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Abstract— Robot-assisted bite acquisition requires accurately
identifying food items and selecting the correct high-level action
(e.g., skewering, scooping, or twirling) to acquire them. While
foundation models such as Large Language Models (LLMs) and
Vision Language Models (VLMs) enable modular and generaliz-
able perception-to-action pipelines, their deployment can result
in occasional failures—particularly when faced with diverse
or ambiguous food items. To ensure safety and reliability in
such settings, we propose selectively querying the care recipient
for help when uncertainty arises. However, excessive or poorly
timed queries can impose a workload on users, especially those
with mobility limitations. We introduce a modular human-in-
the-loop framework that queries across different components
of the pipeline using querying rules informed by both model
uncertainty and predicted user workload. We define three
querying rules and evaluate them in offline simulations using
realistic food plate images. Our results show that all querying
rules improve task performance over the baseline, with each
offering a different trade-off between task performance and
query efficiency. Our framework generalizes beyond assistive
feeding and provides a principled approach for safe, efficient
querying in foundation model-driven robotics systems.

I. INTRODUCTION

Large Language Models (LLMs) and Vision Language
Models (VLMs) [1]–[5] are increasingly used in robotics for
perception, task planning, and skill execution. While these
foundation models provide generalizable capabilities, their
integration into robotics systems—for instance, in robot-
assisted feeding [6], where a robot needs to feed a care
recipient with mobility limitations—raises critical concerns
around safety and reliability. For the problem of robot-
assisted bite acquisition [6]–[8], in which a robot picks
up food items from a plate, safety could entail the robot
correctly identifying a food item, and selecting the right
acquisition action. However, foundation model failures for
this task may manifest at multiple stages, from perception
(such as misclassification or object detection) to action
selection, because of the diversity of food items that exist
in the wild. Repeated bite acquisition failures could unsafely
impact the care recipient’s health and nutrition.

Identifying failures and autonomously recovering from
them is challenging. Each module—perception or action—
may fail for different reasons and require different recovery
strategies. A natural solution in assistive settings is to involve
the care recipient by allowing the robot to query them for
help [9, 10]. Prior work has explored querying strategies
based on post-failure feedback [11, 12], or based on task un-
certainty measures such as action confidence estimates [13],
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[14] and expected information gain [15, 16]. Feedback types
also vary widely, from clarifying goals [13] to providing
labels, explanations, or demonstrations [11, 12, 17].

Our work differs from this prior work in two key respects.
First, frequent or ill-timed queries can introduce cognitive
and physical workload, especially for users with mobility
limitations [18, 19]. A safe assistive robot must responsibly
query the human, as unnecessary queries could lead to
frustration and potentially even incorrect feedback. Thus,
improving task performance with minimal user workload is
essential for any safe human-in-the-loop assistive system.
Second, while most prior approaches focus on querying a
single module, we propose a modular querying framework
that targets different components of a perception-to-action
pipeline, and reasons jointly using model confidence and
workload estimates to make safe query decisions.

In this work, we focus on the task of bite acquisition,
where a robot needs to acquire food items from a plate. Our
modular pipeline includes two GPT-4o-based VLMs [20]: a
perception module for food item identification, and an action-
selection module for high-level acquisition action selection
(e.g., skewering, scooping, twirling). Each module produces
candidate options along with associated confidence scores.
In our setting, queries to the user differ in type (food items
vs. high-level actions) and in the associated workload costs.

To decide when to query, one could directly use raw
confidence scores that come from the foundation models.
However, these scores are often miscalibrated and unstable,
with LLMs frequently exhibiting overconfidence or under-
confidence in their predictions [21, 22]. This miscalibration
can be especially problematic in out-of-distribution scenar-
ios, underscoring the need for more reliable uncertainty es-
timation methods. Moreover, recent work also highlights the
broader importance of quantifying uncertainty in language
models to support safer, more reliable decision-making [23].
To address this, we developed a suite of querying rules
designed to produce more reliable querying decisions based
on the model’s confidence in its prediction, estimated success
rate of the prediction, and estimated user workload. Through
offline simulations on a dataset of real-world food plates, we
evaluate these rules and show that our modular, uncertainty-
aware querying framework improves safety and accuracy for
the robot’s bite acquisition behavior, with minimal querying.
While our paper focuses on the assistive feeding domain,
the underlying human-in-the-loop framework applies broadly
across robotics domains to effectively improve task perfor-
mance and safety.



