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Abstract

Automatic diagnosis (AD) represents a piv-
otal area in healthcare, where patient symp-
toms are analyzed for disease diagnosis. Tra-
ditional approaches depend on extracting fea-
tures from symptoms and diseases within col-
lected patient cases. However, real-life patient
data collection poses challenges, often result-
ing in incomplete clinical datasets that can lead
to misdiagnosis, especially for new diseases
or unrecorded symptoms. Recently, retrieval-
augmented large language models (RA-LLMs)
have shown significant promise in addressing
knowledge-intensive Natural Language Pro-
cessing (NLP) tasks. To mitigate reliance on
previously seen data, we propose a two-layer
AD system, termed Dx-LLM, leveraging RA-
LLMs. Dx-LLM first constructs a disease-
symptom knowledge graph from an external
dataset of disease symptom descriptions and
conducts initial disease filtering to identify
potential candidate diseases based on patient
symptoms. Subsequently, in the second layer,
we utilize the robust language understanding
and generation capabilities of LLMs to re-rank
these candidates, thereby producing refined di-
agnostic outcomes. This two-layer approach
reduces the computational load on the second-
layer LLM by narrowing down the disease can-
didates in the first layer. Our results demon-
strate that Dx-LLM achieves hit@ 10 scores of
71.41% and 70.38% across 1058 diseases in
English and Chinese datasets, consistently out-
performing state-of-the-art baselines.

1 Introduction

The rapid development of artificial intelligence (Al)
has been revolutionizing the healthcare industry
and automating a wide spectrum of tasks. One no-
table Al-driven healthcare application is automatic
diagnosis (AD), which applies machine learning
algorithms to help doctors diagnose diseases based
on patient symptoms. Despite substantial progress

in this field, current AD methods depend heav-
ily on the quality and quantity of training data.
It limits their ability to generalize to public pa-
tients, where new diseases or unrecorded symp-
toms can be present. Existing AD methods can
be divided into two main categories: graph-based
and LLM-based approaches. Graph-based meth-
ods model health data into graphs and perform
diagnoses through graph representation learning
(Hosseini et al., 2018; Wang et al., 2021). LLM-
based approaches design domain-specific LLMs to
resolve sub-tasks in the medical domain (Shoham
and Rappoport, 2023; Tu et al., 2024). However,
the graph-based approaches are heavily restricted
by training data, which results in reliable diagno-
sis only for seen diseases and recorded symptoms.
The domain-specific LLMs, though have brought
in rich reliable domain-related knowledge, are not
fine-tuned specially for AD tasks, thus achieving
an inferior performance.

The emergence of Retrieval-Augmented Large
Language Models (RA-LLMs) has introduced new
potential for AD tasks (Brown et al., 2020; Fan
et al., 2024; Zhao et al., 2023), They leverage the
strong language understanding and generation ca-
pabilities of LLMs, addressing issues such as hallu-
cination and outdated information by retrieving reli-
able domain-specific knowledge. Additionally, rich
external resources alleviate the limitations posed by
relying solely on limited patient cases for accurate
diagnosis. However, there are two challenges for
directly applying RA-LLMs to AD tasks:

* First, directly applying RA-LLMs to raw dis-
ease and symptom information for ranking
and inference is computationally prohibitive.
Pre-processing and filtering are necessary to
first curate a quality candidate disease set for
efficient inference;

* Second, retrieving information that accounts
for the varying importance of symptoms is



crucial but challenging. Current methods typi-
cally select relevant information based solely
on semantic similarity, neglecting distinct im-
portance levels of symptoms.

In this paper, we introduce Dx-LLM, a two-layer
multilingual disease diagnosis system powered by
RA-LLMs. Dx-LLM employs a two-tiered ap-
proach to identify relevant diseases based on pa-
tient symptoms. The first layer performs coarse-
grained disease identification using a knowledge
graph constructed from external disease symptom
descriptions. The second layer re-ranks these candi-
dates and refines the diagnostic outcomes using RA-
LLMs. This two-layer mechanism, enhanced by a
Heterogeneous Information Networks (HIN) mod-
ule, is designed to tackle the aforementioned chal-
lenges. First, the HIN module represents the con-
structed knowledge graph via a variational graph
auto-encoder (VGAE) (Kipf and Welling, 2016)
and generates coarse-grained disease candidates,
preventing RA-LLMs from processing all infor-
mation without pre-processing. Second, the HIN
embeddings enable RA-LLMs to thoroughly assess
the relevance of various information, effectively
addressing the different importance levels of symp-
toms. The framework of Dx-LLM is shown in
Figure 1.

