexes from PDB, augmented with a negative dataset obtained 

through a consensus from three parallel binding site sampling 
strategies. Multiple machine learning methods were tested and 

tuned, among which a support vector machine (SVM) method 

with sigmoid kernel was chosen as the final model. An ex- 
ternal blind test dataset was also curated to showcase the 
model’s generalizability to both empirical and modelled apo 

state RNA structures. 
The results indicate that if the root mean square deviation 

(RMSD) between apo and holo state backbones is within 3 Å,
the method can reliably prioritize binding sites for both states 
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f the RNA. Upon analyzing the effect of single point mu-
ations on model predictions, it was found that the DRLiPS
ruggability score captures the increase in promiscuity of the
inding pockets post mutation in several cases. However, the
odel could not capture the effect of distal site mutations on

he druggability of the cognate binding pocket, as in the case
f SAM-I riboswitch [ 44 ]. In summary, the analysis indicates
hat the features selected for building the model generalize
ell to both empirical and modelled RNA structures in apo

nd holo states. The model also predicts the effect of binding
ite single point mutations on druggability, which could aid in
ptimizing small molecule binding sites in synthetic RNA ap-
amers [ 45 ]. The DRLiPS model can be accessed for prediction
t https:// web.iitm.ac.in/ bioinfo2/ DRLiPS/ . 

aterials and methods 

ositive binding site dataset curation 

he experimentally determined structures of 1073 RNA-
mall molecule complexes were curated from PDB (as of
 June 2024) [ 46 ]. The structures were processed to re-
ove cases where the small molecules are stabilizers of RNA

tructure, such as spermine [ 47 ], or when no other small
olecules except ions are present, such as the fluorine and
anganese riboswitches. Further, structures containing syn-

hetic RNA aptamers were also pruned to account for only
aturally occurring RNA targets with established role in
isease-associated pathways. After pruning, a dataset of 861
NA-small molecule complexes were obtained, which were

urther sub-divided into ribosomal and non-ribosomal RNA
omplexes. While multiple antibiotic binding sites have been
bserved within the ribosome, the aminoacyl site (A-site) in
he small subunit is the primary druggable site for antibiotic
ecognition and functional modulation [ 48 , 49 ]. Hence, out
f the ribosomal RNA complexes, 51 complexes containing
nly the A-site of prokaryotic and eukaryotic ribosomes were

ncluded with the non-ribosomal RNA complexes, to obtain a
nal set of 399 structures as the positive binding site dataset.
t is also notable that, all the unique small molecules in com-
lex with the positive dataset are present either in the Drug-
ank database [ 50 ] or the ChEMBL database [ 51 ] of drug-like
mall molecules. 

From the dataset of 399 structures, the experimentally ob-
erved binding site residues were extracted using a distance
ut-off of 6.5 Å between all nucleotide-small molecule heavy
tom pairs, following the sc-PDB [ 52 ] convention. Any water
olecules and ions present within the distance cut-off were

lso extracted for every binding site. Structures containing
ultiple copies of the small molecule, such as the NAD + Class

I riboswitch [ 53 ], contributed more than one binding site to
he dataset. To account for the dynamics of RNA structure in
olution, unique druggable binding sites were extracted for ev-
ry structure model deposited from NMR experiments. This
ccounts for the differences in binding site residue confor-
ations observed between NMR models upon binding the

mall molecule in solution ( Supplementary Section S1 and
upplementary Fig. S1 ). Detailed statistics about the positive
ataset is provided in the ‘Results and discussion’ section. 

esolving redundancy in the positive dataset 

rom the curated positive dataset, multiple RNAs were ob-
erved with the same cognate binding site capable of interact-
ing with multiple ligands with different affinities, such as the
interaction between guanine riboswitch and purine analogs.
To resolve this redundancy in the binding sites, initially the
RNA targets were clustered based on their Rfam family as-
signment [ 54 ]. The Rfam family for each RNA target was
identified through the Infernal cmscan program [ 55 ], with
the PDB-derived RNA sequence as the input. The remaining
PDB structures were subject to manual classification based on
the structure title and structure-associated literature. In con-
trast, multiple different binding sites for the same cognate lig-
and were also observed for the same RNA target, such as the
tetrahydrofolate (THF) riboswitch. In these cases, each bind-
ing site of the RNA was considered unique to account for the
differences in their binding microenvironments [ 37 ]. For ev-
ery Rfam family in the positive dataset, the PDB structures
with druggable binding sites were collected and the average
value of each feature was computed for the family. In case
of NMR structures, the features were first computed for each
model and the average feature vector was used for the training
dataset. The distributions of each averaged feature obtained
for the positive dataset were extensively compared with that
of the negative dataset to understand if they are significantly
different (based on Kolmogorov–Smirnov test with P < 0.05).

Negative binding site dataset curation 

An extensive literature survey revealed the unavailability of
a standard negative dataset for ligandability or druggability
prediction at binding site level for RNA targets. To address
this gap, three strategies were developed, drawing on existing
approaches for curating negative datasets for protein drugga-
bility prediction [ 19 ], as explained below. 

(a) Bac kbone motif searc h f or non-selective binding sites :
Based on studies probing the prominent intermolec-
ular interactions observed in experimental RNA-
small molecule complexes, backbone–ligand interac-
tions have been shown to account for less than 10% of
ligand selectivity to the RNA target [ 56 ]. To leverage
this aspect, a comprehensive backbone motif search
was performed using the PRIMOS pseudo-torsion
matching program [ 57 ], with a database of input RNA
backbones constructed using the positive binding site
dataset. Any backbone matches obtained with less than
2.5 Å RMSD, containing at least four residues, and in-
volving pairs of unrelated RNA families, were consid-
ered to be potential negative binding sites for drugga-
bility prediction. This can also be justified by the ob-
servation that, successful target engagement could not
be translated to functional modulation in several pre-
vious studies [ 58–62 ] on small molecular inhibition of
RNA targets, indicating that selectivity is more impor-
tant than binding, to successfully inhibit downstream
function of the RNA involved. 

