
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Safe Generative AI Workshop (NeurIPS 2024)

SEMANTIC MEMBERSHIP INFERENCE ATTACK
AGAINST LARGE LANGUAGE MODELS

Hamid Mozaffari
Oracle Labs
hamid.mozaffari@oracle.com

Virendra J. Marathe
Oracle Labs
virendra.marathe@oracle.com

ABSTRACT

Membership Inference Attacks (MIAs) determine whether a specific data point
was included in the training set of a target model. In this paper, we introduce
the Semantic Membership Inference Attack (SMIA), a novel approach that en-
hances MIA performance by leveraging the semantic content of inputs and their
perturbations. SMIA trains a neural network to analyze the target model’s be-
havior on perturbed inputs, effectively capturing variations in output probability
distributions between members and non-members. We conduct comprehensive
evaluations on the Pythia and GPT-Neo model families using the Wikipedia and
MIMIR datasets. Our results show that SMIA significantly outperforms existing
MIAs; for instance, for Wikipedia, SMIA achieves an AUC-ROC of 67.39% on
Pythia-12B, compared to 58.90% by the second-best attack.

1 INTRODUCTION

Large Language Models (LLMs) appear to be effective learners of natural language structure and
patterns of its usage. However, a key contributing factor to their success is their ability to memorize
their training data, often in a verbatim fashion. This memorized data can be reproduced verbatim
at inference time, which effectively serves the purpose of information retrieval. However, this re-
gurgitation of training data is also at the heart of privacy concerns in LLMs. Previous works have
shown that LLMs leak some of their training data at inference time (Carlini et al., 2022b;a; Jagan-
natha et al., 2021; Lehman et al., 2021; Mattern et al., 2023; Mireshghallah et al., 2022; Nasr et al.,
2023) Membership Inference Attacks (MIAs) (Shokri et al., 2017; Carlini et al., 2022b;a; Zhang
et al., 2023; Ippolito et al., 2022) aim to determine whether a specific data sample (e.g. sentence,
paragraph, document) was part of the training set of a target machine learning model. MIAs serve
as efficient tools to measure memorization in LLMs.

Existing approaches to measure memorization in LLMs have predominantly focused on verbatim
memorization, which involves identifying exact sequences reproduced from the training data. How-
ever, given the complexity and richness of natural language, we believe this method falls short. Nat-
ural language can represent the same ideas or sensitive data in numerous forms, through different
levels of indirection and associations. This power of natural language makes verbatim memoriza-
tion metrics inadequate to address the more nuanced problem of measuring semantic memorization,
where LLMs internalize and reproduce the essence or meaning of training data sequences, not just
their exact wording.

Previous MIAs against LLMs has predominantly focused on classifying members and non-members
by analyzing the probabilities assigned to input texts or their perturbations (Carlini et al., 2021; Mat-
tern et al., 2023; Shi et al., 2023; Zhang et al., 2024). In contrast, we introduce the Semantic Mem-
bership Inference Attack (SMIA), the first MIA to leverage the semantic content of input texts to
enhance performance. SMIA involves training a neural network to understand the distinct behaviors
exhibited by the target model when processing members versus non-members.

Our central hypothesis is that perturbing the input of a target model will result in differential changes
in its output probability distribution for members and non-members, contingent on the extent of
semantic change distance. Crucially, this behavior is presumed to be learnable. To implement this,
we train the SMIA model to discern how the target model’s behavior varies with different degrees of
semantic changes for members and non-members. Post-training, the model can classify a given text

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Safe Generative AI Workshop (NeurIPS 2024)

sequence as a member or non-member by evaluating the semantic distance and the corresponding
changes in the target model’s behavior for the original input and its perturbations.

Figure 1 illustrates the pipeline of our proposed SMIA inference. The SMIA inference pipeline
for a given text x and a target model T (.) includes four key steps: (1) Neighbor Generation:
The target sequence is perturbed n times by randomly masking different positions and filling them
using a masking model, such as T5 (Raffel et al., 2020), to generate a neighbour dataset x̃ (similar
to Mattern et al. (2023); Mitchell et al. (2023)). (2) Semantic Embedding Calculation: The
semantic embeddings of the input text and its neighbours are computed by using an embedding
model, such as Cohere Embedding model (Cohere, 2024). (3) Loss Calculation: The loss values of
the target model for the input text and its neighbours are calculated. (4) Membership Probability
Estimation: The trained SMIA model is then used to estimate the membership probabilities. These
scores are averaged and compared against a predefined threshold to classify the input as a member
or non-member.

Target
Sequence 

Mask Model
(T5)

(n neighbors) 

1) Neighbor Generation 2) Semantic Embeddings

4) SMIA Model Inference

3) Target Model Behavior

Embedding
Model (Cohere)

Target Model
(Pythia 12B)

SMIA Model
(Simple NN)

non-member

member

Figure 1: Our Semantic Membership Inference Attack (SMIA) inference pipeline.

Empirical Results: We evaluate the performance of our proposed SMIA across different model
families, specifically Pythia and GPT-Neo, using the Wikipedia and MIMIR (Duan et al., 2024)
datasets. To underscore the significance of the non-member dataset in evaluating MIAs, we include
two distinct non-member datasets in our Wikipedia analysis: one derived from the exact distribution
of the member dataset and another comprising Wikipedia pages published after a cutoff date, which
exhibit lower n-gram similarity with the members. Additionally, we assess SMIA under two settings:
(1) verbatim evaluation, where members exactly match the entries in the target training dataset, and
(2) slightly modified members, where one word is either duplicated, added, or deleted from the
original member data points.

Our results demonstrate that SMIA consistently outperforms all existing MIAs by a substantial mar-
gin. For instance, SMIA achieves an AUC-ROC of 67.39% for Pythia-12B on the Wikipedia dataset.
In terms of True Positive Rate (TPR) at low False Positive Rate (FPR), SMIA achieves TPRs of 3.8%
and 10.4% for 2% and 5% FPR, respectively, on the same model. In comparison, the second-best
attack, the Reference attack, achieves an AUC-ROC of 58.90%, with TPRs of 1.1% and 6.7% for
2% and 5% FPR, respectively.

2 OUR PROPOSED SMIA

Membership inference attacks (MIAs) against LLMs aim to determine whether a given data point
was part of the training dataset used to train the target model or not. Given a data point x and a
trained autoregressive model T (.), which predicts P (xt|x1, x2, ..., xt−1) reflecting the likelihood
of the sequence under the training data distribution, these attacks compute a membership score
A(x, T ). By applying a threshold ϵ to this score, we can classify x as a member (part of the training
data) or a non-member. In Appendix B, we provide MIA use cases and details about how existing
MIA work against LLMs.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Safe Generative AI Workshop (NeurIPS 2024)

MIAs seek to determine whether a specific data sample was part of the training set of a machine
learning model, highlighting potential privacy risks associated with model training. Traditional
MIAs typically verify if a text segment, ranging from a sentence to a full document, was used ex-
actly as is in the training data. Such attacks tend to falter when minor modifications are made to
the text, such as punctuation adjustments or word substitutions, while the overall meaning remains
intact. We hypothesize that a LLM, having encountered specific content during training, will ex-
hibit similar behaviors towards semantically similar text snippets during inference. Consequently, a
LLM’s response to semantically related inputs should display notable consistency.

Member Neighbor of Member

Non-Member Neighbor of Non-Member

Figure 2: Input features for our SMIA: semantic
change and taregt model behaviour change for in-
puts and their neighbors.

In this paper, we introduce Semantic Member-
ship Inference Attack (SMIA) against LLMs.
This novel attack method enables an attacker
to discern whether a concept, defined as a set
of semantically akin token sequences, was part
of the training data. Examples of such se-
mantically linked concepts include “John Doe
has leukemia” and “John Doe is undergoing
chemotherapy.” The proposed SMIA aims to
capture a broader spectrum of data memoriza-
tion incidents compared to traditional MIA, by
determining whether the LLM was trained on
any data encompassing the targeted concept.