Our contributions can be summarized as follows:

* We applied RA-LLMs and constructed a
disease-symptom HIN graph based on the ex-
ternal Mayo Clinic dataset for symptom and
disease representation learning, which over-
comes the reliance on the limited collection
of real-life patient diagnosis data.

* We designed a two-stage diagnosis system
that takes advantage of LLMs’ language un-
derstanding and generation ability while re-
stricting the inference time of LLMs by se-
lecting high-quality candidate diseases after
first-layer graph mining.

* Our proposed Dx-LLM system can real-
ize multi-lingual diagnosis and can achieve
71.41% and 70.38% of hit@10 among 1058
diseases in English dataset and Chinese
dataset correspondingly, and consistently out-
performs other state-of-the-art (SOTA) base-
line models.

2 Related Work

2.1 Al for Automatic Diagnosis

Recent Al-based Automatic Diagnosis (AD) meth-
ods include graph-based approaches and LLM-
based approaches. Graph-based approaches resolve
AD problems by converting the health data into
graph structures. (Hosseini et al., 2018) proposed
Heteromed, which models the high-dimensional
Electronic Healthcare Records (EHRs) data with
Heterogeneous Information Network (Shi et al.,
2016) and applied Graph Convolutional Trans-
former (GCT) (Choi et al., 2019) and attention
Graph Convolutional Networks (GCN) (Hosseini
et al., 2019) to embed the nodes. (Wang et al.,
2021) organized Electronic Healthcare Records
(EHRs) into a heterogeneous graph that can model
interactions among users, symptoms, and diseases
to resolve the cold start problem in GCN. With the
recent development of LLMs, LLM-based AD ap-
proaches have emerged. (Shoham and Rappoport,
2023) proposed CPLLM, which fine-tunes LLMs
with historical diagnosis records, and demonstrates
its superiority in clinical prediction tasks. (Wang
et al., 2023) proposed Coad which introduced a dis-
ease and symptom collaborative generation frame-
work. (Tu et al., 2024) proposed AMIC, which
is a medical knowledge graph based on patients’
transcription data. Different from existing ap-
proaches, Dx-LLM constructs a RA-LLM-based
system, which leverages external knowledge and
LLM’s semantic understanding and generation abil-
ity for efficient and accurate diagnosis.

2.2 Retrieval-Augmented Large Language
Models

Recently, LLMs have demonstrated great poten-
tial in language understanding and generation in
various application fields (Brown et al., 2020; Fan
et al., 2024; Zhao et al., 2023). However, they still
suffer from challenging problems including lack-
ing domain-specific knowledge, hallucination, and
containing out-of-date information. To address this
problem, Retrieval Augmented Generation (RAG)
has been applied to LLMs and promoted a line of
research around Retrieval-Augmented Large Lan-
guage Models (RA-LLM). (Lewis et al., 2020)
improved the pre-trained language model’s per-
formance in knowledge-intensive NLP tasks by
introducing RAG models where the parametric
memory is a pre-trained seq2seq model and the
non-parametric memory is a dense vector index
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Figure 1: The overall framework of Dx-LLM. The content on the left shows the input data, which consists of the
retrieval augmented disease descriptions and the patient symptoms to diagnose. The content at the upper right shows
the first layer of graph mining to select the candidate diseases. The content at the bottom right shows the second
layer of LLM-based diagnosis generation by re-ranking the candidate diseases.

of Wikipedia. (Ram et al., 2023) proposed an in-
context Retrieval-Augmented Language Modeling
(RALM) method that leaves the language model
(LM) architecture unchanged and prepends ground-
ing documents to the input. (Shi et al., 2023) in-
troduced a retrieval-augmented language model-
ing framework that treats LM as a black box and
prepends retrieved documents to the input for the
frozen black-box LM. In our work, we retrieve dis-
ease symptoms knowledge from Mayo Clinics to
avoid the disease knowledge insufficiency intro-
duced by data scarcity.

