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Abstract

We improve the performance of Variational Bayesian Last Layer (VBLL) networks by
better modeling aleatoric noise. In particular, we (1) Introduce t-VBLL layers, which
perform variational inference for the noise covariance, and (2) Introduce Het-VBLL, a
Bayesian last layer scheme to model heteroscedastic noise. These methods are based on
novel, analytically tractable evidence lower bounds. We show that these novel design
elements extend the capabilities of VBLLs at minimal additional cost, and substantially
improve performance.

1. Introduction

Variational Bayesian Last Layers (VBLLs) are a lightweight and effective method for uncer-
tainty quantification within neural networks (Harrison et al., 2024; Brunzema et al., 2025;
Watson et al., 2021). VBLLs replace point estimation of neural network last layers with a
variational inference, and exploit analytically tractable evidence lower bounds (ELBOs) to
yield an easy-to-train, inexpensive approach to Bayesian deep learning.

The uncertainty quantification in these models relies on the likelihood, which assumes
additive Gaussian noise. For standard VBLLs, a point estimate of the noise variance is
computed via MAP estimation, due to the simplicity of this procedure in combination
with neural network training. Although the noise term may appear unimportant, it is
essential for weighing the predictive accuracy and uncertainty terms, thus playing a vital
role in accurate uncertainty quantification. Moreover, the standard VBLL model assumes
homoscedastic noise (Hayashi, 2011), i.e., the noise in the likelihood has the same magnitude
for all inputs.

In this work, we investigate this noise term in VBLLs. Specifically, we present two
methods for more expressive noise modeling. First, we develop t-VBLLs—a variational
approach to noise covariance inference that maintains a full variational posterior over the
noise covariance. In the regression case, this leads to a familiar Student t-distributed predic-
tive distribution. For classification, we introduce a novel sampling-free lower bound on the
standard ELBO, enabling effective training with low variance. Second, we introduce Het-
VBLLs—a method for variational inference of heteroscedastic noise (Le et al., 2005). This
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Figure 1: Left: Het-VBLLs vs. VBLLs on motorcycle-impact data from Silverman (1985).
Het-VBLLs can capture the heteroscedasticity for expressive uncertainty esti-
mates. Right: Classification on a toy sigmoid dataset with 100 points and 10%
flipped labels. The Het-VBLL models demonstrate greater robustness to outliers.

builds upon a second VBLL model to characterize noise and leverages the novel training
ELBOs developed in the first part of the paper.

These approaches introduces only a handful of new parameters, making them highly scal-
able while substantially improving the calibration and uncertainty quantification of neural
networks. We demonstrate the effectiveness of our models across various settings, including
supervised regression, classification, and Bayesian optimization. In the following, we ex-
plain the key ideas behind the methods in the body of the paper but refer to the Appendix
for the technical details.

2. General Setup and Preliminaries

We consider models of the form z = Wϕ(x) + ε where in the regression case y = z, and
in the classification case p(y | x) = softmax(z). VBLLs (Harrison et al., 2024) fix a prior
and variational posterior over W , which we denote as p(W ) and q(W ), respectively. We
refer to the dimensionality of inputs, outputs, and features as Nx, Ny, and Nϕ respectively.
Harrison et al. (2024) develop a lower bound on the standard variational lower bound (of
the log marginal likelihood),

log p(Y | X,Σ) ≥
∑

(x,y)∈D

Eq(W )[log p(y | x,W,Σ)]−KL(q(W )∥p(W )) (1)

that exploits exact computation of the expected log likelihood (or a lower bound on this
term, in the case of classification). This lower bound yields an inexpensive, sampling-
free objective. To train these models, the weights of the neural network features ϕ and
the variational posterior q(·) are jointly trained. It is assumed throughout Harrison et al.
(2024) that ε ∼ N (0,Σ), and Σ is either fixed a priori, or a point estimate is learned by
either MAP estimation or maximum likelihood.

In this paper, we will consider variational inference of Σ, the noise covariance. Through-
out, we will consider a factorized variational posterior over diagonal elements of the noise
covariance, q(Σ) =

∏Ny

i q(Σi). We consider both homoscedastic variational posteriors of
the form q(Σ) and heteroscedastic variational posteriors q(Σ | x).
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3. Training Objectives for Homoscedastic and Heteroscedastic Modeling

In this section we introduce two models: t-VBLLs and Het-VBLLs (see toy experimental
results in Fig. 1). We first discuss the noise parameterization that defines each model. We
introduce a set of variational bounds used as training objectives, and these general results
apply to both homoscedastic and heteroscedastic models. A full discussion of the technical
details is provided in the Appendix.

3.1. Parameterizing the Noise Distribution

We consider independent priors (and variational posteriors) over rows of W and fix a diag-
onal Σ, and so it is sufficient to consider each row independently, of the form

zi = w⊤
i ϕ(x) + εi (2)

with εi ∼ N (0,Σi). We fix a prior over the last layer parameters for each row wi and the
covariance element Σi

p(W,Σ | x) =
Ny∏
i=1

p(wi | Σi,x)p(Σi | x) (3)

with p(wi | Σi) = N (
¯
w̄i,Σi(x)

¯
Si)

1. This corresponds to the same choice of prior as Harrison
et al. (2024), although with the covariance parameterization being scaled by Σi. This scaling
is standard in Bayesian linear regression to enable recursive updating of sufficient statistics
of the posterior. Here, it yields easy-to-evaluate variational objectives.

q(wi | Σi) = N (wi,Σi(x)Si) (4)

We similarly structure our variational posterior as

q(W,Σ | x) =
Ny∏
i=1

q(wi | Σi,x)q(Σi | x) (5)

following standard results in Bayesian regression. We will consider two variational fami-
lies for the noise covariance. In the homoscedastic setting we will fix an inverse Gamma
variational posterior. In this homoscedastic case, Σi and the variational posterior do not
depend on x. This is the canonical (conjugate) prior for the noise covariance in Bayesian
linear regression. This choice of prior results in a Student t-distributed posterior predic-
tive distribution (Box and Tiao, 2011), which we exploit in our prediction, giving rise to
t-VBLLs.

