
OS Agents: A Survey on MLLM-based Agents
for General Computing Devices Use

Xueyu Hu1, †, Tao Xiong1, ‡, Biao Yi1, ‡, Zishu Wei1, ‡

Ruixuan Xiao1, Yurun Chen1, Jiasheng Ye2, Meiling Tao3, Xiangxin Zhou4, 5,
Ziyu Zhao1, Yuhuai Li1, Shengze Xu6, Shawn Wang7, Xinchen Xu1, Shuofei Qiao1

Kun Kuang1, Tieyong Zeng6, Liang Wang4, 5, Jiwei Li1, Yuchen Eleanor Jiang3,
Wangchunshu Zhou3, Guoyin Wang8, Keting Yin1, Zhou Zhao1,

Hongxia Yang9, Fan Wu10, Shengyu Zhang1, *, Fei Wu1

1Zhejiang University 2Fudan University 3OPPO AI Center
4University of Chinese Academy of Sciences

5Institute of Automation, Chinese Academy of Sciences
6The Chinese University of Hong Kong 7Tsinghua University 801.AI

9The Hong Kong Polytechnic University 10Shanghai Jiao Tong University

{huxueyu, sy_zhang}@zju.edu.cn

https://os-agent-survey.github.io/

Abstract

The dream to create AI assistants as capable and versatile as the fictional J.A.R.V.I.S
from Iron Man has long captivated imaginations. With the evolution of (multi-
modal) large language models ((M)LLMs), this dream is closer to reality, as
(M)LLM-based Agents using computing devices (e.g., computers and mobile
phones) by operating within the environments and interfaces (e.g., Graphical User
Interface (GUI)) provided by operating systems (OS) to automate tasks have signif-
icantly advanced. This paper presents a comprehensive survey of these advanced
agents, designated as OS Agents. We begin by elucidating the fundamentals of OS
Agents, exploring their key components including the environment, observation
space, and action space, and outlining essential capabilities such as understanding,
planning, and grounding. We then examine methodologies for constructing OS
Agents, focusing on domain-specific foundation models and agent frameworks.
A detailed review of evaluation protocols and benchmarks highlights how OS
Agents are assessed across diverse tasks. Finally, we discuss current challenges
and identify promising directions for future research, including safety and privacy,
personalization and self-evolution. This survey aims to consolidate the state of
OS Agents research, providing insights to guide both academic inquiry and indus-
trial development. An open-source GitHub repository is maintained as a dynamic
resource to foster further innovation in this field.

†Project Lead, ‡Core Contributor, ∗Corresponding Author

https://os-agent-survey.github.io/

Contents

1 Introduction 3

2 Fundamental of OS Agents 4

2.1 Key Component . 5

2.2 Capability . 5

3 Construction of OS Agents 6

3.1 Foundation Model . 6

3.1.1 Architecture . 6

3.1.2 Pre-training . 9

3.1.3 Supervised Finetuning . 10

3.1.4 Reinforcement Learning . 10

3.2 Agent Framework . 11

3.2.1 Perception . 12

3.2.2 Planning . 13

3.2.3 Memory . 14

3.2.4 Action . 16

4 Evaluation of OS Agents 17

4.1 Evaluation Protocol . 18

4.1.1 Evaluation Principle . 18

4.1.2 Evaluation Metric . 18

4.2 Evaluation Benchmark . 19

4.2.1 Evaluation Platform . 19

4.2.2 Benchmark Setting . 20

4.2.3 Task . 20

5 Challenge & Future 21

5.1 Safety & Privacy . 21

5.1.1 Attack . 21

5.1.2 Defense . 22

5.1.3 Benchmark . 22

5.2 Personalization & Self-Evolution . 22

6 Related Work 22

7 Conclusion 23

2

Taxy AI

AgentGPT

Sentius

Cognosys

Self-Operating Computer

iMean.AI

2023

2024

AppAgent
CogAgent

SeeAct

SeeClick

OS-Copilot

Ferret-UI

Falcon-UIApple
Intelligence

AutoGLM

Computer
Use

Project
Mariner

WebAgent

WebGUM

Figure 1: The representative commercial products and academic research related to OS Agents. Part
of the materials used in this figure are adapted from this repo.

1 Introduction

Building a superintelligent AI assistant akin to J.A.R.V.I.S.1 from the Marvel movie Iron Man, which
assists Tony Stark in controlling various systems and automating tasks, has long been a human
aspiration. These entities are recognized as Operating System Agents (OS Agents), as they use
computing devices (e.g., computers and mobile phones) by operating within the environments and
interfaces (e.g., Graphical User Interface (GUI)) provided by operating systems (OS). OS Agents can
complete tasks autonomously and have the potential to significantly enhance the lives of billions of
users worldwide. Imagine a world where tasks such as online shopping, travel arrangements booking,
and other daily activities could be seamlessly performed by these agents, thereby substantially
increasing efficiency and productivity. In the past, virtual assistants such as Siri [Inc., 2024],
Cortana [Research, 2024], Amazon Alexa [Google, 2024] and Google Assistant[Amazon, 2024] have
already offered glimpses into this potential, but limitations in model capabilities such as contextual
understanding [Tulshan and Dhage, 2019], have prevented these products from achieving widespread
adoption and full functionality.

1J.A.R.V.I.S. stands for “Just A Rather Very Intelligent System”, a fictional AI assistant character from the
Marvel Cinematic Universe. It appears in Iron Man (2008), The Avengers (2012), and other films, serving as
Tony Stark’s (Iron Man’s) personal assistant and interface for his technology.

3

https://github.com/Mooler0410/LLMsPracticalGuide

Fortunately, recent advancements in (multimodal) large language models ((M)LLMs), such as Gemini
[Google], GPT [OpenAI], Grok [xAI], Yi [01.AI] and Claude [Anthropic] series2 have ushered in
a new era of possibilities for OS Agents. These models boast remarkable abilities, enabling OS
Agents to better understand complex tasks and use computing devices to execute. As illustrated in
Figure 1, there has been a surge of OS Agents in both commercial products and academic research.
Notable examples include the recently released Computer Use by Anthropic [Anthropic, 2024a],
Apple Intelligence by Apple [Apple, 2024], AutoGLM by Zhipu AI [Liu et al., 2024a] and Project
Mariner by Google Deepmind [DeepMind, 2024]. For instance, Computer Use leverages Claude
[Anthropic, 2024b] to interact directly with users’ computers, aiming for seamless task automation.
In the research community, a variety of works have been proposed to build (M)LLM-based OS
Agents [Gur et al., 2023, You et al., 2025, Gou et al., 2024, Meng et al., 2024, Chen et al., 2024a, Wu
et al., 2024a, Zhang et al., 2023a, Yan et al., 2023, Ma et al., 2023, Zhang et al., 2024a, He et al.,
2024a, Wang and Liu, 2024]. For instance, Wu et al. [2024a] proposes OS-Atlas, a foundational GUI
action model that significantly improves GUI grounding and Out-Of-Distribution task performance by
synthesizing GUI grounding data across various platforms. OS-Copilot [Wu et al., 2024b] is an agent
framework crafted to develop generalist agents that automate broad computer tasks, demonstrating
robust generalization and self-improvement across diverse applications with minimal supervision.
Given these advancements and the growing body of work, it has become increasingly important to
provide a comprehensive survey that consolidates the current state of research in this area.

In this survey, we begin by discussing the fundamentals of OS Agents (§2), starting with a definition
of what constitutes an OS Agent. As illustrated in Figure 3, we focus on three key components:
the environment, the observation space, and the action space (§2.1). We then outline the essential
capabilities OS Agents should possess, including understanding, planning, and grounding (§2.2).
Next, we explore two critical aspects of constructing OS Agents (§3): (1) the development of domain-
specific foundation models, covering areas such as architectural design, pre-training, supervised
fine-tuning, and reinforcement learning (§3.1); and (2) the building of effective agent frameworks
around these models, addressing core elements including perception, planning, memory, and action
(§3.2). We also review the evaluation protocol (§4.1) and benchmarks (§4.2) commonly used to
assess the performance of OS Agents. Finally, we discuss the challenges and future directions for
OS Agents (§5), with a particular focus on issues related to safety and privacy (§5.1), as well as
personalization and self-evolution (§5.2).

This survey aims to make contributions to the research and development of OS Agents by providing
readers with a comprehensive understanding of their essential capabilities, offering insights into
methodologies for building OS Agents based on (M)LLMs, and highlighting the latest research
trends, challenges and future in this field. Recognizing that OS Agents are still in their early stages of
development, we acknowledge the rapid advancements that continue to introduce novel methodologies
and applications. To support ongoing developments, we maintain an open-source GitHub repository
as a dynamic resource. Through this work, we aspire to inspire further innovation, driving progress
in both academic research and industrial applications of OS Agents.

2 Fundamental of OS Agents

OS Agents are specialized AI agents that leverage the environment, input, and output interfaces
provided by the operating system to generally using computing devices in response to user-defined
goals. These agents are designed to automate tasks executed within the operating system, leveraging
the exceptional understanding and generative capabilities of (M)LLMs to enhance user experience and
operational efficiency. To achieve this, OS Agents are based on three key components: Environment,
Observation Space, and Action Space, which together facilitate the agent’s effective engagement with
the operating system. Additionally, OS Agents necessitate three core capabilities: Understanding,
Planning, and Grounding. These capabilities enable them to sequentially comprehend tasks, devise
action strategies, and implement these actions effectively within the environment.

2Rankings were determined using the Chatbot Arena LLM Leaderboard [Chiang et al., 2024] as of December
22, 2024. For models originating from the same producer, rankings were assigned based on the performance of
the highest-ranking model.

4

Environments

Key Components

Observations

Actions

Capabilities

Understanding

Planning

Grounding
Plans Codes

Interface & Description

Various Platforms

Click Input

Swipe ···

Type Query

Type Query

Click Item

Click Item

···

HTML

Mobile Desktop Web

OS State Screen

OS Agent

Figure 2: Fundamentals of OS Agents.

2.1 Key Component

Environment. The environment for OS Agents refers to the system or platform in which they
operate. This can include desktop [Gao et al., 2023, Bonatti et al., 2024, Kapoor et al., 2024], mobile
[Venkatesh et al., 2022, Rawles et al., 2024a, Li et al., 2024a, Bishop et al., 2024, Xing et al., 2024] or
web [Shi et al., 2017, Yao et al., 2022, Koh et al., 2024a, Lù et al., 2024, Drouin et al., 2024, Lee et al.,
2024a]. OS Agents interact with these diverse environments to perform tasks, gather feedback, and
adapt to their unique characteristics. These environments encompass a diverse set of tasks, ranging
from simple interactions such as information retrieval to complex multi-step operations, requiring
agents to perform planning and reasoning across multiple interfaces, significantly increasing the
complexity and posing challenges for OS Agents. We refer readers to §4.2 for detailed discussion.

Observation Space. The observation space encompasses the information OS Agents can access
about the system’s state and user activities. These observations guide the agents in comprehending
the environment, making informed decisions, and determining the appropriate actions to achieve
user-defined goals. Observation includes capturing outputs from the OS, such as screen images
[Yan et al., 2023, Zhang and Zhang, 2023, Zhang et al., 2024a, Hoscilowicz et al., 2024] with
specific processing [Zhang et al., 2023a, He et al., 2024a, Fu et al., 2024], or textual data, such as
the description of the screen [Gao et al., 2023, Wu et al., 2024b] and the HTML code [Ma et al.,
2023, Zheng et al., 2024a] in web-based contexts. Multimodal input integrating these diverse data
structure introduces significant challenges for agents to effectively understand and execute tasks.
Further details are elaborated in §3.2.1.

Action Space. The action space defines the set of interactions through which OS Agents manipulate
the environment using the input interfaces provided by the operating system. These actions can be
broadly categorized into input operations [Sun et al., 2022, Zhang et al., 2023a, Gao et al., 2023],
representing the primary methods of interacting with digital interfaces, navigation operations [Yan
et al., 2023, Song et al., 2024, He et al., 2024b] which facilitate movement across the system’s
interface and extended operations, such as utilizing external tools or services [Wu et al., 2024b, Mei
et al., 2024]. These actions enable OS Agents to execute tasks, control applications, and automate
workflows effectively. A comprehensive discussion can be found in §3.2.4.

2.2 Capability

Understanding. A crucial capability of OS Agents is their ability to comprehend complex OS
environments. These environments encompass a diverse array of data formats, including HTML
code [Gur et al., 2023, Lai et al., 2024] and graphical user interfaces captured in screenshots [Nong
et al., 2024, Wu et al., 2024a]. The complexity escalates with length code with sparse information,

5

high-resolution interfaces cluttered with minuscule icons, small text, and densely packed elements
[He et al., 2024a, Hong et al., 2024a, You et al., 2025]. Such environments challenge the agents’
perceptual abilities and demand advanced contextual comprehension. This comprehension is essential
not only for tasks aimed at information retrieval [Rawles et al., 2024a] but also serves as a fundamental
prerequisite for effectively executing a broad spectrum of additional tasks.

Planning. Planning [Huang and Chang, 2023, Zhang et al., 2024b, Huang et al., 2024a] is a
fundamental capability of OS Agents, enabling them to decompose complex tasks into manageable
sub-tasks and devise sequences of actions to achieve specific goals [Wu et al., 2024b, Gao et al.,
2023]. Planning within operating systems often requires agents to dynamically adjust plans based on
environmental feedback and historical actions [Zhang and Zhang, 2023, Wang and Liu, 2024, Kim
et al., 2024a]. Reasoning strategies like ReAct [Yao et al., 2023] and CoAT [Zhang et al., 2024a] are
also necessary to ensure effective task execution in dynamic and unpredictable scenarios.

Grounding. Action grounding is another essential capability of OS Agents, referring to the ability
to translate textual instructions or plans into executable actions within the operating environment
[Zheng et al., 2024a, Wu et al., 2024a]. The agent must identify elements on the screen and provide
the necessary parameters (e.g., coordinates, input values) to ensure successful execution. While
OS environments often contain numerous selectable elements and possible actions, the resulting
complexity makes grounding tasks particularly challenging.

3 Construction of OS Agents

In this section, we discuss effective strategies for constructing OS Agents. We begin by focusing
on the development of foundation models tailored for OS Agents. Domain-specific foundation
models [Roziere et al., 2023, Wu et al., 2023, Singhal et al., 2023, Xiao et al., 2021] can significantly
enhance the performance of OS Agents by incorporating specialized knowledge and capabilities
essential for interacting with operating systems. This can be achieved through thoughtful model
architecture design and targeted training strategies that align with specific tasks in this domain. In
addition, we explore the construction of agent frameworks [Chase, 2022, Significant Gravitas, Hong
et al., 2024b, Hu et al., 2024a] that build upon these foundation models using non-tuning strategies.
Techniques such as reasoning strategies and memory augmentation enable agents to accurately
perceive their environment, generate effective plans, and execute precise actions without the need
for fine-tuning. These approaches offer flexibility and efficiency, allowing OS Agents to generalize
across diverse tasks and environments. By combining robust domain-specific foundation models with
agent frameworks, we can further enhance the adaptability, reliability, and efficiency of OS Agents in
automating complex tasks.

3.1 Foundation Model

The construction of foundation models for OS Agents involves two key components: model architec-
ture and training strategies. The architecture defines how models deal with input and output within
OS environments, while training strategies enhance models with the ability of completing complex
tasks. As illustrated in Figure 3, training strategies that are applied in construction of foundation
models for OS Agents mainly include pre-training, supervised finetuning and reinforcement learning.
Table 1 summarizes the architecture and training strategies used in the recent foundation models for
OS Agents.

3.1.1 Architecture

A variety of architectures are employed to construct foundation models for OS Agents. It is common
practice to build these models by leveraging existing open-source LLMs and MLLMs. Some
architectures can be created by concatenating LLMs with vision encoders, enabling the models
to process both textual and visual information. Additionally, MLLMs are frequently adapted by
incorporating supplementary modules to address the specific requirements such as high-resolution
image understanding.

Existing LLMs. The architecture of existing LLMs can already process user instructions and read
HTML code to perceive information contained in user interfaces. Therefore, several works [Liu
et al., 2024a, Lai et al., 2024, Patel et al., 2024] directly chose open-source LLMs as backbone

6

Table 1: Recent foundation models for OS Agents. Arch.: Architecture, Exist.: Existing, Mod.:
Modified, Concat.: Concatenated, PT: Pre-Train, SFT: Supervised Fine-Tune, RL: Reinforcement
Learning.