(b) Exhaustiv e pock et prediction : All possible non-
overlapping binding sites present in apo RNA struc-
tures were extracted using the fpocket prediction pro-
gram [ 63 ]. Overlap between two binding sites is de-
fined based on the number of residues matching be-
tween the two sites. In this study, a cut-off of 90%
match is used to resolve redundancy. This approach
has also been previously followed by several studies on
protein druggability prediction [ 32 , 33 , 39 , 40 , 64 ]. 

https://web.iitm.ac.in/bioinfo2/DRLiPS/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf239#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf239#supplementary-data
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(c) All-to-all flexible blind docking : To emulate the neg-
ative binding sites defined based on NMR fragment
screening assays and high-throughput screening in pre-
vious studies [ 29 , 31 , 65 , 66 ], all unique RNA-binding
ligands were docked to every unique RNA target in a
blind fashion using the NLDock program [ 67 ]. Since in
blind docking, the search space is set to the complete
RNA structure, the same ligand can interact with mul-
tiple different binding sites in the structure. A maxi-
mum of 10 unique binding sites were sampled per RNA
target through the flexible blind docking approach. 

In summary, fpocket is designed for binding pocket predic-
tion in proteins but can also detect geometric pockets in RNA,
though it does not account for RNA-specific interactions. NL-
Dock, used for all-to-all flexible blind docking, is specifically
applicable to RNA-ligand docking. But it does not capture the
druggable binding sites effectively ( Supplementary Table S7 ).
Consequently, the predicted binding pockets are likely less
druggable and can be regarded as negative binding sites.
The potential negative binding sites predicted by each of the
above three approaches were combined. To resolve redun-
dancy within the combined dataset, binding site overlap was
calculated between all pairs of sites, and one copy of each re-
dundant site was retained. 37, 6777 and 419028 sites were
obtained from backbone motif search, exhaustive pocket pre-
diction and all-to-all flexible blind docking, respectively. The
total number of negative binding sites amounted to 425 842.
Overlap analysis within the negative dataset, with a 70%
residue overlap criterion to define high similarity, resulted in
a dataset of 3 947 negative binding sites. A large number of
binding sites were carefully omitted in this manner to make
sure that the negative binding sites do not actually have high
druggability. These sites were finally compared with the set
of 819 redundant positive binding sites resulting in 92 non-
redundant negative binding sites. The process of obtaining the
92 negative sites is illustrated in Supplementary Fig. S2 and the
complete workflow is provided in Fig. 1 . 

Calculation of binding site features 

A total of 69 structure-based features were curated based on
literature survey for representation of binding sites to facili-
tate machine learning [ 39 , 68–70 ]. They were computed for
every binding site in the positive and negative datasets. These
features were grouped into seven feature types: composition,
pharmacophore, surface area, principal moments of inertia
(PMI) (shape), roughness, torsions of binding site residues,
and sugar puckering. The unique features calculated for each
feature type are tabulated below (Table 1 ). 

The pharmacophore-based features were calculated for ev-
ery atom of the four standard nucleotides (A, C, G, U) us-
ing the PATTY atom-typing nomenclature [ 68 ] implemented
in RDKit. The accessible surface area features were computed
using the NACCESS program [ 71 ] and FreeS AS A module [ 72 ]
in BioPython [ 73 ]. The formulae for computing the PMI de-
scriptors were obtained from the DrugPred_RNA study [ 39 ]
(equations 1–4). The four grid spacing cut-offs (0.4, 0.8, 1.6,
and 3.2) for roughness calculation were considered based on
a previous study [ 69 ], where roughness was used as an indica-
tor to predict protein-ligand binding sites from structures. The
binding site torsions and sugar puckering parameters were
obtained from the 3DNA web interface [ 70 ]. The other fea-
tures were computed using custom python scripts based on
the BioPython package. 

Asphericity = 

0 . 5 ∗ ( PM 3 − PM 1 ) 2 + ( PM 3 − PM 2 ) 2 + ( PM 3 − PM 1 ) 2 

P M 1 

2 + P M 2 

2 + P M 3 

2 

(1) 

Eccent ricit y = 

√ 

P M 3 

2 − P M 1 

2 

PM 3 

2 
(2) 

Spherocityindex = 

3 ∗ PM 1 

PM 1 + PM 2 + PM 3 

(3) 

Inert ialshape fact or = 

PM 2 

PM 1 ∗ PM 3 

(4) 

where, PM1, PM2, and PM3 correspond to the three PMI 
of the point cloud of atoms belonging to the binding site 
residues. 

Development and evaluation of the binding site 

druggability prediction model 

The problem of binding site druggability prediction was cast 
as a binary classification problem, with the positive binding 
sites assigned to class 1 and negative binding sites assigned to 

class 0. The probabilities from the classification model were 
used to prioritize multiple binding sites present within the 
same RNA target [ 32 , 33 ]. To finalize the features for pre- 
dicting the druggability of a binding site, a forward feature 
selection approach was employed based on our previous study 
[ 74 ]. This approach enabled identification of feature combina- 
tions with no inter-feature correlation or multicollinearity, re- 
sulting in optimal model performance. Multiple different clas- 
sification methods available in the scikit-learn python package 
[ 75 ] were tested, which include SVM, discriminant analyses 
(LD A and QD A), gaussian processes, tree-based methods, and 

boosting methods. Partial area under the ROC curve (pAUC) 
score and F1-score were used as metrics to quantify the model 
performance. 