In the heteroscedastic setting, we parameterize the noise covariance with a VBLL as

log Σi = m⊤
i ϕ(x) (6)

with mi ∼ q(mi) = N (m̄i, Zi) (and similarly choose as prior mi ∼ N (
¯
m̄i,

¯
Zi)). This yields

a log-Normal variational posterior for Σ. We refer to the approach of using a second VBLL
for the noise covariance as Het-VBLL. While this does not result in a closed-form predictive
distributions, it yields convenient evaluation of the training evaluation. More precisely, for
both the inverse Gamma and log-Normal variational posteriors, E[Σi],E[Σ

−1
i ], and E[log Σi]

(where the expectation is taken with respect to the variational posterior) are analytically
tractable, which we exploit in the development of our variational lower bounds.

1. Throughout, we use overbars to denote mean parameters and underbars to denote prior parameters
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Figure 2: Classification on a noisy two-moon dataset under label noise. A standard MLP
struggles on this complex data set. VBLLs show an improved decision boundary
but still display slight overfitting. Our models perform best, with Het-VBLL
providing the best qualitative results.

3.2. Variational Lower Bounds and Prediction

The variational lower bounds is then

log p(Y | X) ≥
∑

(x,y)∈D

Eq(W,Σ|x)[log p(y | x,W,Σ)]−KL(q(W,Σ | x)∥p(W,Σ | x)). (7)

With the chosen variational posterior in (5), we now discuss the bounds that we use as
training objectives in both the homoscedastic and heteroscedastic case. We will focus on
the likelihood term in (7) and discuss both the regression case and the classification case.
Full development of results is presented in Appendix C for homoscedastic and Appendix D
for heteroscedastic. For the likelihood term in the variational lower bound we have

Eq(W,Σ|x)[log p(y | x,W,Σ)] =
Ny∑
i=1

Eq(Σi|x)[Eq(wi|Σi,x)[log p(yi | x,wi,Σi)]]. (8)

Regression. In the regression case, the inner expectation over wi evaluates to

Eq(W,Σ|x)[log p(y | x,W,Σ)] = −1

2

Ny∑
i=1

Eq(Σ|x)[Σ
−1
i (yi − w̄⊤

i ϕ)
2 + logΣi] + ϕ⊤Siϕ (9)

following results from Harrison et al. (2024). Due to linearity with respect to Σ−1
i and

log Σi, this expectation is analytically tractable for both the homoscedastic and the het-
eroscedastic case, yielding a sampling-free training objective. Prediction for regression in the
homoscedastic case is analytically tractable via a Student t-distributed posterior predictive.
For the heteroscedastic case, we instead turn to sampling Σ.

Classification. For classification, we develop the following bound on the likelihood term

Eq(W,Σ|x)[log p(y | x,W,Σ)] ≥y⊤W̄ϕ− LSEi(w̄
⊤
i ϕ+ αi(ϕ

⊤Siϕ+ 1)) (10)

− 1

2

∑
i

Eq(Σ|x)[4Σi − αi + α2
iΣ

−1
i ](ϕ⊤Siϕ+ 1) (11)

where αi are variational parameters. This result was derived to yield linearity in Σi, Σ
−1
i

which in turn yields analytical tractability of this objective. This result builds upon the
variational multivariate logistic regression ELBO developed by Knowles and Minka (2011).
For the full derivation, see Appendix C. For both the homoscedastic and heteroscedastic
case, sampling Σ is required for prediction.
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Table 1: Results on CIFAR-10
Method Accuracy (↑) ECE (↓) NLL (↓) SVHN OOD (↑) CIFAR-100 OOD (↑)
DNN 95.8± 0.19 0.028± 0.028 0.183± 0.007 0.946± 0.005 0.893± 0.001
VBLL 96.4± 0.01 0.024± 0.000 0.176± 0.000 0.943± 0.002 0.895± 0.000
t-VBLL 96.3± 0.03 0.006± 0.000 0.133± 0.001 0.975± 0.000 0.892± 0.001
Het-VBLL 96.2± 0.02 0.009± 0.000 0.135± 0.000 0.975± 0.001 0.894± 0.001
LLLA 96.3± 0.03 0.010± 0.001 0.133± 0.003 0.965± 0.010 0.898± 0.001

Table 2: Results on CIFAR-100
Method Accuracy (↑) ECE (↓) NLL (↓) SVHN OOD (↑) CIFAR-10 OOD (↑)
DNN 80.4± 0.29 0.107± 0.004 0.941± 0.016 0.799± 0.020 0.795± 0.001
VBLL 80.7± 0.02 0.063± 0.000 0.831± 0.005 0.843± 0.001 0.804± 0.001
t-VBLL 81.3± 0.10 0.039± 0.001 0.782± 0.004 0.681± 0.017 0.811± 0.003
Het-VBLL 81.2± 0.07 0.039± 0.001 0.777± 0.005 0.685± 0.001 0.811± 0.001
LLLA 80.4± 0.29 0.210± 0.018 1.048± 0.014 0.834± 0.014 0.811± 0.002

3.3. Training

Both the regression and classification models are trained in the same way as standard neural
networks: both the weights of the variational posteriors and the neural network features
ϕ are trained via minibatch gradient descent methods. These models introduce minimal
additional complexity; t-VBLL adds Ny parameters and is thus essentially free, whereas
Het-VBLL adds a number of parameters approximately equal to adding an additional last
layer. For regression models, we use the data-reweighting approach of Seitzer et al. (2022)
to improve mean estimation, although the impact is relatively minor. The models presented
here can both be used in full model training, or can be used in a multi-step training pro-
cedure. For example, these models are effective as heads trained on frozen features (which
we do for our classification experiments) and show large performance gains in this setting.