Model Arch. PT SFT RL Date
OS-Atlas [Wu et al., 2024a] Exist. MLLMs ✓ ✓ - 10/2024
AutoGLM [Liu et al., 2024a] Exist. LLMs ✓ ✓ ✓ 10/2024
EDGE [Chen et al., 2024a] Exist. MLLMs - ✓ - 10/2024
Ferret-UI 2 [Li et al., 2024b] Exist. MLLMs - ✓ - 10/2024
ShowUI [Lin et al., 2024] Exist. MLLMs ✓ ✓ - 10/2024
UIX [Liu et al., 2024b] Exist. MLLMs - ✓ - 10/2024
TinyClick [Pawlowski et al., 2024] Exist. MLLMs ✓ - - 10/2024
UGround [Gou et al., 2024] Exist. MLLMs - ✓ - 10/2024
NNetNav [Murty et al., 2024] Exist. LLMs - ✓ - 10/2024
Synatra [Ou et al., 2024] Exist. LLMs - ✓ - 09/2024
MobileVLM [Wu et al., 2024c] Exist. MLLMs ✓ ✓ - 09/2024
UI-Hawk [Zhang et al., 2024c] Mod. MLLMs ✓ ✓ - 08/2024
GUI Action Narrator [Wu et al., 2024d] Exist. MLLMs - ✓ - 07/2024
MobileFlow [Nong et al., 2024] Mod. MLLMs ✓ ✓ - 07/2024
VGA [Meng et al., 2024] Exist. MLLMs - ✓ - 06/2024
OdysseyAgent [Lu et al., 2024a] Exist. MLLMs - ✓ - 06/2024
Textual Foresight [Burns et al., 2024] Concat. MLLMs ✓ ✓ - 06/2024
WebAI [Thil et al., 2024] Concat. MLLMs - ✓ ✓ 05/2024
GLAINTEL [Fereidouni et al., 2024] Exist. MLLMs - - ✓ 04/2024
Ferret-UI [You et al., 2025] Exist. MLLMs - ✓ - 04/2024
AutoWebGLM [Lai et al., 2024] Exist. LLMs - ✓ ✓ 04/2024
Patel et al. [2024] Exist. LLMs - ✓ - 03/2024
ScreenAI [Baechler et al., 2024] Exist. MLLMs ✓ ✓ - 02/2024
Dual-VCR [Kil et al., 2024] Concat. MLLMs - ✓ - 02/2024
SeeClick [Cheng et al., 2024a] Exist. MLLMs ✓ ✓ - 01/2024
CogAgent [Hong et al., 2024a] Mod. MLLMs ✓ ✓ - 12/2023
ILuvUI [Jiang et al., 2023] Mod. MLLMs - ✓ - 10/2023
RUIG [Zhang et al., 2023b] Concat. MLLMs - - ✓ 10/2023
WebAgent [Iong et al., 2024] Concat. LLMs ✓ ✓ - 07/2023
WebGUM [Furuta et al., 2023] Concat. MLLMs - ✓ - 05/2023

7

ARCHITECTURE

LLM Vision
Encoder

Concatenated MLLM
Modified MLLM

PRE-TRAINING

• Publicly available data

• Synthetic data

• Screen grounding
• Screen understanding
• OCR

Data Source Tasks

SUPERVISED FINETUNING

Grounding

• Decomposing
abstract instruction
into concrete steps

Planning

• Translating
concrete instruction
to executable actions

REINFORCEMENT LEARNING

• RL without foundation models

• Foundation models as agents

Reward Maximization

🌋

Figure 3: Summary of the content about foundation models for OS Agents in §3.1.

models without further optimizing architecture to develop foundation models for OS Agents, where
T5 [Fereidouni et al., 2024, Furuta et al., 2024] and LLaMA [Murty et al., 2024, Ou et al., 2024]
are popular architectures. WebAgent [Gur et al., 2023] combines Flan-U-PaLM with HTML-T5, a
finetuned version of Long-T5-base. HTML-T5 reads user instructions together with HTML code
of user interface and navigation history to produce a summary of the user interface and a plan for
completing tasks specified in the user instruction, which would then be processed by the Flan-U-PaLM
instance that generates executable Python code to execute user instructions.

Existing MLLMs. LLMs are capable of handling OS tasks, while an inescapable shortcoming of
LLMs is that LLMs can only process textual input, while GUI are designed for human users that
directly perceive vision information to operate the apps. For this, MLLMs, which additionally have
the ability to process vision information while preserving the ability for complex natural language
processing, are introduced. Various works [Baechler et al., 2024, Chen et al., 2024a, Pawlowski et al.,
2024] have shown that architectures of existing MLLMs such as LLaVA [Gou et al., 2024, Meng
et al., 2024], Qwen-VL [Cheng et al., 2024a, Lu et al., 2024a, Wu et al., 2024d], InternVL [Wu et al.,
2024a, Gao et al., 2024a], CogVLM [Zhang et al., 2024a, Xu et al., 2024a], etc., can be effective for
developing foundation models for OS Agents.

Concatenated MLLMs. Typical architecture of MLLMs consists of an LLM and a vision encoder
connected by an adapter network or a cross-attention module. Several works [Kil et al., 2024, Zhang
et al., 2023b] have shown that choosing LLMs and vision encoders that are suitable to process
OS tasks and concatenating them in a way that is similar to that of existing MLLMs’ could be a
more suitable approach for constructing foundation models for OS Agents. For instance, Furuta
et al. [2023] and Thil et al. [2024] chose T5 as the LLM in the structure, whose encoder-decoder
architecture can better fit tree-architecture of HTML, enabling the model to better process GUI
information by perceiving both text and image forms of the GUI.

Modified MLLMs. Further adjustments have been adopted to architectures of MLLMs to enhance
understanding abilities of foundation models. For instance, most existing MLLMs can only process
images of relatively low resolutions, typically 224×224, while common resolution of GUI screenshots
is 720×1080. Resizing screenshots to fit the resolution vision encoders of MLLMs preserves features
of general layout and most objects, but text and small icons cannot be well perceived, which
sometimes would be vital for MLLMs to accomplish OS tasks. Some works have been proposed
to enable MLLMs to perceive these features. CogAgent [Hong et al., 2024a] introduced additional
EVA-CLIP-L high-resolution vision encoder that accepts images of size 1120×1120, and added a
cross-attention module to connect with the original MLLM. Ferret-UI [You et al., 2025] applied
the idea of any-resolution, where screenshot images are both resized to fit the vision encoder
and partitioned into sub-images, enabling the model to perceive and process visual features in all
granularities. MobileFlow [Nong et al., 2024] chose Qwen-VL as the backbone with a GUI encoder
(LayoutLMv3) added to the original architecture, which extracts embeddings of both images and

8

OCR texts together with their positions. UI-Hawk [Zhang et al., 2024c] uses a vision encoder that
applies a shape-adaptive cropping strategy to perceive details in the screenshot.

3.1.2 Pre-training

Pre-training [Devlin, 2018, Brown, 2020, Dosovitskiy, 2020] lays the foundation for model construc-
tion and is extensively employed to enhance the foundation models for OS Agents by expanding
their understanding of GUI and facilitating the acquisition of the inherent correlations between visual
and textual information. To achieve this, most existing pre-training approaches utilize continual pre-
training from general pre-trained models with substantial textual or visual comprehension capabilities.
This strategy leverages the established knowledge within these pre-trained models, thereby enhancing
their performance on GUI-related tasks. One exception is Gur et al. [2023], who trained their model
from scratch, focusing specifically on parsing HTML text without incorporating the visual modality.
To provide a comprehensive overview of their impact on the development of foundation models for
OS Agents, data sources and tasks in pre-training will be discussed in the following.

Data source. (1) Publicly available data. Some studies leverage publicly available datasets to
quickly obtain large-scale data for pre-training. Specifically, Gur et al. [2023] crawled and filtered
web data to extract GUI-related information. Gur et al. [2023] utilized CommonCrawl to acquire
HTML documents, removing those with non-unicode or purely alphanumeric content, and extracted
subtrees around ‘<label>’ elements to train HTML-T5, a model capable of providing executable
instructions. Similarly, Nong et al. [2024] employed Flickr30K for modality alignment, enhancing
the model’s semantic understanding of images. However, relying solely on publicly available data for
pre-training is insufficient to address the complex and diverse tasks required by OS Agents [Gou et al.,
2024]. Consequently, (2) Synthetic data. Researchers incorporate synthetic data into the pre-training
process, inspired by the real-world application scenarios of OS Agents. Cheng et al. [2024a] extracts
visible text element positions and instructions to build grounding3 and OCR task data based on
HTML data obtained from the web, while Chen et al. [2024b] rendered entire websites after acquiring
webpage links, segmented them into 1920×1080 resolution screenshots, and extracted features,
thereby enriching the diversity of web data. Some studies [Wu et al., 2024a] have noted that although
similarities exist between different GUI platforms, pre-training solely based on web data struggles
to generalize across platforms. To address this, they created multiple simulated environments and
utilized accessibility (A11y) trees to simulate human-computer interaction, sampling cross-platform
grounding data. Additionally, Wu et al. [2024c] proposed a data collection algorithm that simulates
human interaction with smartphones by iteratively interacting with every element on each GUI page.
This process represents the results as directed graphs and yielded a dataset containing over 3 million
real GUI interaction samples.

Task. (1) Screen grounding. Many studies have demonstrated that pre-training enables models to
extract 2D coordinates or bounding boxes of target elements from images based on textual descriptions
[Wu et al., 2024a, Baechler et al., 2024, Pawlowski et al., 2024, Hong et al., 2024a, Wu et al., 2024c,
Chen et al., 2024b, Zhang et al., 2024c, Lin et al., 2024]. In addition, Cheng et al. [2024a], Lin et al.
[2024] extended text-based grounding tasks by incorporating requirements for predicting text from
center point coordinates and bounding boxes into the pre-training stage. (2) Screen understanding.
Several studies posit that the foundation models for OS Agents should be capable of extracting
semantic information from images, as well as analyzing and interpreting the entire content of the
image. Wu et al. [2024a] emphasized that pre-training should equip MLLMs with the knowledge
to understand GUI screenshots and identify elements on the screen. Furthermore, Baechler et al.
[2024], Zhang et al. [2024c] proposed screen question-answering as a task, where the former designed
datasets targeting tasks involving counting, arithmetic operations, and interpreting complex data in
charts. (3) Optical Character Recognition (OCR). OCR plays a crucial role in handling GUI elements
that contain textual content. Hong et al. [2024a] constructed training data during the pre-training
stage by using Paddle-OCR to extract text and bounding boxes from GUI screenshots, and validated
the model’s superior OCR capabilities on the TextVQA benchmark. Lin et al. [2024] identified the
capabilities of OCR as a critical evaluation criterion for constructing foundation models.

3Given the varying interpretations of ’grounding’ across different domains, in this subsubsection, the term
’grounding’ specifically refers to visual grounding, which is the process of locating objects or regions in an
image based on a natural language query. This definition differs from the one used in §2.2.

9

3.1.3 Supervised Finetuning

Supervised Finetuning (SFT) has been widely adopted to enhance the planning and grounding
capabilities of OS Agents. This requires efforts to collect domain-specific data to bridge the domain
gap between tasks on natural images and GUIs [Hong et al., 2024a], which is thus the key challenge
herein.

For planning, researchers first collect multi-step trajectories and synthesize instructions for them.
Gao et al. [2024a] traverse across the apps with fixed rules as well as LLMs, where the latter are
applied to handle certain predefined scenarios and cases that fixed rules fail to cover. Ou et al. [2024]
uses online tutorial articles to build trajectories, where descriptions of steps are mapped into agent
actions with LLMs. Chen et al. [2024c] builds directed graphs about navigation among webpages
and finds the shortest path in the graph to obtain trajectories when generating data for certain tasks.
These trajectories are taken into advanced large language models, such as GPT4, to synthesize
corresponding task instructions [Hong et al., 2024a, You et al., 2025] as well as Chain-of-Thought
reasoning process to decompose the tasks [Lai et al., 2024].

To synthesize data for grounding ability, researchers first connect the actions on the objects to GUI
images and then synthesize instructions referring to them. Common strategies to draw the connections
are rendering the source codes of GUIs. For example, Gou et al. [2024], Chen et al. [2024a], Liu
et al. [2024b], Kil et al. [2024] render webpages with HTML and Wu et al. [2024a], Baechler et al.
[2024], Gao et al. [2024a], You et al. [2025] leverage desktop or mobile simulators. A few attempts
also leverage GUI detection models [You et al., 2025, Zhang et al., 2024a]. Compared to simply
learning to operate on the source code, learning to operate with their visual form can show superior
performance with the straightforward interaction between widgets [Kil et al., 2024]. Meanwhile,
Meng et al. [2024] shows learning with GUI images helps avoid hallucination and Liu et al. [2024b]
demonstrates generalization to unseen GUIs. Then, to synthesize instruction referring to the widgets,
Gou et al. [2024] summarizes three typical expressions, namely referring to their salient visual
features, locations, or functions. Notably, different GUIs may involve different action spaces, Wu
et al. [2024a] find it necessary to adapt action sequences from different sources to a unified action
space so as to avoid conflict among them during fine-tuning.

3.1.4 Reinforcement Learning

Reinforcement learning (RL) [Sutton, 2018] is a machine learning paradigm where agents learn
optimal decision-making through interactions with an environment. By receiving feedback in the
form of rewards, the agent iteratively refines its strategies to maximize cumulative rewards.

Early attempts [Liu et al., 2018, Shi et al., 2017, Gur et al., 2018, Jia et al., 2019, Shvo et al.,
2021] utilized RL to train agents to accomplish tasks on web and mobile Apps. We introduce
several representative works as follows. Yao et al. [2022] introduced WebShop, a simulated e-
commerce website environment, based on which they trained and evaluated a diverse range of
agents using reinforcement learning, imitation learning, and pre-trained multimodal models. The
reward is determined by how closely the purchased product matches the specific attributes and
options mentioned in the user instructions. Reinforcement learning is typically combined with
behavior cloning or supervised fine-tuning to enhance performance. For example, Humphreys
et al. [2022] developed a scalable method using reinforcement learning and behavioral priors from
human-computer interactions to control computers via keyboard and mouse, achieving human-level
performance in the MiniWob++ benchmark. Zhang et al. [2023b] developed a multimodal model
for automating GUI tasks by grounding natural language instructions to GUI screenshots, using a
pre-trained visual encoder and language decoder, with RL to enhance spatial decoding by supervising
token sequences with visually semantic metrics.

In the above RL-based works, large models generally function as feature extractors. More recently,
research has progressed to the “LLMs as agents” paradigm, where LLMs serve as policy models and
reinforcement learning is applied to align the large models with the final objectives. Thil et al. [2024]
improved web navigation in LLMs using the Miniwob++ benchmark by fine-tuning T5-based models
with hierarchical planning and then integrating these with a multimodal neural network, utilizing both
supervised and reinforcement learning. Fereidouni et al. [2024] employs the Flan-T5 architecture
and introduce training via Reinforcement Learning. They leveraged human demonstrations through
behavior cloning and then further trained the agent with PPO. Liu et al. [2024a] followed the paradigm
of LLMs as agents and proposed AutoGLM, foundation agents for autonomous control of computing

10

Table 2: Recent agent frameworks for OS Agents. TD: Textual Description, GS: GUI Screenshots,
VG: Visual Grounding, SG: Semantic Grounding, DG: Dual Grounding, GL: Global, IT: Iterative,
AE: Automated Exploration, EA: Experience-Augmented, MA: Management, IO: Input Operations,
NO: Navigation Operations, EO: Extended Operations.