II. PROBLEM FORMULATION

We explore the task of bite acquisition in a setting where
plates of food items contain multiple instances of various
food types from a predefined set F . The goal is to suc-
cessfully acquire every instance of each food type present
on the plate. We assume the bite-acquisition robot operates
with an observation space O (RGB images) and a high-level
action space Ah containing three discrete actions: skewering,
scooping, and twirling [6]. Additionally, we assume the
presence of a modular base architecture for performing bite
acquisition, which defines a policy π : O → Ah, structured
as a sequence of N modules m1,m2, . . . ,mN . Each module
mi produces a specific output along with confidence scores
for the output ci, resulting in C = [c1, c2, . . . , cN ] ∈ [0, 1]N .
Every module mi is called exactly once when making a
policy decision for a given input observation zRGB ∈ O.
Now in our setting, we consider two modules (N = 2), a
perception module and an action-selection module.

• m1: food item detector with GPT-4o LLM + VLM
capabilities [20]. This module processes an RGB image,
zRGB ∈ RH×W×3, of a whole plate and detects K, the
number of unique food item categories (e.g., lettuce,
watermelon, etc.) on the plate, and identifies a set of
food labels L = {l1, l2, . . . , lK}. For each food item,
the label is the output token with the highest probability
(confidence score). From L, we then arbitrarily select a
label li for acquisition.

• m2: high-level action selector with GPT-4o LLM +
VLM capabilities [20]. Given a detected and selected
food item label li and the corresponding RGB image,
zRGB ∈ RH×W×3 of the whole plate, this module
predicts the optimal high-level action ahi ∈ Ah for that
food item. The high-level action ahi is the output token
(action) with the highest probability (confidence score).

With this setting, we assume that the dishes can be in
configurations that can cause the base policy π to fail,
resulting from a failure in at least one module mi. For
each module, the robot can ask the human a corresponding
query qi ∈ Q and the human provides expert feedback fi
in response to the query (e.g. correct food item label li for
m1 or correct high-level action ahi for m2. Each query type
qi also incurs a corresponding querying workload w, which
accounts for both cognitive and physical workload relevant
for users with mobility limitations [18]. We assume that
the system has access to a predictive workload model for
estimating the workload w1 if we were to ask the human a
particular type of query qi at a particular timestep, taking
into account the human’s initial querying workload and the
history of queries [24].

Using all of this, our goal is to learn a failure recovery
policy πf : (C,Ah) → (Ah ∪ P (Q)), which either decides
to execute the autonomous high-level action ah or opt to ask
the human a selected subset of queries q ⊆ Q.

1w depends on the current timestep t, but to maintain brevity in the paper,
we remove t from the notation for this term.

III. QUERY METHODOLOGY

A. Querying Setup

To enable uncertainty-aware querying, we construct cal-
ibration datasets and associated confidence or success-rate
intervals for both modules in our bite-acquisition pipeline:
the food item detector (m1) and the high-level action selector
(m2). The three querying rules (introduced in Section III-B)
depend on different types of calibration data and intervals
because two of the rules query on the basis of confidence
scores and their variances, and one rule queries on the basis
of predicted success rate and its variance.

Calibration dataset construction. The confidence-based
querying rules rely on instance-independent confidence inter-
vals built from calibration data specific to each module. Each
calibration dataset consists of per-instance model outputs
(tokens and confidence scores) along with corresponding
ground truth labels, extracted from plate images.

For module m1, we use the dishes and plate images from
[6]. For each image, we treat every food item present in
the image as a target food item and run m1 to generate
tokens (potential labels) for each food item, along with the
log probability score for each token. The log probabilities
are exponentiated, multiplied by 100, and rounded to two
decimal places to produce percentage values representing the
confidence scores. For each food item, the top token with the
highest confidence score is selected as its label.