2.1 SMIA DESIGN

For the SMIA, we assume that the adversary
has grey-box access to the target LLM, denoted
as T (.), which is trained on an unknown dataset
Dtrain. The adversary can obtain loss values
or log probabilities for any input text from this
model, denoted as ℓ(., T ), but lacks additional
information such as model weights or gradients. The cornerstone of our SMIA is the distinguish-
able behavior modification exhibited by the target model when presented with semantic variants of
member and non-member data points.

As illustrated in Figure 2, consider a 2-dimensional semantic space populated by data points. Mem-
bers and non-members are represented by green circles and red circles, respectively. By generating
semantic neighbors for both member and non-member data points (shown as green and red di-
amonds, respectively), we measure the semantic distance between targeted data points and their
neighbors, denoted as dmi and dni . Subsequently, we observe the target model’s response to these
data points by assessing the differences in loss values (y-axis for log probability of that text under
the taregt LLM data distribution), thereby training the SMIA to classify data points as members or
non-members based on these observed patterns.

2.2 SMIA PIPELINE

The SMIA consists of two primary components: initially, the adversary trains a neural network
model A(.) on a dataset gathered for this purpose, and subsequently uses this trained model for
inference. The training and inference processes are detailed in Algorithms 1 and 2, respectively.

During the training phase, the adversary collects two distinct datasets: Dtr-m (member dataset) and
Dtr-n (non-member dataset). Dtr-m comprises texts known to be part of the training dataset of the
target model T (.), while Dtr-n includes texts confirmed to be unseen by the target model during
training. The adversary utilizes these datasets to develop a membership inference model capable
of distinguishing between members (∈ Dtr-m) and non-members (∈ Dtr-n). For instance, Wikipedia
articles or any publicly available data collected before a specified cutoff date are commonly part of
many known datasets. Data collected after this cutoff date can be reliably assumed to be absent from
the training datasets.

The SMIA training procedure, shown in Algorithm 1, involves four key stages:

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Safe Generative AI Workshop (NeurIPS 2024)

Algorithm 1 Our Proposed Semantic Membership Inference Attack: training
Input: dataset of members for training Dtr-m, dataset of non-members for training Dtr-n, masking
model for neighbor generation N(.), Embedding model E(.), Target model T (.), Number of neigh-
bors n, Number of perturbations k, number of SMIA training epochs R, SMIA learning rate r,
SMIA batch size B, loss function ℓ(., .)
Output: SMIA Model A(. , . , Dtr-m, Dtr-n)

1: Dm
masked, D

n
masked ← MASK(Dtr-m, n, k),MASK(Dtr-n, n, k) ▷ Masking

2: D̃m, D̃n ← N(Dm
masked), N(Dn

masked) ▷ Neighbor generation
3: Φm,Φn, Φ̃m, Φ̃n ← E(Dtr-m), E(Dtr-n), E(D̃m), E(D̃n) ▷ Embedding
4: Lm, Ln, L̃m, L̃n ← ℓ(Dtr-m, T ), ℓ(Dtr-n, T ), ℓ(D̃

m, T ), ℓ(D̃n, T ) ▷ Target model loss
5: Initialize A(.)
6: for e in R do
7: for batch do
8: for i = 1 to B/2 do
9: Bm ← (Φm

batch,i − Φ̃m
batch,i, L

m
batch,i − L̃m

batch,i, 1) ▷ Member half of the batch
10: end for
11: for i = 1 to B/2 do
12: Bn ← (Φn

batch,i − Φ̃n
batch,i, L

n
batch,i − L̃n

batch,i, 0) ▷ Non-Member half of the batch
13: end for
14: update A({Bm, Bn}, r) ▷ Update parameters of SMIA network
15: end for
16: end for
17: return A(. , . , Dtr-m, Dtr-n)

i) Neighbour generation (Algorithm 1 lines 1-2): The initial phase of SMIA involves generating
a dataset of neighbours for both the member dataset (Dtr-m) and the non-member dataset (Dtr-n). The
creation of a neighbour entails making changes to a data item that preserve most of its semantics and
grammar, thereby ensuring that these neighbours are semantically closed to the original sample and
should be assigned a highly similar likelihood under any textual probability distribution, as similar
to Mattern et al. (2023); Mitchell et al. (2023). Specifically, Algorithm 1 line 1 describes the creation
of masked versions of Dm

masked and Dn
masked by randomly replacing k words within each text item n

times. Following this, in line 2, a Neighbour generator model N(x, L,K)—a masking model—is
employed to refill these masked positions, generating datasets D̃m and D̃n for members and non-
members, respectively. We utilize the T5 model (Raffel et al., 2020) in our experiments to perform
these replacements, aiming to produce n semantically close variants of each data point.

ii) Calculate semantic embedding of the data points (Algorithm 1 line 3): The subsequent step
involves computing semantic embeddings for both the original data points and their neighbours. As
per Algorithm 1 line 3, we obtain the embedding vectors Φm ← E(Dtr-m) and Φn ← E(Dtr-n) for
the member and non-member data points, respectively. Additionally, we calculate Φ̃m ← E(D̃m)

and Φ̃n ← E(D̃n) for their respective neighbours. These vectors represent each data point’s position
in a semantic space encompassing all possible inputs. Our experiments leverage the Cohere Embed-
ding V3 model (Cohere, 2024), which provides embeddings with 1024 dimensions, to capture these
semantic features.

iii) Monitor the behaviour of the target model for different inputs (Algorithm 1 line 4): The
third stage entails monitoring the target model’s response across data items in the four datasets.
Here, we calculate the loss values: Lm ← ℓ(Dtr-m, T ) for the member samples, Ln ← ℓ(Dtr-n, T )

for the non-member samples, and similarly L̃m ← ℓ(D̃m, T ) and L̃n ← ℓ(D̃n, T ) for their respec-
tive neighbours. This step is crucial for understanding how the model’s behavior varies between
members and non-members under semantically equivalent perturbations.

iv) Train an attack model (Algorithm 1 lines 5-16): The final phase of training involves devel-
oping a binary neural network capable of distinguishing between members and non-members by
detecting patterns of semantic and behavioral changes induced by the perturbations. We initiate this
by randomly initializing the attack model A(.), then training it to discern differences between the
semantic embeddings and loss values for each data point and its neighbours. The input features for

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Safe Generative AI Workshop (NeurIPS 2024)

A include the differences in semantic vectors Φm
i − Φ̃m

i and the changes in loss values Lm
i − L̃m

i
for each sample i. Each sample is labeled ‘1’ for members and ‘0’ for non-members, with each
training batch consisting of an equal mix of both, as suggested in prior research (Nasr et al., 2019).
The model is trained over R epochs using a learning rate r, culminating in a trained binary classifier
that effectively distinguishes between members and non-members based on the observed data. We
prvoide our SMIA training cost in Appendix C.

Algorithm 2 Our Proposed Semantic Membership Inference Attack: inference
Input: Test input x, Trained SMIA Model A(. , . , Dtr-m, Dtr-n) on dataset of members for training
Dtr-m and dataset of non-members for training Dtr-n, masking model for neighbor generation N(.),
Embedding model E(.), Target model T (.), Number of neighbors in inference ninf, Number of
perturbations k, decision threshold ϵ, loss function ℓ

1: xmasked ← MASK(x, ninf, k) ▷ Masking
2: x̃← N(xmasked) ▷ Neighbor generation
3: ϕ, ϕ̃← E(x), E(x̃) ▷ Embedding
4: L, L̃← ℓ(x, T ), ℓ(x̃, T ) ▷ Target model loss
5: µ← 1

n

∑
i∈[b] A(ϕ− ϕ̃i, L− L̃i) ▷ Average of SMIA scores

6: if µ > ϵ then
7: return True ▷ Member
8: else
9: return False ▷ Non-Member

10: end if

SMIA Inference: Upon completing the training of the model A(.), it can be employed to assess
whether a given input text x was part of the target model T (.)’s training dataset. Algorithm 2
details the inference procedure, which mirrors the training process. Initially, ninf neighbours for
x are generated using the mask model (lines 1-2). Subsequently, we compute both the semantic
embedding vectors and the loss values for x and its neighbours x̃ (lines 3-4). These computed
differences are then fed into the attack model A(ϕ − ϕ̃j , L − L̃j), which evaluates each neighbour
j. The final SMIA score for x is determined by averaging the scores from all ninf neighbours
(line 5), and this score is compared against a predefined threshold ϵ to ascertain membership or
non-membership (line 6).