Agent Perception Planning Memory Action Date
OpenWebVoyager [He et al., 2024b] GS, SG - - IO, NO 10/2024
OSCAR [Wang and Liu, 2024] GS, DG IT AE EO 10/2024
PUMA [Cai et al., 2024] TD - - IO, NO, EO 10/2024
AgentOccam [Yang et al., 2024a] TD IT MA IO, NO 10/2024
Agent S [Agashe et al., 2024] GS, SG GL EA, AE, MA IO, NO 10/2024
ClickAgent [Hoscilowicz et al., 2024] GS IT AE IO, NO 10/2024
LSFS [Shi et al., 2024] GS, SG - - EO 09/2024
NaviQAte [Shahbandeh et al., 2024] GS, SG - - IO 09/2024
PeriGuru [Fu et al., 2024] GS, DG IT EA, AE IO, NO 09/2024
OpenWebAgent [Iong et al., 2024] GS, DG - - IO 08/2024
LLMCI [Barham and Fasha, 2024] GS, SG - - EO 07/2024
Agent-E [Abuelsaad et al., 2024] TD IT AE, MA IO, NO 07/2024
Cradle [Tan et al.] GS IT EA, AE, MA EO 03/2024
CoAT [Zhang et al., 2024a] GS IT - IO, NO 03/2024
Self-MAP [Deng et al., 2024a] - IT EA IO 02/2024
OS-Copilot [Wu et al., 2024b] TD GL EA, AE IO, EO 02/2024
Mobile-Agent [Wang et al., 2024b] GS, SG IT AE IO, NO 01/2024
WebVoyager [He et al., 2024a] GS, VG IT MA IO, NO 01/2024
AIA [Ding, 2024] GS, VG GL - IO, NO 01/2024
SeeAct [Zheng et al., 2024a] GS, SG - AE IO 01/2024
AppAgent [Zhang et al., 2023a] GS, DG IT AE IO, NO 12/2023
ACE [Gao et al., 2023] TD GL AE IO, NO 12/2023
MobileGPT [Lee et al., 2023a] TD GL MA IO, NO 12/2023
MM-Navigator [Yan et al., 2023] GS, VG - MA IO, NO 11/2023
WebWise [Tao et al., 2023] TD - MA IO, NO 10/2023
Li et al. [2023] TD IT AE IO, NO 10/2023
Laser [Ma et al., 2023] TD IT AE IO, NO 09/2023
Synapse [Zheng et al., 2023a] - - MA IO 06/2023
SheetCopilot [Li et al., 2024c] TD IT AE EO 05/2023
RCI [Kim et al., 2024a] - IT AE IO, NO 03/2023
Wang et al. [2023a] TD - - IO 09/2022

devices through GUIs. They designed an intermediate interface that effectively disentangles planning
and grounding behaviors, and developed a self-evolving online curriculum RL approach that enables
robust error recovery and performance improvement. FengPeiyuan et al. [2024] introduced a novel RL
framework for LLM-based Agents, AGILE, integrating LLMs, memory, tools, and executor modules.
RL enables LLMs to predict actions and the executor to manage them, enhancing decision-making
and interactions. Reinforcement learning is also introduced to the agents based on vision-only models
[Shaw et al., 2023] and MLLMs [Bai et al., 2024, Wang et al., 2024a].

3.2 Agent Framework

OS Agent frameworks typically consist of four core components: Perception, Planning, Memory,
and Action. The perception module collects and analyzes environmental information; the planning
module handles task decomposition and action sequence generation; the memory module supports
information storage and experience accumulation; and the action module executes specific operation
instructions. As illustrated in Figure 4, these components work together to enable OS Agents to

11

PERCEPTION

MEMORY (OPTIOINAL)

Memory Optimization

• Internal memory

• External memory

• Specific memory

Memory Sources

• Memory management

• Growth from experience

• Experience retrieval

ACTION

• Input operations

• Navigation operations

• Extended operations

Action Space

PLANING (OPTIONAL)

• Create a fixed plan
and execute w/o
adapting to changes

Global Planning

Textual
description

GUI
screenshot

Text & GUI

• Continuously adapt
plans to past actions or
environmental changes.

Iterative Planning

Figure 4: Summary of the content about agent frameworks for OS Agents in §3.2.

understand, plan, remember, and interact with operating systems. Table 2 summarizes the technical
characteristics of recent OS Agent frameworks, including their specific implementations across these
four core components.

3.2.1 Perception

Perception is the process through which OS Agents collect and analyze information from their
environment. In OS Agents, the perception component needs to observe the current environment and
extract relevant information to assist with the agents’ planning, action, and memory optimization.
Perception can be broadly categorized into two types based on the input modality as follows:

Textual Description of OS. Early works [Ma et al., 2023, Wang et al., 2023a, Lee et al., 2023a, Gao
et al., 2023, Li et al., 2024c, Wu et al., 2024b, Lu et al., 2024b] are limited by the fact that LLMs
could only process textual input. Therefore, they mainly rely on using tools to convert OS states into
text descriptions.

To facilitate LLMs’ understanding, these text descriptions are often represented in a structured format,
such as HTML, DOM, or accessibility tree. For instance, MobileGPT [Lee et al., 2023a] converts
mobile screens into a simplified HTML representation to help LLMs’ comprehension. However,
these approaches may generate irrelevant or redundant information, which can negatively impact
the OS Agents’ judgment of the environment and lead to incorrect actions. Therefore, some new
approaches have been proposed to filter out invalid descriptions, ensuring that OS Agents only
observe relevant information. For example, Agent-E [Abuelsaad et al., 2024] introduces a flexible
DOM distillation approach that allows the agent to choose the most suitable DOM representation
from three different implementations based on the specific task at hand. Li et al. [2023] only expands
the HTML representation when the agent takes action, compelling it to make rational decisions with
limited information. WebWise [Tao et al., 2023] introduces a filtering function filterDOM to select
relevant DOM elements based on predefined “tags” and “classes,” filtering out unnecessary items.

GUI Screenshot. The emergence of MLLMs enables OS Agents to process visual inputs. Research is
increasingly treating GUI screenshots as the perception input for OS Agents, which better aligns with
human behavior. However, most existing vision encoders of OS Agents are pre-trained on general data,
which makes OS Agents less sensitive to GUI elements.To enhance OS Agents’ understanding and
grounding ability without fine-tuning visual encoders, existing research focuses on using prompting
techniques to describe GUI screenshots. These descriptionscan generally be categorized into three
types: (1) Visual description. Most research [Yan et al., 2023, Wang et al., 2024b] uses SoM
prompting [Yang et al., 2023] to enhance OS Agents’ visual grounding ability. They incorporate
techniques like OCR and GUI element detection algorithms such as ICONNet [Sunkara et al., 2022]
and Grounding DINO [Liu et al., 2024c] to extract bounding boxes of interactive elements, which
are then integrated into corresponding image regions to enhance agents’ understanding of GUI

12

screenshots. (2) Semantic descriptiong. Some studies improve OS Agents’ semantic grounding
ability by adding descriptions of these interactive elements. Specifically, SeeAct [Zheng et al., 2024a]
enhances semantic grounding by using the HTML document of a website as the semantic reference for
the GUI screenshot, thereby linking the visual elements with their corresponding semantic meaning
in the HTML structure. (3) Dual grounding. Dual grounding combines both visual and semantic
information to improve OS Agents’ understanding of the visual environment. For instance, AppAgent
[Zhang et al., 2023a] inputs a labeled screenshot along with an XML file that details the interactive
elements to enhance agent understanding. OSCAR [Wang and Liu, 2024] introduces a dual-grounding
observation approach, using a Windows API-generated A11Y tree for GUI component representation
and adding descriptive labels for semantic grounding. PeriGuru [Fu et al., 2024] inputs a labeled
screenshot and a detailed description generated through element and layout recognition. DUAL-VCR
[Kil et al., 2024] employs a Dual-View Contextualized Representation approach, extracting visual
features using the Pix2Struct Vision Transformer [Lee et al., 2023b] and aligning each element with
corresponding “HTML text” following MindAct [Deng et al., 2024b] for semantic grounding.

3.2.2 Planning

Planning is the process of developing a sequence of actions to achieve a specific goal based on the
current environment [Huang and Chang, 2023, Zhang et al., 2024b, Huang et al., 2024a]. It enables
OS Agents to break down complex tasks into smaller, manageable sub-tasks and solve them step
by step. Unlike general agents, the environment of OS Agents is constantly evolving. For instance,
dynamic web pages change over time, and GUIs also adapt after each action is executed. Therefore,
feasible planning is crucial for OS Agents to effectively cope with these ongoing environmental
changes. We categorize existing studies into two key approaches based on whether the planning
is fixed or iterates in response to environmental changes: global planning and iterative planning,
detailed as follows:

Global. OS Agents only generate a global plan once and execute it without making adjustments based
on environmental changes. Chain-of-Thought (CoT) [Wei et al., 2023] prompts (M)LLMs to break
down complex tasks into reasoning steps, which forms the foundation of global planning in most OS
Agents [Fu et al., 2024]. Due to the one-time nature of global planning, research on global planning
focuses on fitting the OS Agents’ environment and tasks, proposing sufficiently feasible plans from
the outset. For example, OS-Copilot [Wu et al., 2024b] leverages LLMs to formalize the global plan
into a directed acyclic graph, enabling parallel execution of independent sub-tasks, which minimizes
execution time and improves efficiency. ACE [Gao et al., 2023] prompts LLMs to refine extracted
steps in alignment with user queries. Agent S [Agashe et al., 2024] proposes experience-augmented
hierarchical planning, where plans are informed by integrating knowledge from memory and online
sources. Similarly, AIA [Ding, 2024] utilizes Standard Operating Procedures (SOP) to break down
complex tasks into manageable sub-tasks.

Iterative. In contrast to global planning, iterative planning allows OS Agents to continuously iterate
their plans based on historical actions or changes in the environment, enabling them to adapt to
ongoing environmental changes. This methodology is crucial for OS Agents to handle dynamic and
unpredictable environments effectively. In specific, ReAct [Yao et al., 2023] builds on the concept
of CoT by integrating reasoning with the outcome of actions, making planning more adaptable to
changes in the environment. This approach has been widely applied in OS Agents [Zhang et al.,
2023a, Ma et al., 2023, He et al., 2024a, Hoscilowicz et al., 2024, Wang et al., 2024b] for iterative
planning. Reflexion [Shinn et al., 2023] builds upon ReAct by allowing access to previous actions
and states, which enhances strategic planning of OS Agents in complex, time-sensitive scenarios [Fu
et al., 2024, Tan et al., Abuelsaad et al., 2024]. In addition to these general iterative planning methods,
some studies have proposed iterative planning approaches specifically tailored for OS Agents. For
instance, Auto-GUI [Zhang and Zhang, 2023] employs a CoT technique, where a history of past
actions is used to generate future plans iteratively after each step. OSCAR [Wang and Liu, 2024]
introduces task-driven replanning, allowing the OS Agent to modify its plan based on real-time
feedback from the environment. SheetCopilot [Li et al., 2024c] employs State Machine-based Task
Planning, where proposed plans are revised using either a feedback-based mechanism or a retrieval-
based approach, enhancing the OS Agent’s ability to adapt to dynamic environments. RCI [Kim
et al., 2024a] prompts LLMs to find problems in their output and improve the output based on what
they find, assisting the OS Agent in refining its reasoning process, which leads to more effective and
accurate planning. CoAT [Zhang et al., 2024a] introduces a more complex and OS Agent-targeted

13

reasoning method compared to ReAct. It prompts the LLMs to perform a reasoning process involving
Screen Description, Action Thinking, and Next Action Description, ultimately leading to an Action
Result.

3.2.3 Memory

As the complexity of automated tasks in operating systems continues to increase, enhancing the
intelligence and execution efficiency of OS Agents has become a key research focus. Among these
studies, the memory module serves as one of the core components. Using memory effectively,
OS Agents can continuously optimize their performance during task execution, adapt to dynamic
environments, and perform tasks in various complex scenarios. In this section, we discuss current
research advancements related to memory in OS Agents.

Memory Sources. Memory can be categorized into Internal Memory, External Memory, and
Specific Memory, each serving distinct functions in task execution: immediate information storage,
external knowledge support, and operation optimization, respectively. In recent years, research has
increasingly focused on improving memory adaptability and diversity to meet the demands of more
complex tasks [Zhou et al., 2023a, Deng et al., 2024a, Wang et al., 2024c, Huang et al., 2024b, Kim
et al., 2024b]. For example, the introduction of dynamic memory management mechanisms optimizes
memory retrieval and updates, while the integration of multimodal approaches further broadens the
types and scope of memory data, enabling agents to access more diverse information sources when
handling complex scenarios.

• Internal Memory. In the following, we introduce several components of Internal Memory. (1)
Action History. By recording each step of operations, the action history helps OS Agents track
task paths and optimize decisions. For instance, Auto-GUI [Zhang and Zhang, 2023] integrates
historical and future action plans through the chain of previous action histories. (2) Screenshots.
The storage of screenshots supports visual reasoning and the recognition of GUI components.
For example, CoAT [Zhang et al., 2024a] semantically processes screenshots to extract interface
information, enabling better understanding of the task scene. Rawles et al. [2024b], Wang and
Liu [2024] utilize screenshots annotated with Set-of-Mark (SoM) to support visual reasoning,
accurately identify GUI components, and perform precise operations, while also aiding in task
planning and validation. ToL [Pointed] uses GUI screenshots as input to construct a Hierarchical
Layout Tree and combines visual reasoning to generate descriptions of content and layout. (3)
State Data. Dynamic information from the environment, such as page positions and window states,
are stored to help OS Agents quickly locate task objectives and maintain high task execution
accuracy in changing environments. Specifically, CoCo-Agent [Ma et al., 2024a] records layouts
and dynamic states through Comprehensive Environment Perception (CEP), while Abuelsaad et al.
[2024], Tao et al. [2023] employ Document Object Model denoising techniques to dynamically
store page information. In the following, we present the two forms of internal memory.
Short-term Memory stores immediate information about the current task, including the action
history of the agent, state information, and the execution trajectory of the task. It supports decision
optimization and task tracking, providing contextual support for the ongoing task. Recent advances
focus on improving the memory capabilities of OS Agents. For example, understanding the
layout of objects in a scene through visual information enables multimodal agents to possess more
comprehensive cognitive abilities when handling complex tasks.
Long-term Memory stores historical tasks and interaction records, such as the execution paths
of previous tasks, providing references and reasoning support for future tasks. For example, OS-
Copilot [Wu et al., 2024b] stores user preferences and the agent’s historical knowledge, such as
semantic knowledge and task history, as declarative memory. This is used to make personalized
decisions and execute tasks, while dynamically generating new tools or storing task-related skill
codes during task execution [Tan et al.].

• External Memory. External memory provides long-term knowledge support, primarily enriching
an agent’s memory capabilities through knowledge bases, external documents, and online infor-
mation. For instance, agents can retrieve domain-specific background information from external
knowledge bases to make more informed judgments in tasks requiring domain expertise. Addition-
ally, some agents dynamically acquire external knowledge by invoking tools such as Application
Programming Interfaces (APIs) [Song et al., 2024, Reddy et al., 2024], integrating this knowledge
into their memory to assist with task execution and decision optimization.

14

• Specific Memory. Specific memory focuses on storing information directly related to specific tasks
and user needs while incorporating extensive task knowledge and optimized application functions,
which can be stored internally or extended through external data sources [Zhu et al., 2024]. Specific
Memory can store task execution rules, subtask decomposition methods, and domain knowledge
[Wang et al., 2024b]. It provides agents with prior knowledge to assist in handling complex tasks.
For instance, MobileGPT [Lee et al., 2023a] adopts a three-tier hierarchical memory structure (task,
sub-task, action) and organizes memory in the form of a transition graph, breaking tasks down into
sub-tasks represented as function calls for quick access and efficient invocation, while CoCo-Agent
[Ma et al., 2024a] employs task decomposition and Conditional Action Prediction (CAP) to store
execution rules and methods. In terms of interface element recognition and interaction, Agashe
et al. [2024], Wang and Liu [2024], He et al. [2024b] enhance task understanding by parsing the
Accessibility Tree to obtain information about all UI elements on the screen.
Additionally, Specific Memory can also be used to record user profiles, preferences, and inter-
action histories to support personalized recommendations, demand prediction, and inference of
implicit information. For example, OS-Copilot [Wu et al., 2024b] records user preferences through
user profiles, such as tool usage habits and music or video preferences, enabling personalized
solutions and recommendation services. Moreover, Specific Memory also supports recording
application function descriptions and page access history to facilitate cross-application operation
optimization and historical task tracking. For instance, AppAgent [Zhang et al., 2023a] learns
application functionality by recording operation histories and state changes, storing this information
as documentation. Similarly, ClickAgent [Hoscilowicz et al., 2024] improves understanding and
operational efficiency in application environments by using GUI localization models to identify
and locate GUI elements within applications, while also recording functionality descriptions and
historical task information.

Memory Optimization. Memory optimization can enhance an agent’s efficiency in operations and
decision-making during complex tasks by effectively managing and utilizing memory resources. In
the following, we introduce several key strategies.

• Management. For humans, memory information is constantly processed and abstracted in the
brain. Similarly, the memory of OS Agents can be effectively managed to generate higher-
level information, consolidate redundant content, and remove irrelevant or outdated information.
Effective memory management enhances overall performance and prevents efficiency loss caused
by information overload. In specific, Yan et al. [2023], Tan et al. introduce a multimodal self-
summarization mechanism, generating concise historical records in natural language to replace
directly storing complete screens or action sequences. WebAgent [Gur et al., 2023] understands
and summarizes long HTML documents through local and global attention mechanisms, as well
as long-span denoising objectives. On the other hand, WebVoyager [He et al., 2024a] employs a
Context Clipping method, retaining the most recent three observations while keeping a complete
record of thoughts and actions from the history. However, for longer tasks, this approach may lead
to the loss of important information, potentially affecting task completion. Additionally, Agent-E
[Abuelsaad et al., 2024] optimizes webpage representations by filtering task-relevant content,
compressing DOM structure hierarchies, and retaining key parent-child relationships, thereby
reducing redundancy. AGENTOCCAM [Yang et al., 2024a] optimizes the agent’s workflow
memory through a planning tree, treating each new plan as an independent goal and removing
historical step information related to previous plans.

