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Abstract001

Automatic diagnosis (AD) represents a piv-002
otal area in healthcare, where patient symp-003
toms are analyzed for disease diagnosis. Tra-004
ditional approaches depend on extracting fea-005
tures from symptoms and diseases within col-006
lected patient cases. However, real-life patient007
data collection poses challenges, often result-008
ing in incomplete clinical datasets that can lead009
to misdiagnosis, especially for new diseases010
or unrecorded symptoms. Recently, retrieval-011
augmented large language models (RA-LLMs)012
have shown significant promise in addressing013
knowledge-intensive Natural Language Pro-014
cessing (NLP) tasks. To mitigate reliance on015
previously seen data, we propose a two-layer016
AD system, termed Dx-LLM, leveraging RA-017
LLMs. Dx-LLM first constructs a disease-018
symptom knowledge graph from an external019
dataset of disease symptom descriptions and020
conducts initial disease filtering to identify021
potential candidate diseases based on patient022
symptoms. Subsequently, in the second layer,023
we utilize the robust language understanding024
and generation capabilities of LLMs to re-rank025
these candidates, thereby producing refined di-026
agnostic outcomes. This two-layer approach027
reduces the computational load on the second-028
layer LLM by narrowing down the disease can-029
didates in the first layer. Our results demon-030
strate that Dx-LLM achieves hit@10 scores of031
71.41% and 70.38% across 1058 diseases in032
English and Chinese datasets, consistently out-033
performing state-of-the-art baselines.034

1 Introduction035

The rapid development of artificial intelligence (AI)036

has been revolutionizing the healthcare industry037

and automating a wide spectrum of tasks. One no-038

table AI-driven healthcare application is automatic039

diagnosis (AD), which applies machine learning040

algorithms to help doctors diagnose diseases based041

on patient symptoms. Despite substantial progress042

in this field, current AD methods depend heav- 043

ily on the quality and quantity of training data. 044

It limits their ability to generalize to public pa- 045

tients, where new diseases or unrecorded symp- 046

toms can be present. Existing AD methods can 047

be divided into two main categories: graph-based 048

and LLM-based approaches. Graph-based meth- 049

ods model health data into graphs and perform 050

diagnoses through graph representation learning 051

(Hosseini et al., 2018; Wang et al., 2021). LLM- 052

based approaches design domain-specific LLMs to 053

resolve sub-tasks in the medical domain (Shoham 054

and Rappoport, 2023; Tu et al., 2024). However, 055

the graph-based approaches are heavily restricted 056

by training data, which results in reliable diagno- 057

sis only for seen diseases and recorded symptoms. 058

The domain-specific LLMs, though have brought 059

in rich reliable domain-related knowledge, are not 060

fine-tuned specially for AD tasks, thus achieving 061

an inferior performance. 062

The emergence of Retrieval-Augmented Large 063

Language Models (RA-LLMs) has introduced new 064

potential for AD tasks (Brown et al., 2020; Fan 065

et al., 2024; Zhao et al., 2023), They leverage the 066

strong language understanding and generation ca- 067

pabilities of LLMs, addressing issues such as hallu- 068

cination and outdated information by retrieving reli- 069

able domain-specific knowledge. Additionally, rich 070

external resources alleviate the limitations posed by 071

relying solely on limited patient cases for accurate 072

diagnosis. However, there are two challenges for 073

directly applying RA-LLMs to AD tasks: 074

• First, directly applying RA-LLMs to raw dis- 075

ease and symptom information for ranking 076

and inference is computationally prohibitive. 077

Pre-processing and filtering are necessary to 078

first curate a quality candidate disease set for 079

efficient inference; 080

• Second, retrieving information that accounts 081

for the varying importance of symptoms is 082
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crucial but challenging. Current methods typi-083