Stratified 10-fold cross validation was performed for eval- 
uating the feature combination identified during model train- 
ing. The best feature combination obtained was also used to 

predict the druggability of an external blind test dataset of 
binding sites. A detailed discussion about the external test 
dataset is provided in the ‘Results and discussion’ section.
SHAPley analysis [ 76 ] was performed for model explainabil- 
ity, and the SHAP scores were extracted to rank the selected 

features according to their contribution to model predictions.
Multiple case studies were performed to understand the signif- 
icance of the features selected, potential of the model to gen- 
eralize to apo structures and capture the effect of mutations 
on the druggability of the binding site. 

Results and discussion 

Statistics of the RNA-small molecule binding site 

datasets 

A total of 819 binding sites were extracted from the unique 
chains of 399 RNA–ligand complex structures finalized for 
curation of the positive dataset, as explained in the Meth- 
ods section. These binding sites were clustered based on 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf239#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf239#supplementary-data
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Figure 1. A schematic of the w orkflo w f ollo w ed f or de v elopment of the DRLiPS model including ( A ) positiv e and negativ e dataset curation and ( B ) 
binding site featurization and model de v elopment.. 
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on-redundant positive binding sites as detailed in the next
ection and Supplementary Table S2 . To confirm the non-
edundancy of the dataset after clustering, the binding site
imilarity was quantified for all binding site pairs using RM-
core [ 77 ]. The resultant RMscore distributions clearly indi-
ate a significant decrease in similarity between binding sites
fter clustering, which confirms the non-redundancy of the
ataset ( Supplementary Fig. S4 ). 
The number of druggable binding sites per RNA in the posi-
tive dataset ranged from 1 to 5. The pocket size in terms of the
number of binding site residues ranged between 4 and 30 in
both the positive and negative datasets, with an average of 14
residues in the positive dataset and 10 residues in the negative
dataset. The average volume of the binding sites was found
to be 400.80 Å3 in the positive dataset, and 398.66 Å3 in the
negative dataset. This shows that the negative dataset sam-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf239#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf239#supplementary-data
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Table 1. Se v en str uct ure-based feat ure types used to represent the RNA- 
small molecule binding sites curated in this study 

Feature type Features 
Feature 
count 

Composition A, C, G, U, Purines, Pyrimidines, 
T otal atoms, T otal heavy atoms, 
Total residues 

9 

Pharmacophore HBA, HBD, Cation, Anion, Polar, 
Hydrophobic, Others 

7 

Surface area Molecular surface area, Polar 
surface area, Non-polar surface 
area, Relative solvent accessible 
surface area (S AS A), Relative polar 
S AS A, Relative non-polar S AS A, 
Pocket depth 

7 

Principal moments 
of inertia (Shape) 

PMI1, PMI2, PMI3, NPR1, NPR2, 
Asphericity , Eccentricity , Spherocity 
index, Inertial shape factor 

9 

Roughness R_0.4, R_0.8, R_1.6, R_3.2 4 
Torsions of 
binding site 
residues 

Backbone torsions : alpha, beta, 
gamma, delta, epsilon, zeta, e_z, chi, 
phase_angle, ssZp, Dp, splay 

12 

Pseudo-torsions : eta, theta, eta’, 
theta’, eta”, theta”

6 

Sugar torsions : v0, v1, v2, v3, v4, 
tm, P 

7 

Nucleotide type 
and sugar 
puckering 

Sugar type : C3’ endo, C2’ endo, C3’ 
exo, C2’ exo Pucker type : C3’ endo, 
C2’ endo, C3’ exo, C2’ exo 

8 
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pling strategy could successfully mimic the positive dataset in
terms of the pocket size and volume, while other features such
as surface area, composition, and pharmacophore can provide
discrimination between the two sets. 

RNA target families represented in the positive 

dataset 

As discussed in the ‘Materials and methods’ section, the In-
fernal cmscan program [ 55 ] was used to identify the Rfam
family assignments for the PDB structures present in the pos-
itive dataset. A total of 26 Rfam families could be mapped to
the positive dataset, covering 225 (56.39%) of the 399 PDB
structures. From the mapping exercise, it was noted that sev-
eral popular Rfam families such as the 2 

′ -deoxyguanosine ri-
boswitch (RF01510), Pre-Q1 Class I riboswitch (RF00522),
Guanidine Class II riboswitch (RF01068) etc., had only seed
alignments deposited in Rfam, without any mapping to the
PDB structures. In some cases, such as the recently discov-
ered NAD + Class II riboswitch, Rfam families are yet to be
defined. To account for these missing structures in the Rfam
family assignments, the remaining 174 structures were manu-
ally assigned into one of 20 families, based on the deposited
structure title and author-derived classification of the RNA
target. Three of these 20 families (purine riboswitch, FMN
riboswitch and S AM / S AH riboswitch) were found to have
additional structures available in PDB, which are yet to be
mapped in Rfam. Finally, all the 399 PDB structures could
be assigned to one of 46 RNA target families provided in
Supplementary Table S2 . These 46 families were further sub-
divided to account for the presence of multiple different bind-
ing sites in the same RNA target, resulting in a total of 54
binding site families. For example, the prokaryotic riboso-
mal A-site family was sub-divided into five binding site fam-
ilies, to account for five different binding sites observed from
ligand-bound PDB structures. The exact PDB structures cor- 
responding to each RNA target family are provided in the 
Supplementary Table S1 . 