4. Experiments

Supervised Regression. To demonstrate the Het-VBLLs ability to capture heterosce-
datic noise, we compare them against standard VBLLs in Figure 1 on motorcycle-impact
data (Silverman, 1985; Kersting et al., 2007). Het-VBLLs are able to capture the het-
eroscedasticity in the data whereas standard VBLLs with an MAP estimate do not. We
also benchmark the t-VBLLs and Het-VBLLs on the popular UCI data sets (Dua and Graff,
2017) in Appendix F.1.2. Both models exhibit strong performance, matching or surpassing
standard VBLLs (and other baselines) across all tasks.

Supervised Classification. We test our models on a noisy version of the two-moon
data set in Figure 2. We further introduce label noise by flipping 20% of the labels for points
within a specific range of the first feature (circled). A standard MLP overfits significantly,
and even standard VBLLs struggle with these outliers. In contrast, our proposed t-VBLL
and Het-VBLL models demonstrate robustness, achieving a significantly improved decision
boundary.

We also evaluate the proposed models on CIFAR-10 and CIFAR-100, comparing t-
VBLL and Het-VBLL against standard DNNs, VBLLs (Harrison et al., 2024), and LLLA
(Daxberger et al., 2021) baselines. On CIFAR-10 (Table 1), both t-VBLL and Het-VBLL
achieved competitive accuracy while significantly reducing Expected Calibration Error and
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Figure 3: Minimum regret obtained under heavy-tail distributed outliers on Ackley (left)
and Pest Control (right). Our models demonstrate more robustness to outliers.

Negative Log-Likelihood, with improved out-of-distribution detection performance. Simi-
larly, on CIFAR-100 (Table 2), our models maintained accuracy with a substantial reduction
in ECE and NLL. The results indicate that incorporating heavy-tailed and heteroscedastic
modeling improves uncertainty quantification.

Bayesian Optimization. We evaluate t-VBLL and Het-VBLL networks as surrogates
in Bayesian optimization. As baselines, we use standard VBLLs (Harrison et al., 2024;
Brunzema et al., 2025) and Gaussian processes (GPs) with a Matérn kernel (ν = 2.5). All
experimental details and surrogate configurations are listed in Appendix F.3. We compare
all models using an upper confidence bound (UCB) acquisition function as αUCB(x) =
µ(x) + β1/2σUCB(x) (Srinivas et al., 2010). In our experiments, we use the same hyperpa-
rameter for UCB (β = 2) such that the difference in performance is only due to differences
in the model.

As a benchmark experiments, we focus on the classic Ackley objective (Nx = 5) and on
pest control (Nx = 25) (Oh et al., 2019), where automatic feature learning in Bayesian neural
networks has been shown to outperform standard GPs (Li et al., 2024; Brunzema et al.,
2025). To test our models, we add heavy-tailed noise from a zero-mean Laplace distribution
to the outcome of an experiment, controlled by an outlier probability. In Fig. 3, we show the
performance of all surrogates over this outlier probability for 10 random seeds each. VBLL-
based models clearly outperform GPs. We can further see, that as the outlier probability
increases also the minimum regret obtained by a surrogate increases. Our proposed models
outperform the standard VBLLs as they are, by design, more robust to such outliers.

5. Discussion and Conclusion

In this paper we have introduced two novel methods for scalable Bayesian deep learning,
each applicable to both regression and classification. Development of these methods relied
on the design of novel training objectives and model architectures. These models show
extremely strong performance relatively to both similar last layer methods and considerably
more expensive methods.
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Appendix A. Related Work

Uncertainty quantification has been an active topic of research since the reemergence of
neural networks in the early 2010s (Gal and Ghahramani, 2016; Blundell et al., 2015; Lak-
shminarayanan et al., 2017; Papamarkou et al., 2024). Two notable lines of work have
developed: variance prediction, in which the model directly outputs predictive uncertainty,
and forms of uncertainty quantification in the network parameters (including Bayesian deep
learning). While the former is conceptually simple and is capable of more expressive repre-
sentation of aleatoric uncertainty, it is limited in its ability to quantify epistemic uncertainty
(Der Kiureghian and Ditlevsen, 2009; Kendall and Gal, 2017). Similarly, many approaches
toward epistemic uncertainty quantification rely on assumed likelihoods that do not suffi-
ciently characterize aleatoric uncertainty.

A.1. Variance Prediction

Variance prediction networks aim to, beyond standard point predictions, predict variance
terms (Nix and Weigend, 1994; Bishop and Quazaz, 1996). In regression, this typically
corresponds to predicting the mean and variance of a Gaussian likelihood. In classification,
this typically corresponds to modeling logit noise (Collier et al., 2020, 2021). Concretely,
these networks typically parameterize the variance via

log Σi = m⊤
i ϕ(x) (12)

where mi is a (point estimate) last layer, and are trained via maximum likelihood. These
models broadly fall into the set of heteroscedastic models, although there is a conflation of
epistemic and aleatoric uncertainty in the predicted variance (Kendall and Gal, 2017).

While heteroscedastic models based on variance prediction are conceptually simple and
easy to implement, they have several limitations. First, training these models is often
difficult as high predictive uncertainty on data effectively down-samples them, resulting in
poor performance in mean estimation (Skafte et al., 2019; Seitzer et al., 2022; Stirn et al.,
2023). Concretely, in regression, the loss term associated with the mean is weighted by
the inverse variance, and thus data points with high predictive noise are weighted less in
gradient computation than those with less predictive noise. Seitzer et al. (2022) propose
re-weighting the data by the covariance (with a stop-grad operation applied) to mitigate the
impacts of this effective down-sampling. We also take this approach in regression models.

A second important improvement was proposed by Skafte et al. (2019), who (instead of
predicting the log variance) output the parameters of an inverse Gamma distribution, and
marginalizing these parameters to yield a Student-t predictive distribution. This parame-
terization has strong similarities to the approaches taken in this work, and similarly aims to
address the shortcomings of aleatoric uncertainty prediction via epistemic noise modeling.