cally select relevant information based solely084

on semantic similarity, neglecting distinct im-085

portance levels of symptoms.086

In this paper, we introduce Dx-LLM, a two-layer087

multilingual disease diagnosis system powered by088

RA-LLMs. Dx-LLM employs a two-tiered ap-089

proach to identify relevant diseases based on pa-090

tient symptoms. The first layer performs coarse-091

grained disease identification using a knowledge092

graph constructed from external disease symptom093

descriptions. The second layer re-ranks these candi-094

dates and refines the diagnostic outcomes using RA-095

LLMs. This two-layer mechanism, enhanced by a096

Heterogeneous Information Networks (HIN) mod-097

ule, is designed to tackle the aforementioned chal-098

lenges. First, the HIN module represents the con-099

structed knowledge graph via a variational graph100

auto-encoder (VGAE) (Kipf and Welling, 2016)101

and generates coarse-grained disease candidates,102

preventing RA-LLMs from processing all infor-103

mation without pre-processing. Second, the HIN104

embeddings enable RA-LLMs to thoroughly assess105

the relevance of various information, effectively106

addressing the different importance levels of symp-107

toms. The framework of Dx-LLM is shown in108

Figure 1.109

Our contributions can be summarized as follows:110

• We applied RA-LLMs and constructed a111

disease-symptom HIN graph based on the ex-112

ternal Mayo Clinic dataset for symptom and113

disease representation learning, which over-114

comes the reliance on the limited collection115

of real-life patient diagnosis data.116

• We designed a two-stage diagnosis system117

that takes advantage of LLMs’ language un-118

derstanding and generation ability while re-119

stricting the inference time of LLMs by se-120

lecting high-quality candidate diseases after121

first-layer graph mining.122

• Our proposed Dx-LLM system can real-123

ize multi-lingual diagnosis and can achieve124

71.41% and 70.38% of hit@10 among 1058125

diseases in English dataset and Chinese126

dataset correspondingly, and consistently out-127

performs other state-of-the-art (SOTA) base-128

line models.129

2 Related Work 130

2.1 AI for Automatic Diagnosis 131

Recent AI-based Automatic Diagnosis (AD) meth- 132

ods include graph-based approaches and LLM- 133

based approaches. Graph-based approaches resolve 134

AD problems by converting the health data into 135

graph structures. (Hosseini et al., 2018) proposed 136

Heteromed, which models the high-dimensional 137

Electronic Healthcare Records (EHRs) data with 138

Heterogeneous Information Network (Shi et al., 139

2016) and applied Graph Convolutional Trans- 140

former (GCT) (Choi et al., 2019) and attention 141

Graph Convolutional Networks (GCN) (Hosseini 142

et al., 2019) to embed the nodes. (Wang et al., 143

2021) organized Electronic Healthcare Records 144

(EHRs) into a heterogeneous graph that can model 145

interactions among users, symptoms, and diseases 146

to resolve the cold start problem in GCN. With the 147

recent development of LLMs, LLM-based AD ap- 148

proaches have emerged. (Shoham and Rappoport, 149

2023) proposed CPLLM, which fine-tunes LLMs 150

with historical diagnosis records, and demonstrates 151

its superiority in clinical prediction tasks. (Wang 152

et al., 2023) proposed Coad which introduced a dis- 153

ease and symptom collaborative generation frame- 154

work. (Tu et al., 2024) proposed AMIC, which 155

is a medical knowledge graph based on patients’ 156

transcription data. Different from existing ap- 157

proaches, Dx-LLM constructs a RA-LLM-based 158

system, which leverages external knowledge and 159

LLM’s semantic understanding and generation abil- 160

ity for efficient and accurate diagnosis. 161

2.2 Retrieval-Augmented Large Language 162

Models 163

Recently, LLMs have demonstrated great poten- 164

tial in language understanding and generation in 165

various application fields (Brown et al., 2020; Fan 166

et al., 2024; Zhao et al., 2023). However, they still 167

suffer from challenging problems including lack- 168

ing domain-specific knowledge, hallucination, and 169

containing out-of-date information. To address this 170

problem, Retrieval Augmented Generation (RAG) 171

has been applied to LLMs and promoted a line of 172

research around Retrieval-Augmented Large Lan- 173

guage Models (RA-LLM). (Lewis et al., 2020) 174

improved the pre-trained language model’s per- 175

formance in knowledge-intensive NLP tasks by 176

introducing RAG models where the parametric 177

memory is a pre-trained seq2seq model and the 178

non-parametric memory is a dense vector index 179
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Figure 1: The overall framework of Dx-LLM. The content on the left shows the input data, which consists of the
retrieval augmented disease descriptions and the patient symptoms to diagnose. The content at the upper right shows
the first layer of graph mining to select the candidate diseases. The content at the bottom right shows the second
layer of LLM-based diagnosis generation by re-ranking the candidate diseases.