Details of the external blind test dataset 

The external blind test dataset consists of empirical and mod- 
elled apo structures of RNA targets whose druggability has 
been verified. It consists of 15 positive and 70 negative bind- 
ing pockets from the S AR S-CoV-2 genomic elements and pre- 
miR-21 onco-miRNA. The S AR S-CoV-2 genome has more 
than 60 structured elements [ 78 ] available in both the coding 
(ORF1ab) and non-coding regions (5 

′ - and 3 

′ -UTRs). How- 
ever, the empirical druggability scores are available for only 
11 prominent structured elements in the RNA genome [ 66 ],
which are included in the test dataset ( Supplementary Table 
S3 ). While a few of the prominent regions of the S AR S-CoV- 
2 genome such as the ribosomal frameshifting element and 

stem-loop 2 (SL2) have crystal structures available in PDB,
most of the genomic regions still remain unresolved. Hence,
the tertiary structures of other RNA regions were taken from 

a genome-wide modelling study [ 79 ]. The positive binding 
pocket within the pre-miR-21 structure was identified from 

another study [ 80 ]. Additional negative binding pockets for 
each RNA target were sampled using the fpocket program.
The similarity between pockets present in training dataset 
and external test dataset was also quantified using RMscore 
( Supplementary Fig. S7 ), which showed that ∼93% of the 
binding sites in the training set have less than 70% similarity 
to the test set. Further, three datasets were constructed from 

the test dataset with different RMscore cut-offs (0.7, 0.6, 0.5),
which have 79, 62, and 25 data points, respectively, to evalu- 
ate the performance of the method. 

Features chosen for the DRLiPS model 

The SVM classifier with sigmoid kernel was chosen as the fi- 
nal model for druggability prediction. Normalization of the 
features between 0 and 1 using the scikit-learn MinMax nor- 
malization procedure yielded better results than using the un- 
normalized data for model development. The final set of six 

binding site features used to build the SVM model are: Hy- 
drogen bonding ( HBA ) (No. of hydrogen bond acceptors), C 

(No. of Cytosines), e_z (epsilon-zeta backbone torsion angle),
alpha (backbone torsion angle), st_C2’_endo (No. of sugars 
in the backbone with C2’-endo puckering), and mol_sa (ac- 
cessible surface area). The distributions of these features in 

the positive and negative binding sites present in the training 
dataset are provided in Supplementary Fig. S8 . 

Interpretation of feature importance through 

SHAPley analysis and Principal Component 
analysis 

SHAPley analysis is a popular approach to understand the 
contribution of each feature to model predictions, at both sin- 
gle data point-scale and complete model-scale. The analysis 
results in positive and negative scores for each feature, which 

are used to rank them in descending order of their impor- 
tance to the model. For the SVM model with Sigmoid kernel,
hereafter referred to as the DRLiPS model, SHAP analysis in- 
dicates that the feature categories contribute to druggability 
prediction in the following order: pharmacophore > compo- 
sition > torsion > nucleotide type > surface area. Upon com- 
parison of the distribution of the six features of the model be- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf239#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf239#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf239#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf239#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf239#supplementary-data
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Figure 2. Distribution of SHAP values for the top 6 features with highly druggable and less druggable binding pockets. The distribution of SHAP values 
shows clear separation between the two types of binding pockets above and below zero SHAP value (dashed line). 
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ween the positive (highly druggable) and negative (less drug-
able) binding sites ( Supplementary Fig. S3 ), HBA, C and
ol_sa provide a clear discrimination in the feature distribu-

ion. Although the e_z, st_C2’_endo and alpha distributions
verlap significantly between the two datasets, the positive
istribution is multimodal in all three cases, compared to the
nimodal negative distributions. Further, an ablation study in-
olving the overlapping features showed that the model per-
ormance gradually improves with the addition of these fea-
ures ( Supplementary Table S11 ). In this way, all six features
ere found to be differentially distributed between the pos-

tive and negative datasets, justifying their selection for the
nal feature combination (Fig. 2 ). 
The importance of these six features for predicting highly

ruggable binding sites in RNA is discussed below. 

• Hydrogen bond acceptor count (HBA) : HBA has been
reported in several studies [ 39 , 45 , 56 , 81 , 82 ] to influ-
ence RNA-small molecule recognition significantly 

• C2’-endo sugar puckering (st_C2’_endo) : C2’-endo
pucker is a sugar conformation in RNA structures, most
commonly observed upon interaction with ligands. Nu-
cleotides with C2’-endo sugar puckering (st_C2’_endo)
have been previously shown to function as rate-limiting
molecular switches in RNA conformation, due to their
slow dynamics, which can potentially stabilize the RNA–
ligand interactions [ 27 , 48 , 83 ]. Further, druggable (pos-
itive) binding sites show a higher prevalence of nu-
cleotides with C2’-endo puckering than less druggable
(negative) binding sites [ 83 ]. Interestingly, even apo RNA
structures with nucleotides adopting the rare C2’-endo
pucker were found to be involved in RNA–ligand inter-
actions, with the puckered nucleotide in direct contact
with the ligand [ 27 ]. 

• Epsilon-Zeta (e_z) and alpha torsion angles : Epsilon and
zeta (e-z) are the most varying torsion angles of the RNA
backbone, which enable backbone bending and stabi-
lization in functionally important non-canonical RNA
structures [ 84 ]. When modeling RNA–ligand interac-
tions through docking, RNA backbone rotamers are ex-
tensively varied to capture the possible binding modes
of RNA with the ligand [ 85 ]. Diverse conformational
sampling by RNA backbone has also been implicated
in slower association of ligand to binding pockets in
RNA [ 86 ], highlighting the necessity to incorporate RNA
backbone torsions during druggability prediction. 

• Cytosine count (C) : Cytosines present in RNA bulges
have been shown to be crucial for recognition by small
molecular probes [ 87 ]. Specifically, the number of cy-
tosines and their pattern of distribution in RNA has
been shown to impact the downstream effects of small
molecule binding [ 87 ]. It is also notable that the pres-
ence of repeated cytosines in the binding site can encode
disease-association of the RNA, as observed in repeat ex-
pansion diseases [ 88 ] and cancers [ 89 ]. 