3 Method

Dx-LLM consists of three parts: (1) RA-LLMs-
based HIN graph generation (Section 3.1), (2) first
layer: graph-based candidate disease generation
(Section 3.2), (3) second layer: LLM-based disease
re-rank (Section 3.3).

3.1 RA-LLMs-based HIN Graph Generation

In the module of RA-LLMs-based HIN Graph Gen-
eration, our objective is to construct a disease-
symptom HIN graph and a patient-symptom HIN
graph. The input data is a set of disease descrip-
tion passages M, and a set of patient symptom
description passages IN. Each item M; in M is
in the format of D; : R;, where D; is the disease
name and R; corresponds to the disease symptom
description passage. All D; forms a disease set
D, where each D; represents a disease node. Each
item NN; in N is in the format of P; : C;, where
P; is the patient id and C} is the corresponding

self-reported symptoms of patient . All F; will
form a patient set P, where each P; represents a
patient node. In our design, we apply RAG to ex-
tract M from Mayo clinics to construct a global
disease-symptom graph. Then we prompt LLMs
to extract the symptom keywords from R; and C;.
Each generated symptom subset Sg, will be added
to the symptom set S”, where S; € SP represents
a unique symptom node that appears in one or more
diseases. Sc, will be added to the symptom set S¥,
where S; € ST represents a unique symptom node
that appears in one or more patients’ symptoms.
Given the disease symptom description passage R;
and the patient’s self-reported symptoms Cj, the
extracted symptoms can be denoted as:

Sr, = LLM(R;) :
Sc; = LLM(Cy) )
We construct two graphs, namely, the disease-
symptom graph G'” and the patient-symptom graph
Gp. GP comprises two sets of nodes, D and Sb.
where D represents diseases and S represents
extracted symptoms for diseases. G comprises
two sets of nodes, P and S*, where P represents
patients and S*’ represents extracted symptoms for
patients. S and S can share common or differ-
ent nodes. The edges in G are represented as E7.
For each (D;, S;) € EP, it indicates disease D;
has the symptom S;, where D; € D, S; € SP Sim-
ilarly, the edges in G are represented as E*". For
each (P;, S;) € EF, it indicates patient P; shows
the symptom Sj, where P, € P,S; € S”. The



procedure of G and G generation is showcased
in Figure 2.
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Figure 2: Knowledge graph generation process. The above
figure shows an example of disease-symptom knowledge
graph generation. The bottom graph shows an example of
patient-symptom knowledge graph generation.

3.2 First Layer: Graph-based Candidate
Disease Generation

We formalize the first layer candidate disease se-
lection module as a similarity ranking task, where
we select diseases with the most similar embed-
ding with the patient as candidate diseases. The
candidate disease generation consists of three steps:
(1) symptom embedding generation module based
on VGAE, (2) disease and patient embedding gen-
eration, (3) disease similarity rank. The overall
process is shown in Figure 3.

VGAE-based symptom embedding generation.
First, we generate the symptom embedding for S
with a disease-symptom graph, which contains an
HIN encoder and an HIN decoder.

HIN encoder. We use AP to denote the adjacency
matrix of G” and XP € RN*F to denote the
feature matrix of G, where the initial XP is the
BERT (Devlin et al., 2018) embedding of the con-
tent in each node D; or S;. We use L layers GCN

as the encoder. In the [*" layer, the hidden state
of GCN is denoted as HY) = GCN® (AP XP),
H® ¢ RV*4_ d, represents the dimension of hid-
den state in the I, layer. H) = X_ The l;, GCN
layer is formulated as

HY = y(AHYWED) (2 <1< L —1),

N ) ) 2
where A = D 2AD™ 2 is the symmetrically
normalized adjacency matrix of A. D is the di-
agonal degree matrix, where Dy = a{ilAkl.
W, € R4*dit1 ig the weight matrix of the [y, layer.
~y is the activation function. In our experiment, we
use Rectified Linear Unit (ReLLU) as the activation
function.