of Wikipedia. (Ram et al., 2023) proposed an in-180

context Retrieval-Augmented Language Modeling181

(RALM) method that leaves the language model182

(LM) architecture unchanged and prepends ground-183

ing documents to the input. (Shi et al., 2023) in-184

troduced a retrieval-augmented language model-185

ing framework that treats LM as a black box and186

prepends retrieved documents to the input for the187

frozen black-box LM. In our work, we retrieve dis-188

ease symptoms knowledge from Mayo Clinics to189

avoid the disease knowledge insufficiency intro-190

duced by data scarcity.191

3 Method192

Dx-LLM consists of three parts: (1) RA-LLMs-193

based HIN graph generation (Section 3.1), (2) first194

layer: graph-based candidate disease generation195

(Section 3.2), (3) second layer: LLM-based disease196

re-rank (Section 3.3).197

3.1 RA-LLMs-based HIN Graph Generation198

In the module of RA-LLMs-based HIN Graph Gen-199

eration, our objective is to construct a disease-200

symptom HIN graph and a patient-symptom HIN201

graph. The input data is a set of disease descrip-202

tion passages M , and a set of patient symptom203

description passages N . Each item Mi in M is204

in the format of Di : Ri, where Di is the disease205

name and Ri corresponds to the disease symptom206

description passage. All Di forms a disease set207

D, where each Di represents a disease node. Each208

item Ni in N is in the format of Pi : Ci, where209

Pi is the patient id and Ci is the corresponding210

self-reported symptoms of patient i. All Pi will 211

form a patient set P , where each Pi represents a 212

patient node. In our design, we apply RAG to ex- 213

tract M from Mayo clinics to construct a global 214

disease-symptom graph. Then we prompt LLMs 215

to extract the symptom keywords from Ri and Ci. 216

Each generated symptom subset SRi will be added 217

to the symptom set SD, where Si ∈ SD represents 218

a unique symptom node that appears in one or more 219

diseases. SCi will be added to the symptom set SP , 220

where Si ∈ SP represents a unique symptom node 221

that appears in one or more patients’ symptoms. 222

Given the disease symptom description passage Ri 223

and the patient’s self-reported symptoms Ci, the 224

extracted symptoms can be denoted as: 225

SRi = LLM(Ri)

SCi = LLM(Ci)
(1) 226

We construct two graphs, namely, the disease- 227

symptom graph GD and the patient-symptom graph 228

GP . GD comprises two sets of nodes, D and SD, 229

where D represents diseases and SD represents 230

extracted symptoms for diseases. GP comprises 231

two sets of nodes, P and SP , where P represents 232

patients and SP represents extracted symptoms for 233

patients. SD and SP can share common or differ- 234

ent nodes. The edges in GD are represented as ED. 235

For each (Di, Sj) ∈ ED, it indicates disease Di 236

has the symptom Sj , where Di ∈ D,Sj ∈ SD Sim- 237

ilarly, the edges in GP are represented as EP . For 238

each (Pi, Sj) ∈ EP , it indicates patient Pi shows 239

the symptom Sj , where Pi ∈ P, Sj ∈ SP . The 240
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procedure of GD and GP generation is showcased241

in Figure 2.242

Figure 2: Knowledge graph generation process. The above
figure shows an example of disease-symptom knowledge
graph generation. The bottom graph shows an example of
patient-symptom knowledge graph generation.