A.2. Epistemic Uncertainty and Bayesian Deep Learning

Variance prediction networks are limited in their ability to quantify epistemic uncertainty.
Like standard networks, the predictive behavior far from data is hard to anticipate, and thus
predictive uncertainty may be smaller (or larger) than desired. Thus, epistemic uncertainty
quantification—even for models that characterize aleatoric uncertainty such as variance
prediction models—are necessary. Moreover, the posterior inferred by approximate Bayesian
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methods relies on the chosen likelihood. Thus, model misspecification in the form of assumed
homoscedasticity can substantially harm posterior inference and the predictive performance
of the model (Le et al., 2005; Lazaro-Gredilla and Titsias, 2011; Kersting et al., 2007).

A wide variety of epistemic uncertainty quantification methods for neural networks have
been developed including variational methods (Blundell et al., 2015), ensemble-based meth-
ods (Gal and Ghahramani, 2016), ensembling (Lakshminarayanan et al., 2017), randomized
priors (Osband et al., 2018, 2023), and many others. However, these methods are typically
expensive and scale poorly to larger models.

In this work, we build on variational Bayesian last layers (VBLLs) as a scalable and
effective Bayesian approach (Harrison et al., 2024). These models fit into a class of similar
last layer uncertainty quantification approaches, including SNGP (Liu et al., 2022) and
last layer Laplace approximation methods (Daxberger et al., 2021). For these methods,
the last layer inference strategy relies on computing a last layer via approximate Bayesian
linear regression after each epoch, and thus incorporating variance prediction (and epistemic
uncertainty for this term) is challenging.

Appendix B. Variational Posteriors

In this section we discuss the two variational posteriors used in this paper for modeling
noise covariance.

B.1. Inverse Gamma

Our first approach is an inverse Gamma distribution,

q(Σi) = IG(νi,Ψi) (13)

where νi > 1,Ψi > 0 are shape and scale parameters. This distribution is equivalent to
a Gamma distribution for the inverse covariance. This distribution has several desirable
properties. First, it is conjugate: in the Bayesian linear regression (BLR) model (with
appropriately chosen priors), an inverse Gamma prior yields an inverse Gamma posterior.
Additionally, within the BLR model, an inverse-Gamma posterior yields a t-distributed
posterior predictive. While this approach is desirable for several reasons in the classical
BLR setting, it is less suited to the heteroscedastic setting as we discuss in Section D.
The (inverse) Gamma posterior also has a straightforward generalization for non-diagonal
covariances in the (inverse) Wishart distribution. We note a few useful identities, which
will be useful in developing our main training objectives:

E[Σ−1
i ] = νiΨ

−1
i (14)

E[log Σi] = log(Ψi)− ψ(νi) (15)

where ψ(·) denotes the digamma function.

For this parameterization, we write our prior as p(Σi) = IG(
¯
νi,

¯
Ψi). The KL divergence

between inverse Gammas is a standard result, with

KL(q(Σi)∥p(Σi)) =
¯
νi log

Ψi

¯
Ψi

− log
Γ(νi)

Γ(
¯
νi)

+ (νi −
¯
νi)ψ(νi)− (Ψi −

¯
Ψi)

νi
Ψi

(16)

where Γ(·) is the gamma function.
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B.2. Log-Normal

A second approach to the variational posterior is a log-Normal2

q(Σi) = logN (µi, Ci) (17)

which is defined by a mean µi and variance Ci > 0. This choice of variational posterior
may initially seem like an odd one: we lose the favorable conjugacy properties of the inverse
Gamma posterior, and gain little in return. However, as we see in Section D, the log-Normal
approach has substantial benefits for heteroscedastic modeling. We have the same identities,

E[Σ−1
i ] = exp(−µi +

1

2
Ci) (18)

E[log Σi] = µi. (19)

For this posterior specification, the prior is also log-Normal and written as p(Σi) =
logN (

¯
µi,

¯
Ci). The KL divergence between log-Normals is equivalent to the KL divergence

between their corresponding Normal distributions.

Appendix C. Variational Inference for Homoscedastic Noise

In this section, we derive a variational last layer objective with noise inference in the ho-
moscedastic case. First, we will lay out the structure of the variational lower bounds we
develop throughout the paper. We then describe two variational posterior design options,
and prior choices. We will then define the training objectives and the resulting posterior
predictive distribution.

C.1. Variational Lower Bound and Approach

We begin by writing the lower bound on the marginal likelihood for arbitrarily specified noise
covariance Σ, and then discuss outcomes for inverse Gamma priors/variational posteriors.
We exclude dependence on the features ϕ, which we assume fixed in the derivation. Point
estimates for the feature weights are learned via stochastic gradient descent on the ELBO.
Generally, we will choose noise priors with distributions that match the variational posterior
for tractability, although this is not strictly necessary.

We structure our variational posterior as

q(W,Σ) =

Ny∏
i=1

q(wi | Σi)q(Σi) (20)

with q(wi | Σi) = N (w̄i, SiΣi), following standard results in Bayesian regression. The
variational lower bound is

log p(Y | X) ≥
∑

(x,y)∈D

Eq(W,Σ)[log p(y | x,W,Σ)]−KL(q(W,Σ)∥p(W,Σ)) (21)

By independence assumptions in the prior and variational posterior, we have

KL(q(W,Σ)∥p(W,Σ)) =
Ny∑
i=1

(KL(q(Σi)∥p(Σi)) + Eq(Σi)[KL(q(wi | Σi)∥p(wi | Σi))]). (22)

2. Note that if z ∼ N (µ, σ2) then exp(z) ∼ logN (µ, σ2).
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The expectation of the first KL term is straightforward, and is

Eq(Σi)[KL(q(wi | Σi)∥p(wi | Σi))] =
1

2

(
logdet

¯
Si − logdetSi −Nϕ + tr(

¯
S−1
i Si)

)
(23)

+
1

2

(
Eq(Σi)[Σ

−1
i ](wi − w̄i)

¯
S−1
i (wi − w̄i))

)
(24)

The expectation of Σ−1
i can be computed via the identities in Section 2. The KL

divergence between prior and variational posteriors for Σi can also be computed via the
identities in Section 2. Thus, the unresolved aspect in evaluating the variational lower
bound is computing the expected likelihood Eq(W,Σ)[log p(y | x,W,Σ)].