Let Z € RN*T denote the latent matrix, where
T is the dimension of node embedding, z; is the
latent embedding of the i** node. The inference
model can be defined as

N
9(Z|A, X) = [ ] a(z]A, X), 3)
=1

where ¢(zi| A, X) ~ N (zi| i, 0f)
HIN decoder. We utilize linear inner product as
the HIN decoder, which is formulated as:

N N
p(A|Z) = H Hp(Ai,j\Zz', z;), “)

i=1j=1

where p(A; ;|z;,z;) = o(z! 2;), and o(*) is the

(2

logistic sigmoid function.

Disease and patient embedding generation. The
disease and patient embedding is based on symp-
tom embedding. We extract the symptoms for each
disease and patient. Then we average the embed-
ding of contained symptoms to represent the dis-
ease or the patient. Since the symptoms are gener-
ated in the natural language format, not all symp-
toms of patients can have their exact match in the
symptom set .S. Therefore, we apply a fuzzy match
and use the average embedding of symptoms with
the BERT embedding cosine similarity larger than
a threshold, to represent the unseen symptom of a
patient. Suppose zg, is the embedding of symptom
Si, the embedding zp, and zp, for node D; and P;
can be represented as

S(Dl) = {Sl c SD|(DZ,SZ) S ED}

ZD; = avg({ZSj|5j € S(Di)}

S(P) ={S; € ST|(P;,S:)) € ET}

F(S(P)) = {S: € SP|S; € S¥,sim(S;, S;) > B}
zp, = avg({zs;[s; € F(S(F))} s
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Figure 3: The graph-based candidate disease generation process. The left part is the graph construction part.
The middle part is the VGAE-based graph auto-regression process. The right part is a similarity ranking task for

candidate disease selection.

where F'(-) represents the fuzzy match between
symptoms in ST and SP, sim(.) represents the
cosine similarity between the BERT embedding of
Si and S]‘.

Disease similarity rank. After we get the simi-
larity of each S; € SP. D, € D,and P, € P,
we select the candidate disease for each patient
P; based on the cosine similarity rank of diseases,
which is defined as

X Zg ZD.,
stm(P;, Dj) = —————. (6)
|zp, || - ||zD;
3.3 Second Layer: LLM-based disease

re-rank

With LLMs’ superior capability in language under-
standing and generation, after selecting candidate
diseases in the first layer, we feed the patient’s in-
formation and the candidate disease list to LLMs
and prompt LLMs to re-rank the possibility of po-
tential diseases. The prompt of LLM-based disease
re-rank is shown in Figure 4. The final output is
a re-ranked diagnosis disease list from the highest
possibility to the lowest possibility, which can be
represented as:

D tina = LLM (symptom, candidates). (7)

where symptom refers to patients’ symptoms,
candidates refers to the candidate diseases gen-
erated after the first layer filtering.

Second layer: disease re-rank prompt

/

Assume you are a doctor and you need predict )
the patient's potential disease. | will provide you
with the patient's self-described symptoms and
the possible diseases.

Patient's symptoms:

Candidate diseases: {candidate_disease}
Please do the following task: Re-rank the
candidate diseases based on the possibility that

@e patient might catch. )

Figure 4: The prompt for LLM to re-rank potential
diagnosed diseases.

4 Experiment

4.1 Dataset

In our experiment, due to the limited budget of the
LLMs prompt, we only select a subset of the public
dataset for evaluation. For the Chinese dataset, we
apply Google Translate API to translate the content



Table 1: Dx-LLM diagnose performance.