3.2 First Layer: Graph-based Candidate243

Disease Generation244

We formalize the first layer candidate disease se-245

lection module as a similarity ranking task, where246

we select diseases with the most similar embed-247

ding with the patient as candidate diseases. The248

candidate disease generation consists of three steps:249

(1) symptom embedding generation module based250

on VGAE, (2) disease and patient embedding gen-251

eration, (3) disease similarity rank. The overall252

process is shown in Figure 3.253

VGAE-based symptom embedding generation.254

First, we generate the symptom embedding for SD255

with a disease-symptom graph, which contains an256

HIN encoder and an HIN decoder.257

HIN encoder. We use AD to denote the adjacency258

matrix of GD and XD ∈ RN×F to denote the259

feature matrix of GD, where the initial XD is the260

BERT (Devlin et al., 2018) embedding of the con-261

tent in each node Di or Si. We use L layers GCN262

as the encoder. In the lth layer, the hidden state 263

of GCN is denoted as H(l) = GCN (l)(AD,XD), 264

H(l) ∈ RN×dl , dl represents the dimension of hid- 265

den state in the lth layer. H(1) = X. The lth GCN 266

layer is formulated as 267

H(l) = γ(ÃH(l−1)W(l−1)), (2 ≤ l ≤ L− 1),
(2) 268

where Ã = D− 1
2AD− 1

2 is the symmetrically 269

normalized adjacency matrix of A. D is the di- 270

agonal degree matrix, where Dk,k = σN
i=1Akl . 271

Wl ∈ Rdl×dl+1 is the weight matrix of the lth layer. 272

γ is the activation function. In our experiment, we 273

use Rectified Linear Unit (ReLU) as the activation 274

function. 275

Let Z ∈ RN×T denote the latent matrix, where 276

T is the dimension of node embedding, zi is the 277

latent embedding of the ith node. The inference 278

model can be defined as 279

q(Z|A,X) =
N∏
i=1

q(zi|A,X), (3) 280

where q(zi|A,X) ∼ N (zi|µi, σ
2
i ) 281

HIN decoder. We utilize linear inner product as 282

the HIN decoder, which is formulated as: 283

p(A|Z) =
N∏
i=1

N∏
j=1

p(Ai,j |zi, zj), (4) 284

where p(Ai,j |zi, zj) = σ(zTi zj), and σ(·) is the 285

logistic sigmoid function. 286

Disease and patient embedding generation. The 287

disease and patient embedding is based on symp- 288

tom embedding. We extract the symptoms for each 289

disease and patient. Then we average the embed- 290

ding of contained symptoms to represent the dis- 291

ease or the patient. Since the symptoms are gener- 292

ated in the natural language format, not all symp- 293

toms of patients can have their exact match in the 294

symptom set S. Therefore, we apply a fuzzy match 295

and use the average embedding of symptoms with 296

the BERT embedding cosine similarity larger than 297

a threshold, to represent the unseen symptom of a 298

patient. Suppose zSi is the embedding of symptom 299

Si, the embedding zDi and zPi for node Di and Pi 300

can be represented as 301

S(Di) = {Si ∈ SD|(Di, Si) ∈ ED}
zDi = avg({zsj |sj ∈ S(Di)}
S(Pi) = {Si ∈ SP |(Pi, Si) ∈ EP }
F (S(Pi)) = {Si ∈ SD|Sj ∈ SP , sim(Si, Sj) ≥ β}
zPi = avg({zsj |sj ∈ F (S(Pi))}

(5) 302
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Figure 3: The graph-based candidate disease generation process. The left part is the graph construction part.
The middle part is the VGAE-based graph auto-regression process. The right part is a similarity ranking task for
candidate disease selection.

where F (·) represents the fuzzy match between303

symptoms in SP and SD, sim(.) represents the304

cosine similarity between the BERT embedding of305

Si and Sj .306

Disease similarity rank. After we get the simi-307

larity of each Si ∈ SD, Di ∈ D, and Pi ∈ P ,308

we select the candidate disease for each patient309

Pi based on the cosine similarity rank of diseases,310

which is defined as311

sim(Pi, Dj) =
zTPi

· zDj

||zPi || · ||zDj ||
. (6)312

3.3 Second Layer: LLM-based disease313

re-rank314

With LLMs’ superior capability in language under-315

standing and generation, after selecting candidate316

diseases in the first layer, we feed the patient’s in-317

formation and the candidate disease list to LLMs318

and prompt LLMs to re-rank the possibility of po-319

tential diseases. The prompt of LLM-based disease320

re-rank is shown in Figure 4. The final output is321

a re-ranked diagnosis disease list from the highest322

possibility to the lowest possibility, which can be323

represented as:324

Dfinal = LLM(symptom, candidates). (7)325

where symptom refers to patients’ symptoms, 326

candidates refers to the candidate diseases gen- 327

erated after the first layer filtering.

Figure 4: The prompt for LLM to re-rank potential
diagnosed diseases.

328

4 Experiment 329

4.1 Dataset 330

In our experiment, due to the limited budget of the 331

LLMs prompt, we only select a subset of the public 332

dataset for evaluation. For the Chinese dataset, we 333

apply Google Translate API to translate the content 334
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Table 1: Dx-LLM diagnose performance.