• Molecular surface area (mol_sa) : Surface area measures
the solvent accessible region available in a given RNA
structure for interaction with other biomolecules. Exist-
ing studies indicate that, surface area can be effectively
used to quantify RNA conformational changes [ 90 , 91 ],
predict interaction hotspots [ 92 ], and predict the func-
tional role of RNAs [ 93 ]. 

Further, we have examined the importance of selected fea-
tures through Principal Component Analysis (PCA) with in-
cremental addition of features based on the magnitude of vari-
ance captured by them, as inferred from the PCA loading ma-
trix (Table 2 ). Based on a comparison of all pairs of principal
components obtained from PCA, the first (PC1) and second
(PC2) component pairs could provide the best separation be-
tween the highly druggable and less druggable binding sites
(Fig. 3 A). Next, the loading matrix was modified such that,
only the top 2 features in PC1 and PC2 were retained (HBA
and C in PC1; st_C2’_endo and e_z in PC2), and the rest of

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf239#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf239#supplementary-data
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Table 2. Loading matrix obtained from the PCA analysis on the training dataset. The maximum loading value observed for each feature is highlighted in 
bold 

Feature / PC PC1 PC2 PC3 PC4 PC5 PC6 

mol_sa − 0 .144707 0 .164 159 0 .350 680 − 0 .025131 0 .018 847 0 .019 526 
C 0 .401 512 − 0 .130619 0 .113 708 0 .065 983 0 .106 761 − 0 .099410 
st_C2’_endo 0 .188 261 0 .321 204 − 0 .062 192 − 0 .145227 − 0 .037328 − 0 .090249 
e_z 0 .014 425 0 .254 960 − 0 .096534 0 .086 991 0 .178 147 0 .066 096 
alpha − 0 .049456 0 .160 462 0 .000 006 0 .227 291 − 0 .114201 − 0 .061037 
HBA 0 .440 628 0 .045 362 0 .041 285 0 .016 334 − 0 .093795 0 .126 542 

Figure 3. ( A ) Plot between PC1 and PC2 before modification of the loading matrix. The plot shows a clear separation between the binding site classes; 
( B ) Plot after retaining only the loading values for HBA and C features in PC1, and for st_C2’_endo and e_z features in PC2. The plot still shows clear 
separation between the two classes for the training dataset; ( C ) Plot after overlaying the test data points after transformation with the modified loading 
matrix. The decision boundary between the two classes of binding sites is shown in each plot as a dashed line. 
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the feature loadings were set to zero. When the training and
test datasets were transformed using the modified loading ma-
trix, it was observed that the PC1 versus PC2 plot could still
provide good separation between the two classes of binding
sites (Fig. 3 B). When the test data points were overlaid on the
plot, a clear separation could still be observed between the two
classes (Fig. 3 C). From this analysis, it was observed that the
features identified by the ML model development were also
the features that capture maximum variance in the training
dataset. The order of feature importance as inferred by their
maximum PCA loading value was found to be: HBA (PC1) >
C (PC1) > st_C2’_endo (PC2) > e_z (PC2) > alpha (PC2) >
mol_sa (PC3). Except the positions of e_z and alpha features,
the order of feature importance derived from PCA is in good
agreement with the results from SHAP analysis. This indicates
that PCA can also be used to explain the feature contribution
in an ML model, with a much lower computational cost com-
pared to SHAP analysis. 

Comparison of model performance with existing 

methods 

The model developed in this study can be compared to the
DrugPred_RNA method [ 39 ] and RNACavityMiner method
[ 40 ]. DrugPred_RNA model is trained using the NRDLD
dataset of druggable proteins, and the descriptors identified
are applied to RNA druggability prediction. The descriptors
are computed using a superligand of the binding site of in-
terest, which is the negative space occupied by a dataset of
diverse ligands docked to the site. RNACavityMiner takes
the RNA 3D structure in PDB format as the input and pre-
dicts all possible binding pockets using a custom spacefill al-
gorithm. Five different ML models (MLP, XGBoost, Random 

forest, ExtraTrees and Logistic regresssion) are used to score 
each predicted binding pocket and their consensus score is 
also provided as output. For this comparison, the consensus 
score predicted by the program was extracted and predictions 
for different pocket overlap percentages were compared to 

the ground truth druggability classes ( Supplementary Table 
S4 ). It must be noted that while DrugPred_RNA, RNACav- 
ityMiner and DRLiPS have been tested with the same ex- 
ternal test dataset, the training dataset of DRLiPS contains 
additional RNA structures compared to both the methods,
since it is based on the latest PDB release. Even with a re- 
laxed cut-off of 50% overlap of residues between the pre- 
dicted and observed pockets, the RNACavityMiner method 

could only achieve an F1-score = 0.15, Precision = 0.09,
Specificity = 0.058, Recall = 0.45, and pAUC = 0.47. In case 
of DrugPred_RNA, the superligands were generated for each 

binding site present in the external test dataset, by docking 
a carefully chosen set of diverse ligands from their dataset.
The best performance metrics achieved were: F1-score = 0.15,
Precision = 0.13, Specificity = 0.95, Recall = 0.13, and 

pAUC = 0.54 ( Supplementary Table S10 ). In comparison, DR- 
LiPS achieves an F1-score = 0.70, Precision = 0.61, Speci- 
ficity = 0.898, Recall = 0.73, and pAUC = 0.75 on the same 
external test dataset ( Supplementary Table S3 ). 