3 EXPERIMENT SETUP

In this section, we describe the models and datasets used in our experiments. Due to space con-
straints, we have organized additional information into appendices. We provide the details of the
architecture for SMIA model in Appendix E.1, cost estimation of SMIA to Appendix C, privacy
metrics used in our analysis in Appendix E.2, the hyperparameters for training the SMIA model
in Appendix E.4, the baselines in Appendix B, and the computational resources utilized in Ap-
pendix E.5.

3.1 MODELS

Target Models: In our experiments, we evaluate our proposed SMIA across a diverse set of lan-
guage models to assess its effectiveness and robustness. We utilize three categories of target models:
(1) Pythia Model Suite: This category includes the largest models with 12B, 6.9B, and 2.7B param-
eters from the Pythia model suite (Biderman et al., 2023), trained on the Pile dataset (Gao et al.,
2020). (2) Pythia-Deduped: It consists of models with the same parameterization (12B, 6.9B, and
2.7B) but trained on a deduplicated version of the Pile dataset. This variation allows us to analyze
the impact of dataset deduplication on the effectiveness of MIAs. (3) GPT-Neo Family: To test the
generality of our approach across different architectures, we include models from the GPT-NEO
family (Black et al., 2021), specifically the 2.7B and 1.3B parameter models, also trained on the Pile
dataset.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Safe Generative AI Workshop (NeurIPS 2024)

Models Used in SMIA: The SMIA framework incorporates three critical components: (1) Masking
Model: We employ T5 with 3B parameters (Raffel et al., 2020) for generating perturbed versions
of the texts, where random words are replaced to maintain semantic consistency. (2) Semantic
Embedding Model: The Cohere Embedding V3 model (Cohere, 2024) is utilized to produce a 1024-
dimensional semantic embedding vector for each text, enabling us to capture nuanced semantic
variations. (3) Binary Neural Network Classifier: For the SMIA model, we utilize a relatively simple
neural network (details shown in Table 8) with 1.2M parameters, which is trained to distinguish
between member and non-member data points. In Appendix E.4, we discuss the hyperparameters
that we use in our experiments for this model.

3.2 DATASETS

To evaluate the effectiveness of the SMIA, we need to collect three datasets: training dataset Dtr =
{Dtr-m, Dtr-n}, validation dataset Dval = {Dval-m, Dval-n}, and test dataset Dte = {Dte-m, Dte-n}.
Each dataset comprises a member and a non-member split. We employ the training dataset for model
training, the validation dataset for tuning the hyperparameters, and the test dataset for evaluating the
model performance based on various metrics.

3.2.1 WIKIPEDIA DATASET

Wikipedia Training and Validation: We selected a total of 14,000 samples from Wikipedia,
verified as parts of the training or test split of the Pile dataset (Gao et al., 2020). This includes 7,000
member samples from the training split of the Wikipedia portion of Pile and 7,000 non-member
samples from the test split. Samples were selected to have a minimum of 130 words and were
truncated to a maximum of 150 words. Consistent with prior studies (Gao et al., 2020; Duan et al.,
2024), we prepended article titles to the text of each article, separated by a ”\n \n”. The split for
these samples assigns 6,000 from each category to the training dataset (Dtr) and 1,000 from each
to the validation dataset (Dval). In Appendix C, we provide the cost estimation for preparing this
dataset for our training. For example for Wikipedia training part, calculating the embedding vectors
from Cohere model costs around $32.

Wikipedia Test: For the test member dataset (Dte-m), we similarly sourced 1,000 samples from the
training portion of Pile. Selecting an appropriate non-member dataset (Dte-n) for testing is crucial, as
differences in data distribution between member and non-member samples can falsely influence the
perceived success of membership inference. Prior research (Duan et al., 2024) indicates that non-
member samples drawn from post-training publications or different sections of the Pile test dataset
show varied overlap in linguistic features such as n-grams, which can affect inference results. To
address this, we established two non-member test datasets: the first, referred to as Wikipedia Test
(WT = {Dte-m, D

PileTest
te-n }), includes samples from Wikipedia pages before March 2020 that are part

of the Pile test dataset. The second, called Wikipedia Cutoff (WC = {Dte-m, D
CutOff
te-n }), consists of

1,000 samples from Wikipedia pages published after August 2023, ensuring they were not part of
the Pile training dataset.

3.2.2 MIMIR DATASET

The MIMIR dataset (Duan et al., 2024), a derivative of the Pile dataset (Gao et al., 2020), is designed
to simulate real-world challenges in membership inference of LLMs. Members and non-members
are drawn from the train and test splits of the Pile dataset respectively, with non-member samples
designed to exhibit different n-gram overlaps. We specifically engaged with the most challenging
MIMIR sub-split, where members and non-members share up to 80% overlap in 13-grams—a setting
designed to rigorously test the discriminative power of our SMIA approach. We select Wikipedia en,
GitHub, PubMed Central, and ArXiv splits in our experiments. Samples were selected to have a
minimum of 130 words. Each member and non-member dataset was then divided into 70% for
training (Dtr), 10% for validation ( Dval), and 20% for the test dataset (Dte). We benchmark the
performance of SMIA against other baselines on the test datasets.

4 EXPERIMENTS

In this section, we present the experimental results of our SMIA and compare its performance to
other MIAs in verbatim setting (for modified setting, see Appendix A). Due to space constraints, we

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Safe Generative AI Workshop (NeurIPS 2024)

defer the TPR of attacks at low FPR to Appendix D.1, the effect of deduplication in the Pythia model
family to Appendix D.2, analysis of SMIA’s performance with varying numbers of neighbors during
inference to Appendix D.3, the effect of training size on SMIA’s performance to Appendix D.4, and,
the histogram of similarities between generated neighbors and their original texts in both member
and non-member training datasets to Appendix D.5.

4.1 EVALUATION IN VERBATIM SETTING

Our initial set of experiments aims to classify members and non-members without any modifica-
tions to the data, meaning that the members (Dte-m) in the test dataset are verbatim entries from the
training dataset of the models. This evaluation setting is consistent with prior works (Yeom et al.,
2018; Carlini et al., 2021; Shi et al., 2023; Mattern et al., 2023; Zhang et al., 2024). Table 1 and Ta-
ble 2 present the AUC-ROC metric for various baseline methods and our proposed SMIA approach
across different trained models for Wikipedia (with two distinct test datasets) and MIMIR dataset
repectively (Refer to Appendix D.2 for evaluation results on deduplicated models). Additionally,
Table 4 and Table 5 in Appendix D.1 provide the True Positive Rate (TPR) at low False Positive
Rates (FPR) for these methods and datasets. For MIMIR experiments, the tables include the best
AUC-ROC values for Min-K and Min-K++ across different values of K and Pyhtia-1.4B as the ref-
erence model. The results demonstrate that SMIA significantly outperforms existing methods. For
instance, on Pythia-12B and WT = {Dte-m, D

PileTest
te-n } test dataset (i.e., when non-members are sam-

pled from the same data distribution as members), SMIA achieves an AUC-ROC of 67.39% with
TPRs of 3.8% and 10.4% at 2% and 5% FPR, respectively. In contrast, the LOSS method (Yeom
et al., 2018) yields an AUC-ROC of 54.94% and TPRs of 2.1% and 5.8% at the same FPR thresh-
olds. The Ref attack (Carlini et al., 2021), which utilizes Pythia 1.4B to determine the complexity
of test data points on a reference model trained on the same data distribution (a challenging assump-
tion in real-world scenarios), achieves an AUC-ROC of 58.90% with TPRs of 2% and 8.2% at 2%
and 5% FPR. Furthermore, Min-K (Shi et al., 2023) and Min-K++ (Zhang et al., 2024) show better
AUC-ROC compared to the LOSS attack, achieving 56.66% and 57.67% for K = 20%.