Model name H@1 H@10 H@20 H@50 N@1 N@10 N@20 N@50
Chinese dataset

BERT 0.1579 0.3158 0.3889 0.4678 0.1579 0.2366 0.2552 0.2706
Roberta 0.1520 0.2602 0.2690 0.2953 0.1520 0.2030 0.2051 0.2102
mpnet 0.1725 0.3450 0.3684 0.4415 0.1725 0.2489 0.2548 0.2703

Dx-LLM (1st layer) 0.0819 0.2924 0.4035 0.6345 0.0819 0.1783 0.2060 0.2515
Dx-LLM (Llama3) 0.2419 0.7064 0.7701 0.7754 0.2419 0.4320 0.4436 0.4452
Dx-LLM (GPT3.5) 0.2322 0.7357 0.7711 0.7807 0.2322 0.4044 0.4191 0.4331
Dx-LLM (GPT4) 0.2760 0.7038 0.7522 0.7665 0.2760 0.4715 0.4847 0.4883

English dataset
BERT 0.0588 0.2677 0.3286 0.3972 0.0588 0.1555 0.1709 0.1846

Roberta 0.0783 0.2481 0.2884 0.3493 0.0783 0.1617 0.1720 0.1838
mpnet 0.1110 0.2655 0.3025 0.3885 0.1110 0.1822 0.1915 0.2085

Dx-LLM (1st layer) 0.0566 0.3667 0.5201 0.7008 0.0566 0.1854 0.2239 0.2596
Dx-LLM (Llama3) 0.3003 0.7103 0.7600 0.7804 0.3003 0.4575 0.4676 0.4728
Dx-LLM (GPT3.5) 0.2759 0.6848 0.7591 0.7928 0.2759 0.4534 0.4710 0.4794
Dx-LLM (GPT4) 0.3854 0.7141 0.7461 0.7842 0.3854 0.5422 0.5496 0.5575

Table 2: Examples of Dx-LLM’s generated diagnosis results.

initial symptoms Dx-LLM (Llama3) Dx-LLM (GPT3.5) Dx-LLM (GPT4)

Chinese dataset
Hello, doctor. My
daughter is 28
months old. She
had repeated fever
for three or four
days last week, with
the highest temper-
ature reaching 39.2
degrees. There are
several herpes on
her left hand, but
not on her right
hand, feet, mouth,
or around the anus.
real disease: hand
foot and mouth
disease

1. Viral illnesses, such
as rotavirus or flu,
2. Staph infections,
3. Kawasaki diseas,
4. Chicken pox, 5.
Hand foot and mouth
disease, 6. Measles, 7.
Scarlet fever, 8. Rubella,
9. Other infectious
diseases like impetigo,
measles, etc., 10. The
remaining diseases are
less likely given the
provided symptoms, but
I would not rule them
out completely without
further investigation.

1. Hand foot and
mouth disease, 2.
Measles, 3. Rubella,
4. Scarlet fever, 5.
Shingles, 6. Smallpox, 7.
Chicken pox, 8. Herpes,
9. Staph infections, 10.
Chronic granulomatous
disease

1. Hand foot and
mouth disease, 2. Staph
infections, 3. Kawasaki
disease, 4. Chicken
pox, 5. Scarlet fever,
6. Rheumatic fever, 7.
Flu, 8. X linked agam-
maglobulinemia, 9. Pri-
mary immunodeficiency,
10. Chronic granuloma-
tous disease

English dataset

I’ve been drinking a
lot more water and
going to the bath-
room a lot more of-
ten. My mouth and
throat are always
dry. I’ve been really
hungry and eating a
lot more lately. real
disease: diabetes

1. Diabetes, 2. Diabetic
ketoacidosis, 3. Hyper-
glycemia, 4. Chronic
kidney disease, 5. Poly-
dipsia, polyuria, and
polyphagia can also be
seen in other endocrine
disorders

1. Diabetes, 2. diabetic
ketoacidosis, 3. hyper-
glycemia, 4. dehydra-
tion, 5. hyperparathy-
roidism, 6. h pylori,
7. pancreatic neuroen-
docrine tumors, 8. gas-
troparesis, 9. addisons
disease, 10. systemic
mastocytosis