• Growth Experience. By revisiting each step of a task, the agent can analyze successes and failures,
identify opportunities for improvement, and avoid repeating mistakes in similar scenarios [Kim
et al., 2024a]. For instance, MobA [Zhu et al., 2024] introduces dual reflection, evaluating task
feasibility before execution and reviewing completion status afterward. Additionally, In [Li et al.,
2023], the agent analyzes the sequence of actions after a task failure, identifies the earliest critical
missteps, and generates structured recommendations for alternative actions. OS Agents can return
to a previous state and choose an alternative path when the current task path proves infeasible
or the results do not meet expectations, which is akin to classic search algorithms, enabling the
agent to explore multiple potential solutions and find the optimal path. For example, LASER
[Ma et al., 2023] uses a Memory Buffer mechanism to store intermediate results that were not
selected during exploration, allowing the agent to backtrack flexibly within the state space. After
taking an incorrect action, the agent can return to a previous state and retry. SheetCopilot [Li et al.,
2024c] utilizes a state machine mechanism to guide the model in re-planning actions by providing

15

error feedback and spreadsheet state feedback, while MobA [Zhu et al., 2024] uses a tree-like task
structure to record the complete path, ensuring an efficient backtracking process.

• Experience Retrieval. OS Agents can efficiently plan and execute by retrieving experiences
similar to the current task from long-term memory, which helps to reduce redundant operations
[Zheng et al., 2023a, Deng et al., 2024a]. For instance, AWM [Wang et al., 2024c] extracts similar
task workflows from past tasks and reuses them in new tasks, minimizing the need for repetitive
learning. Additionally, PeriGuru [Fu et al., 2024] uses the K-Nearest Neighbors algorithm to
retrieve similar task cases from a task database and combines them with Historical Actions to
enhance decision-making through prompts.

3.2.4 Action

The action space defines the interfaces through which (M)LLM-based Agents engage with operating
systems, spanning across platforms such as computers, mobile devices, and web browsers. We
systematically categorized the action space of OS Agents into input operations, navigation operations,
and extended operations.

Input Operations. Input operations encompass interactions via mouse/touch and keyboard, forming
the foundation for OS Agents to interact with digital interfaces.

Mouse and touch operations encompass three primary types: (1) click/tap actions that are universally
implemented across different platforms and serve as the most basic form of interaction Sun et al.
[2022], Deng et al. [2024b], Zheng et al. [2023a], (2) long press/hold actions that are particularly
crucial for mobile interfaces and context menu activation Zhang et al. [2023a], Rawles et al. [2024a],
Fu et al. [2024], and (3) drag/move operations that enable precise control and manipulation of
interface elements Gao et al. [2023], Niu et al. [2024], Cho et al. [2024].

Keyboard operations comprise two main categories: (1) basic text input capabilities that allow agents
to enter alphanumeric characters and symbols Sun et al. [2022], Deng et al. [2024b], Zhang and
Zhang [2023], and (2) special key operations (e.g., shortcuts, function keys) Sun et al. [2022], Gao
et al. [2023], Bonatti et al. [2024] that enable agents to efficiently navigate and manipulate target
applications through keyboard commands.

Navigation Operations. Navigation operations enable OS Agents to traverse targeted platforms and
acquire sufficient information for subsequent actions. Navigation operations encompass both basic
navigation and web-specific navigation features.

Basic navigation includes: (1) scroll operations that enable agents to explore content beyond the
current viewport, particularly crucial for processing long documents or infinite-scroll interfaces Yan
et al. [2023], Lee et al. [2023a], Gao et al. [2023], (2) back/forward navigation that allows agents to
traverse through navigation history and return to previously visited states Sun et al. [2022], Zhang
and Zhang [2023], Zhang et al. [2023a], and (3) home function that provides quick access to the
initial or default state of applications, ensuring reliable reset points during task execution Zhang and
Zhang [2023], Zhang et al. [2023a], Wang et al. [2024b].

Web navigation extends these capabilities with (1) tab management that enables agents to handle
multiple concurrent sessions and switches between different web contexts Koh et al. [2024b], He et al.
[2024a], Song et al. [2024], and (2) URL navigation features that allow direct access to specific web
resources and facilitate efficient web traversal He et al. [2024a], Deng et al. [2024b], Ma et al. [2023].

Extended Operations. Extended Operations provide additional capabilities beyond standard interface
interactions, enabling more flexible and powerful agent behaviors. These operations primarily include
(1) code execution capabilities that allow agents to dynamically extend their action space beyond
predefined operations, enabling flexible and customizable control through direct script execution
and command interpretation Wu et al. [2024b], Mei et al. [2024], Tan et al., and (2) API integration
features that expand agents’ capabilities by accessing external tools and information resources,
facilitating interactions with third-party services and specialized functionalities Wu et al. [2024b],
Mei et al. [2024], Tan et al., Li et al. [2024c]. These operations fundamentally enhance the adaptability
and functionality of OS Agents, allowing them to handle more complex and diverse tasks that may
not be achievable through conventional interface-based interactions alone.

16

Table 3: Recent benchmarks for OS Agents. We divided the Benchmarks into three sections based on
the Platform (as mentioned in §4.2.1) and sorted them by release date. The following is an explanation
of the abbreviations. BS: Benchmark Settings, M/P: Mobile, PC: Desktop, IT: Interactive, ST: Static,
OET: Operation Environment Types, RW: Real-World, SM: Simulated, GG: GUI Grounding, IF:
Information Processing, AT: Agentic, CG: Code Generation.

Benchmark Platform BS OET Task Date
AndroidControl [Li et al.] M/P ST - AT 06/2024
AndroidWorld [Rawles et al., 2024a] M/P IT RW AT 05/2024
Android-50 [Bishop et al., 2024] M/P IT RW AT 05/2024
B-MoCA [Lee et al., 2024a] M/P IT RW AT 04/2024
LlamaTouch [Zhang et al., 2024d] M/P IT RW AT 04/2024
AndroidArena [Venkatesh et al., 2022] M/P IT RW AT 02/2024
AITW [Rawles et al., 2024b] M/P ST - AT 07/2023
UGIF-DataSet [Venkatesh et al., 2022] M/P ST - AT 11/2022
MoTIF [Burns et al., 2022] M/P ST - AT 02/2022
PIXELHELP [Li et al., 2020] M/P IT RW GG 05/2020

WindowsAgentArena [Bonatti et al., 2024] PC IT RW AT 09/2024
OfficeBench [Wang et al., 2024d] PC IT RW AT 07/2024
OSWorld [Xie et al., 2024] PC IT RW AT 04/2024
OmniACT [Kapoor et al., 2024] PC ST - CG 02/2024
ASSISTGUI [Gao et al., 2023] PC IT RW AT 12/2023

Mind2Web-Live [Pan et al., 2024] Web IT RW IF, AT 06/2024
MMInA [Zhang et al., 2024e] Web IT RW IF, AT 04/2024
GroundUI [Zheng et al., 2024b] Web ST - GG 03/2024
TurkingBench [Xu et al., 2024b] Web IT RW AT 03/2024
WorkArena [Drouin et al., 2024] Web IT RW IF, AT 03/2024
WebLINX [Lù et al., 2024] Web ST - IF, AT 02/2024
Visualwebarena [Koh et al., 2024a] Web IT RW GG, AT 01/2024
WebVLN-v1 [Chen et al., 2024c] Web IT RW IF, AT 12/2023
WebArena [Zhou et al., 2023b] Web IT RW AT 07/2023
Mind2Web [Deng et al., 2024b] Web ST - IF, AT 06/2023
WebShop [Yao et al., 2022] Web ST - AT 07/2022
PhraseNode [Pasupat et al., 2018] Web ST - GG 08/2018
MiniWoB [Shi et al., 2017] Web ST - AT 08/2017
FormWoB [Shi et al., 2017] Web IT SM AT 08/2017

4 Evaluation of OS Agents

Evaluation plays a crucial role in developing OS Agents, as it helps assess their performance and
effectiveness in various scenarios. The current literature features a multitude of evaluation techniques,
which vary significantly according to the specific environment and application. For a clear display
and summary of the evaluation framework, we will delve into a comprehensive overview of a generic
evaluation framework for OS Agents, structured around evaluation protocols and benchmarking. At
the same time, we have provided the recent benchmarks for OS Agents in Table 3.

17

4.1 Evaluation Protocol

This section is dedicated to outlining the comprehensive evaluation protocols. Central to the assess-
ment of OS Agents are two pivotal concerns: (1) Evaluation Principles: how the evaluation process
should be conducted, and (2) Evaluation Metrics: which aspects need to be assessed. We will now
elaborate on the principles and metrics for evaluating OS Agents, focusing on these two issues.

4.1.1 Evaluation Principle

The evaluation of OS Agents requires a combination of multiple aspects and techniques to gain a
comprehensive insight into their capabilities and limitations. The assessment process can be primarily
divided into objective and subjective evaluations. This integration of objective and subjective
evaluation methods not only secures the assessment of performance in controlled environments, but
also prioritizes the agent’s reliability and practical usability in real-world situations.

Objective Evaluation. Objective evaluation primarily measures the performance of OS Agents
based on standardized numerical metrics, which are typically rule-based calculations or hardcoded
assessments on standard benchmark datasets. This form of evaluation specifically targets the agent’s
accuracy in perception [Wang et al., 2024e, Ying et al., 2024], the quality of its generated content [Jin
et al., 2024, Xu et al., 2024b], the effectiveness of its actions [Xu et al., 2024a], and its operational
efficiency [Lee et al., 2024a, Wang et al., 2024f]. Typically, the computation of specific metrics
encompasses exact match [Xu et al., 2024b, Pan et al., 2024], fuzzy match [Zhang et al., 2024e], and
semantic matching for text, elements, and images. Through precise and efficient numerical analysis,
objective evaluation enables quick and standardized measurement of the agent’s performance.

Subjective Evaluation. Besides automated objective assessments, subjective evaluations are also
essential. These human-centered subjective evaluations aim to measure how well the output matches
human expectations [Yan et al., 2023, Pan et al., 2024, Xu et al., 2024a], typically applied in scenarios
that require a high level of comprehension and are difficult to quantify using traditional metrics.
Such subjective evaluations are based on different subjective aspects, including relevance, coherence,
naturalness, harmlessness, and overall quality. Early subjective evaluations were primarily based
on direct human assessments [Zheng et al., 2023b], which, while yielding high-quality results, are
expensive and difficult to reproduce. Later, LLMs were introduced as evaluators to substitute for
human judgment [Liu et al., 2023, Vu et al., 2024], exploiting their strong instruction-following
capabilities. Such LLM-as-a-judge evaluation method [Gu et al., 2024, Kim et al., 2024c,d] can offer
detailed explanations for annotation, providing a finer-grained understanding of the agent’s strengths
and weaknesses. Nevertheless, despite the gains in efficiency, there are still limitations regarding its
reliability and controllability [Pasupat et al., 2018, Gou et al., 2024, Dardouri et al., 2024].

4.1.2 Evaluation Metric

As mentioned in §2.2, the evaluation process of OS Agents mainly examines their abilities in terms
of understanding, planning and action grounding. During evaluation, the agent, provided with task
instructions and the current environment input, is expected to execute a sequence of continuous
actions until the task is accomplished. By collecting the agent’s observations, action outputs, and
other environmental information during the process, specific metrics can be calculated. Specifically,
the evaluation scope includes both granular step-level evaluations and a more holistic task-level
assessment. The former focuses on whether each step in the process aligns with the predefined path,
while the latter is concerned with whether the agent achieves the goal in the end.

Step-level Evaluation. Step-level evaluation centers on a detailed, step-by-step analysis of the
planning trajectory, offering a fine-grained evaluation of the actions taken by the agent at each step.
In step-level evaluation, the agent’s output in response to instruction of each step is directly assessed,
with a focus on the accuracy of action grounding and the matching of potential object elements (which
refers to the target of the action). For action grounding, the predicted action at each step is typically
compared directly with the reference action to obtain operation metrics, such as operation accuracy
and F1 [Xu et al., 2024a, Jin et al., 2024]. For element matching of actions, different approaches are
used depending on the type of action and elements, for example, comparing based on element ID or
the element position, leading to element accuracy and F1 [Pasupat et al., 2018]. In the case of specific
tasks, such as those involving visual grounding in question-answering, there are dedicated metrics like
BLEU [Jin et al., 2024], ROUGE [Xu et al., 2024b], and BERTScore Weber [2024]. By aggregating

18

all the relevant metrics for a single step, it is possible to assess the step’s success, thereby obtaining
the step success rate (step SR) [Pan et al., 2024]. Despite providing fine-grained comprehension,
such step-level evaluation has limitations in assessing the performance of long, continuous action
sequences [Koh et al., 2024a, Pasupat et al., 2018, Xie et al., 2024], and a given task may have various
valid paths. To boost the robustness [Zhang et al., 2024f] of the evaluation, it is usually necessary to
integrate the final task outcome into the assessment.

Task-level Evaluation. Task-level evaluation centers on the final output and evaluates whether
the agent reaches the desired final state. The two main criteria are task completion and resource
utilization. The former assesses whether the agent has successfully fulfilled the assigned tasks as per
the instructions, while the latter examines the agent’s overall efficiency during task completion.

• Task Completion Metrics. Task Completion Metrics measure the effectiveness of OS Agents
in successfully accomplishing assigned tasks. These metrics cover several key aspects. Overall
Success Rate (SR) [Koh et al., 2024a, Zhang and Zhang, 2023, Drouin et al., 2024, Shi et al., 2017]
provides a straightforward measure of the proportion of tasks that are fully completed. Accuracy
[Ying et al., 2024, Wang et al., 2024e, Zhang et al., 2024f] assesses the precision of the agent’s
responses or actions, ensuring outputs closely match with the expected outcomes. Additionally,
Reward function [Koh et al., 2024a, Yao et al., 2022, Zhang et al., 2023c, Kapoor et al., 2024] is
another critical metric, which assigns numerical values to guide agents toward specific objectives
in reinforcement learning.

• Efficiency Metrics. Efficiency Metrics evaluate how efficiently the agent completes assigned tasks,
considering factors such as step cost, hardware expenses, and time expenditure. Specifically, Step
Ratio [Chen et al., 2024d, Lee et al., 2024a, Wang et al., 2024f] compares the number of steps taken
by the agent to the optimal one (often defined by human performance). A lower step ratio indicates a
more efficient and optimized task execution, while higher ratios highlight redundant or unnecessary
actions. API Cost [Guo et al., 2023, Zhang et al., 2024f, Deng et al., 2024c] evaluates the financial
costs associated with API calls, which is particularly relevant for agents that use external language
models or cloud services. Furthermore, Execution Time [Xu et al., 2024c] measures the time
required for the agent to complete a task, and Peak Memory Allocation [Zhang et al., 2024e] shows
the maximum GPU memory usage during computation. These efficiency metrics are critical for
evaluating the real-time performance of agents, especially in resource-constrained environments.

4.2 Evaluation Benchmark

To comprehensively evaluate the performance and capabilities of OS Agents, researchers have
developed a variety of benchmarks. These benchmarks construct various environments, based on
different platforms and settings, and cover a wide range of tasks. This subsection offers a detailed
overview of these benchmarks, organized by evaluation platforms, benchmark settings, and tasks.

4.2.1 Evaluation Platform

The platform acts as an integrated evaluation environment, specifically encompassing the virtual
settings in which benchmarks are performed. Different platforms present unique challenges and
evaluation focuses. Some benchmarks also incorporate multiple platforms at the same time, which
places greater demands on the agent’s cross-platform transferability. Existing real-world platforms
can primarily be categorized into three types: Mobile, Desktop, and Web. Each platform has its
unique characteristics and evaluation focuses, which we will elaborate on as follows.

Mobile. Mobile platforms such as Android [Li et al., 2024a, Lee et al., 2024a, Bishop et al., 2024,
Venkatesh et al., 2022] or iOS [Yan et al., 2023] present unique challenges for OS Agents. While
mobile GUI elements are simpler due to smaller screens, they require more complex actions, such as
precise gestures for navigating widgets or zooming. The open nature of Android provides a wider
action space, encompassing standard GUI interactions and function-calling APIs, such as sending text
messages, which imposes higher demands on the agents’ planning and action grounding capabilities.

Desktop. Desktop platform is more complex due to the diversity of operating systems and applications.
Efficient desktop benchmarks [Xie et al., 2024, Wang et al., 2024d, Bonatti et al., 2024] need to
handle the wide variety and complexity of real-world computing environments, which span different
operating systems, interfaces, and applications. As a result, the scope of manageable tasks and the
scalability of testing agents are often constrained.