Further, three blind test sets were constructed by con- 
sidering different RMscore cut-offs (0.7, 0.6, 0.5) and re- 
taining only the dissimilar binding sites for the test dataset 
( Supplementary Section S2 ). The performance of DRLiPS 
model was evaluated on these three blind test sets and the 
results are provided in the Supplementary Table S6 . On the 
0.5 RMscore cut-off test set, the model was able to achieve 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf239#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf239#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf239#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf239#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf239#supplementary-data
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Table 3. Performance of various classification methods for RNA binding site druggability prediction. The partial A UC (pA UC) scores were obtained by 
truncating the ROC curve at 0.2 FPR (false positive rate), which translates to more than 80% specificity 

Model 
No. of 

features 
Training 
pAUC 

Training F1 
score 

Stratified 10-fold 
CV pAUC 

Stratified 10-fold 
CV F1 score 

Test set 
pAUC 

Test set 
F1-score 

SVM (Sigmoid kernel) 6 0 .61 0 .72 0 .64 0 .73 0 .75 0 .70 
SVM (RBF kernel) 4 0 .85 0 .90 0 .80 0 .86 0 .48 0 .17 
Gaussian Naïve Bayes 5 0 .80 0 .86 0 .80 0 .82 0 .48 0 .15 
Decision Tree 5 1 .0 1 .0 0 .77 0 .78 0 .53 0 .23 
AdaBoost 4 1 .0 1 .0 0 .73 0 .80 0 .47 0 .13 
Random Forest 4 1 .0 0 .96 0 .80 0 .83 0 .50 0 .18 
Gradient Boosting 3 1 .0 1 .0 0 .80 0 .79 0 .56 0 .41 
XGBoost 3 0 .93 0 .94 0 .82 0 .82 0 .63 0 .43 
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 pAUC and F1-score of 0.95 and 0.94, respectively. The
odel is able to generalize well to binding sites with incre-
entally high dissimilarity to the training set as indicated
y the performance metrics. This shows that DRLiPS can be
ompared to the DrugPred_RNA method [ 39 ] and RNACav-
tyMiner method [ 40 ]. DrugPred_RNA model is trained us-
ng the NRDLD dataset of druggable proteins, and the de-
criptors identified are applied to RNA druggability predic-
ion. The descriptors are computed using a superligand of the
inding site of interest, which is the negative space occupied
y a dataset of diverse ligands docked to the site. RNACav-
tyMiner takes the RNA 3D structure in PDB format as the
nput and predicts all possible binding pockets using a cus-
om spacefill algorithm. Five different ML models (MLP, XG-
oost, Random forest, ExtraTrees and Logistic regresssion)
re used to score each predicted binding pocket and their
onsensus score is also provided as output. For this compar-
son, the consensus score predicted by the program was ex-
racted and predictions for different pocket overlap percent-
ges were compared to the ground truth druggability classes
 Supplementary Table S4 ). It must be noted that while Drug-
red_RNA, RNACavityMiner and DRLiPS have been tested
ith the same external test dataset, the training dataset of DR-
iPS contains additional RNA structures compared to both

he methods, since it is based on the latest PDB release. In
erms of the time taken for prediction on the external test
ataset, DRLiPS is 120 times faster than RNACavityMiner,
aking it advantageous for integration into target prioritiza-

ion pipelines for RNA-targeted drug discovery. A detailed dis-
ussion on the advantages of using DRLiPS over the existing
ethods is provided in Supplementary Section S3 . 
DRLiPS was also compared with multiple RNA-small
olecule binding site prediction methods [ 94–96 ] on the

ame external test dataset. The results from this analysis
re provided in Supplementary Table S7 . The pAUC scores
chieved by the three methods (MultiModRLBP = 0.51; RN-
site = 0.50; RLBind = 0.50) were much lower in compar-

son with DRLiPS (pAUC = 0.75), indicating that DRLiPS
utperforms these methods on the test dataset. An additional
ataset of 50 empirical RNA structures from PDB (released
fter 1 June 2024) were also curated for further validation
f the model. Upon annotation of the RNA families present
n this dataset, we found that 23 structures (46%) belong to
amilies already present in the training dataset. Among the re-
aining structures, 18 (36%) were synthetic aptamer-small
olecule complexes and 9 (17.6%) were non-coding RNA-

mall molecule complexes involved in human diseases. The
erformance of DRLiPS model on this new test set is pro-
ided in the Supplementary Table S8 . The results show that
the metrics (pAUC = 0.60; Top-3 accuracy = 0.82) obtained
on the new test set are very similar to that obtained during
training (pAUC = 0.61; Top-3 accuracy = 0.87). Hence, the
features utilized in the DRLiPS model are able to general-
ize across widely varying RNA conformations from unseen
RNA targets, including synthetic RNA aptamers and disease-
associated non-coding RNAs. 

Comparison with various machine learning 

methods 

Table 3 summarizes the performance of the different classifi-
cation models for RNA druggability prediction. The receiver-
operating characteristic (ROC) curves for the SVM classifier
are provided in Supplementary Fig. S10 to visualize the per-
formance of the method in comparison with all other methods
considered in Table 3 . Also, the SVM model with Sigmoid ker-
nel was found to outperform all the other machine learning
methods on the external test dataset. 

Generalizability of the model to apo RNA structures

Since the DRLiPS model was trained using only holo struc-
tures of RNA targets from PDB, this case study aims to show-
case the potential of the model when apo structures are used
as input. Through this analysis, the generalization capability
of the model can be tested despite the use of features such
as backbone torsion angles (e_z and alpha), which can vary
extensively upon ligand-binding and result in marked confor-
mational differences between the apo and holo states of the
RNA [ 85 , 86 , 97 ]. Riboswitches have been shown to exhibit
significant conformational change between their ‘on’ (ligand
bound) and ‘off’ (unbound) states, which affects the ability of
the switch to control gene expression downstream [ 98 , 99 ].
A dataset of seven apo-holo riboswitch pairs was constructed
from PDB and the druggable binding pockets were predicted
using DRLiPS for both structures separately. Through bind-
ing pocket residue overlap analysis, matching pockets between
apo and holo structure were identified and ranked. Spearman
rank correlation coefficient was used to compare the ranking
obtained for the overlapping binding pockets, to quantify the
model’s generalizability to apo structures (Table 4 ). 