C.2. Regression

We first discuss the likelihood term and prediction in the regression setting.

C.2.1. Training Objective

The predictive likelihood term in the ELBO is

Eq(W,Σ)[log p(y | x,W,Σ)] =
Ny∑
i=1

Eq(Σi)[Eq(wi|Σi)[log p(yi | x,wi,Σi)]] (25)

where the inner expectation is computed as in Harrison et al. (2024) as

Eq(wi|Σi)[log p(yi | x,wi,Σi)] = logN (yi | w̄⊤
i ϕ,Σi)−

1

2
ϕ⊤Siϕ (26)

= −1

2
(Σ−1

i (yi − w̄⊤
i ϕ)

2 + logΣi + ϕ⊤Siϕ). (27)

To evaluate the outer expectation,

Eq(W,Σ)[log p(y | x,W,Σ)] = −1

2

Ny∑
i=1

Eq(Σ)[Σ
−1
i (yi − w̄⊤

i ϕ)
2 + logΣi + ϕ⊤Siϕ] (28)

we leverage the identities for E[Σ−1
i ] and E[log Σi] described in the previous section.

C.2.2. Prediction

We now discuss computing the predictive distribution

p(yi | x) = Eq(wi,Σi)[p(yi | x,wi,Σi)]. (29)

Inverse Gamma. For the inverse Gamma variational posterior, we can exploit standard
conjugacy results. In particular, the posterior predictive for each row i is multivariate
t-distributed,

p(yi | x) = t2νi(w̄
⊤
i ϕ,

Ψ

νi
(1 + ϕ⊤Sϕ)) (30)

Log-Normal. For the log-Normal variational posterior, we must turn instead to a Monte
Carlo approximation. We will sample

Σ̂i ∼ q(Σi) (31)

for all i, and for which sampling is straight-forward by simply sampling from a normal and
exponentiating. Given this realized sample, we can marginalize over the last layer yielding
predictive

p(yi | x) = N (w̄⊤
i ϕ, Σ̂i(ϕ

⊤Siϕ+ 1)) (32)
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C.3. Classification

We consider a classification model of the form

p(y | x) = softmax(Wϕ(x) + ε) (33)

where the addition of the aleatoric noise ε is optional. Our model exactly matches the
regression model, with the only difference being the softmax. Critically, we again assume
Σ is diagonal, with inverse-Gamma distributed diagonal entries.

C.3.1. Training Objective

We write the likelihood

Eq(W,Σ)[log p(y | x,W,Σ)] = y⊤W̄ϕ− Eq(Σ)Eq(W |Σ)[LSEi(w
⊤
i ϕ+ εi)] (34)

where we assume y is a one-hot encoding of the class labels, and lower bound the LSE(·)
term. It may be tempting to exploit the relatively standard (Blei and Lafferty, 2007)
approach for variational multinominal logistic regression to construct a lower bound on the
log-sum-exp term for the inner expectation (as is used in Harrison et al. (2024)), yielding

−Eq(W |Σ)[LSEi(w
⊤
i ϕ+ εi)] ≥ −Eq(Σ)[log

∑
i

exp(w̄⊤
i ϕ+

Σi

2
(1 + ϕ⊤Siϕ)]. (35)

It is possible to further exchange the expectation and the negative log/sum terms, yielding

−Eq(Σ)[LSEi(w̄
⊤
i ϕ+

Σi

2
(1 + ϕ⊤Siϕ)] ≥ − log

∑
i

Eq(Σ)[exp(w̄
⊤
i ϕ+

Σi

2
(1 + ϕ⊤Siϕ)]. (36)

However, the expectation on the RHS generally does not exist3. Thus, we propose two
possible approaches, each of which we discuss below.

Semi-Monte Carlo. First, we may turn to sampling. We sample (via reparameterization
trick, available in standard automatic differentiation packages) gamma random variables to
compute a Monte Carlo approximation to the expectation in (35).

Reduced Knowles-Minka. Instead of directly using the bound on the log-sum-exp used
in Harrison et al. (2024), we can instead use the main result from Knowles and Minka (2011),
where (applying their result to our chosen parameterization)

−Eq(W |Σ)[LSEi(w
⊤
i ϕ+ ε)] ≥ −1

2

∑
i

a2i (ϕ
⊤Siϕ+ 1)Σi − LSEi(w̄

⊤
i ϕ+ (

1

2
− ai)(ϕ

⊤Siϕ+ 1)Σi)

(37)

where ai are variational parameters that are typically optimized to be maximally tight.
Note that choosing ai = 0 for all i exactly recovers (35). To yield a tractable bound for the
outer expectation with respect to Σ, it is necessary to remove it from inside the log-sum-exp
term. So, we choose

ai =
1

2
− αi

Σi
(38)

3. This can be seen by the non-existence of the moment generating function of the inverse gamma distri-
bution.
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and plugging in yields

−E[LSEi(w
⊤
i ϕ+ ε)] ≥ −1

2

∑
i

(
1

2
− αi

Σi
)2(ϕ⊤Siϕ+ 1)Σi − LSEi(w̄

⊤
i ϕ+ αi(ϕ

⊤Siϕ+ 1))

(39)

= −1

2

∑
i

(
Σi

4
− αi +

α2
i

Σi
)(ϕ⊤Siϕ+ 1)− LSEi(w̄

⊤
i ϕ+ αi(ϕ

⊤Siϕ+ 1))

(40)

which is analytically tractable for the outer expectation over Σ, yielding (for the inverse
Gamma variational posterior)

Eq(W,Σ)[log p(y | x,W,Σ)] ≥ y⊤W̄ϕ− LSEi(w̄
⊤
i ϕ+ αi(ϕ

⊤Siϕ+ 1)) (41)