19

Web. Web platforms are essential interfaces to access online resources. Webpages [Koh et al., 2024a,
Lù et al., 2024, Drouin et al., 2024, Yao et al., 2022, Shi et al., 2017] are open and built with HTML,
CSS, and JavaScript, making them easy to inspect and modify in real-time. Since agents interact with
the web interface in the same way humans do, it’s possible to crowdsource human demonstrations
of web tasks from anyone with access to a web browser, keyboard, and mouse, at a low cost. This
accessibility has also attracted significant attention from researchers in the field.

4.2.2 Benchmark Setting

Apart from the categorization of platforms, the environmental spaces for OS Agents to percept and
take actions vary across different evaluation benchmarks. We have organized the existing benchmark
environments, primarily dividing them into static and interactive categories, with the interactive
environments further split into simulated and real-world settings.

Static. Static Environments, which are prevalent in early studies, are often created by caching
website copies or static data, thereby establishing an offline context for evaluation. The process
of setting up a static environment is quite simple, as it merely involves caching the content from
real websites. Evaluations generally rely on the cached static content for tasks such as visual
grounding, and only one-step action are supported. MiniWoB [Shi et al., 2017] is built on simple
HTML/CSS/JavaScript pages and employs predefined simulation tasks. Mind2Web [Deng et al.,
2024b] captures comprehensive snapshots of each website along with complete interaction traces,
enabling seamless offline replay. Owing to the lack of dynamic interaction and environmental
feedback, such static evaluations tend to be less authentic and versatile, making them inadequate for
a comprehensive assessment.

Interactive. Interactive Environments provide a more authentic scenario, characterized by their
dynamism and interactivity. In contrast to static environments, OS Agents can execute a sequence of
actions, receive feedback from the environment, and make corresponding adjustments. Interactive
evaluation settings facilitate the evaluation of an agent’s skills in more sophisticated settings. These
interactive environments can be subdivided into simulated and real-world types. (1) For the simulated
environment, FormWoB [Shi et al., 2017] created a virtual website to avoid the reproducibility issues
caused by the dynamic nature of real-world environments, while Rawles et al. [2024b] developed
virtual apps to assess the capabilities of OS Agents. However, these simulated environments are
often overly simplistic by excluding unexpected conditions, thus failing to capture the complexity of
real-world scenarios. (2) For the real-world environment, which is truly authentic and encompasses
real websites and apps, one must consider the continuously updating nature of the environment,
uncontrollable user behaviors, and diverse device setups. This scenario underscores the requirement
for agents to exhibit strong generalization across real-world conditions. OSWorld [Xie et al., 2024],
for example, constructed virtual machines running Windows, Linux, and MacOS to systematically
evaluate the performance of OS Agents across different operating systems. Similarly, AndroidWorld
[Rawles et al., 2024a], conducted tests on real apps using Android emulators, highlighting the
importance of evaluating agents under diverse and realistic conditions.

4.2.3 Task

To comprehensively assess the capabilities of OS Agents, a spectrum of specialized tasks has been
integrated into the established benchmarks. These tasks span from system-level tasks such as installing
and uninstalling applications to daily application such as sending emails and shopping online. These
tasks are intended to measure how closely current agents can mimic human performance.

Task Categorization. In evaluating OS Agents, task categorization is critical for understanding their
capabilities and limitations at a fine-grained level. Based on the capabilities required by the evaluation
process, current benchmark tasks can primarily be categorized into three types: GUI Grounding,
Information Processing and Agentic Tasks, details of which are described as follows.

• GUI Grounding. GUI grounding tasks aim to evaluate agent’s abilities to transform instructions to
various actionable elements. Grounding is fundamental for interacting with operation systems that
OS Agents must possess. Early works, such as PIXELHELP [Li et al., 2020], provide a benchmark
that pairs English instructions with actions performed by users on a mobile emulator.

• Information Processing. In the context of interactive agents, the ability to effectively handle
information is a critical component for addressing complex tasks. This encompasses not only

20

retrieving relevant data from various sources but also summarizing and distilling information
to meet specific user needs. Such capabilities are particularly essential in dynamic and diverse
environments, where agents must process large volumes of information, and deliver accurate results.
To explore these competencies, Information Processing Tasks can be further categorized into two
main types: (1) Information Retrieval Tasks [Pan et al., 2024, Zhang et al., 2024e, Drouin et al.,
2024] examine agent’s ability to process complex and dynamic information by understanding
instructions and GUI interfaces, extracting the desired information or data. Browsers (either
web-based or local applications) are ideal platforms for information retrieval tasks due to their
vast repositories of information. Additionally, applications with integrated data services also serve
as retrieval platforms. For instance, AndroidWorld [Rawles et al., 2024a] requires OS Agents
to retrieve scheduled events from Simple Calendar Pro. (2) Information Summarizing Tasks are
designed to summarize specified information from a GUI interface, testing agent’s ability to
comprehend and process information. For example, certain tasks in WebLinx [Lù et al., 2024]
focus on summarizing web-based news articles or user reviews.

• Agentic Tasks. Agentic tasks are designed to evaluate an agent’s core abilities (as mentioned in
§2.2) and represent a key focus in current research. In these tasks, OS Agents are provided with an
instruction or goal and tasked with identifying the required steps, planning actions, and executing
them until the target state is reached, without relying on any explicit navigation guidance. For
instance, WebLINX [Lù et al., 2024] offers both low-level and high-level instructions, challenging
agents to complete single-step or multi-step tasks, thereby testing their planning capabilities.
Similarly, MMInA [Zhang et al., 2024e] emphasizes multi-hop tasks, requiring agents to navigate
across multiple websites to fulfill the given instruction.

5 Challenge & Future

5.1 Safety & Privacy

A recent report [Park, 2024] highlighted a notable case where a human player successfully outwitted
the Freysa AI agent in a $47,000 crypto challenge, underscoring vulnerabilities even in advanced AI
systems and emphasizing the need to address these security risks. This incident aligns with broader
concerns as (M)LLMs are increasingly integrated into diverse domains, such as healthcare, education,
and autonomous systems, where security has become a critical issue. This growing adoption has led
to numerous studies [Deng et al., 2024d, Gan et al., 2024a, Yao et al., 2024, Shayegani et al., 2023,
Cui et al., 2024, Wang et al., 2024g, Neel and Chang, 2024] investigating the security risks associated
with LLMs and their applications. In particular, some research has delved into the challenges faced
by OS Agents regarding security risks. The following subsections discuss existing research on
the security aspects of OS Agents. §5.1.1 analyzes various attack strategies targeting OS Agents,
§5.1.2 explores existing defense mechanisms and limitations, and §5.1.3 reviews existing security
benchmarks designed to assess the robustness and reliability of OS Agents.

5.1.1 Attack

Several researchers have investigated adversarial attacks targeting OS Agents. Wu et al. [2024e]
identified a novel threat called Web Indirect Prompt Injection (WIPI), in which adversaries indirectly
control LLM-based Web Agents by embedding natural language instructions into web pages. Recent
findings [Wu et al., 2024f] further uncovered security risks for MLLMs, illustrating how adversaries
can generate adversarial images that cause the captioner to produce adversarial captions, ultimately
leading the agents to deviate from the user’s intended goals. Similar vulnerabilities have been
identified in other studies. Ma et al. [2024b] introduced an attack method called environmental
injection, highlighting that advanced MLLMs are vulnerable to environmental distractions, which can
cause agents to perform unfaithful behaviors. Expanding on the concept, Liao et al. [2024] executed
an environmental injection attack by embedding invisible malicious instructions within web pages,
prompting the agents to assist adversaries in stealing users’ personal information. Xu et al. [2024d]
further advanced this approach by leveraging malicious instructions generated by an adversarial
prompter model, trained on both successful and failed attack data, to mislead MLLM-based Web
Agents into executing targeted adversarial actions.

Other studies have explored security issues in specific environments. Zhang et al. [2024g] explored
adversarial pop-up window attacks on MLLM-based Web Agents, demonstrating how this method

21

interferes with the decision-making process of the agents. Kumar et al. [2024] investigated the
security of refusal-trained LLMs when deployed as browser agents. Their study found that these
models’ ability to reject harmful instructions in conversational settings does not effectively transfer
to browser-based environments. Moreover, existing attack methods can successfully bypass their
security measures, enabling jailbreaking. Yang et al. [2024b] proposed a security threat matrix for
agents running on mobile devices, systematically examining the security issues of MLLM-based
Mobile Agents and identifying four realistic attack paths and eight attack methods.

5.1.2 Defense

Although several security frameworks have been developed for LLM-based Agents [Ruan et al., 2024,
Hua et al., 2024, Fang et al., 2024, Xiang et al., 2024, Shamsujjoha et al., 2024], studies on defenses
specific to OS Agents [Pedro et al., 2023] remain limited. Bridging this gap requires the development
of robust defense mechanisms tailored to the vulnerabilities of OS Agents, such as injection attacks,
backdoor exploits, and other potential threats. Future research could prioritize these areas, focusing
on developing comprehensive and scalable security solutions for OS Agents.

5.1.3 Benchmark

Several security benchmarks [Levy et al., 2024, Lee et al., 2024b] have been introduced to evaluate the
robustness of OS Agents in various scenarios. The online benchmark ST-WebAgentBench [Levy et al.,
2024] has been developed to systematically assess the safety and trustworthiness of web agents within
enterprise environments. It focuses on six key dimensions of reliability, offering a comprehensive
framework for evaluating agent behavior in high-risk contexts. Similarly, a benchmarking platform
named MobileSafetyBench [Lee et al., 2024b] has been developed to assess the security of LLM-
based Mobile Agents, focusing on evaluating their performance in handling safety-critical tasks
within Android environments, including interactions with messaging and banking applications.

5.2 Personalization & Self-Evolution

Much like Jarvis as Iron Man’s personal assistant in the movies, developing personalized OS Agents
has been a long-standing goal in AI research. A personal assistant is expected to continuously adapt
and provide enhanced experiences based on individual user preferences. OpenAI’s memory feature4

has made strides in this direction, but many (M)LLMs today still perform insufficient in providing
personalized experience to users and self-evolving over user interactions.

Early works [Wang et al., 2023b, Zhu et al., 2023] allowed LLM-based Agents to interact with envi-
ronments of games, summarizing experiences into text, thus accumulating memory and facilitating
self-evolution [Zhou et al., 2024]. For example, Wang et al. [2023b] demonstrated the potential for
agents to adapt and evolve through experience. Later, researchers applied these principles to the OS
Agent domain [Zhang et al., 2023a, Li et al., 2024d, Wu et al., 2024b]. These efforts validated the
feasibility of memory mechanisms in OS Agents. Although due to the limited resources available
in academia and the difficulty of accessing real user data, much of the current research focuses on
improving performance for specific tasks rather than personalization. The memory mechanism still
shows potential for OS Agents to accumulate user data over time, thus improving user experience
and performance.

Moreover, expanding the modalities of memory from text to other forms, such as images, voice,
presents significant challenges. Managing and retrieving this memory effectively also remains an open
issue. We believe that in the future, overcoming these challenges will enable OS Agents to provide
more personalized, dynamic, and context-aware assistance, with more sophisticated self-evolution
mechanisms that continually adapt to the user’s needs and prefernces.

6 Related Work

(Multimodal) Large Language Models [Wake et al., 2024, Li et al., 2024e, Zheng et al., 2024c, Bai
et al., 2023, Dai et al., 2022] have emerged as transformative tools in artificial intelligence, driving
significant advancements across various domains. Zhao et al. [2023] summarize a foundational

4https://openai.com/index/memory-and-new-controls-for-chatgpt/

22

https://openai.com/index/memory-and-new-controls-for-chatgpt/

overview of LLMs. Yin et al. [2024], Zhang et al. [2024h] comprehensively reviews the progress
of Multimodal LLMs. In addtion, Long et al. [2024] explores the use of synthetic data for training.
Zhang et al. [2023d] presents the current state of research on the field of instruction tuning for LLMs.

With the flourishing development of (M)LLM-based Agents, numerous comprehensive surveys have
emerged, offering detailed insights into various aspects of these systems. Wang et al. [2024h], Cheng
et al. [2024b], Gan et al. [2024b] provides an overview of general LLM-based Agents. For the agent
frameworks, Zhou et al. [2023c], Zhang et al. [2024i], Li et al. [2024f] explore methods to enhance
agents’ capabilities of planning, memory and multi-agents interaction. Qiao et al. [2022] presents
comprehensive comparisons for LLM’s reasoning abilities. Hou et al. [2023], Hu et al. [2024b],
Li et al. [2024g] summarizes studies in different application fields including software engineering,
game and personal assistance. Some concurrent works [Li et al., 2024h, Wu et al., 2024g, Wang
et al., 2024i, Gao et al., 2024b, Zhang et al., 2024j] touch on concepts that share some features
with OS Agents, such as personalized agents, GUI Agents and generalist virtual agents. This work
aims to provide an integrated view on the construction and evaluation of OS Agents, that leverage
environments and interfaces provided by operating systems, while identifying open challenges and
future directions in this domain for forthcoming studies.

7 Conclusion

The development of (multimodal) large language models has created new opportunities for OS Agents,
moving the idea of advanced AI assistants closer to being realized. In this survey, we have aimed to
outline the fundamentals underlying OS Agents, including their key components and capabilities.
We have also reviewed various approaches to their construction, with particular attention to domain-
specific foundation models and agent frameworks. Through the evaluation protocols and benchmarks
discussed, we have explored methods for assessing the performance of OS Agents across a variety of
tasks. Looking ahead, we identify critical challenges, such as safety and privacy, personalization and
self-evolution, as areas that require continued research and attention. This summary of the current
state of the field, along with potential directions for future work, is intended to contribute to the
ongoing development of OS Agents and support their relevance and utility in both academic and
industrial settings.

References
Apple Inc. Siri - apple, 2024. URL https://www.apple.com/siri/. Accessed: 2024-12-04.

Microsoft Research. Cortana research - microsoft research, 2024. URL https://www.microsoft.
com/en-us/research/group/cortana-research/. Accessed: 2024-12-04.

Google. Google assistant, 2024. URL https://assistant.google.com/. Accessed: 2024-12-04.

Amazon. Alexa - amazon, 2024. URL https://alexa.amazon.com/. Accessed: 2024-12-04.

Amrita S Tulshan and Sudhir Namdeorao Dhage. Survey on virtual assistant: Google assistant,
siri, cortana, alexa. In Advances in Signal Processing and Intelligent Recognition Systems: 4th
International Symposium SIRS 2018, Bangalore, India, September 19–22, 2018, Revised Selected
Papers 4, pages 190–201. Springer, 2019.

Google. Gemini - google. URL https://gemini.google.com/. Accessed: 2024-12-12.

OpenAI. Home - openai. URL https://openai.com/. Accessed: 2024-12-12.

xAI. x.ai. URL https://x.ai/. Accessed: 2024-12-12.

01.AI. 01.ai. URL https://www.lingyiwanwu.com/. Accessed: 2024-12-12.

Anthropic. Anthropic. URL https://www.anthropic.com/. Accessed: 2024-12-12.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng
Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica. Chatbot arena:
An open platform for evaluating llms by human preference, 2024.

23

https://www.apple.com/siri/
https://www.microsoft.com/en-us/research/group/cortana-research/
https://www.microsoft.com/en-us/research/group/cortana-research/
https://assistant.google.com/
https://alexa.amazon.com/
https://gemini.google.com/
https://openai.com/
https://x.ai/
https://www.lingyiwanwu.com/
https://www.anthropic.com/

Anthropic. 3.5 models and computer use - anthropic, 2024a. URL https://www.anthropic.com/
news/3-5-models-and-computer-use. Accessed: 2024-12-04.

Apple. Apple intelligence, 2024. URL https://www.apple.com/apple-intelligence/. Ac-
cessed: 2024-12-04.

Xiao Liu, Bo Qin, Dongzhu Liang, Guang Dong, Hanyu Lai, Hanchen Zhang, Hanlin Zhao, Iat Long
Iong, Jiadai Sun, Jiaqi Wang, et al. Autoglm: Autonomous foundation agents for guis. arXiv
preprint arXiv:2411.00820, 2024a.

Google DeepMind. Project mariner, 2024. URL https://deepmind.google/technologies/
project-mariner/. Accessed: 2024-12-04.

Anthropic. Claude model - anthropic, 2024b. URL https://www.anthropic.com/claude. Ac-
cessed: 2024-12-04.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and program
synthesis. arXiv preprint arXiv:2307.12856, 2023.

Keen You, Haotian Zhang, Eldon Schoop, Floris Weers, Amanda Swearngin, Jeffrey Nichols, Yinfei
Yang, and Zhe Gan. Ferret-ui: Grounded mobile ui understanding with multimodal llms. In
European Conference on Computer Vision, pages 240–255. Springer, 2025.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents.
arXiv preprint arXiv:2410.05243, 2024.