For each target food item, if the target food item is among
the identified predictions (or equivalently, if the top token
selected for that item matches the item’s ground truth label),
we treat the item as correctly identified. In this case, we
add an entry containing the top 5 tokens, their confidence
scores, and the ground truth label to the calibration dataset
corresponding to that food item and image pair. If the
target food item is not among the identified predictions, we
randomly choose a substitute from the remaining unmatched
predictions for that image (if any remain). If no unmatched
predictions remain, we reuse a matched prediction from
the same image as a fallback. In either case, we add the
corresponding information (the top 5 tokens, their confidence
scores, and the ground truth label) of the substitute to the
calibration data, representing the data entry for the target
food item and image pair. This ensures every target item—
identified or not—has a corresponding calibration entry,
allowing us to later compute the necessary intervals.

For module m2, we use the outputs of m1 to generate
the inputs for each target food item and image pair. The
identified (or substituted) food label, along with the image,
is passed to m2, which generates potential action tokens
along with their log probability scores. These are converted
to confidence scores using the same process as for m1, and
the top token with the highest confidence score is selected
as the high-level action for that instance. We add the top
|Ah| tokens, their confidence scores, and the ground truth
high-level action to our calibration data corresponding to that
target food item and image pair. This results in a confidence-
based calibration dataset for m2 similar to that of m1.

Confidence and success rate intervals. Using the cor-



responding calibration datasets, for modules m1 and m2,
we compute the mean and standard deviation of the top
choice (token with the highest confidence score) confidence
scores and the second top choice (token with the second
highest confidence score) confidence scores across all the
entries in the calibration data, denoted by µ∗, σ∗ and µ+,
σ+, respectively. These are used to define the following
instance-independent confidence intervals—top choice con-
fidence interval ITopConf and second top choice confidence
interval ISecondTopConf—for each module:

ITopConf: [µ∗ − σ∗, µ∗ + σ∗]

ISecondTopConf: [µ+ − σ+, µ+ + σ+]

The computed values for module m1 are µ∗ = 93.62,
σ∗ = 12.51, µ+ = 5.82, and σ+ = 11.66. For module
m2, we obtain µ∗ = 93.64, σ∗ = 13.72, µ+ = 5.24, and
σ+ = 11.20. The above intervals and values are used by
the two confidence-based rules as described in Section III-
B. Figure 1 (left) provides an overview of how the calibration
dataset and confidence intervals are constructed for m2.

In contrast to the confidence-based rules that depend
on precomputed calibration data and instance-independent
confidence intervals, the success rate rule relies on instance-
specific intervals that do not rely on a precomputed cal-
ibration dataset. For each input instance (the target food
item and image pair), we run the corresponding module for
Nbatch = 10 trials. We then identify the majority token, which
is the token that appears as the top choice across the majority
of trials. For each of the 10 trials, we label the top choice
and second top choice as successes if each matches with the
majority token. We compute the batch’s success rate s∗ (pro-
portion of successes across the 10 trials) for the top choice,
along with the standard deviation σ∗ of these successes and
the batch’s success rate s+ (proportion of successes across
the 10 trials) for the second top choice, along with the
standard deviation σ+ of these successes2. These are used
to define instance-specific success rate intervals—top choice
success rate interval ITopSucc and second top choice success
rate interval ISecondTopSucc—for each module:

ITopSucc: [s∗ − σ∗, s∗ + σ∗]

ISecondTopSucc: [s+ − σ+, s+ + σ+]

The above intervals are used by the success rate rule
described in Section III-B. Figure 1 (right) provides an
overview of how the binary success labels and instance-
specific success rate intervals are constructed for m2.

This overall querying setup provides the foundation for
defining the rules described in the next section, allowing the
system to reason jointly over model uncertainty and user
workload in a structured and interpretable manner.