On MIMIR dataset, SMIA demonstrates superior performance across multiple splits. For example,
in the PubMed Central split, on Pythia-12B, it achieves an AUC-ROC of 68.39% with TPRs of
8.50%, 11.50%, and 30.50% at FPRs of 2%, 5% and 10%, respectively. The second-best attack,
the Nei attack (Mattern et al., 2023; Mitchell et al., 2023), achieves a lower AUC-ROC of 57.77%
with corresponding TPRs of 1.0%, 6.0%, and 12.50% at these FPR thresholds. Similar to previous
work (Duan et al., 2024), we find Github split as a less challenging domain emphasizing that LLMs
tend to memorize the code snippets with higher probability. These evaluations were conducted under
the constraint of dataset sizes, with each split containing at most 1000 examples for members and
1000 examples for non-members (before splitting them into {Dtr, Dval, Dte}). It is important to note
that these results are achieved with the constraint of a limited size for our training, validation, and
test datasets. we postulate that with an expansion in the size of these datasets, SMIA would likely
achieve even higher performance metrics.

Why SMIA Outperforms Other MIAs: SMIA delivers superior performance for two key reasons:
Firstly, it incorporates the semantics of the input text into the analysis, unlike the baseline methods
that solely rely on the target model’s behavior (e.g., log probability) for their membership score
calculations. Secondly, SMIA utilizes a neural network trained specifically to distinguish between
members and non-members, offering a more dynamic and effective approach compared to the static
statistical methods used by previous MIAs.
Importance of non-member dataset: In the other Wikipedia test dataset (WC =
{Dte-m, D

CutOff
te-n }), where non-members are derived from Wikipedia pages published after August

2023, we observe a substantial improvement in SMIA performance, consistent with findings from
other studies (Duan et al., 2024). For example, SMIA achieves an AUC-ROC of 67.39% and 93.35%
for Pythia-12B on WT and WC, respectively. In terms of TPR at low FPR for the same model,
SMIA achieves 3.8% and 10.4% for 2% and 5% FPR with the WT dataset, while achieving 46.2%
and 66.0% for 2% and 5% FPR with the WC dataset. This increase is also observed in other attack
methods. For instance, Min-K++ (with K = 10%) attains 54.77% AUC-ROC for the WT dataset
and 76.17% for the WC dataset. The underlying reason for this is that the member dataset (Dte-m)
has a higher n-gram overlap with the WT non-member dataset compared to the WC non-member
dataset. A high n-gram overlap between members and non-members implies that substrings of non-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Safe Generative AI Workshop (NeurIPS 2024)

Table 1: AUC-ROC performance metrics for various MIAs, including our SMIA, evaluated on dif-
ferent trained models (Pythia and GPT-Neo) using the Wikipedia. The table compares results for
verbatim member data Dte-m entries against non-member datasets DPileTest

te-n and DCutOff
te-n .

Pythia-12B Pythia-6.9B Pythia-2.7B GPT-Neo2.7B GPT-Neo1.3B
Method WT WC WT WC WT WC WT WC WT WC
LOSS 54.94 67.56 54.23 65.95 53.14 63.99 53.32 63.34 52.98 62.10

Ref
(Pythia 70M)

52.73 58.29 51.71 56.42 49.92 53.74 50.07 53.86 49.70 52.91

Ref
(Pythia 1.4B)

58.90 67.44 57.01 63.79 51.39 56.06 52.27 56.80 50.03 50.98

Zlib 54.33 66.56 53.61 64.98 52.54 63.01 52.70 62.59 52.42 61.38
Nei 55.83 72.06 55.17 70.78 53.87 69.13 53.51 68.34 53.08 67.36

Min-K
(K = 10%)

56.96 76.05 56.00 73.96 54.05 71.21 53.72 70.53 53.32 68.40

Min-K
(K = 20%)

56.66 73.90 55.65 71.95 53.86 69.26 53.66 68.68 53.36 66.82

Min-K
(K = 30%)

56.17 72.18 55.23 70.32 53.67 67.84 53.59 67.26 53.33 65.54

Min-K++
(K = 10%)

56.83 78.47 54.77 76.17 52.37 72.38 51.73 72.93 51.57 69.87

Min-K++
(K = 20%)

57.67 79.34 55.62 76.77 53.28 72.82 52.82 73.07 52.02 70.13

Min-K++
(K = 30%)

57.76 78.96 55.81 76.21 53.62 72.27 53.21 72.46 52.41 69.52

Our SMIA 67.39 93.35 64.63 92.11 60.65 89.97 59.71 89.59 58.92 87.43

Table 2: AUC-ROC results for different MIAs on datasets in MIMIR dataset (Duan et al., 2024)
where members and non-members share less than 80% overlap in 13-gram.

Target Model Dataset Method

LOSS Ref Zlib Nei Mink Mink++ Our
SMIA

Pythia-12B

Wikipedia 55.33 58.87 55.04 55.74 58.60 60.77 64.85
Github 76.45 47.25 76.60 73.03 76.90 77.54 99.71
ArXiv 48.66 57.63 47.14 51.83 49.91 53.12 54.45
PubMed 53.20 56.73 51.86 57.77 53.28 55.66 68.39

Pythia-6.9B

Wikipedia 54.20 57.15 54.14 54.39 57.89 57.36 62.86
Github 75.72 47.52 75.87 73.08 76.17 77.31 99.64
ArXiv 48.28 55.96 46.79 51.79 48.87 51.34 54.01
PubMed 52.18 52.02 51.05 56.71 52.10 53.82 61.90

members may have been seen during training, complicating the distinction between members and
non-members (Duan et al., 2024).

Larger models memorize more: Another observation from Table 1, Table 2, Table 4, and Ta-
ble 5 is that larger models exhibit greater memorization, consistent with findings from previous
studies (Duan et al., 2024; Carlini et al., 2022a; Nasr et al., 2023). For instance, for the WT (WC)
test datasets, SMIA achieves AUC-ROC scores of 67.39% (93.35%), 64.63% (92.11%), and 60.65%
(89.97%) for Pythia 12B, 6.9B, and 2.7B, respectively. Similarly, SMIA achieves 59.71% (89.59%)
and 58.92% (87.43%) on GPT-Neo 2.7B and 1.3B, respectively, for the WT (WC) test datasets.

5 CONCLUSION

In this paper, we introduced the Semantic Membership Inference Attack (SMIA), which leverages
the semantics of input texts and their perturbations to train a neural network for distinguishing mem-
bers from non-members. We evaluated SMIA in two primary settings: (1) where the test member
dataset exists verbatim in the training dataset of the target model, and (2) where the test member
dataset is slightly modified through the addition, duplication, or deletion of a single word.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Safe Generative AI Workshop (NeurIPS 2024)

REFERENCES

Ayush Agrawal, Lester Mackey, and Adam Tauman Kalai. Do language models know when they’re
hallucinating references? arXiv preprint arXiv:2305.18248, 2023.

Daniel Bernau, Philip-William Grassal, Jonas Robl, and Florian Kerschbaum. Assessing differen-
tially private deep learning with membership inference. arXiv preprint arXiv:1912.11328, 2019.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. Gpt-neo: Large scale autore-
gressive language modeling with mesh-tensorflow. If you use this software, please cite it using
these metadata, 58:2, 2021.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In 30th USENIX Security Symposium (USENIX Security 21), pp.
2633–2650, 2021.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and
Chiyuan Zhang. Quantifying memorization across neural language models. arXiv preprint
arXiv:2202.07646, 2022a.

Nicholas Carlini, Matthew Jagielski, Chiyuan Zhang, Nicolas Papernot, Andreas Terzis, and Florian
Tramer. The privacy onion effect: Memorization is relative. Advances in Neural Information
Processing Systems, 35:13263–13276, 2022b.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

Cohere. Cohere embedding model, 2024. URL https://cohere.ai/.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Michael Duan, Anshuman Suri, Niloofar Mireshghallah, Sewon Min, Weijia Shi, Luke Zettlemoyer,
Yulia Tsvetkov, Yejin Choi, David Evans, and Hannaneh Hajishirzi. Do membership inference
attacks work on large language models? arXiv preprint arXiv:2402.07841, 2024.