Ziyang Meng, Yu Dai, Zezheng Gong, Shaoxiong Guo, Minglong Tang, and Tongquan Wei. Vga:
Vision gui assistant–minimizing hallucinations through image-centric fine-tuning. arXiv preprint
arXiv:2406.14056, 2024.

Xuetian Chen, Hangcheng Li, Jiaqing Liang, Sihang Jiang, and Deqing Yang. Edge: Enhanced
grounded gui understanding with enriched multi-granularity synthetic data. arXiv preprint
arXiv:2410.19461, 2024a.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng, Zichen
Ding, Liheng Chen, Paul Pu Liang, et al. Os-atlas: A foundation action model for generalist gui
agents. arXiv preprint arXiv:2410.23218, 2024a.

Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu.
Appagent: Multimodal agents as smartphone users. arXiv preprint arXiv:2312.13771, 2023a.

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu
Zhong, Julian McAuley, Jianfeng Gao, et al. Gpt-4v in wonderland: Large multimodal models for
zero-shot smartphone gui navigation. arXiv preprint arXiv:2311.07562, 2023.

Kaixin Ma, Hongming Zhang, Hongwei Wang, Xiaoman Pan, Wenhao Yu, and Dong Yu. Laser: Llm
agent with state-space exploration for web navigation. arXiv preprint arXiv:2309.08172, 2023.

Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao, Nuo Xu, Xiao Xiao, Zhongyu Wei, and Duyu
Tang. Android in the zoo: Chain-of-action-thought for gui agents. arXiv preprint arXiv:2403.02713,
2024a.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
arXiv preprint arXiv:2401.13919, 2024a.

Xiaoqiang Wang and Bang Liu. Oscar: Operating system control via state-aware reasoning and
re-planning. arXiv preprint arXiv:2410.18963, 2024.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement.
arXiv preprint arXiv:2402.07456, 2024b.

24

https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.apple.com/apple-intelligence/
https://deepmind.google/technologies/project-mariner/
https://deepmind.google/technologies/project-mariner/
https://www.anthropic.com/claude

Difei Gao, Lei Ji, Zechen Bai, Mingyu Ouyang, Peiran Li, Dongxing Mao, Qinchen Wu, Weichen
Zhang, Peiyi Wang, Xiangwu Guo, et al. Assistgui: Task-oriented desktop graphical user interface
automation. arXiv preprint arXiv:2312.13108, 2023.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong
Lu, Justin Wagle, Kazuhito Koishida, Arthur Bucker, et al. Windows agent arena: Evaluating
multi-modal os agents at scale. arXiv preprint arXiv:2409.08264, 2024.

Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem Alshikh,
and Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal generalist
autonomous agents for desktop and web. arXiv preprint arXiv:2402.17553, 2024.

Sagar Gubbi Venkatesh, Partha Talukdar, and Srini Narayanan. Ugif: Ui grounded instruction
following. arXiv preprint arXiv:2211.07615, 2022.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A dynamic
benchmarking environment for autonomous agents. arXiv preprint arXiv:2405.14573, 2024a.

Wei Li, William Bishop, Alice Li, Chris Rawles, Folawiyo Campbell-Ajala, Divya Tyamagundlu,
and Oriana Riva. On the effects of data scale on computer control agents. arXiv preprint
arXiv:2406.03679, 2024a.

William E Bishop, Alice Li, Christopher Rawles, and Oriana Riva. Latent state estimation helps ui
agents to reason. arXiv preprint arXiv:2405.11120, 2024.

Mingzhe Xing, Rongkai Zhang, Hui Xue, Qi Chen, Fan Yang, and Zhen Xiao. Understanding the
weakness of large language model agents within a complex android environment. In Proceedings of
the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 6061–6072,
2024.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits: An
open-domain platform for web-based agents. In International Conference on Machine Learning,
pages 3135–3144. PMLR, 2017.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information
Processing Systems, 35:20744–20757, 2022.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks. arXiv preprint arXiv:2401.13649, 2024a.

Xing Han Lù, Zdeněk Kasner, and Siva Reddy. Weblinx: Real-world website navigation with
multi-turn dialogue. arXiv preprint arXiv:2402.05930, 2024.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H Laradji, Manuel Del Verme, Tom Marty,
Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, et al. Workarena: How capable are
web agents at solving common knowledge work tasks? arXiv preprint arXiv:2403.07718, 2024.

Juyong Lee, Taywon Min, Minyong An, Dongyoon Hahm, Haeone Lee, Changyeon Kim, and Kimin
Lee. Benchmarking mobile device control agents across diverse configurations. arXiv preprint
arXiv:2404.16660, 2024a.

Zhuosheng Zhang and Aston Zhang. You only look at screens: Multimodal chain-of-action agents.
arXiv preprint arXiv:2309.11436, 2023.

Jakub Hoscilowicz, Bartosz Maj, Bartosz Kozakiewicz, Oleksii Tymoshchuk, and Artur Janicki. Click-
agent: Enhancing ui location capabilities of autonomous agents. arXiv preprint arXiv:2410.11872,
2024.

Kelin Fu, Yang Tian, and Kaigui Bian. Periguru: A peripheral robotic mobile app operation assistant
based on gui image understanding and prompting with llm. arXiv preprint arXiv:2409.09354,
2024.

25

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist web
agent, if grounded. arXiv preprint arXiv:2401.01614, 2024a.

Liangtai Sun, Xingyu Chen, Lu Chen, Tianle Dai, Zichen Zhu, and Kai Yu. Meta-gui: Towards
multi-modal conversational agents on mobile gui. arXiv preprint arXiv:2205.11029, 2022.

Yueqi Song, Frank Xu, Shuyan Zhou, and Graham Neubig. Beyond browsing: Api-based web agents.
arXiv preprint arXiv:2410.16464, 2024.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Hongming Zhang, Tianqing Fang, Zhenzhong
Lan, and Dong Yu. Openwebvoyager: Building multimodal web agents via iterative real-world
exploration, feedback and optimization. arXiv preprint arXiv:2410.19609, 2024b.

Kai Mei, Zelong Li, Shuyuan Xu, Ruosong Ye, Yingqiang Ge, and Yongfeng Zhang. Aios: Llm
agent operating system. arXiv e-prints, pp. arXiv–2403, 2024.

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu, Hanchen
Zhang, Xiaohan Zhang, Yuxiao Dong, et al. Autowebglm: A large language model-based web
navigating agent. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 5295–5306, 2024.

Songqin Nong, Jiali Zhu, Rui Wu, Jiongchao Jin, Shuo Shan, Xiutian Huang, and Wenhao Xu.
Mobileflow: A multimodal llm for mobile gui agent. arXiv preprint arXiv:2407.04346, 2024.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
14281–14290, 2024a.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey,
2023. URL https://arxiv.org/abs/2212.10403.

Yadong Zhang, Shaoguang Mao, Tao Ge, Xun Wang, Adrian de Wynter, Yan Xia, Wenshan Wu, Ting
Song, Man Lan, and Furu Wei. Llm as a mastermind: A survey of strategic reasoning with large
language models, 2024b. URL https://arxiv.org/abs/2404.01230.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang,
Ruiming Tang, and Enhong Chen. Understanding the planning of llm agents: A survey. arXiv
preprint arXiv:2402.02716, 2024a.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
Advances in Neural Information Processing Systems, 36, 2024a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.org/
abs/2210.03629.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann, Prabhan-
jan Kambadur, David Rosenberg, and Gideon Mann. Bloomberggpt: A large language model for
finance. arXiv preprint arXiv:2303.17564, 2023.

Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Le Hou, Kevin Clark, Stephen
Pfohl, Heather Cole-Lewis, Darlene Neal, et al. Towards expert-level medical question answering
with large language models. arXiv preprint arXiv:2305.09617, 2023.

Chaojun Xiao, Xueyu Hu, Zhiyuan Liu, Cunchao Tu, and Maosong Sun. Lawformer: A pre-trained
language model for chinese legal long documents. AI Open, 2:79–84, 2021.

Harrison Chase. LangChain, October 2022. URL https://github.com/langchain-ai/
langchain.

26

https://arxiv.org/abs/2212.10403
https://arxiv.org/abs/2404.01230
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain

Significant Gravitas. AutoGPT. URL https://github.com/Significant-Gravitas/AutoGPT.

Sirui Hong, Mingchen Zhuge, Jiaqi Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin Wang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin
Wu, and Jürgen Schmidhuber. Metagpt: Meta programming for a multi-agent collaborative
framework, 2024b. URL https://arxiv.org/abs/2308.00352.

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Qianli Ma, Guoyin Wang, Xuwu Wang, Jing Su,
Jingjing Xu, Ming Zhu, et al. Infiagent-dabench: Evaluating agents on data analysis tasks. arXiv
preprint arXiv:2401.05507, 2024a.

Zhangsheng Li, Keen You, Haotian Zhang, Di Feng, Harsh Agrawal, Xiujun Li, Mohana
Prasad Sathya Moorthy, Jeff Nichols, Yinfei Yang, and Zhe Gan. Ferret-ui 2: Mastering universal
user interface understanding across platforms. arXiv preprint arXiv:2410.18967, 2024b.

Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Zechen Bai, Weixian Lei, Lijuan Wang,
and Mike Zheng Shou. Showui: One vision-language-action model for generalist gui agent. In
NeurIPS 2024 Workshop on Open-World Agents, 2024.

Junpeng Liu, Tianyue Ou, Yifan Song, Yuxiao Qu, Wai Lam, Chenyan Xiong, Wenhu Chen, Graham
Neubig, and Xiang Yue. Harnessing webpage uis for text-rich visual understanding. arXiv preprint
arXiv:2410.13824, 2024b.

Pawel Pawlowski, Krystian Zawistowski, Wojciech Lapacz, Marcin Skorupa, Adam Wiacek, Se-
bastien Postansque, and Jakub Hoscilowicz. Tinyclick: Single-turn agent for empowering gui
automation. arXiv preprint arXiv:2410.11871, 2024.

Shikhar Murty, Dzmitry Bahdanau, and Christopher D Manning. Nnetscape navigator: Complex
demonstrations for web agents without a demonstrator. arXiv preprint arXiv:2410.02907, 2024.

Tianyue Ou, Frank F Xu, Aman Madaan, Jiarui Liu, Robert Lo, Abishek Sridhar, Sudipta Sengupta,
Dan Roth, Graham Neubig, and Shuyan Zhou. Synatra: Turning indirect knowledge into direct
demonstrations for digital agents at scale. arXiv preprint arXiv:2409.15637, 2024.

Qinzhuo Wu, Weikai Xu, Wei Liu, Tao Tan, Jianfeng Liu, Ang Li, Jian Luan, Bin Wang, and Shuo
Shang. Mobilevlm: A vision-language model for better intra-and inter-ui understanding. arXiv
preprint arXiv:2409.14818, 2024c.

Jiwen Zhang, Yaqi Yu, Minghui Liao, Wentao Li, Jihao Wu, and Zhongyu Wei. Ui-hawk: Unleashing
the screen stream understanding for gui agents. Preprints, 2024c.

Qinchen Wu, Difei Gao, Kevin Qinghong Lin, Zhuoyu Wu, Xiangwu Guo, Peiran Li, Weichen Zhang,
Hengxu Wang, and Mike Zheng Shou. Gui action narrator: Where and when did that action take
place? arXiv preprint arXiv:2406.13719, 2024d.

Quanfeng Lu, Wenqi Shao, Zitao Liu, Fanqing Meng, Boxuan Li, Botong Chen, Siyuan Huang,
Kaipeng Zhang, Yu Qiao, and Ping Luo. Gui odyssey: A comprehensive dataset for cross-app gui
navigation on mobile devices. arXiv preprint arXiv:2406.08451, 2024a.

Andrea Burns, Kate Saenko, and Bryan A Plummer. Tell me what’s next: Textual foresight for
generic ui representations. arXiv preprint arXiv:2406.07822, 2024.

Lucas-Andrei Thil, Mirela Popa, and Gerasimos Spanakis. Navigating webai: Training agents to
complete web tasks with large language models and reinforcement learning. In Proceedings of the
39th ACM/SIGAPP Symposium on Applied Computing, pages 866–874, 2024.

Moghis Fereidouni et al. Search beyond queries: Training smaller language models for web interac-
tions via reinforcement learning. arXiv preprint arXiv:2404.10887, 2024.

Ajay Patel, Markus Hofmarcher, Claudiu Leoveanu-Condrei, Marius-Constantin Dinu, Chris Callison-
Burch, and Sepp Hochreiter. Large language models can self-improve at web agent tasks. arXiv
preprint arXiv:2405.20309, 2024.

27

https://github.com/Significant-Gravitas/AutoGPT
https://arxiv.org/abs/2308.00352

Gilles Baechler, Srinivas Sunkara, Maria Wang, Fedir Zubach, Hassan Mansoor, Vincent Etter, Victor
Cărbune, Jason Lin, Jindong Chen, and Abhanshu Sharma. Screenai: A vision-language model for
ui and infographics understanding. arXiv preprint arXiv:2402.04615, 2024.

Jihyung Kil, Chan Hee Song, Boyuan Zheng, Xiang Deng, Yu Su, and Wei-Lun Chao. Dual-view
visual contextualization for web navigation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 14445–14454, 2024.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiy-
ong Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents. arXiv preprint
arXiv:2401.10935, 2024a.

Yue Jiang, Eldon Schoop, Amanda Swearngin, and Jeffrey Nichols. Iluvui: Instruction-tuned
language-vision modeling of uis from machine conversations. arXiv preprint arXiv:2310.04869,
2023.

Zhizheng Zhang, Wenxuan Xie, Xiaoyi Zhang, and Yan Lu. Reinforced ui instruction grounding:
Towards a generic ui task automation api. arXiv preprint arXiv:2310.04716, 2023b.

Iat Long Iong, Xiao Liu, Yuxuan Chen, Hanyu Lai, Shuntian Yao, Pengbo Shen, Hao Yu, Yuxiao Dong,
and Jie Tang. Openwebagent: An open toolkit to enable web agents on large language models. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
3: System Demonstrations), pages 72–81, 2024.

Hiroki Furuta, Kuang-Huei Lee, Ofir Nachum, Yutaka Matsuo, Aleksandra Faust, Shixiang Shane
Gu, and Izzeddin Gur. Multimodal web navigation with instruction-finetuned foundation models.
arXiv preprint arXiv:2305.11854, 2023.

Hiroki Furuta, Yutaka Matsuo, Aleksandra Faust, and Izzeddin Gur. Exposing limitations of language
model agents in sequential-task compositions on the web. In ICLR 2024 Workshop on Large
Language Model (LLM) Agents, 2024.

Longxi Gao, Li Zhang, Shihe Wang, Shangguang Wang, Yuanchun Li, and Mengwei Xu. Mobile-
views: A large-scale mobile gui dataset. arXiv preprint arXiv:2409.14337, 2024a.

Yifan Xu, Xiao Liu, Xueqiao Sun, Siyi Cheng, Hao Yu, Hanyu Lai, Shudan Zhang, Dan Zhang,
Jie Tang, and Yuxiao Dong. Androidlab: Training and systematic benchmarking of android
autonomous agents. arXiv preprint arXiv:2410.24024, 2024a.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie Fang, Yue Zhao, Chongyi Wang, Jun Liu,
Guirong Chen, Yupeng Huo, et al. Guicourse: From general vision language models to versatile
gui agents. arXiv preprint arXiv:2406.11317, 2024b.

Qi Chen, Dileepa Pitawela, Chongyang Zhao, Gengze Zhou, Hsiang-Ting Chen, and Qi Wu. Webvln:
Vision-and-language navigation on websites. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 1165–1173, 2024c.

Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, and Percy Liang. Reinforcement learning on
web interfaces using workflow-guided exploration. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=ryTp3f-0-.

Izzeddin Gur, Ulrich Rueckert, Aleksandra Faust, and Dilek Hakkani-Tur. Learning to navigate the
web. arXiv preprint arXiv:1812.09195, 2018.

28

https://openreview.net/forum?id=ryTp3f-0-

Sheng Jia, Jamie Kiros, and Jimmy Ba. Dom-q-net: Grounded rl on structured language. arXiv
preprint arXiv:1902.07257, 2019.

Maayan Shvo, Zhiming Hu, Rodrigo Toro Icarte, Iqbal Mohomed, Allan D Jepson, and Sheila A
McIlraith. Appbuddy: Learning to accomplish tasks in mobile apps via reinforcement learning. In
Canadian AI, 2021.

Peter C Humphreys, David Raposo, Tobias Pohlen, Gregory Thornton, Rachita Chhaparia, Alistair
Muldal, Josh Abramson, Petko Georgiev, Adam Santoro, and Timothy Lillicrap. A data-driven
approach for learning to control computers. In International Conference on Machine Learning,
pages 9466–9482. PMLR, 2022.