B. Querying Rules
We describe the three querying rules for both modules

m1 and m2 in our bite-acquisition architecture (illustrated
in Figure 2 (left)), defining the condition do query under

2s∗, s+, σ∗, σ+ all depend on the current timestep t, but to maintain
brevity in the paper, we remove t from the notation for these terms.

which each rule queries. To mitigate the unreliability of
using raw probability values directly as mentioned before,
we design rules that measure confidence and uncertainty in
more stable, interpretable ways. The two confidence-based
rules are denoted Rule 1a and Rule 1b, and the success rate-
based rule is denoted Rule 2. For both m1 and m2, depending
on the rule, we use the respective confidence scores (ci) for
the top choices, as described in Section II, or the respective
success rates for the top and second top choices (s∗ and s+),
as described in Section III-A. In addition, the rules rely on
the predicted querying workload w at each timestep for each
potential query, as described in Section II. To decide when
to query the human, the rules use both the confidence scores
or success rates, and the workload estimates.

Rule 1a. We introduce c∗ to represent the confidence score
of the top choice in general (either for the food label or
high-level action). This rule allows us to query when c∗

deviates from the norm, helping us catch outlier predictions
that are either under-confident or over-confident. Specifically,
for the current instance, we decide to query if its c∗ falls
outside the calibrated ITopConf, or overlaps with the calibrated
ISecondTopConf, provided that the predicted workload is below
ϵ, the querying threshold for the workload:

do query = (c∗ /∈ ITopConf ∨ c∗ ∈ ISecondTopConf)

∧ (w < ϵ).

This rule constructs a more stable and interpretable un-
certainty measure by examining the model’s confidence in
relation to typical distributions observed during calibration.
Specifically, we compute the confidence range for both the
top and second top predictions across all food items of inter-
est (ITopConf and ISecondTopConf), treating these as population-
level reference intervals. By comparing an instance’s con-
fidence to these intervals, we identify cases of overcon-
fidence (where a low-quality prediction appears unusually
confident) or underconfidence (where a correct prediction
appears uncertain). This population-informed approach filters
out unreliable predictions that deviate from the norm.

Rule 1b. This is a modified version of Rule 1a, which uses
a batch of repeated trials on the same instance, instead of
just a single trial, to mitigate stochasticity in the LLM/VLM
outputs. For the current instance, we run the relevant module
for Nbatch = 10 trials, and compute the average of the top
choice confidence scores c∗ across the batch to obtain the
mean top choice confidence score for the batch, denoted c̄∗.
In contrast to Rule 1a, Rule 1b uses c̄∗ instead of c∗3:

do query = (c̄∗ /∈ ITopConf ∨ c̄∗ ∈ ISecondTopConf)

∧ (w < ϵ).

Rule 1b extends Rule 1a by using batch-averaging to
mitigate the stochasticity of individual forward passes. By
repeating the model’s prediction multiple times for each
instance, we compute a more stable, lower-variance top
confidence interval ITopConf.

3c∗ and c̄∗ depend on the current timestep t, but to maintain brevity in
the paper, we remove t from the notation for this term.



Fig. 1: Overview of the calibration and uncertainty estimation process for the high-level action selector module m2. (left)
Illustration of calibration dataset construction for m2. For each image and identified food label, we extract and store the all
predictions (and their confidence scores) in the calibration dataset. These scores are used to compute the instance-independent
confidence intervals ITopConf and ISecondTopConf. (right) Illustration of success rate interval construction, where we run the model
Nbatch = 10 times on the same instance to obtain all predictions (and their confidence scores) for the Nbatch trials. We select
a majority token across the top choices, and we score the trial-specific top and second-top choices as binary successes if
they match the majority token. We use these to compute the instance-specific success rate intervals ITopSucc and ISecondTopSucc.

Rule 2. This rule uses the overlap between the two success
rate intervals—ITopSucc and ISecondTopSucc—as a proxy for
prediction ambiguity, and queries if the second top choice
appears comparably successful to the top choice under the
model’s uncertainty. Specifically, for the current instance, we
decide to query if the gap value G, measuring the overlap
between ITopSucc and ISecondTopSucc (either for the food label or
high-level action), is greater than the scaled workload [24]:

do query = G > w · ϵ

where

G = (s+ + σ+)− (s∗ − σ∗).