− 1

2

∑
i

(
Ψi

4(νi − 1)
− αi +

α2
i νi
Ψi

)
(ϕ⊤Siϕ+ 1). (42)

We have several options with αi; setting αi = 1
2 results in the first two terms exactly

matching the standard VBLL objective (Harrison et al., 2024). Choosing αi = 0 yields the
remarkably simple overall bound

−Eq(W |Σ)[LSEi(w
⊤
i ϕ+ ε)] ≥ −1

8

∑
i

(ϕ⊤Siϕ+ 1)Σi − LSEi(w̄
⊤
i ϕ). (43)

Other options can be chosen for learning αi’s. We can treat them as hyperparameters, in
which it is convenient to set αi = α to reduced the number of parameters, and it can be
swept over. Alternatively, because the bound holds for any αi, they can be learned as model
parameters together with the other model parameters. Knowles and Minka (2011) propose
an iterative update that exploits convexity with respect to αi’s—while better optimization
schemes exploiting convexity are possible, we will not investigate them in this paper.

C.3.2. Prediction

For prediction, we again turn to Monte Carlo approximation within the hierarchical model,
combined with local reparameterization, and sample Σ̂i from the variational posterior, and
compute

ẑi ∼ N (w̄⊤
i ϕ, Σ̂i(1 + ϕ⊤Siϕ)) (44)

for each logit element. Variance reduction schemes are possible for prediction, but they are
beyond the scope of this paper.

C.4. Complexity and Parameterization

We follow the parameterization presented in Harrison et al. (2024), which proposes to
parameterize the variational posterior q(w̄i,ΣiSi) via a simple unconstrained tensor for w̄i

and with either a strictly positive diagonal or Cholesky-decomposed representation for Si.
Recall the inverse Gamma variational posterior is q(Σi) = IG(νi,Ψi) with νi > 1,Ψi >
0. Enforcing strict positivity is done via exponentiating tensors (that are unconstrained).
Lower bounds on parameter values are similarly accomplished by adding the offset.

The addition of variational inference in the homoscedastic case adds minimal additional
complexity. The only additional tensors added are those of the variational posterior. Thus,
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we add 2Ny parameters but do not estimate a point estimate for Σi, and thus add only Ny

parameters.

Appendix D. Heteroscedastic Noise Modeling

In this section we discuss approaches to modeling heteroscedastic noise that also quantifies
the epistemic uncertainty associated with aleatoric noise prediction.

D.1. Bayesian Last Layer Methods for Heteroscedastic Noise

Our approach to aleatoric noise modeling in this work builds on the standard VBLL model.
In particular, we use a VBLL variational posterior for the last layer in a covariance predictive
model of the form

logΣi = m⊤
i ϕ(x) (45)

with mi ∼ q(mi) = N (m̄, Z) (and similarly choose a Normal prior mi ∼ N (
¯
m̄,

¯
Z)).

Given this structure, log Σi is Normally distributed and Σi is log-Normally distributed,
as

Σi ∼ logN (m̄⊤
i ϕ(x),ϕ(x)

⊤Zϕ(x)) (46)

We choose a prior of the same structure over m, which we write p(m). We established
in Section 2 that the log-Normal covariance distribution is a reasonable one. While it
allows for tractable variational objectives, it does not allow analytical marginalization for
the predictive distribution. We will note identities which are critical in our development,
which build upon those presented in Section 2:

Eq(mi)[Σi] = exp(m̄⊤
i ϕ(x) +

1

2
ϕ(x)⊤Ziϕ(x)) (47)

Eq(mi)[Σ
−1
i ] = exp(−m̄⊤

i ϕ(x) +
1

2
ϕ(x)⊤Ziϕ(x)) (48)

Eq(mi)[log Σi] = m̄i (49)

We can compare this modeling approach to learning point estimates of Σ in the standard
VBLL model, or to learning a standard variance prediction network. If we set Nϕ = 1 and
set ϕ = 1, we exactly recover the VBLL noise estimation scheme under a log-Normal prior.
Thus, this heteroscedastic noise scheme represents a strict generalization of the standard
VBLL model. If we replace the variational posterior over mi with a point estimate, we
recover a standard variance prediction model.

D.2. Variational Lower Bound for VBLL-Variance Networks

We can obtain tractable variational objectives by combining our variance parameterization
with the variational objectives obtained in the last section. Note that each input x induces
a Σ and W in our generative model. For T training examples, our variational posterior is

q(W1:T ,M | X) = q(M)

T∏
t=1

q(Wt |M,xt) (50)

where t indexes training data. Following the previous section and indexing rows with i (and
dropping data indexing), the terms in this factorized variational posterior can be written

q(W |M,x) =

Ny∏
i=1

q(wi | mi,x) (51)
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with
q(wi | mi,x) = N (w̄i,Σi(mi,x)Si) (52)

and

q(M) =

Ny∏
i=1

q(mi). (53)

With this variational posterior, we have

log p(Y | X) ≥Eq(M)[log p(Y | X,M)]−KL(q(M)∥p(M)) (54)

≥
∑

(x,y)∈D

Eq(W |M,x)q(M)[log p(y | x,W,M)] (55)

−KL(q(M)∥p(M))−
∑
x∈D

Eq(M)[KL(q(W |M,x)∥p(W |M,x))].

There are two KL terms in (55). The term for q(M) is a straightforward KL between
Gaussians, and factorizes over the dimensionality of y. The second KL term is∑

x∈D

Ny∑
i=1

1

2
(Eq(mi)[Σ

−1
i ](w̄ −

¯
w̄)⊤

¯
S−1
i (w̄ −

¯
w̄) + tr(

¯
S−1
i Si)− log

detSi
det

¯
Si

−Nϕ) (56)

which is tractable via (48).