Ronen Eldan and Mark Russinovich. Who’s harry potter? approximate unlearning in llms. arXiv
preprint arXiv:2310.02238, 2023.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Michael M. Grynbaum and Ryan Mac. The times sues openai and microsoft over a.i. use of
copyrighted work, 2023. URL https://www.nytimes.com/2023/12/27/business/
media/new-york-times-open-ai-microsoft-lawsuit.html.

Daphne Ippolito, Florian Tramèr, Milad Nasr, Chiyuan Zhang, Matthew Jagielski, Katherine Lee,
Christopher A Choquette-Choo, and Nicholas Carlini. Preventing verbatim memorization in lan-
guage models gives a false sense of privacy. arXiv preprint arXiv:2210.17546, 2022.

Abhyuday Jagannatha, Bhanu Pratap Singh Rawat, and Hong Yu. Membership inference attack
susceptibility of clinical language models. arXiv preprint arXiv:2104.08305, 2021.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
Computing Surveys, 55(12):1–38, 2023.

9

https://cohere.ai/
https://www.nytimes.com/2023/12/27/business/media/new-york-times-open-ai-microsoft-lawsuit.html
https://www.nytimes.com/2023/12/27/business/media/new-york-times-open-ai-microsoft-lawsuit.html


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Safe Generative AI Workshop (NeurIPS 2024)

Eric Lehman, Sarthak Jain, Karl Pichotta, Yoav Goldberg, and Byron C Wallace. Does bert pre-
trained on clinical notes reveal sensitive data? arXiv preprint arXiv:2104.07762, 2021.

Andrew Lowy, Zhuohang Li, Jing Liu, Toshiaki Koike-Akino, Kieran Parsons, and Ye Wang. Why
does differential privacy with large epsilon defend against practical membership inference at-
tacks? arXiv preprint arXiv:2402.09540, 2024.

Justus Mattern, Fatemehsadat Mireshghallah, Zhijing Jin, Bernhard Schölkopf, Mrinmaya Sachan,
and Taylor Berg-Kirkpatrick. Membership inference attacks against language models via neigh-
bourhood comparison. arXiv preprint arXiv:2305.18462, 2023.

Fatemehsadat Mireshghallah, Kartik Goyal, Archit Uniyal, Taylor Berg-Kirkpatrick, and Reza
Shokri. Quantifying privacy risks of masked language models using membership inference at-
tacks. arXiv preprint arXiv:2203.03929, 2022.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and Chelsea Finn. De-
tectgpt: Zero-shot machine-generated text detection using probability curvature. In International
Conference on Machine Learning, pp. 24950–24962. PMLR, 2023.

Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy analysis of deep learning:
Passive and active white-box inference attacks against centralized and federated learning. In 2019
IEEE symposium on security and privacy (SP), pp. 739–753. IEEE, 2019.

Milad Nasr, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski, A Feder Cooper, Daphne Ip-
polito, Christopher A Choquette-Choo, Eric Wallace, Florian Tramèr, and Katherine Lee. Scalable
extraction of training data from (production) language models. arXiv preprint arXiv:2311.17035,
2023.

Stuart L Pardau. The california consumer privacy act: Towards a european-style privacy regime in
the united states. J. Tech. L. & Pol’y, 23:68, 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi
Chen, and Luke Zettlemoyer. Detecting pretraining data from large language models. arXiv
preprint arXiv:2310.16789, 2023.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
tacks against machine learning models. In 2017 IEEE symposium on security and privacy (SP),
pp. 3–18. IEEE, 2017.

Paul Voigt and Axel Von dem Bussche. The eu general data protection regulation (gdpr). A Practical
Guide, 1st Ed., Cham: Springer International Publishing, 10(3152676):10–5555, 2017.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Sohee Yang, Elena Gribovskaya, Nora Kassner, Mor Geva, and Sebastian Riedel. Do large language
models latently perform multi-hop reasoning? arXiv preprint arXiv:2402.16837, 2024.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learn-
ing: Analyzing the connection to overfitting. In 2018 IEEE 31st computer security foundations
symposium (CSF), pp. 268–282. IEEE, 2018.

Chiyuan Zhang, Daphne Ippolito, Katherine Lee, Matthew Jagielski, Florian Tramèr, and Nicholas
Carlini. Counterfactual memorization in neural language models. Advances in Neural Information
Processing Systems, 36:39321–39362, 2023.

Jingyang Zhang, Jingwei Sun, Eric Yeats, Yang Ouyang, Martin Kuo, Jianyi Zhang, Hao Yang,
and Hai Li. Min-k%++: Improved baseline for detecting pre-training data from large language
models. arXiv preprint arXiv:2404.02936, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Safe Generative AI Workshop (NeurIPS 2024)

Shen Zheng, Jie Huang, and Kevin Chen-Chuan Chang. Why does chatgpt fall short in answering
questions faithfully? arXiv preprint arXiv:2304.10513, 2023.

A EVALUATION IN MODIFIED SETTINGS

Existing MIAs against LLMs typically assess the membership status of texts that exist verbatim in
the training data. However, in practical scenarios, member data might undergo slight modifications.
An important application of MIAs is identifying the use of copyrighted content in training datasets.
For instance, in the legal case involving the New York Times and OpenAI, the outputs of ChatGPT
were found to be very similar to NYTimes articles, with only minor changes such as the addition or
deletion of a single word (Grynbaum & Mac, 2023). This section explores the capability of SMIA
to detect memberships even after such slight modifications.

To evaluate SMIA and other MIAs under these conditions, we generated three new test member
datasets from our existing Wikipedia test member dataset (Dte-m) as follows (Figure 5 provides
examples for each modification): Duplication: A random word in each member data point is du-
plicated. Deletion: A random word in each member data point is deleted. Addition: A mask
placement is randomly added in each member data point, and the T5 model is used to fill the mask
position, with only the first word of the T5 replacement being used. We just consider one word
modification beacuse more than one word modification reuslts in a drastic drop of performance for
all attacks.

Table 3 presents the AUC-ROC performance results of different MIAs and our SMIA under these
slightly modified test member datasets. The table includes the best AUC-ROC values for Min-K and
Min-K++ across different values of K. The results indicate that for the WT non-member dataset,
when a word is duplicated or added from the T5 output, the Ref attack outperforms SMIA. For
instance, with Pythia-12B, the Ref attack achieves AUC-ROC scores of 57.88% and 57.95% after
word duplication and addition from the T5 output, respectively, whereas SMIA achieves scores of
55.13% and 54.19% for the same settings. It is important to note that the Reference model is Pythia-
1.4B, which shares the same architecture and training dataset (Pile) but with fewer parameters, a
scenario that is less feasible in real-world applications. However, when a word is deleted, SMIA
retains much of its efficacy, achieving an AUC-ROC of 62.47% compared to 58.25% for the Ref
attack on the WT non-member dataset. This indicates that SMIA is more sensitive to additions than
deletions.

In scenarios involving the WC non-member dataset, where non-members exhibit lower n-gram
overlap with members, SMIA consistently outperforms other MIAs. For example, SMIA achieves
AUC-ROC scores of 89.36% and 92.67% for word addition and deletion, respectively, while the Ref
attack scores 66.50% and 66.84% for these modified member datasets.

Another key observation is that Min-K++ exhibits a greater decline in AUC-ROC than Min-K fol-
lowing modifications. For instance, on Pythia-12B with the WC non-member dataset, Min-K++
AUC-ROC drops from 76.05% (no modification) to 69.07% (duplication), 70.81% (addition), and
69.87% (deletion). Conversely, Min-K AUC-ROC decreases from 76.05% (no modification) to
69.46% (duplication), 71.10% (addition), and 70.48% (deletion). This increased sensitivity of Min-
K++ to modifications is due to its reliance on the average and variance of all vocabulary probabilities
to normalize its scores, making it more susceptible to changes in these probabilities, thereby degrad-
ing performance.