Unlike Rules 1a and 1b, which rely on population-wide
calibration statistics, Rule 2 addresses the model’s own
internal uncertainty. We estimate this by measuring how
consistent the model is across multiple forward passes. If the
same top choice is selected repeatedly, the model is epistemi-
cally confident in its output; if not, the model is uncertain. In
this way, we capture both overconfidence (when the model
varies but one prediction dominates) and underconfidence
(when predictions vary widely with no dominant choice).
This method provides a robust, instance-specific uncertainty
estimate that adapts to unfamiliar or ambiguous inputs.

IV. EXPERIMENTS

A. Simulation Setup

Calibration and test dishes. We use a set of images from
six realistic, in-the-wild calibration dishes to tune and select
the querying rules’ hyperparameters for modules m1 and m2.
These calibration dishes with a variety of visual and material
characteristics are shown in Figure 2 (right, top) [6]:

• A plate with strawberries and oatmeal.
• A plate with sausage pieces and mashed potatoes.
• A plate with meatballs and spaghetti noodles.

• A plate with fettucine noodles and chicken and broccoli
pieces.

• A plate with brownies and sliced banana.
• A plate with strawberries, cantaloupe pieces, and celery

pieces.
We then assess the performance of our querying rules

on four realistic, in-the-wild test dishes, each containing
food items with diverse visual and material properties, as
illustrated in Figure 2 (right, bottom):

• A fruit salad with bite-sized fruits: watermelon, sliced
banana, cantaloupe, honeydew, grapes, blueberries.

• A savory salad: lettuce, chicken pieces, cherry tomatoes.
• A Thanksgiving meal: chicken pieces, mashed potatoes,

green beans.
• A noodle plate: Fettucine noodles, chicken pieces,

cherry tomatoes.
Metrics. We define the following evaluation metrics for

each querying rule: true positive (TP ) cases of when the
rule decides to query, and the output from the module is
incorrect, true negative (TN ) cases of when the rule decides
not to query, and the output from the module is correct,
false positive (FP ) cases of when the rule decides to query
despite the module’s output being correct, and false negative
(FN ) cases of when the rule decides not to query despite
the module’s output being incorrect. Along with these, we
also use the total number of queries Nq encountered, the
normalized Matthews Correlation Coefficient (nMCC) [25],
and the overall success rate (SR), which is measured as the
total number of successful food item acquisitions divided
by the total number of timesteps taken to complete the
simulation.

Simulation description. We evaluate the three querying
rules for modules m1 and m2 using offline plate image data.
The simulation assumes access to ground-truth food item
labels and their corresponding high-level actions (ah). For



Fig. 2: (left) Illustration of the foundation model querying rules. For Rules 1a and 1b, we query if the confidence score c
(top choice confidence c∗ for 1a, mean top choice confidence c̄∗ for 1b) lies within either of the green regions, and we don’t
query if c lies within the red region. For Rule 2, we query if G > w · ϵ. (right, top) Calibration dishes used for querying
rule hyperparameter selection [6], (right, bottom) Test dishes used for querying rule evaluation.

each dish in the calibration set, a sequence of images is
processed, where the sequence simulates one food item being
acquired per image until all items are acquired from the plate.

For Rule 1a, the two modules are run in order on the
corresponding image for each food item, representing a
single discrete timestep. The module’s output is considered
a success if it matches the ground-truth; otherwise, it is
considered as a failure. For Rules 1b and 2, the two modules
are run in order on the corresponding image for each food
item for Nbatch = 10 trials, still representing a single discrete
timestep. If the most frequently occurring top choice token
across the 10 trials matches the ground-truth, it is consid-
ered as a success; otherwise, it is considered as a failure.
Regardless of the output, at each timestep, the querying rule
is applied to decide whether a query should be made. If the
rule says we should query, then the instance is treated as a
success. If we don’t query and have a failure for that instance,
then the two modules are rerun in order on the instance. This
process is repeated for up to T = 5 timesteps. If no success
is encountered within those T = 5 timesteps, the instance is
treated as a failure, and the simulation proceeds to the next
food item and corresponding image in the sequence.

This simulation is repeated for 10 different ϵ values,
ranging from 0.05 to 0.5 in increments of 0.05. The ϵ value
resulting in the highest nMCC and SR values is selected as
the best value and is used to evaluate the querying rules on
the test dishes using the same simulation setup. This entire
process is repeated for each of the three querying rules for
the two modules m1 and m2.