Model name H@l H@10 HE@20 H@50 N@1 N@10 N@20 N@50
Chinese dataset
BERT 0.1579 0.3158 0.3889 0.4678 0.1579 0.2366 0.2552 0.2706
Roberta 0.1520 0.2602 0.2690 0.2953 0.1520 0.2030 0.2051 0.2102
mpnet 0.1725 0.3450 0.3684 0.4415 0.1725 0.2489 0.2548 0.2703
Dx-LLM (1%t layer) 0.0819 0.2924 0.4035 0.6345 0.0819 0.1783 0.2060 0.2515
Dx-LLM (Llama3) 0.2419 0.7064 0.7701 0.7754 0.2419 0.4320 0.4436 0.4452
Dx-LLM (GPT3.5) 0.2322 0.7357 0.7711 0.7807 0.2322 0.4044 0.4191 04331
Dx-LLM (GPT4) 0.2760 0.7038 0.7522 0.7665 0.2760 0.4715 0.4847 0.4883
English dataset
BERT 0.0588 0.2677 0.3286 0.3972 0.0588 0.1555 0.1709 0.1846
Roberta 0.0783 0.2481 0.2884 0.3493 0.0783 0.1617 0.1720 0.1838
mpnet 0.1110 0.2655 0.3025 0.3885 0.1110 0.1822 0.1915 0.2085
Dx-LLM (1%t layer) 0.0566 0.3667 0.5201 0.7008 0.0566 0.1854 0.2239 0.2596
Dx-LLM (Llama3) 0.3003 0.7103 0.7600 0.7804 0.3003 0.4575 0.4676 0.4728
Dx-LLM (GPT3.5) 0.2759 0.6848 0.7591 0.7928 0.2759 0.4534 04710 0.4794
Dx-LLM (GPT4) 0.3854 0.7141 0.7461 0.7842 0.3854 0.5422 0.5496 0.5575

Table 2: Examples of Dx-LLM’s generated diagnosis results.

initial symptoms

Dx-LLM (Llama3)

Dx-LLM (GPT3.5)

Dx-LLM (GPT4)

Chinese dataset

Hello, doctor. My 1. Viral illnesses, such 1. Hand foot and 1. Hand foot and
daughter is 28 as rotavirus or flu, mouth disease, 2. mouth disease, 2. Staph
months old. She 2. Staph infections, Measles, 3. Rubella, infections, 3. Kawasaki
had repeated fever 3. Kawasaki diseas, 4. Scarlet fever, 5. disease, 4. Chicken

for three or four
days last week, with
the highest temper-
ature reaching 39.2
degrees. There are
several herpes on
her left hand, but
not on her right
hand, feet, mouth,
or around the anus.
real disease: hand
foot and mouth
disease

4.  Chicken pox, 5.
Hand foot and mouth
disease, 6. Measles, 7.
Scarlet fever, 8. Rubella,
9. Other infectious
diseases like impetigo,
measles, etc., 10. The
remaining diseases are
less likely given the
provided symptoms, but
I would not rule them
out completely without
further investigation.

Shingles, 6. Smallpox, 7.
Chicken pox, 8. Herpes,
9. Staph infections, 10.
Chronic granulomatous
disease

pox, 5. Scarlet fever,
6. Rheumatic fever, 7.
Flu, 8. X linked agam-
maglobulinemia, 9. Pri-
mary immunodeficiency,
10. Chronic granuloma-
tous disease

English dataset

I’ve been drinking a
lot more water and
going to the bath-
room a lot more of-
ten. My mouth and
throat are always
dry. I’ve been really
hungry and eating a
lot more lately. real
disease: diabetes

1. Diabetes, 2. Diabetic
ketoacidosis, 3. Hyper-
glycemia, 4. Chronic
kidney disease, 5. Poly-
dipsia, polyuria, and
polyphagia can also be
seen in other endocrine
disorders

1. Diabetes, 2. diabetic
ketoacidosis, 3. hyper-
glycemia, 4. dehydra-
tion, 5. hyperparathy-
roidism, 6. h pylori,
7. pancreatic neuroen-
docrine tumors, 8. gas-
troparesis, 9. addisons
disease, 10. systemic
mastocytosis

1. Diabetes, 2. Hyper-
glycemia, 3. Diabetic
ketoacidosis, 4. Dehy-
dration, 5. Chronic kid-
ney disease, 6. Glomeru-
lonephritis, 7.  Addi-
son’s disease, 8. Hyper-
parathyroidism, 9. Pri-
mary immunodeficiency,
10. Sjogren’s syndrome

into English. Disease information data clinics, which contains 1058 types of diseases.