Practically, the relative weight of the second KL term is much larger as it is the sum of T
terms. In practice, we will scale this second KL term by 1/T (to match the relative weight
of the first KL term), which improves performance. This larger weighting factor results
from sharing the parameters of the variational posterior for each W (specifically W̄ , S).

D.2.1. Regression

To compute the likelihood term in (55) in the regression case, we build upon the objective
as written in (28), and apply the developed identities for E[Σ−1

i ] and E[log Σi].

D.2.2. Classification

To compute the likelihood term for the classification case, we use the previously developed
objective in (40) and apply the expressions for E[Σ−1

i ] and E[Σi], yielding an analytically
tractable heteroscedastic classification model.

D.3. Prediction

Because the variational posterior for the noise covariance is log-Normal, we lose conjugacy
for prediction in the regression case. Thus, for both regression and classification, we turn
to sampling. For the regression case, we sample Σ from the variational posterior and then
marginalize w as in standard VBLL regression models. In classification, we are forced to
sample the noise covariance Σ, and then sample from the conditional distribution over logits
under the variational posterior.

D.4. Complexity and Parameterization

The approach to heteroscedastic modeling fundamentally relies on parameterizing two
VBLL heads: one for the mean, and one for the noise covariance. Both are parameter-
ized as with standard VBLLs, which can have a dense, diagonal, or low-rank covariance
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structure, and thus the complexity of this layer is twice the complexity of a standard VBLL
layer. However, we note that VBLLs (with appropriately chosen covariance parameteriza-
tions) have comparable complexity to standard neural network layers, and thus the added
computational cost of adding heteroscedasticity is comparable to adding an additional layer
to a neural network.

Appendix E. Training and Algorithmic Details

We train our t-VBLL and Het-VBLL models with standard neural network optimization
strategies. Concretely, we jointly train the parameters of the variational posterior together
with the the neural network features ϕ. In this work we only train feature point estimates,
but it is also possible to train variational posteriors for features via Bayes-by-backprop (as
discussed in Harrison et al. (2024)), or train ensembles of models with t-VBLL or Het-VBLL
heads.

We train via minibatch optimization, with the sums over the data replaced with (re-
weighted) expectations over minibatches as in Blundell et al. (2015); Harrison et al. (2024).
Note that this implies that, in the heteroscedastic model, the KL term for q(M) should be
weighted by one over the dataset size, whereas the other KL term and the likelihood term
are averaged over the dataset.

The models presented in this paper can be used for full model training, or for a phase of
training in more complex network training pipelines. For example, a t- or Het-VBLL head
can be trained as a linear probe on pre-trained features, or may be used as a head for a
fine-tuned model. Practically, VBLL-based models train slightly more slowly than standard
neural networks due to (typically) being more heavily regularized, and thus training VBLL-
based heads in a second phase of training often accelerates training versus training from
scratch with VBLL heads.

Appendix F. Experiment Details and Further Experiments

F.1. Supervised Regression

F.1.1. Motorcycle Dataset

For the experiment in Figure 1 (left) on the data set provided by Silverman (1985), we use
for both the VBLL and three Het-VBLL three hidden layers with a feature dimension of
Nϕ = 64, ELU activation functions, and a prior scale of one. As optimizer, we use AdamW
(Loshchilov and Hutter, 2017). For the Het-VBLL, we choose a learning rate of 3e−4 and
a weight decay of 1e−5. For the standard VBLLs, we choose a learning rate of 3e−3 and
a weight decay of 0. For both, we use gradient clipping at 1. We train both surrogates for
2000 epochs with a batch size of 32.

F.1.2. UCI Datasets

Results on UCI datasets (Dua and Graff, 2017) are shown in Tables 3 and 4. These ex-
periments match the setting used in Watson et al. (2021) and Harrison et al. (2024), and
we compare against their baselines. In particular, we use two hidden layer MLPs of width
50, and use a batch size of 32 (except for Power in which we use batch size 256). We use
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Table 3: Results for UCI regression tasks.
Boston Concrete Energy

NLL (↓) RMSE (↓) NLL (↓) RMSE (↓) NLL (↓) RMSE (↓)
t-VBLL 2.51± 0.10 2.87± 0.28 2.95± 0.08 4.70± 0.36 1.19± 0.13 0.85± 0.11

Het-VBLL 2.35± 0.14 3.14± 0.53 3.05± 0.13 5.20± 0.35 1.17± 0.11 1.53± 0.23
VBLL 2.55± 0.06 2.92± 0.12 3.22± 0.07 5.09± 0.13 1.37± 0.08 0.87± 0.04
GBLL 2.90± 0.05 4.19± 0.17 3.09± 0.03 5.01± 0.18 0.69± 0.03 0.46± 0.02

LDGBLL 2.60± 0.04 3.38± 0.18 2.97± 0.03 4.80± 0.18 4.80± 0.18 0.50± 0.02
MAP 2.60± 0.07 3.02± 0.17 3.04± 0.04 4.75± 0.12 1.44± 0.09 0.53± 0.01

RBF GP 2.41± 0.06 2.83± 0.16 3.08± 0.02 5.62± 0.13 0.66± 0.04 0.47± 0.01

Dropout 2.36± 0.04 2.78± 0.16 2.90± 0.02 4.45± 0.11 1.33± 0.00 0.53± 0.01
Ensemble 2.48± 0.09 2.79± 0.17 3.04± 0.08 4.55± 0.12 0.58± 0.07 0.41± 0.02
SWAG 2.64± 0.16 3.08± 0.35 3.19± 0.05 5.50± 0.16 1.23± 0.08 0.93± 0.09
BBB 2.39± 0.04 2.74± 0.16 2.97± 0.03 4.80± 0.13 0.63± 0.05 0.43± 0.01

Table 4: Further results for UCI regression tasks.
Power Wine Yacht

NLL (↓) RMSE (↓) NLL (↓) RMSE (↓) NLL (↓) RMSE (↓)
t-VBLL 2.75± 0.02 3.83± 0.07 0.91± 0.05 0.62± 0.03 0.99± 0.34 0.87± 0.21