Based on the analysis, if the variation in backbone confor-
mations between apo and holo states is more than 3 Å, the
model’s generalizability was found to be not very reliable, as
in the case of TPP and PRPP riboswitches (Table 4 ). Interest-
ingly, the backbone RMSD between apo and holo states and
binding pocket rank correlation from DRLiPS were found to
be highly inversely correlated ( r = −0.85). This indicates that,
as the backbone RMSD increases between apo and holo struc-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf239#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf239#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf239#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf239#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf239#supplementary-data
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Table 4. A dataset of 7 apo-holo riboswitch str uct ure pairs from PDB, used to test the generalizability of DRLiPS to apo str uct ures. Backbone RMSD 

v alues w ere obtained from the RNA-align w eb serv er [ 106 ]. T he table also sho ws the agreement in binding pock et ranking f or the o v erlapping pock ets 
between the str uct ure pairs, based on druggability scores computed by DRLiPS web server 

RNA target Apo structure Holo structure 
Backbone RMSD from 

RN Align progr am (Å) 

Spearman’s rank correlation 
between binding pocket ranks 

from DRLiPS 

Adenine riboswitch 5E54 4TZX 2 .57 0 .642 
THF riboswitch Class I 3SUY 3SUX 0 .51 0 .885 
THF riboswitch Class II 7WIA 7WI9 0 .77 0 .8 
TPP riboswitch 8F4O 2GDI 3 .35 − 0 .085 
Pre-Q1 class I riboswitch 6VUH 6VUI 1 .52 0 .8 
HCV IRES Domain IIa 1P5M 2KTZ 3 .17 0 .21 
PRPP riboswitch 6DNR 6DLQ 2 .04 0 .785 
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tures, the agreement between binding site druggability scores
from DRLiPS decreases and vice v er sa . It is also notable that,
multiple recent articles [ 43 , 100 , 101 ] have highlighted the
inability of experimental methods to capture the exact apo
structure of RNA targets in solution, leading to highly sim-
ilar apo and holo conformations in the PDB, which can be
misleading. With availability of better representative apo state
structures of RNA targets from experiments, the true general-
izability of the method can be verified. 

A potential solution to enable druggability prediction for
highly dynamic RNA targets is to train the model with exper-
imentally labelled apo conformations. Although several apo
structures of small molecule-binding RNA are available in
PDB, the binding site annotations are unknown from experi-
mental studies for a majority of them. With the availability of
a larger dataset of experimentally labelled apo-holo structure
pairs with significant dynamics, the positive dataset for drug-
gability prediction can be expanded to improve the model. 

Ability of the DRLiPS druggability scores to capture 

the effect of single-point mutations on small 
molecule binding 

Both active site and distal site mutations in RNAs have been
reported to have significant effects on ligand binding, cataly-
sis and subsequent regulation of cellular functions. To under-
stand if the effect of such mutations can be captured through
the druggability scores from DRLiPS, a dataset of 10 pairs
of wild-type–mutant complexes with experimental structures
and binding affinity (K d ) information were collected from the
R-SIM database [ 102 ]. For these 10 pairs of complexes, the
druggability scores for the cognate binding sites were pre-
dicted using the DRLiPS model and the scores were compared
between the wild-type and mutant to understand the effects
captured by the score (Table 5 ). For each unique RNA tar-
get in this dataset, the inferences arrived based on the score
comparison are also provided below (Table 5 ) and in the
Supplementary Table S5 . 

Based on the above observations, the DRLiPS druggability
score has the ability to clearly distinguish the effects of single-
point mutations on ligand binding. While most of the changes
in predicted score are in agreement with the experimental ob-
servations, some conflicts were found to actually indicate the
potential of the binding site to become more promiscuous to-
wards other analogs of the cognate ligand, and thereby ex-
hibit an increase in their druggability (SAM-VI riboswitch and
Guanine riboswitch). In case of THF riboswitch, a marked de-
crease in the druggability score indicates the highly deleterious
effect of the U25C mutation on the three-way junction binding
site. While the relationship between selectivity and druggabil- 
ity of a binding site has not been explored yet for RNA targets,
there are examples of proteins which exhibit high druggabil- 
ity and low selectivity (high promiscuity), indicating an inac- 
tive catalytic state [ 103–105 ]. The change in DRLiPS score 
between wild-type and mutants can be probed further in this 
regard to understand this aspect better, and arrive at a general 
relationship specific to selectivity of druggable RNA targets in 

future work. 
To understand the sensitivity of the model to mutation 

effects, the mutated structure was obtained using three ap- 
proaches: (i) directly from PDB (experimental), (ii) mutation 

module of Web3DNA [ 70 ] and (iii) mutagenesis module of Py- 
MOL. We observed very low standard deviation in DRLiPS 
scores ( Supplementary Table S9 and Supplementary Fig. S9 ) 
across the different mutant structures, which indicates that 
DRLiPS is a reliable model for prediction of the effect of bind- 
ing site mutations on RNA druggability. At the same time,
the average scores still confirm to the trend shown in Table 5 ,
which is based on a single mutant residue conformation. 