B EXISTING MIAS AGAINST LLMS

MIAs use cases: MIAs provide essential assessments in various domains. They are cornerstone
for privacy auditing (Mireshghallah et al., 2022; Mattern et al., 2023), where they test whether LLMs
leak sensitive information, thereby ensuring models do not memorize data beyond their learning
scope. In the realm of machine unlearning Eldan & Russinovich (2023), MIAs are instrumental in
verifying the efficacy of algorithms to comply with the right to be forgotten, as provided by pri-
vacy laws like the General Data Protection Regulation (GDPR) (Voigt & Von dem Bussche, 2017)
and the California Consumer Privacy Act (CCPA) (Pardau, 2018). These attacks are also pivotal
in copyright detection, pinpointing the unauthorized inclusion of copyrighted material in training

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Safe Generative AI Workshop (NeurIPS 2024)

Table 3: Performance of various MIAs including our SMIA under different modification scenarios
of the test member dataset (Dm

te ). The table compares AUC-ROC scores when test members undergo
word duplication, deletion, or addition using the T5 model. The results highlight the robustness of
SMIA, especially against deletions and when non-members have lower n-gram overlap with mem-
bers.

Pythia-12B Pythia-6.9B
Method Modification WT WC WT WC

Duplication

Loss 52.07 64.60 51.41 63.04
Ref 57.88 66.48 55.94 62.72
Zlib 51.87 63.99 51.23 62.44
Nei 51.71 68.13 51.09 66.87

Mink 51.93 69.46 51.10 67.45
Mink++ 46.37 69.07 44.94 66.46

Our SMIA 55.13 90.53 52.68 88.80

Addition

Loss 52.36 64.90 51.70 63.33
Ref 57.95 66.55 56.05 62.84
Zlib 52.31 64.47 51.65 62.93
Nei 51.55 67.80 50.94 66.61

Mink 52.60 71.10 51.75 69.02
Mink++ 48.23 70.81 46.60 68.15

Our SMIA 54.19 89.36 51.97 87.69

Deletion

Loss 51.83 64.28 51.19 62.74
Ref 58.25 66.84 56.61 63.40
Zlib 50.58 62.44 49.90 60.89
Nei 54.55 70.65 53.99 69.50

Mink 52.07 70.48 51.24 68.36
Mink++ 47.46 69.87 46.04 67.30

Our SMIA 62.47 92.67 60.39 91.37

datasets(Shi et al., 2023; Grynbaum & Mac, 2023). Furthermore, they aid in detecting data contami-
nation – where specific task data might leak into a model’s general training dataset (Wei et al., 2021;
Chowdhery et al., 2023). Lastly, in the tuning the hyperparameters of differential privacy, MIAs
provide insights for setting the ϵ parameter (i.e., the privacy budget), which dictates the trade-off be-
tween a model’s performance and user privacy (Lowy et al., 2024; Bernau et al., 2019; Mireshghallah
et al., 2022).

MIAs assign a membership score A(x, T ) to a given text input x and a trained model T (.). This
score represents the likelihood that the text was part of the dataset on which T (.) was trained. A
threshold ϵ is then applied to this score to classify the text as a member if it is higher than ϵ, and
a non-member if it is lower. In this section, we provide the description of existing MIAs against
LLMS.

LOSS (Yeom et al., 2018): The LOSS method utilizes the loss value of model T (.) for the given
text x as the membership score; a lower loss suggests that the text was seen during training, so
A(x, T ) = ℓ(T, x).

Ref (Carlini et al., 2021): Calculating membership scores based solely on loss values often results
in high false negative rates. To improve this, a difficulty calibration method can be employed to
account for the intrinsic complexity of x. For example, repetitive or common phrases typically
yield low loss values. One method of calibrating this input complexity is by using another LLM,
Ref(.), assumed to be trained on a similar data distribution. The membership score is then defined
as the difference in loss values between the target and reference models, A(x, T ) = ℓ(x, T ) −
ℓ(x,Ref). Follwoing recent works (Shi et al., 2023; Zhang et al., 2024), we use smaller reference
models, Pythia 1.4B and Pythia 70M, which are trained on the same dataset (Pile) and share a similar
architecture with the Pythia target models.

Zlib (Carlini et al., 2021): Another method to calibrate the difficulty of a sample is by using its zlib
compression size, where more complex sentences have higher compression sizes. The membership
score is then calculated by normalizing the loss value by the zlib compression size, A(x, T ) =
ℓ(x,T )
zlib(x) .

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Safe Generative AI Workshop (NeurIPS 2024)

Nei (Mattern et al., 2023; Mitchell et al., 2023): This method perturbs the given text to calibrate
its difficulty without the need for a reference model. Neighbors are created by masking random
words and replacing them using a masking model like BERT (Devlin et al., 2018) or T5 (Raffel
et al., 2020). If a model has seen a text during training, its loss value will generally be lower than
the average of its neighbors. The membership score is the difference between the loss value of the
original text and the average loss of its neighbors, A(x, T ) = ℓ(x, T ) − 1

n

∑
i∈[n] ℓ(x̂i, T ), where

in our experiments for each sample n = 25 neighbors are generated using a T5 model with 3B
parameters.

Min-K (Shi et al., 2023): This attack hypothesizes that non-member samples often have
more tokens assigned lower likelihoods. It first calculates the likelihood of each token as
Min-K%token(xt) = log p(xt|x<t), for each token xt given the prefix x<t. The membership score
is then calculated by averaging over the lowest K% of tokens with lower likelihood, A(x, T ) =

1
|min-k%|

∑
xi∈min−k% Min-K%token(xt).

Min-K++ (Zhang et al., 2024): This method improves on Min-K by utilizing the insight that
maximum likelihood training optimizes the Hessian trace of likelihood over the training data. It
calculates a normalized score for each token xt given the prefix x<t as Min-K%++token(xt) =
log p(xt|x<t)−µx<t

σx<t
, where µx<t is the mean log probability of the next token across the vocabulary,

and σx<t is the standard deviation. The membership score is then aggregated by averaging the scores
of the lowest K% tokens, A(x, T ) = 1

|min-k%++|
∑

xi∈min−k% Min-K%++token(xt).

C SMIA COST ESTIMATION

The cost estimation for deploying the SMIA involves several computational and resource consid-
erations. Primarily, the cost is associated with generating neighbours, calculating embeddings, and
evaluating loss values for the target model T (.).

For each of the datasets, Dtr-m (members) and Dtr-n (non-members), consisting of β data samples
each, we generate n neighbours per data item. Consequently, this results in a total of 2 × n × β
neighbour generations. Assuming each operation has a fixed cost, with cN for generating a neigh-
bour, cT for computing a loss value, and cE for calculating an embedding, the total cost for the
feature collection phase can be approximated as: 2 × (n × β + 1) × (cN + cE + cT ). In this esti-
mation, the training of the neural network model A(.) is considered negligible due to its relatively
small size (few million parameters) and its architecture, which primarily consists of fully connected
layers. Additionally, the costs associated with cT and cN are not significant in this context as they
are incurred only during the inference phase. Thus, the predominant cost factor is cE , the cost of
embedding calculations.

In practical terms, for our experimental setup (Section 3.2) using the Wikipedia dataset as an exam-
ple, we prepared a training set comprising 6,000 members and 6,000 non-members. With each data
item generating n = 25 neighbours, the total number of data items requiring embedding calculations
becomes: 6, 000 + 6, 000 + 150, 000 + 150, 000 = 312, 000 Each of these data items, on average,
consists of 1052 characters (variable due to replacements made by the neighbour generation model),
leading to a total of 312, 000 × 1052 = 328, 224, 000 characters processed. These transactions are
sent to the Cohere Embedding V3 model (Cohere, 2024) for embedding generation. The cost of
processing these embeddings is measured in thousands of units. Hence, the total estimated cost for
embedding processing is approximately: 32, 822× $0.001 = $32.82.