1. Diabetes, 2. Hyper-
glycemia, 3. Diabetic
ketoacidosis, 4. Dehy-
dration, 5. Chronic kid-
ney disease, 6. Glomeru-
lonephritis, 7. Addi-
son’s disease, 8. Hyper-
parathyroidism, 9. Pri-
mary immunodeficiency,
10. Sjogren’s syndrome

into English. Disease information data335

• mayo_clinic_symptoms_and_diseases1: A336

disease symptom knowledge base from mayo337

1http://huggingface.co/datasets/celikmus/mayo_
clinic_symptoms_and_diseases_v1

clinics, which contains 1058 types of diseases. 338

Multilingual patient symptom data. For the pa- 339

tient symptom data, we generate a Chinese test 340

dataset from 2 Chinese patient-doctor conversation 341

datasets, and an English dataset from 1 patient- 342
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Table 3: Statistics of selected multilingual patient dataset.

language sum # disease
types

sum # patient
cases sub-dataset disease examples # disease

type
# patient

case

Chinese 3 300 DX hand foot and mouth
disease, bronchial asthma 2 200

imcs21 pneumonia 1 100

English 19 500 Symptom2Disease

malaria, psoriasis, jaundice,
arthritis, gastroesophageal reflux

disease, chicken pox, urinary
tract infection, cervical spondylosis,

typhoid, impetigo, hypertension,
bronchial asthma, peptic ulcerdisease,

diabetes, common cold,
varicose veins, migraine,

dengue, pneumonia

19 500

doctor conversation English dataset. The statistics343

are shown in Table 3.344

• DX (Chinese) (Xu et al., 2019): A dataset col-345

lected from dxy.com where users ask doctors346

for medical diagnosis. We select 200 samples347

with the disease of "hand foot and mouth dis-348

ease" or "bronchial asthma" from this dataset.349

• imcs21 (Chinese) (Chen et al., 2023): A350

dataset collected from Muzhi2, a Chinese on-351

line health community that provides profes-352

sional medical consulting services for patients.353

We select 100 cases with the disease of "pneu-354

monia" from this dataset.355

• Symptom2Disease (English): A dataset con-356

taining diseases and natural language symp-357

tom descriptions from kaggle3. We random358

sampled 500 cases from 19 diseases in this359

dataset.360

4.2 Baseline Models361

We compare the Dx-LLM’s performance with three362

other LLMs, in which we re-rank the diseases363

based on the cosine similarity of the embedding of364

the patient’s symptoms and the diseases’ symptom365

descriptions.366

• BERT (Devlin et al., 2018): A bidirectional367

encoder representations from Transformers368

are designed to pre-train deep bidirectional369

representations from the unlabeled text.370

• Roberta (Liu et al., 2019): An improved vari-371

ant of BERT that enhances performance in372

natural language understanding tasks by op-373

timizing the pre-training process with more374

2http://muzhi.baidu.com
3http://www.kaggle.com/datasets/niyarrbarman/

symptom2disease

data, longer training times, and larger batch 375

sizes. 376

• Mpnet (Song et al., 2020): A pre-training 377

model that enhances language understanding 378

by combining masked and permuted language 379

modeling techniques to effectively capture 380

both local and global dependencies in text. 381

4.3 Metrics 382

We compare the Dx-LLM’s performance with three 383

other LLMs, in which we re-rank the diseases 384

based on the cosine similarity of the embedding of 385

the patient’s symptoms and the diseases’ symptom 386

descriptions. 387

• HIT@K (H@K). Whether any of the top-K 388

recommended items were in the test set for a 389

given user. 390

• NDCG@K (N@K). NDCG is a widely used 391

metric in information retrieval. It is used to 392

calculate a cumulative score of an ordered set 393

of items. 394

4.4 Setting 395

In our experiment, we generate 80 candidate dis- 396

eases among 1058 diseases from the disease knowl- 397

edge graph after the first layer. We performed the 398

experiments on three LLMs: Llama3, GPT3.5 and 399

GPT4. When the size of the candidate disease set 400

is 100 (in ablation study), we perform the experi- 401

ment one time for GPT3.5 and GPT4 model due 402

to the budget limit, and perform experiment three 403

times for Llama3. When the size of the candidate 404

disease set is 50 (in ablation study) and 80, we per- 405

formed the experiment three times and calculated 406

the average. 407
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Table 4: Dx-LLM diagnose performance with the candidate disease size of 50.