Het-VBLL 2.73± 0.03 3.75± 0.09 0.92± 0.07 0.61± 0.03 0.74± 0.50 1.94± 1.03
VBLL 2.73± 0.01 3.68± 0.03 1.02± 0.03 0.65± 0.01 1.29± 0.17 0.86± 0.17
GBLL 2.77± 0.01 3.85± 0.03 1.02± 0.01 0.64± 0.01 1.67± 0.11 1.09± 0.09

LDGBLL 2.77± 0.01 3.85± 0.04 1.02± 0.01 0.64± 0.01 1.13± 0.06 0.75± 0.10
MAP 2.77± 0.01 3.81± 0.04 0.96± 0.01 0.63± 0.01 5.14± 1.62 0.94± 0.09

RBF GP 2.76± 0.01 3.72± 0.04 0.45± 0.01 0.56± 0.05 0.17± 0.03 0.40± 0.03

Dropout 2.80± 0.01 3.90± 0.04 0.93± 0.01 0.61± 0.01 1.82± 0.01 1.21± 0.13
Ensemble 2.70± 0.01 3.59± 0.04 0.95± 0.01 0.63± 0.01 0.35± 0.07 0.83± 0.08
SWAG 2.77± 0.02 3.85± 0.05 0.96± 0.03 0.63± 0.01 1.11± 0.05 1.13± 0.20
BBB 2.77± 0.01 3.86± 0.04 0.95± 0.01 0.63± 0.01 1.43± 0.17 1.10± 0.11

AdamW (Loshchilov and Hutter, 2017) with a learning rate of 1e− 3 and weight decay of
1e − 2 on the hidden layers. We ran 10 seeds for each dataset. For more details on the
experimental setting, we refer the reader to Harrison et al. (2024).

F.2. Supervised Classification

F.2.1. Half Moon Dataset

For the two-moon data set in Figure 2, we use sklearn to generate the data and set the
noise level to 0.25. We introduce input-dependent label noise by flipping 20% of the labels
between [0.5, 1] for feature 1. For all baselines, we use the same backbone configuration
consisting of two hidden layers with 128 neurons (Nϕ = 128) and ELU activations. Further,
we choose a learning rate of 1e−3 and a weight decay of 1e−4 and train all models for 1000
epochs. For the standard VBLL and the t-VBLL, we use a prior scale of 1 and a Wishart
scale of 1. For the Het-VBLL, we choose a noise prior scale of 0.1 and a prior scale of 1.
For better visibility, we present the results of Figure 2 again in Figure 4.

F.2.2. CIFAR 10 and CIFAR 100

For the CIFAR 10 and CIFAR 100 datasers, we compare our models against other last-layer
methods, swapping out the classification head of a pretrained and frozen Wide ResNet-28-
10 network following Liu et al. (2022). These experiments, again, match the settings used
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Figure 4: Same results on the noisy two-moon data set under label noise as in Figure 2.
in Harrison et al. (2024), and we compare against their reported baselines. In particular we
compare against standard VBLL (Harrison et al., 2024) and last-layer laplace (Daxberger
et al., 2021) methods, as well as the results for the standard (vanilla) network. Performance
is evaluated through accuracy, calibration error (ECE), negative log-likelihood (NLL) and
out-of-distribution AUROC for both near and far OOD detection capabilities. For CIFAR-
10, we assess near OOD performance using CIFAR-100 as the out-of-distribution dataset
and vice versa for the CIFAR-100 OOD evaluation. In both cases, we utilize Street View
House Numbers (SVHN) (Netzer et al., 2011) as a far OOD dataset. For t-VBLL we set
a prior scale of 1 and an inverse Gamma scale parameter of 10. For Het-VBLL we select
a noise prior scale of 0.01 and prior scale of 10. All models are trained using the AdamW
optimizer and a learning rate of 1e-3 with linear warmup.

F.3. Bayesian Optimization

All models are implemented using GPyTorch (Gardner et al., 2018) and BoTorch (Balandat
et al., 2020). For the Student-t predictive of the t-VBLLs, we directly use the standard
deviation of the predictive in UCB. For the Het-VBLL model, we construct this standard
deviation by sampling ten Σ from the variational posterior as discussed in Sec. D.3 and
then use their mean in the acquisition function. For the outliers, we add heavy-tailed noise
from a zero mean Laplace distribution with a standard deviation of 0.5 (pest control) or 1
(Ackley) to the output of an experiment.

For all VBLL baselines, we use 3 hidden layers with 64 neurons and ELU activations
and set the maximum training epochs to 10000. For all models but the Het-VBLL, we use a
patience of 100 (Brunzema et al., 2025). For the GP, we use constraints on the lengthscales
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as ℓi ∈ [0.005, 4] (Eriksson et al., 2019) and optimize the lengthscales at iteration through
maximum likelihood estimation.

22


	Introduction
	General Setup and Preliminaries
	Training Objectives for Homoscedastic and Heteroscedastic Modeling
	Parameterizing the Noise Distribution
	Variational Lower Bounds and Prediction
	Training

	Experiments
	Discussion and Conclusion
	Related Work
	Variance Prediction
	Epistemic Uncertainty and Bayesian Deep Learning

	Variational Posteriors
	Inverse Gamma
	Log-Normal

	Variational Inference for Homoscedastic Noise
	Variational Lower Bound and Approach
	Regression
	Training Objective
	Prediction

	Classification
	Training Objective
	Prediction

	Complexity and Parameterization

	Heteroscedastic Noise Modeling
	Bayesian Last Layer Methods for Heteroscedastic Noise
	Variational Lower Bound for VBLL-Variance Networks
	Regression
	Classification

	Prediction
	Complexity and Parameterization

	Training and Algorithmic Details
	Experiment Details and Further Experiments
	Supervised Regression
	Motorcycle Dataset
	UCI Datasets

	Supervised Classification
	Half Moon Dataset
	CIFAR 10 and CIFAR 100

	Bayesian Optimization