FengPeiyuan, Yichen He, Guanhua Huang, Yuan Lin, Hanchong Zhang, Yuchen Zhang, and Hang Li.
AGILE: A novel reinforcement learning framework of LLM agents. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL https://openreview.net/
forum?id=Ul3lDYo3XQ.

Peter Shaw, Mandar Joshi, James Cohan, Jonathan Berant, Panupong Pasupat, Hexiang Hu, Urvashi
Khandelwal, Kenton Lee, and Kristina N Toutanova. From pixels to ui actions: Learning to follow
instructions via graphical user interfaces. Advances in Neural Information Processing Systems, 36:
34354–34370, 2023.

Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl:
Training in-the-wild device-control agents with autonomous reinforcement learning. arXiv preprint
arXiv:2406.11896, 2024.

Taiyi Wang, Zhihao Wu, Jianheng Liu, Jianye Hao, Jun Wang, and Kun Shao. Distrl: An asyn-
chronous distributed reinforcement learning framework for on-device control agents. arXiv preprint
arXiv:2410.14803, 2024a.

Hongru Cai, Yongqi Li, Wenjie Wang, Fengbin Zhu, Xiaoyu Shen, Wenjie Li, and Tat-Seng Chua.
Large language models empowered personalized web agents. arXiv preprint arXiv:2410.17236,
2024.

Ke Yang, Yao Liu, Sapana Chaudhary, Rasool Fakoor, Pratik Chaudhari, George Karypis, and Huzefa
Rangwala. Agentoccam: A simple yet strong baseline for llm-based web agents. arXiv preprint
arXiv:2410.13825, 2024a.

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s: An
open agentic framework that uses computers like a human. arXiv preprint arXiv:2410.08164,
2024.

Zeru Shi, Kai Mei, Mingyu Jin, Yongye Su, Chaoji Zuo, Wenyue Hua, Wujiang Xu, Yujie Ren, Zirui
Liu, Mengnan Du, et al. From commands to prompts: Llm-based semantic file system for aios.
arXiv preprint arXiv:2410.11843, 2024.

Mobina Shahbandeh, Parsa Alian, Noor Nashid, and Ali Mesbah. Naviqate: Functionality-guided
web application navigation, 2024. URL https://arxiv.org/abs/2409.10741.

Husam Barham and Mohammed Fasha. Towards llmci-multimodal ai for llm-vision ui operation.
2024.

Tamer Abuelsaad, Deepak Akkil, Prasenjit Dey, Ashish Jagmohan, Aditya Vempaty, and Ravi Kokku.
Agent-e: From autonomous web navigation to foundational design principles in agentic systems.
arXiv preprint arXiv:2407.13032, 2024.

Weihao Tan, Wentao Zhang, Xinrun Xu, Haochong Xia, Gang Ding, Boyu Li, Bohan Zhou, Junpeng
Yue, Jiechuan Jiang, Yewen Li, et al. Cradle: Empowering foundation agents towards general
computer control. In NeurIPS 2024 Workshop on Open-World Agents.

Yang Deng, Xuan Zhang, Wenxuan Zhang, Yifei Yuan, See-Kiong Ng, and Tat-Seng Chua. On the
multi-turn instruction following for conversational web agents. arXiv preprint arXiv:2402.15057,
2024a.

29

https://openreview.net/forum?id=Ul3lDYo3XQ
https://openreview.net/forum?id=Ul3lDYo3XQ
https://arxiv.org/abs/2409.10741

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and Jitao
Sang. Mobile-agent: Autonomous multi-modal mobile device agent with visual perception. arXiv
preprint arXiv:2401.16158, 2024b.

Tinghe Ding. Mobileagent: enhancing mobile control via human-machine interaction and sop
integration. arXiv preprint arXiv:2401.04124, 2024.

Sunjae Lee, Junyoung Choi, Jungjae Lee, Munim Hasan Wasi, Hojun Choi, Steven Y Ko, Sangeun
Oh, and Insik Shin. Explore, select, derive, and recall: Augmenting llm with human-like memory
for mobile task automation. arXiv preprint arXiv:2312.03003, 2023a.

Heyi Tao, Sethuraman TV, Michal Shlapentokh-Rothman, and Derek Hoiem. Webwise: Web interface
control and sequential exploration with large language models. arXiv preprint arXiv:2310.16042,
2023.

Tao Li, Gang Li, Zhiwei Deng, Bryan Wang, and Yang Li. A zero-shot language agent for computer
control with structured reflection. arXiv preprint arXiv:2310.08740, 2023.

Longtao Zheng, Rundong Wang, Xinrun Wang, and Bo An. Synapse: Trajectory-as-exemplar
prompting with memory for computer control. In The Twelfth International Conference on
Learning Representations, 2023a.

Hongxin Li, Jingran Su, Yuntao Chen, Qing Li, and ZHAO-XIANG ZHANG. Sheetcopilot: Bringing
software productivity to the next level through large language models. Advances in Neural
Information Processing Systems, 36, 2024c.

Bryan Wang, Gang Li, and Yang Li. Enabling conversational interaction with mobile ui using large
language models. In Proceedings of the 2023 CHI Conference on Human Factors in Computing
Systems, pages 1–17, 2023a.

Junting Lu, Zhiyang Zhang, Fangkai Yang, Jue Zhang, Lu Wang, Chao Du, Qingwei Lin, Sar-
avan Rajmohan, Dongmei Zhang, and Qi Zhang. Turn every application into an agent: To-
wards efficient human-agent-computer interaction with api-first llm-based agents. arXiv preprint
arXiv:2409.17140, 2024b.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v, 2023. URL https://arxiv.org/
abs/2310.11441.

Srinivas Sunkara, Maria Wang, Lijuan Liu, Gilles Baechler, Yu-Chung Hsiao, Abhanshu Sharma,
James Stout, et al. Towards better semantic understanding of mobile interfaces. arXiv preprint
arXiv:2210.02663, 2022.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan Li,
Jianwei Yang, Hang Su, Jun Zhu, and Lei Zhang. Grounding dino: Marrying dino with grounded
pre-training for open-set object detection, 2024c. URL https://arxiv.org/abs/2303.05499.

Kenton Lee, Mandar Joshi, Iulia Raluca Turc, Hexiang Hu, Fangyu Liu, Julian Martin Eisenschlos,
Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, and Kristina Toutanova. Pix2struct: Screenshot
parsing as pretraining for visual language understanding. In International Conference on Machine
Learning, pages 18893–18912. PMLR, 2023b.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36, 2024b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
URL https://arxiv.org/abs/2201.11903.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
https://arxiv.org/abs/2303.11366.

30

https://arxiv.org/abs/2310.11441
https://arxiv.org/abs/2310.11441
https://arxiv.org/abs/2303.05499
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2303.11366

Wangchunshu Zhou, Yuchen Eleanor Jiang, Peng Cui, Tiannan Wang, Zhenxin Xiao, Yifan Hou,
Ryan Cotterell, and Mrinmaya Sachan. Recurrentgpt: Interactive generation of (arbitrarily) long
text, 2023a. URL https://arxiv.org/abs/2305.13304.

Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent workflow memory. arXiv
preprint arXiv:2409.07429, 2024c.

Tian Huang, Chun Yu, Weinan Shi, Zijian Peng, David Yang, Weiqi Sun, and Yuanchun Shi.
Promptrpa: Generating robotic process automation on smartphones from textual prompts. arXiv
preprint arXiv:2404.02475, 2024b.

Jaekyeom Kim, Dong-Ki Kim, Lajanugen Logeswaran, Sungryull Sohn, and Honglak Lee. Auto-
intent: Automated intent discovery and self-exploration for large language model web agents.
arXiv preprint arXiv:2410.22552, 2024b.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. Advances in Neural Information
Processing Systems, 36, 2024b.

Read Anywhere Pointed. Layout-aware gui screen reading with tree-of-lens grounding.

Xinbei Ma, Zhuosheng Zhang, and Hai Zhao. Coco-agent: A comprehensive cognitive mllm agent
for smartphone gui automation. In Findings of the Association for Computational Linguistics ACL
2024, pages 9097–9110, 2024a.

Revanth Gangi Reddy, Sagnik Mukherjee, Jeonghwan Kim, Zhenhailong Wang, Dilek Hakkani-Tur,
and Heng Ji. Infogent: An agent-based framework for web information aggregation. arXiv preprint
arXiv:2410.19054, 2024.

Zichen Zhu, Hao Tang, Yansi Li, Kunyao Lan, Yixuan Jiang, Hao Zhou, Yixiao Wang, Situo Zhang,
Liangtai Sun, Lu Chen, et al. Moba: A two-level agent system for efficient mobile task automation.
arXiv preprint arXiv:2410.13757, 2024.

Runliang Niu, Jindong Li, Shiqi Wang, Yali Fu, Xiyu Hu, Xueyuan Leng, He Kong, Yi Chang, and
Qi Wang. Screenagent: A vision language model-driven computer control agent. arXiv preprint
arXiv:2402.07945, 2024.

Junhee Cho, Jihoon Kim, Daseul Bae, Jinho Choo, Youngjune Gwon, and Yeong-Dae Kwon. Caap:
Context-aware action planning prompting to solve computer tasks with front-end ui only. arXiv
preprint arXiv:2406.06947, 2024.

Jing Yu Koh, Stephen McAleer, Daniel Fried, and Ruslan Salakhutdinov. Tree search for language
model agents. arXiv preprint arXiv:2407.01476, 2024b.

Wei Li, William E Bishop, Alice Li, Christopher Rawles, Folawiyo Campbell-Ajala, Divya Tyama-
gundlu, and Oriana Riva. On the effects of data scale on ui control agents. In The Thirty-eight
Conference on Neural Information Processing Systems Datasets and Benchmarks Track.

Li Zhang, Shihe Wang, Xianqing Jia, Zhihan Zheng, Yunhe Yan, Longxi Gao, Yuanchun Li, and
Mengwei Xu. Llamatouch: A faithful and scalable testbed for mobile ui task automation. In
Proceedings of the 37th Annual ACM Symposium on User Interface Software and Technology,
pages 1–13, 2024d.

Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha Kumar, Kate Saenko, and Bryan A Plummer. A
dataset for interactive vision-language navigation with unknown command feasibility. In European
Conference on Computer Vision, pages 312–328. Springer, 2022.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. Mapping natural language
instructions to mobile ui action sequences. arXiv preprint arXiv:2005.03776, 2020.

Zilong Wang, Yuedong Cui, Li Zhong, Zimin Zhang, Da Yin, Bill Yuchen Lin, and Jingbo Shang.
Officebench: Benchmarking language agents across multiple applications for office automation.
arXiv preprint arXiv:2407.19056, 2024d.

31

https://arxiv.org/abs/2305.13304

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. arXiv preprint arXiv:2404.07972,
2024.

Yichen Pan, Dehan Kong, Sida Zhou, Cheng Cui, Yifei Leng, Bing Jiang, Hangyu Liu, Yanyi
Shang, Shuyan Zhou, Tongshuang Wu, et al. Webcanvas: Benchmarking web agents in online
environments. arXiv preprint arXiv:2406.12373, 2024.

Ziniu Zhang, Shulin Tian, Liangyu Chen, and Ziwei Liu. Mmina: Benchmarking multihop multimodal
internet agents. arXiv preprint arXiv:2404.09992, 2024e.

Longtao Zheng, Zhiyuan Huang, Zhenghai Xue, Xinrun Wang, Bo An, and Shuicheng Yan. Agentstu-
dio: A toolkit for building general virtual agents. arXiv preprint arXiv:2403.17918, 2024b.

Kevin Xu, Yeganeh Kordi, Tanay Nayak, Ado Asija, Yizhong Wang, Kate Sanders, Adam Byerly,
Jingyu Zhang, Benjamin Van Durme, and Daniel Khashabi. Tur [k] ingbench: A challenge
benchmark for web agents. arXiv preprint arXiv:2403.11905, 2024b.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023b.

Panupong Pasupat, Tian-Shun Jiang, Evan Zheran Liu, Kelvin Guu, and Percy Liang. Mapping
natural language commands to web elements. arXiv preprint arXiv:1808.09132, 2018.

Maria Wang, Srinivas Sunkara, Gilles Baechler, Jason Lin, Yun Zhu, Fedir Zubach, Lei Shu, and
Jindong Chen. Webquest: A benchmark for multimodal qa on web page sequences. arXiv preprint
arXiv:2409.13711, 2024e.

Kaining Ying, Fanqing Meng, Jin Wang, Zhiqian Li, Han Lin, Yue Yang, Hao Zhang, Wenbo Zhang,
Yuqi Lin, Shuo Liu, et al. Mmt-bench: A comprehensive multimodal benchmark for evaluating
large vision-language models towards multitask agi. arXiv preprint arXiv:2404.16006, 2024.

Yilun Jin, Zheng Li, Chenwei Zhang, Tianyu Cao, Yifan Gao, Pratik Jayarao, Mao Li, Xin Liu, Ritesh
Sarkhel, Xianfeng Tang, et al. Shopping mmlu: A massive multi-task online shopping benchmark
for large language models. arXiv preprint arXiv:2410.20745, 2024.

Luyuan Wang, Yongyu Deng, Yiwei Zha, Guodong Mao, Qinmin Wang, Tianchen Min, Wei Chen,
and Shoufa Chen. Mobileagentbench: An efficient and user-friendly benchmark for mobile llm
agents. arXiv preprint arXiv:2406.08184, 2024f.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena. In NeurIPS, 2023b.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023.

Tu Vu, Kalpesh Krishna, Salaheddin Alzubi, Chris Tar, Manaal Faruqui, and Yun-Hsuan Sung.
Foundational autoraters: Taming large language models for better automatic evaluation, 2024.
URL https://arxiv.org/abs/2407.10817.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan
Shen, Shengjie Ma, Honghao Liu, Yuanzhuo Wang, and Jian Guo. A survey on llm-as-a-judge,
2024. URL https://arxiv.org/abs/2411.15594.

Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang, Shayne Longpre, Hwaran Lee, Sangdoo Yun,
Seongjin Shin, Sungdong Kim, James Thorne, and Minjoon Seo. Prometheus: Inducing fine-
grained evaluation capability in language models, 2024c. URL https://arxiv.org/abs/2310.
08491.

32

https://arxiv.org/abs/2407.10817
https://arxiv.org/abs/2411.15594
https://arxiv.org/abs/2310.08491
https://arxiv.org/abs/2310.08491

Seungone Kim, Juyoung Suk, Shayne Longpre, Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham
Neubig, Moontae Lee, Kyungjae Lee, and Minjoon Seo. Prometheus 2: An open source language
model specialized in evaluating other language models, 2024d. URL https://arxiv.org/abs/
2405.01535.

Tassnim Dardouri, Laura Minkova, Jessica López Espejel, Walid Dahhane, and El Hassane Ettifouri.
Visual grounding for desktop graphical user interfaces. arXiv preprint arXiv:2407.01558, 2024.

Irene Weber. Large language models as software components: A taxonomy for llm-integrated
applications. CoRR, abs/2406.10300, 2024.

Zekai Zhang, Yiduo Guo, Yaobo Liang, Dongyan Zhao, and Nan Duan. Pptc-r benchmark: Towards
evaluating the robustness of large language models for powerpoint task completion. arXiv preprint
arXiv:2403.03788, 2024f.

Danyang Zhang, Lu Chen, and Kai Yu. Mobile-env: A universal platform for training and evaluation
of mobile interaction. arXiv preprint arXiv:2305.08144, 2023c.

Jingxuan Chen, Derek Yuen, Bin Xie, Yuhao Yang, Gongwei Chen, Zhihao Wu, Li Yixing, Xurui
Zhou, Weiwen Liu, Shuai Wang, et al. Spa-bench: A comprehensive benchmark for smartphone
agent evaluation. In NeurIPS 2024 Workshop on Open-World Agents, 2024d.

Yiduo Guo, Zekai Zhang, Yaobo Liang, Dongyan Zhao, and Nan Duan. Pptc benchmark: Evaluating
large language models for powerpoint task completion. arXiv preprint arXiv:2311.01767, 2023.

Shihan Deng, Weikai Xu, Hongda Sun, Wei Liu, Tao Tan, Jianfeng Liu, Ang Li, Jian Luan, Bin
Wang, Rui Yan, et al. Mobile-bench: An evaluation benchmark for llm-based mobile agents. arXiv
preprint arXiv:2407.00993, 2024c.

Tianqi Xu, Linyao Chen, Dai-Jie Wu, Yanjun Chen, Zecheng Zhang, Xiang Yao, Zhiqiang Xie,
Yongchao Chen, Shilong Liu, Bochen Qian, et al. Crab: Cross-environment agent benchmark for
multimodal language model agents. arXiv preprint arXiv:2407.01511, 2024c.