Model name H@1 H@10 H@20 H@50 N@1 N@10 N@20 N@50
Chinese dataset

Dx-LLM (Llama3) 0.1893 0.5853 0.6121 0.6345 0.1893 0.3556 0.3605 0.3666
Dx-LLM (GPT3.5) 0.2239 0.6047 0.6166 0.6345 0.2239 0.3801 0.3870 0.3976
Dx-LLM (GPT4) 0.2477 0.5874 0.6290 0.6345 0.2478 0.4128 0.4244 0.4257

English dataset
Dx-LLM (Llama3) 0.2735 0.6299 0.6645 0.7008 0.2735 0.4402 0.4473 0.4557
Dx-LLM (GPT3.5) 0.2747 0.6264 0.6719 0.7008 0.2747 0.4385 0.4519 0.4597
Dx-LLM (GPT4) 0.3784 0.6550 0.6795 0.7008 0.3784 0.5213 0.5272 0.5317

Table 5: Dx-LLM diagnose performance with the candidate disease size of 100.

Model name H@1 H@10 H@20 H@50 N@1 N@10 N@20 N@50
Chinese dataset

Dx-LLM (Llama3) 0.3116 0.7625 0.8039 0.8157 0.3116 0.4667 0.4763 0.4787
Dx-LLM (GPT3.5) 0.2239 0.7743 0.8013 0.8182 0.2239 0.4001 0.4131 0.4248
Dx-LLM (GPT4) 0.2989 0.7267 0.7846 0.8031 0.2989 0.4924 0.5066 0.5115

English dataset
Dx-LLM (Llama3) 0.2971 0.7566 0.7901 0.8193 0.2971 0.4650 0.4724 0.4790
Dx-LLM (GPT3.5) 0.2824 0.7340 0.8171 0.8382 0.2824 0.4598 0.4791 0.4847
Dx-LLM (GPT4) 0.4064 0.7445 0.8159 0.8313 0.4064 0.5677 0.5779 0.5835

4.5 Major Results408

We compare the performance of two-layer Dx-409

LLM with different SOTA baselines and the 1st410

layer Dx-LLM. Results are shown in Table 1.411

From the result, we can see our proposed Dx-412

LLM model can outperform other models con-413

sistently. Without using patient cases as train-414

ing data, Dx-LLM can make accurate diagnoses415

among 1058 different types of diseases. In partic-416

ular, the hit@10 for both the Chinese dataset and417

English dataset can achieve around 70% with multi-418

ple LLMs, whereas for other baseline models, most419

results are below 30%. The evaluation result shows420

a stable performance over patient cases with dif-421

ferent languages, which demonstrates Dx-LLM’s422

ability to resolve multilingual diagnosis problems.423

We showcase examples of top-10 re-ranked di-424

agnosis results generated by Llama3, GPT3.5 and425

GPT4 when the candidate set size is 80. Examples426

are shown in Table 2. As can be seen from the ex-427

amples, Dx-LLM can make high quality diagnosis428

for all three LLMs. We also notice that Llama3-429

based Dx-LLM output have a poor performance in430

following output instructions.431

4.6 Ablation Study432

To see the influence of candidate disease size on433

Dx-LLM’s performance, we tested on two other434

cases when the candidate size is 50 or 100. The 435

result when the candidate size is 50 is shown in 436

Table 4, the result when the candidate size is 50 is 437

shown in Table 5. 438

As can be seen from the result, when the can- 439

didate size is larger, the overall diagnosis perfor- 440

mance is better. However, even with a candidate 441

size of 50, the performance can still consistently 442

outperform SOTA baselines, which shows the su- 443

periority in Dx-LLM. 444

5 Conclusion 445

We proposed Dx-LLM, a two-layer retrieval- 446

augmented multilingual diagnosis system, that does 447

not require abundant patient cases as training data 448

for high performance. Instead, we applied the RA- 449

LLMs technique to generate a disease-symptom 450

graph for representation learning. To effectively 451

utilize LLMs’ understanding and generation abil- 452

ity, we proposed a two-layer diagnosis, where we 453

selected the most possible diseases as diagnosis 454

candidates in the first layer, and then prompted 455

LLMs to re-rank the potential diseases. Exten- 456

sive results showed the superiority of Dx-LLM and 457

demonstrated its ability for multilingual diagnosis. 458
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6 Limitations459

In most of our experiments, GPT3.5 and GPT4460

are used as the backbone model. Therefore, the461

result might be biased with different prompts of462

datasets. Besides, our proposed Dx-LLM does463

not perform well on distinguishing diseases with464

similar symptoms. Future research can work on465

this aspect to better improve the performance.466
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