D MISSING RESULTS

D.1 TPR FOR LOW FPR

Table 4 and Table 5 show the TPR at 2%, 5% and 10% FPR for different baselines and our proposed
SMIA by targeting different models using Wikipedia and MIMIR datasets.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Safe Generative AI Workshop (NeurIPS 2024)

Table 4: True Positive Rate (TPR) at 2%, 5% and 10% False Positive Rate (FPR) for various MIAs,
including our SMIA, across different trained models (Pythia and GPT-Neo) using the Wikipedia
dataset.

Pythia-12B Pythia-6.9B Pythia-2.7B GPT-Neo2.7B GPT-Neo1.3B
Method FPR WT WC WT WC WT WC WT WC WT WC

LOSS
2% 2.1 12.2 2.6 11.9 3.1 9.4 2.8 9.2 2.2 8.7
5% 5.8 22.8 5.5 20.3 5.6 19.9 5.6 19.8 5.6 19.2
10% 11.1 32.1 10.9 29.8 10.2 28.6 10.0 27.6 9.8 25.6

Ref
(Pythia 70M) 2% 1.1 5.3 1.7 4.7 2.1 4.3 1.7 4.4 1.6 3.0

5% 6.7 8.7 6.2 9.1 6.4 8.4 5.8 9.0 5.6 7.8
10% 11.7 18.3 12.0 16.1 11.1 14.8 11.9 13.9 12.3 13.3

Ref
(Pythia 1.4B) 2% 2.0 5.7 2.1 6.3 2.8 4.1 2.3 2.7 1.7 0.7

5% 8.2 13.1 7.3 10.2 5.9 7.2 5.3 5.3 4.2 2.7
10% 16.5 21.3 14.7 17.7 10.7 13.7 11.4 10.8 10.0 8.2

Zlib 2% 2.2 12.0 2.1 10.5 1.9 9.2 2.1 10.0 2.0 9.9
5% 5.5 22.7 5.9 22.4 5.2 19.8 6.0 18.7 5.9 16.1
10% 10.4 33.5 10.2 30.5 9.1 29.2 10.0 28.1 9.9 28.3

Nei 2% 1.3 11.2 1.4 9.3 1.7 9.0 1.5 10.1 2.1 8.9
5% 4.3 19.2 4.5 18.9 5.2 18.8 5.3 18.2 5.5 16.1
10% 10.4 32.0 10.5 29.9 10.0 27.6 10.4 27.4 11.0 28.3

Min-K
(K = 10%) 2% 1.8 17.9 1.9 18.3 1.9 14.1 1.6 15.9 1.4 14.2

5% 5.6 28.9 6.0 26.0 6.7 23.9 5.7 22.4 6.5 20.0
10% 13.3 41.7 13.7 36.7 12.3 33.8 13.2 31.7 11.6 28.9

Min-K
(K = 20%) 2% 1.8 14.7 2.1 16.7 2.7 14.1 2.4 14.3 2.0 13.9

5% 5.6 27.0 5.4 25.9 5.8 23.6 5.7 23.3 5.9 21.9
10% 12.7 38.3 12.6 36.5 12.0 31.9 12.4 32.2 11.4 28.4

Min-K
(K = 30%) 2% 2.1 14.2 2.5 14.6 2.8 12.1 2.5 12.1 2.1 11.0

5% 5.8 28.4 5.5 25.3 5.5 22.2 5.5 22.3 5.4 19.7
10% 12.6 37.7 12.5 33.2 12.4 32.9 12.1 30.6 11.3 28.5

Min-K++
(K = 10%) 2% 3.0 19.4 2.2 13.6 2.5 12.4 2.8 12.3 2.2 10.0

5% 6.1 29.6 6.8 26.0 6.6 23.9 5.3 22.0 5.2 19.1
10% 12.6 40.6 12.6 40.4 11.9 32.2 10.2 33.2 11.4 28.3

Min-K++
(K = 20%) 2% 2.8 21.2 2.0 17.4 2.3 16.7 2.7 12.9 2.0 11.7

5% 5.5 30.5 6.0 27.7 5.6 23.7 6.5 24.1 5.3 20.1
10% 12.2 43.7 12.0 38.7 12.2 34.8 10.2 34.0 10.9 29.6

Min-K++
(K = 30%) 2% 2.7 20.9 2.0 17.7 2.2 16.9 2.7 12.8 2.1 11.3

5% 5.4 31.4 5.8 27.5 5.7 24.8 6.4 24.6 4.7 20.2
10% 12.2 43.9 12.5 38.3 11.5 35.4 10.5 34.4 11.3 30.5

Our SMIA 2% 3.8 46.2 3.1 41.6 2.4 35.1 1.8 32.9 2.8 25.2
5% 10.4 66.0 8.3 60.2 6.8 52.5 6.3 49.8 7.2 45.4
10% 20.6 79.3 18.1 75.4 15.0 67.6 14.4 67.9 14.9 60.5

D.2 EFFECT OF DEDUPLICATION

Table 6 shows the AUC-ROC metric comparing different MIAs and our SMIA for deduped pythia
models using Wikipedia dataset.

D.3 EFFECFT OF NUMBER OF NEIGHBOURS

Table 7 presents the performance of our SMIA when varying the number of neighbors used dur-
ing inference. The results indicate that a larger number of neighbors generally improves SMIA’s
performance. However, we have chosen to use 25 neighbors in our experiments, as increasing this

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Safe Generative AI Workshop (NeurIPS 2024)

Table 5: True Positive Rate (TPR) at 2%, 5% and 10% False Positive Rate (FPR) for various MIAs,
on datasets in MIMIR dataset (Duan et al., 2024) where members and non-members share less than
80% overlap in 13-gram.

Target Model Dataset FPR Method

LOSS Ref Zlib Nei Mink Mink++ Our
SMIA

Pythia-12B

Wikipedia
2% 4.04 1.01 5.78 2.89 4.62 2.89 10.40
5% 10.98 5.78 9.24 5.78 10.40 7.51 16.18

10% 16.18 10.40 13.29 12.13 19.07 17.34 23.69

Github
2% 40.46 6.35 39.30 15.60 40.46 38.72 95.95
5% 46.24 13.87 46.24 27.74 45.66 43.93 98.84

10% 50.28 19.65 54.91 39.88 50.28 51.44 100

Arxiv
2% 1.50 1.00 1.00 0.00 1.00 2.51 1.00
5% 4.52 6.53 5.02 2.51 6.53 7.53 3.51

10% 8.54 16.58 6.53 4.52 8.54 11.05 12.60

PubMed
2% 0.00 7.00 0.00 1.00 0.00 1.00 8.50
5% 9.50 9.50 6.00 6.00 8.00 6.00 11.50

10% 13.50 18.50 15.00 14.50 14.5 12.50 30.50

Pythia-6.9B

Wikipedia
2% 5.20 0.00 7.51 3.46 6.35 5.78 8.67
5% 12.13 3.46 9.82 5.20 10.98 10.40 14.45

10% 15.60 6.35 14.45 12.13 19.65 17.91 19.65

Github
2% 34.68 7.51 37.52 19.07 36.41 32.36 97.10
5% 41.61 9.24 42.77 28.32 41.04 43.35 98.84

10% 47.97 19.65 51.44 44.50 45.08 49.71 100

Arxiv
2% 1.50 3.01 1.00 0.00 1.50 2.51 1.00
5% 5.52 6.53 4.52 3.01 6.03 4.52 3.01

10% 9.04 10.55 7.53 8.54 9.54 12.06 8.54

PubMed
2% 0.00 6.00 0.00 1.00 0.00 0.00 5.50
5% 8.00 10.50 4.50 4.50 7.00 6.50 14.00

10% 13.50 16.50 15.00 13.00 16.00 12.50 23.50

number further leads to additional computational demands without a corresponding improvement in
performance.

D.4 EFFECT OF SIZE OF TRAINING DATASET

Figure 3 illustrates the effect of using larger training datasets on the validation loss of the SMIA
over 20 epochs. This figure displays the performance of the SMIA model on a validation dataset
consisting of 1,000 members and 1,000 non-members, which are existing in the original Wikipedia
portion of the Pile dataset (train and validation splits). In our experiments, we tested four different
training sizes: 1,000 members + 1,000 non-members, 2,000 members + 2,000 non-members, 4,000
members + 4,000 non-members, and 6,000 members + 6,000 non-members. The results indicate
that larger training datasets generally yield lower validation losses for the SMIA model. However,
larger datasets require more computational effort as each member and non-member sample needs
n neighbors generated, followed by the calculation of embedding vectors and loss values for each
neighbor. Due to computational resource limitations, we use a training size of 6,000 members +
6,000 non-members for all our experiments.