Danny Park. Human player outwits freysa ai agent in $47,000 crypto
challenge, 2024. URL https://www.theblock.co/amp/post/328747/
human-player-outwits-freysa-ai-agent-in-47000-crypto-challenge. Accessed:
2024-11-30.

Zehang Deng, Yongjian Guo, Changzhou Han, Wanlun Ma, Junwu Xiong, Sheng Wen, and Yang
Xiang. Ai agents under threat: A survey of key security challenges and future pathways, 2024d.
URL https://arxiv.org/abs/2406.02630.

Yuyou Gan, Yong Yang, Zhe Ma, Ping He, Rui Zeng, Yiming Wang, Qingming Li, Chunyi Zhou,
Songze Li, Ting Wang, Yunjun Gao, Yingcai Wu, and Shouling Ji. Navigating the risks: A survey
of security, privacy, and ethics threats in llm-based agents, 2024a. URL https://arxiv.org/
abs/2411.09523.

Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo Sun, and Yue Zhang. A survey on large
language model (llm) security and privacy: The good, the bad, and the ugly. High-Confidence
Computing, 4(2):100211, June 2024. ISSN 2667-2952. doi: 10.1016/j.hcc.2024.100211. URL
http://dx.doi.org/10.1016/j.hcc.2024.100211.

Erfan Shayegani, Md Abdullah Al Mamun, Yu Fu, Pedram Zaree, Yue Dong, and Nael Abu-Ghazaleh.
Survey of vulnerabilities in large language models revealed by adversarial attacks, 2023. URL
https://arxiv.org/abs/2310.10844.

Tianyu Cui, Yanling Wang, Chuanpu Fu, Yong Xiao, Sijia Li, Xinhao Deng, Yunpeng Liu, Qinglin
Zhang, Ziyi Qiu, Peiyang Li, Zhixing Tan, Junwu Xiong, Xinyu Kong, Zujie Wen, Ke Xu, and
Qi Li. Risk taxonomy, mitigation, and assessment benchmarks of large language model systems,
2024. URL https://arxiv.org/abs/2401.05778.

Shenzhi Wang, Chang Liu, Zilong Zheng, Siyuan Qi, Shuo Chen, Qisen Yang, Andrew Zhao, Chaofei
Wang, Shiji Song, and Gao Huang. Boosting llm agents with recursive contemplation for effective
deception handling. In Findings of the Association for Computational Linguistics ACL 2024, pages
9909–9953, 2024g.

33

https://arxiv.org/abs/2405.01535
https://arxiv.org/abs/2405.01535
https://www.theblock.co/amp/post/328747/human-player-outwits-freysa-ai-agent-in-47000-crypto-challenge
https://www.theblock.co/amp/post/328747/human-player-outwits-freysa-ai-agent-in-47000-crypto-challenge
https://arxiv.org/abs/2406.02630
https://arxiv.org/abs/2411.09523
https://arxiv.org/abs/2411.09523
http://dx.doi.org/10.1016/j.hcc.2024.100211
https://arxiv.org/abs/2310.10844
https://arxiv.org/abs/2401.05778

Seth Neel and Peter Chang. Privacy issues in large language models: A survey, 2024. URL
https://arxiv.org/abs/2312.06717.

Fangzhou Wu, Shutong Wu, Yulong Cao, and Chaowei Xiao. Wipi: A new web threat for llm-driven
web agents, 2024e. URL https://arxiv.org/abs/2402.16965.

Chen Henry Wu, Jing Yu Koh, Ruslan Salakhutdinov, Daniel Fried, and Aditi Raghunathan. Adver-
sarial attacks on multimodal agents, 2024f. URL https://arxiv.org/abs/2406.12814.

Xinbei Ma, Yiting Wang, Yao Yao, Tongxin Yuan, Aston Zhang, Zhuosheng Zhang, and Hai Zhao.
Caution for the environment: Multimodal agents are susceptible to environmental distractions,
2024b. URL https://arxiv.org/abs/2408.02544.

Zeyi Liao, Lingbo Mo, Chejian Xu, Mintong Kang, Jiawei Zhang, Chaowei Xiao, Yuan Tian, Bo Li,
and Huan Sun. Eia: Environmental injection attack on generalist web agents for privacy leakage,
2024. URL https://arxiv.org/abs/2409.11295.

Chejian Xu, Mintong Kang, Jiawei Zhang, Zeyi Liao, Lingbo Mo, Mengqi Yuan, Huan Sun, and
Bo Li. Advweb: Controllable black-box attacks on vlm-powered web agents, 2024d. URL
https://arxiv.org/abs/2410.17401.

Yanzhe Zhang, Tao Yu, and Diyi Yang. Attacking vision-language computer agents via pop-ups,
2024g. URL https://arxiv.org/abs/2411.02391.

Priyanshu Kumar, Elaine Lau, Saranya Vijayakumar, Tu Trinh, Scale Red Team, Elaine Chang,
Vaughn Robinson, Sean Hendryx, Shuyan Zhou, Matt Fredrikson, Summer Yue, and Zifan Wang.
Refusal-trained llms are easily jailbroken as browser agents, 2024. URL https://arxiv.org/
abs/2410.13886.

Yulong Yang, Xinshan Yang, Shuaidong Li, Chenhao Lin, Zhengyu Zhao, Chao Shen, and Tianwei
Zhang. Security matrix for multimodal agents on mobile devices: A systematic and proof of
concept study, 2024b. URL https://arxiv.org/abs/2407.09295.

Yangjun Ruan, Honghua Dong, Andrew Wang, Silviu Pitis, Yongchao Zhou, Jimmy Ba, Yann
Dubois, Chris J. Maddison, and Tatsunori Hashimoto. Identifying the risks of lm agents with an
lm-emulated sandbox, 2024. URL https://arxiv.org/abs/2309.15817.

Wenyue Hua, Xianjun Yang, Mingyu Jin, Zelong Li, Wei Cheng, Ruixiang Tang, and Yongfeng
Zhang. Trustagent: Towards safe and trustworthy llm-based agents, 2024. URL https://arxiv.
org/abs/2402.01586.

Haishuo Fang, Xiaodan Zhu, and Iryna Gurevych. Inferact: Inferring safe actions for llm-based
agents through preemptive evaluation and human feedback, 2024. URL https://arxiv.org/
abs/2407.11843.

Zhen Xiang, Linzhi Zheng, Yanjie Li, Junyuan Hong, Qinbin Li, Han Xie, Jiawei Zhang, Zidi Xiong,
Chulin Xie, Carl Yang, Dawn Song, and Bo Li. Guardagent: Safeguard llm agents by a guard
agent via knowledge-enabled reasoning, 2024. URL https://arxiv.org/abs/2406.09187.

Md Shamsujjoha, Qinghua Lu, Dehai Zhao, and Liming Zhu. Designing multi-layered runtime
guardrails for foundation model based agents: Swiss cheese model for ai safety by design, 2024.
URL https://arxiv.org/abs/2408.02205.

Rodrigo Pedro, Daniel Castro, Paulo Carreira, and Nuno Santos. From prompt injections to sql
injection attacks: How protected is your llm-integrated web application?, 2023. URL https:
//arxiv.org/abs/2308.01990.

Ido Levy, Ben Wiesel, Sami Marreed, Alon Oved, Avi Yaeli, and Segev Shlomov. St-webagentbench:
A benchmark for evaluating safety and trustworthiness in web agents, 2024. URL https://
arxiv.org/abs/2410.06703.

Juyong Lee, Dongyoon Hahm, June Suk Choi, W. Bradley Knox, and Kimin Lee. Mobilesafetybench:
Evaluating safety of autonomous agents in mobile device control, 2024b. URL https://arxiv.
org/abs/2410.17520.

34

https://arxiv.org/abs/2312.06717
https://arxiv.org/abs/2402.16965
https://arxiv.org/abs/2406.12814
https://arxiv.org/abs/2408.02544
https://arxiv.org/abs/2409.11295
https://arxiv.org/abs/2410.17401
https://arxiv.org/abs/2411.02391
https://arxiv.org/abs/2410.13886
https://arxiv.org/abs/2410.13886
https://arxiv.org/abs/2407.09295
https://arxiv.org/abs/2309.15817
https://arxiv.org/abs/2402.01586
https://arxiv.org/abs/2402.01586
https://arxiv.org/abs/2407.11843
https://arxiv.org/abs/2407.11843
https://arxiv.org/abs/2406.09187
https://arxiv.org/abs/2408.02205
https://arxiv.org/abs/2308.01990
https://arxiv.org/abs/2308.01990
https://arxiv.org/abs/2410.06703
https://arxiv.org/abs/2410.06703
https://arxiv.org/abs/2410.17520
https://arxiv.org/abs/2410.17520

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023b.

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Weijie Su, Chenyu Yang, Gao Huang, Bin Li,
Lewei Lu, Xiaogang Wang, et al. Ghost in the minecraft: Generally capable agents for open-world
environments via large language models with text-based knowledge and memory. arXiv preprint
arXiv:2305.17144, 2023.

Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long Li, Jialong Wu, Tiannan Wang, Jiamin Chen,
Shuai Wang, Xiaohua Xu, Ningyu Zhang, Huajun Chen, and Yuchen Eleanor Jiang. Symbolic
learning enables self-evolving agents, 2024. URL https://arxiv.org/abs/2406.18532.

Yanda Li, Chi Zhang, Wanqi Yang, Bin Fu, Pei Cheng, Xin Chen, Ling Chen, and Yunchao Wei.
Appagent v2: Advanced agent for flexible mobile interactions. arXiv preprint arXiv:2408.11824,
2024d.

Alan Wake, Albert Wang, Bei Chen, CX Lv, Chao Li, Chengen Huang, Chenglin Cai, Chujie Zheng,
Daniel Cooper, Ethan Dai, et al. Yi-lightning technical report. arXiv preprint arXiv:2412.01253,
2024.

Dongxu Li, Yudong Liu, Haoning Wu, Yue Wang, Zhiqi Shen, Bowen Qu, Xinyao Niu, Guoyin
Wang, Bei Chen, and Junnan Li. Aria: An open multimodal native mixture-of-experts model,
2024e. URL https://arxiv.org/abs/2410.05993.

Kaizhi Zheng, Xuehai He, and Xin Eric Wang. Minigpt-5: Interleaved vision-and-language generation
via generative vokens, 2024c. URL https://arxiv.org/abs/2310.02239.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,
text reading, and beyond, 2023. URL https://arxiv.org/abs/2308.12966.

Yong Dai, Duyu Tang, Liangxin Liu, Minghuan Tan, Cong Zhou, Jingquan Wang, Zhangyin Feng,
Fan Zhang, Xueyu Hu, and Shuming Shi. One model, multiple modalities: A sparsely activated
approach for text, sound, image, video and code, 2022. URL https://arxiv.org/abs/2205.
06126.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
multimodal large language models. National Science Review, page nwae403, 2024.

Duzhen Zhang, Yahan Yu, Jiahua Dong, Chenxing Li, Dan Su, Chenhui Chu, and Dong Yu. Mm-llms:
Recent advances in multimodal large language models. arXiv preprint arXiv:2401.13601, 2024h.

Lin Long, Rui Wang, Ruixuan Xiao, Junbo Zhao, Xiao Ding, Gang Chen, and Haobo Wang.
On llms-driven synthetic data generation, curation, and evaluation: A survey. arXiv preprint
arXiv:2406.15126, 2024.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi
Hu, Tianwei Zhang, Fei Wu, et al. Instruction tuning for large language models: A survey. arXiv
preprint arXiv:2308.10792, 2023d.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024h.

Yuheng Cheng, Ceyao Zhang, Zhengwen Zhang, Xiangrui Meng, Sirui Hong, Wenhao Li, Zihao
Wang, Zekai Wang, Feng Yin, Junhua Zhao, et al. Exploring large language model based intelligent
agents: Definitions, methods, and prospects. arXiv preprint arXiv:2401.03428, 2024b.

35

https://arxiv.org/abs/2406.18532
https://arxiv.org/abs/2410.05993
https://arxiv.org/abs/2310.02239
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2205.06126
https://arxiv.org/abs/2205.06126

Yuyou Gan, Yong Yang, Zhe Ma, Ping He, Rui Zeng, Yiming Wang, Qingming Li, Chunyi Zhou,
Songze Li, Ting Wang, et al. Navigating the risks: A survey of security, privacy, and ethics threats
in llm-based agents. arXiv preprint arXiv:2411.09523, 2024b.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li, Jialong Wu, Tiannan Wang, Shi Qiu, Jintian
Zhang, Jing Chen, Ruipu Wu, Shuai Wang, Shiding Zhu, Jiyu Chen, Wentao Zhang, Xiangru
Tang, Ningyu Zhang, Huajun Chen, Peng Cui, and Mrinmaya Sachan. Agents: An open-source
framework for autonomous language agents, 2023c. URL https://arxiv.org/abs/2309.
07870.

Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Quanyu Dai, Jieming Zhu, Zhenhua Dong, and
Ji-Rong Wen. A survey on the memory mechanism of large language model based agents. arXiv
preprint arXiv:2404.13501, 2024i.

Xinyi Li, Sai Wang, Siqi Zeng, Yu Wu, and Yi Yang. A survey on llm-based multi-agent systems:
workflow, infrastructure, and challenges. Vicinagearth, 1(1):9, 2024f.

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen, Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei
Huang, and Huajun Chen. Reasoning with language model prompting: A survey. arXiv preprint
arXiv:2212.09597, 2022.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John
Grundy, and Haoyu Wang. Large language models for software engineering: A systematic literature
review. ACM Transactions on Software Engineering and Methodology, 2023.

Sihao Hu, Tiansheng Huang, Fatih Ilhan, Selim Tekin, Gaowen Liu, Ramana Kompella, and Ling Liu.
A survey on large language model-based game agents. arXiv preprint arXiv:2404.02039, 2024b.

Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li, Yizhen Yuan, Guohong Liu, Jiacheng Liu,
Wenxing Xu, Xiang Wang, Yi Sun, et al. Personal llm agents: Insights and survey about the
capability, efficiency and security. arXiv preprint arXiv:2401.05459, 2024g.

Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li, Yizhen Yuan, Guohong Liu, Jiacheng Liu,
Wenxing Xu, Xiang Wang, Yi Sun, Rui Kong, Yile Wang, Hanfei Geng, Jian Luan, Xuefeng Jin,
Zilong Ye, Guanjing Xiong, Fan Zhang, Xiang Li, Mengwei Xu, Zhijun Li, Peng Li, Yang Liu,
Ya-Qin Zhang, and Yunxin Liu. Personal llm agents: Insights and survey about the capability,
efficiency and security, 2024h. URL https://arxiv.org/abs/2401.05459.

Biao Wu, Yanda Li, Meng Fang, Zirui Song, Zhiwei Zhang, Yunchao Wei, and Ling Chen.
Foundations and recent trends in multimodal mobile agents: A survey, 2024g. URL https:
//arxiv.org/abs/2411.02006.

Shuai Wang, Weiwen Liu, Jingxuan Chen, Weinan Gan, Xingshan Zeng, Shuai Yu, Xinlong Hao, Kun
Shao, Yasheng Wang, and Ruiming Tang. Gui agents with foundation models: A comprehensive
survey, 2024i. URL https://arxiv.org/abs/2411.04890.

Minghe Gao, Wendong Bu, Bingchen Miao, Yang Wu, Yunfei Li, Juncheng Li, Siliang Tang, Qi Wu,
Yueting Zhuang, and Meng Wang. Generalist virtual agents: A survey on autonomous agents
across digital platforms, 2024b. URL https://arxiv.org/abs/2411.10943.

Chaoyun Zhang, Shilin He, Jiaxu Qian, Bowen Li, Liqun Li, Si Qin, Yu Kang, Minghua Ma, Qingwei
Lin, Saravan Rajmohan, et al. Large language model-brained gui agents: A survey. arXiv preprint
arXiv:2411.18279, 2024j.

36

https://arxiv.org/abs/2309.07870
https://arxiv.org/abs/2309.07870
https://arxiv.org/abs/2401.05459
https://arxiv.org/abs/2411.02006
https://arxiv.org/abs/2411.02006
https://arxiv.org/abs/2411.04890
https://arxiv.org/abs/2411.10943

	Introduction
	Fundamental of OS Agents
	Key Component
	Capability

	Construction of OS Agents
	Foundation Model
	Architecture
	Pre-training
	Supervised Finetuning
	Reinforcement Learning

	Agent Framework
	Perception
	Planning
	Memory
	Action

	Evaluation of OS Agents
	Evaluation Protocol
	Evaluation Principle
	Evaluation Metric

	Evaluation Benchmark
	Evaluation Platform
	Benchmark Setting
	Task

	Challenge & Future
	Safety & Privacy
	Attack
	Defense
	Benchmark

	Personalization & Self-Evolution

	Related Work
	Conclusion