Web server development 

A web server was developed to host the DRLiPS model for 
public usage. Given the 3D structure of an RNA target in 

PDB format, the DRLiPS web server can predict the drugga- 
bility of binding pockets in two modes: ‘Known site’ mode 
and ‘All sites’ mode ( Supplementary Fig. S5 ). The ‘Known 

site’ mode can be used during the following two scenarios: 
(i) the PDB structure has a bound ligand and the druggabil- 
ity needs to be quantified for the ligand-binding pocket, or (ii) 
the user needs to predict the druggability of a specific bind- 
ing site, when the residues involved are known. Under these 
two scenarios, the prediction form can take either the PDB lig- 
and ID (3-letter code), a comma-separated list of binding site 
residues, or a text file containing the binding site residues as 
input. 

The ‘All sites’ mode can be used when the user does not 
have any information regarding the binding site, and would 

like to explore all possible binding sites in the structure. In 

this scenario, the input PDB structure is subject to pocket pre- 
diction using the fpocket program following which, the drug- 
gability of each binding pocket is predicted and reported in the 
Results. DRLiPS also includes the JSmol applet for visualiza- 
tion of multiple binding sites in the input structure in parallel 
( Supplementary Fig. S6 ). The web server was developed with 

HTML, CSS, JavaScript, Bootstrap, PHP, and Python pack- 
ages. It is freely available at: https:// web.iitm.ac.in/ bioinfo2/ 
DRLiPS/. The tutorials page of the web server includes exam- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf239#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf239#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf239#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf239#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf239#supplementary-data
https://web.iitm.ac.in/bioinfo2/DRLiPS/
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Table 5. DRLiPS druggability scores predicted for 10 wild-type – mutant pairs of RNA–ligand comple x es. T he trend in binding affinity for the cognate 
ligand before and after mutation is also provided from the reference for each pair 

PDB ID 

WT 

PDB ID 

mutant Target class a Mutation K d WT (nM) K d mutant (nM) 
K d 

Trend b 
WT 

score 
Mutant 
score 

Agreement with 
experimental studies 

3mxh 3mum c-di-GMP 
riboswitch 

G20A 0.011 0.21 ± 0.07 D 0 .64 0 .63 In agreement 

3mxh 3mur C92U 0.011 15 ± 1 D 0 .64 0 .63 In agreement 
6ck5 6ck4 PRPP riboswitch G96A 2000 ± 300 1 600 000 ± 200 000 D 0 .62 0 .61 In agreement 
3l3c 3g8t glmS ribozyme G33A - - N 0 .61 0 .61 In agreement 
4rzd 6xkn PreQ1 Class III 

riboswitch 
A52G 6.5 ± 0.5 4.0 ± 0.4 I 0 .57 0 .59 In agreement 

4rzd 6xko A84G 6.5 ± 0.5 27.2 ± 1.7 D 0 .57 0 .6 Not in agreement 
2gis 2ygh SAM-I riboswitch G2nA 

(G19A) 
540 ± 250 310 ± 60 I 0 .59 0 .57 Not in agreement 

6las 6lax SAM-VI riboswitch U6C 330 ± 60 460 ± 20 D 0 .54 0 .6 In agreement 
1y27 2b57 Guanine riboswitch C74U 4 ± 3 - L 0 .51 0 .56 In agreement 
4lvv 3sd3 THF riboswitch U25C 18 000 ± 1000 - L 0 .69 0 .59 In agreement 
a WT – Wild-type; GMP – Guanosine monophosphate; PRPP – Phosphoribosyl pyrophosphate; SAM – S-adenosyl methionine; THF – Tetrahydrofolate; G6P – Glucose- 
6-phosphate; FFO – 5-formyl tetrahydrofolate; K d – dissociation constant. 
b D – Decrease in binding affinity for cognate ligand; I – Increase in binding affinity for cognate ligand; L – Total loss of binding affinity for cognate ligand; N – No effect 
on binding affinity for cognate ligand 
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les of usage for the two modes of prediction and the input
le formats supported by the prediction form. 

otential applications for the DRLiPS model 

RLiPS can be utilized in RNA-targeted drug design pipelines
n the following two scenarios: 

• Target identification : Given an RNA target structure,
DRLiPS can be used to find druggable binding sites of
high confidence. The druggability score obtained from
DRLiPS can be used to prioritize potential RNA tar-
gets for further experimental studies. Since the model can
work with apo structures, modelled structures and mu-
tated structures (with mutations present in binding site),
it can be a valuable tool for target identification in early
stages of drug design. 

• RNA optimization : Since DRLiPS can predict the ef-
fect of mutations on the druggability of RNA-small
molecule binding sites, targets with lower druggability
scores can also be computationally optimized to improve
their druggability. However, the mutations suggested by
DRLiPS for RNA optimization should be subject to fur-
ther experimental validation. 

onclusions 

n this study, a model (DRLiPS) for prediction of potential
ruggable binding pockets in RNA structure was developed
sing known RNA-small molecule complex structures from
DB. The features selected for model development could cap-
ure the polar nature of RNA-small molecule binding pockets,
ynamic nature of the RNA backbone during ligand associa-
ion, and the favorable torsions and puckering signifying suc-
essful ligand-binding events. Although the model was trained
nly with holo RNA structures, the model could generalize
ell to apo RNA structures when the conformational varia-

ion was within 3 Å. Consequently, DRLiPS outperforms the
xisting prediction method in the domain on an external test
ataset comprising both apo and modelled RNA structures.
urther, the model could capture the effect of single point mu-
ations on druggability, with promiscuous binding sites pre-
icted to retain high druggability after mutation. However, the
odel could not capture the effect of far-site mutations and
could not distinguish loss of selectivity post-mutation, which
will be addressed in our future studies. The DRLiPS model
has been hosted as a web server for public use and is freely
available at: https:// web.iitm.ac.in/ bioinfo2/ DRLiPS/ . 
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