. mayo_clinic_symptoms_and_diseases1: A
disease symptom knowledge base from mayo

Multilingual patient symptom data. For the pa-
tient symptom data, we generate a Chinese test
dataset from 2 Chinese patient-doctor conversation
datasets, and an English dataset from 1 patient-

1http: //huggingface.co/datasets/celikmus/mayo_
clinic_symptoms_and_diseases_v1
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Table 3: Statistics of selected multilingual patient dataset.

1 sum # disease  sum # patient b-dataset di 1 # disease  # patient
anguage types cases sub-datase isease examples type case
hand foot and mouth
Chinese 3 300 DX disease, bronchial asthma 2 200
imes21 pneumonia 1 100
malaria, psoriasis, jaundice,
arthritis, gastroesophageal reflux
disease, chicken pox, urinary
tract infection, cervical spondylosis,
English 19 500 Symptom2Disease typhoid, impetigo, hypertension, 19 500

bronchial asthma, peptic ulcerdisease,
diabetes, common cold,
varicose veins, migraine,
dengue, pneumonia

doctor conversation English dataset. The statistics
are shown in Table 3.

e DX (Chinese) (Xu et al., 2019): A dataset col-
lected from dxy.com where users ask doctors
for medical diagnosis. We select 200 samples
with the disease of "hand foot and mouth dis-
ease" or "bronchial asthma" from this dataset.

e imcs21 (Chinese) (Chen et al., 2023): A
dataset collected from Muzhi2, a Chinese on-
line health community that provides profes-
sional medical consulting services for patients.
We select 100 cases with the disease of "pneu-
monia" from this dataset.

* Symptom2Disease (English): A dataset con-
taining diseases and natural language symp-
tom descriptions from kaggle®. We random
sampled 500 cases from 19 diseases in this
dataset.

4.2 Baseline Models

We compare the Dx-LLM’s performance with three
other LLMs, in which we re-rank the diseases
based on the cosine similarity of the embedding of
the patient’s symptoms and the diseases’ symptom
descriptions.

e BERT (Devlin et al., 2018): A bidirectional
encoder representations from Transformers
are designed to pre-train deep bidirectional
representations from the unlabeled text.

* Roberta (Liu et al., 2019): An improved vari-
ant of BERT that enhances performance in
natural language understanding tasks by op-
timizing the pre-training process with more

2http://muzhi.baidu.com
3http: //www.kaggle.com/datasets/niyarrbarman/
symptom2disease

data, longer training times, and larger batch
sizes.

* Mpnet (Song et al., 2020): A pre-training
model that enhances language understanding
by combining masked and permuted language
modeling techniques to effectively capture
both local and global dependencies in text.

4.3 Metrics

We compare the Dx-LLM’s performance with three
other LLMs, in which we re-rank the diseases
based on the cosine similarity of the embedding of
the patient’s symptoms and the diseases’ symptom
descriptions.

* HIT@K (H@K). Whether any of the top-K
recommended items were in the test set for a
given user.

* NDCG@K (N@K). NDCG is a widely used
metric in information retrieval. It is used to
calculate a cumulative score of an ordered set
of items.

4.4 Setting

In our experiment, we generate 80 candidate dis-
eases among 1058 diseases from the disease knowl-
edge graph after the first layer. We performed the
experiments on three LLMs: Llama3, GPT3.5 and
GPT4. When the size of the candidate disease set
is 100 (in ablation study), we perform the experi-
ment one time for GPT3.5 and GPT4 model due
to the budget limit, and perform experiment three
times for Llama3. When the size of the candidate
disease set is 50 (in ablation study) and 80, we per-
formed the experiment three times and calculated
the average.
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Table 4: Dx-LLM diagnose performance with the candidate disease size of 50.