D.5 SIMILARITY SCORES OF NEIGHBOURS

Figure 4 shows histogram of the similarity scores between members, non-members, and their 25
generated neighbors. These similarity scores are calculated using cosine similarity between the
embedding vector of the original text and the embedding vectors of the neighbors. The dataset com-
prises 6,000 members and 6,000 non-members, resulting in 150,000 neighbors for each group. The
histogram reveals that while most neighbors exhibit high similarity, there is a range of variability.
Notably, even neighbors with lower similarity scores, such as around 70%, provide valuable data for
training our SMIA. This diversity enables SMIA to more effectively distinguish membership under
varying degrees of textual context changes.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Safe Generative AI Workshop (NeurIPS 2024)

Table 6: AUC-ROC performance metrics for various MIAs, including our SMIA, across different
trained deduped Pythia models using the Wikipedia dataset.

Pythia-12B-Deduped Pythia-6.9B-Deduped Pythia-2.7B-Deduped
Method WT WC WT WC WT WC

LOSS 53.39 65.19 53.08 61.58 52.78 62.93
Ref

(Pythia 70M) 50.24 54.85 49.71 53.89 48.92 51.90

Ref
(Pythia 1.4B) 51.62 56.99 50.32 54.70 47.40 47.09

Zlib 52.81 64.31 52.55 63.64 52.23 62.08
Nei 53.93 69.93 53.63 69.17 53.07 68.16

Min-K
(K = 10%) 54.40 72.91 53.71 71.40 53.62 69.39

Min-K
(K = 20%) 54.25 70.83 53.77 69.80 53.41 67.95

Min-K
(K = 30%) 54.0 69.30 53.59 68.24 53.17 66.50

Min-K++
(K = 10%) 52.84 74.48 52.13 72.92 51.32 69.90

Min-K++
(K = 20%) 53.66 75.19 53.01 73.28 51.95 70.19

Min-K++
(K = 30%) 54.00 74.62 53.28 72.74 52.11 69.49

Our SMIA 61.15 90.72 60.01 88.43 58.49 84.39

Table 7: AUC-ROC performance metrics of SMIA when different number of neighbors used in
inference.

Pythia-12B Pythia-6.9B GPT-Neo-2.7B
Method ninf WT WC WT WC WT WC

SMIA

1 55.26 61.01 53.84 60.23 51.92 58.58
2 58.48 70.60 56.41 68.82 53.26 66.18
5 61.27 78.06 59.08 76.48 57.17 74.63
15 65.63 87.15 62.62 85.46 58.86 82.60
25 67.39 93.35 63.64 92.11 59.71 89.59

E MORE DETAILS ABOUT EXPERIMENT SETUP

E.1 SMIA MODEL ARCHITECTURE

Table 8 shows the SMIA architecture with its layer sizes that we used in our experiments.

E.2 METRICS

In our experiments, we employ following privacy metrics to evaluate the performance of our attacks:

(1) Attack ROC curves: The Receiver Operating Characteristic (ROC) curve illustrates the trade-
off between the True Positive Rate (TPR) and the False Positive Rate (FPR) for the attacks. The FPR
measures the proportion of non-member samples that are incorrectly classified as members, while
the TPR represents the proportion of member samples that are correctly identified as members. We
report the Area Under the ROC Curve (AUC-ROC) as an aggregate metric to assess the overall
success of the attacks. AU-ROC is a threshold-independent metric, and it shows the probability that
a positive instance (member) has higher score than a negative instance (non-member).

(2) Attack TPR at low FPR: This metric is crucial for determining the effectiveness of an attack at
confidently identifying members of the training dataset without falsely classifying non-members as
members. We focus on low FPR thresholds, specifically 2%, 5%, and 10%. For instance, the TPR

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Safe Generative AI Workshop (NeurIPS 2024)

Figure 3: Effect of different training size on the validation loss of SMIA for 20 epochs.

(a) Members training data (b) Non-members training data

Figure 4: Similarity scores of generated neighbors for our training datasets for member and non-
member

at an FPR of 2% is calculated by setting the detection threshold so that only 2% of non-member
samples are predicted as members.

E.3 EXAMPLE OF MODIFIED TEXT

In Section 4, we introduce a modified evaluation setting where the member dataset undergoes vari-
ous alterations. Figure 5 illustrates an example of a Wikipedia member sample undergoing different
modifications: (a) shows the original sample, (b) shows a neighbor of the original created by re-
placing some words with outputs from a masking model, (c) shows modified sample by deleting a
random word, (d) shows the modified sample by duplicating one word, and (e) shows the modified
sample after adding one word using a T5 model.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Safe Generative AI Workshop (NeurIPS 2024)

Table 8: SMIA architecture with layer sizes

Name Layers Details

Loss Component 1 Fully Connected
FC(1,512)

Dropout (0.2)
ReLU activation

Embedding Component 1 Fully Connected
FC(1024,512)
Dropout (0.2)

ReLU activation

Attack Encoding 6 Fully Connected

FC(1024, 512), FC(512, 256),
FC(256, 128), FC(128, 64),

FC(64, 32) , FC(32, 1)
Dropout (0.2)

ReLU activation
Sigmoid

(a) Input sample (Original - with no modifiation)

(b) Neighbor sample by substituting random words with a masking model
output

(c) Deletion modification by removing a random word

(d) Duplication modification by duplicating a random word

(e) Addition modification by adding the first word of a masking model for a
random mask token

Figure 5: An example for input sample and different modifications.

E.4 SMIA HYPERPARAMETERS

To construct our neighbor datasets, we generate n = 25 neighbors for each data point. Table 8 details
the architecture of the SMIA model used across all experiments. We employ the Adam optimizer
to train the network on our training data over 20 epochs. The batch size is set to 4, meaning each
batch contains neighbors of 2 members and 2 non-members, totaling 50 neighbors for members and
50 neighbors for non-members, thus including 100 neighbors per batch. For regular experiments,
we use a learning rate of 5 × 10−6. However, for modified evaluations, which include duplication,

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Safe Generative AI Workshop (NeurIPS 2024)

addition, and deletion scenarios, we adjust the learning rate to 1× 10−6. In all of our experiments,
we report the AUC-ROC or TPR of the epoch that results in lowest loss on validation dataset.

E.5 COMPUTE RESOURCES

For the majority of our experiments, we utilize a single H100 GPU with one core. It is important
to note that we do not train or fine-tune any LLMs during our experiments; we operate in inference
mode using pre-trained models such as the T5 masking model and various models from the Pythia
family. Generating n = 25 neighbors for a dataset of 1,000 texts required approximately 16 hours of
compute time. For the task of calculating embedding vectors, we employed the Cohere Embedding
V3 model, which is provided as a cloud service. The computation of loss values for the target model
was also minimal, taking only a few minutes for the a dataset of 1,000 examples. Finally, training the
SMIA model was notably rapid, owing to its relatively small size of only a few million parameters.
The entire training process, after having all the input features for training data, was completed in
less than 10 minutes over 20 epochs.

19


	Introduction
	Our Proposed SMIA
	SMIA Design
	SMIA Pipeline

	Experiment Setup
	Models
	Datasets
	Wikipedia Dataset
	MIMIR Dataset


	Experiments
	Evaluation in Verbatim Setting

	Conclusion
	Evaluation in Modified Settings
	Existing MIAs against LLMs
	SMIA Cost Estimation
	Missing Results
	TPR for low FPR
	Effect of Deduplication
	Effecft of Number of Neighbours
	Effect of Size of Training Dataset
	Similarity Scores of Neighbours

	More Details about Experiment Setup
	SMIA Model Architecture
	Metrics
	Example of Modified text
	SMIA Hyperparameters
	Compute Resources