Model name H@l H@l0 H@20 H@50 N@l N@10 N@20 N@50
Chinese dataset

Dx-LLM (Llama3) 0.1893 0.5853 0.6121 0.6345 0.1893 0.3556 0.3605 0.3666

Dx-LLM (GPT3.5) 0.2239 0.6047 0.6166 0.6345 0.2239 0.3801 0.3870 0.3976

Dx-LLM (GPT4) 0.2477 0.5874 0.6290 0.6345 0.2478 0.4128 0.4244 0.4257
English dataset

Dx-LLM (Llama3) 0.2735 0.6299 0.6645 0.7008 0.2735 0.4402 0.4473 0.4557

Dx-LLM (GPT3.5) 0.2747 0.6264 0.6719 0.7008 0.2747 0.4385 0.4519 0.4597

Dx-LLM (GPT4) 0.3784 0.6550 0.6795 0.7008 0.3784 0.5213 0.5272 0.5317

Table 5: Dx-LLM diagnose performance with the candidate disease size of 100.

Model name H@l H@l0 H@20 H@50 N@l N@10 N@20 N@50
Chinese dataset

Dx-LLM (Llama3) 0.3116 0.7625 0.8039 0.8157 0.3116 0.4667 0.4763 0.4787

Dx-LLM (GPT3.5) 0.2239 0.7743 0.8013 0.8182 0.2239 0.4001 0.4131 0.4248

Dx-LLM (GPT4) 0.2989 0.7267 0.7846 0.8031 0.2989 0.4924 0.5066 0.5115
English dataset

Dx-LLM (Llama3) 0.2971 0.7566 0.7901 0.8193 0.2971 0.4650 0.4724 0.4790

Dx-LLM (GPT3.5) 0.2824 0.7340 0.8171 0.8382 0.2824 0.4598 0.4791 0.4847

Dx-LLM (GPT4) 0.4064 0.7445 0.8159 0.8313 0.4064 0.5677 0.5779 0.5835

4.5 Major Results

We compare the performance of two-layer Dx-
LLM with different SOTA baselines and the 15
layer Dx-LLM. Results are shown in Table 1.

From the result, we can see our proposed Dx-
LLM model can outperform other models con-
sistently. Without using patient cases as train-
ing data, Dx-LLM can make accurate diagnoses
among 1058 different types of diseases. In partic-
ular, the hit@ 10 for both the Chinese dataset and
English dataset can achieve around 70% with multi-
ple LLMs, whereas for other baseline models, most
results are below 30%. The evaluation result shows
a stable performance over patient cases with dif-
ferent languages, which demonstrates Dx-LLM’s
ability to resolve multilingual diagnosis problems.

We showcase examples of top-10 re-ranked di-
agnosis results generated by Llama3, GPT3.5 and
GPT4 when the candidate set size is 80. Examples
are shown in Table 2. As can be seen from the ex-
amples, Dx-LLM can make high quality diagnosis
for all three LLMs. We also notice that Llama3-
based Dx-LLM output have a poor performance in
following output instructions.

4.6 Ablation Study

To see the influence of candidate disease size on
Dx-LLM’s performance, we tested on two other

cases when the candidate size is 50 or 100. The
result when the candidate size is 50 is shown in
Table 4, the result when the candidate size is 50 is
shown in Table 5.

As can be seen from the result, when the can-
didate size is larger, the overall diagnosis perfor-
mance is better. However, even with a candidate
size of 50, the performance can still consistently
outperform SOTA baselines, which shows the su-
periority in Dx-LLM.

5 Conclusion

We proposed Dx-LLM, a two-layer retrieval-
augmented multilingual diagnosis system, that does
not require abundant patient cases as training data
for high performance. Instead, we applied the RA-
LLMs technique to generate a disease-symptom
graph for representation learning. To effectively
utilize LLMs’ understanding and generation abil-
ity, we proposed a two-layer diagnosis, where we
selected the most possible diseases as diagnosis
candidates in the first layer, and then prompted
LLMs to re-rank the potential diseases. Exten-
sive results showed the superiority of Dx-LLM and
demonstrated its ability for multilingual diagnosis.



6 Limitations

In most of our experiments, GPT3.5 and GPT4
are used as the backbone model. Therefore, the
result might be biased with different prompts of
datasets. Besides, our proposed Dx-LLM does
not perform well on distinguishing diseases with
similar symptoms. Future research can work on
this aspect to better improve the performance.
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