B. Results
Tables I and II show the metrics and results of the

simulation on the offline data. The baseline (no-querying)
performs significantly worse, especially on the test dishes.
For example, the baseline achieves only 0.42 SR on m1

and 0.38 SR on m2, revealing that without querying, the
system fails to recover from model errors. Interestingly, the
nMCC values for the baseline remain flat at 0.50 across all
cases, showing that while the system is partially consistent
in its predictions, it is not accurate enough to guarantee suc-
cessful bite acquisition without human input. This limitation
becomes even clearer when we observe that the baseline
produces zero TP cases and a large number of FN cases,
18 and 20 for m1 and m2, respectively, confirming that the
system often misses opportunities to correct its own failures

when it doesn’t query. Although FP cases are low at 0, this
comes at the cost of missing nearly all correctable mistakes.
So the abundance of FN cases drags both SR and nMCC
down, leading to the weak performance of the baseline.

For both modules m1 and m2, all three querying rules
generally perform better than the baseline, with only a small
number of queries. For module m1, Rule 1a, which relies
on instance-independent confidence intervals, achieves the
highest success rate (0.64) and a strong nMCC (0.48) with
only 5 queries on the 16 test food items, showing strong
predictive performance. Importantly, this improvement is
supported by a meaningful shift in the confusion matrix:
Rule 1a recovers 2 TP cases and reduces FN cases to 9,
compared to 18 in the baseline, showing that even a small
number of well-placed queries can substantially increase the
system’s success rate. The cost is a modest increase in FP
cases to 3, which leads to a slightly lower nMCC for Rule
1a (0.48) compared to the baseline (0.50). However, the
gains in both TP cases and SR and the drop in FN cases
outweigh the slight decrease in nMCC. Rule 1b performs
similarly to Rule 1a, suggesting robustness in performance
across instance-independent confidence-based rules.

We find that Rule 2, which relies on instance-specific
success rate intervals, queries only twice in m1 on the
16 test food items, yet still recovers 2 TP cases while
eliminating FP cases entirely and reducing FN cases to
10. These lead to Rule 2 achieving a higher SR (0.58) than
the baseline and attaining the best nMCC (0.65) for m1,
demonstrating strong prediction reliability for the instance-
dependent success rate rule.

For module m2, the overall pattern remains consistent.
Rule 1a again achieves the highest SR (0.58) and the best
nMCC (0.65), with 2 TP cases, 10 FN cases, and no
FP cases, using only 2 queries on the test 16 test food
items. Also, Rule 1b’s performance matches with Rule 1a’s
performance, showing strong predictive performance. Rule 2
is slightly more conservative as it queries only once, achiev-
ing slightly lower nMCC (0.58) and SR (0.46) values than
Rules 1a and 1b as Rule 2 recovers slightly fewer TP cases
and has slightly higher FN cases. But the SR, nMCC,
and TP values are still higher than the baseline’s values,
and the FN value is still lower than the baseline’s value.
These results illustrate that all three rules offer substantial
improvements over the baseline, but they differ in how they



Calibration Test
Rules Best ϵ FP ↓, FN ↓, TP ↑, TN ↑ FP ↓, FN ↓, TP ↑, TN ↑

BASELINE - 0, 0, 0, 14 0, 18, 0, 13
RULE 1A 0.40 0, 0, 0, 14 3, 9, 2, 11
RULE 1B 0.40 0, 0, 0, 14 2, 10, 2, 10
RULE 2 0.05 0, 0, 0, 14 0, 10, 2, 12

Calibration Test
Rules Best ϵ FP ↓, FN ↓, TP ↑, TN ↑ FP ↓, FN ↓, TP ↑, TN ↑

BASELINE - 0, 20, 0, 10 0, 20, 0, 12
RULE 1A 0.45 0, 20, 1, 9 0, 10, 2, 12
RULE 1B 0.35 0, 20, 2, 8 0, 10, 2, 12
RULE 2 0.05 0, 20, 1, 9 0, 15, 1, 12

TABLE I: Simulation results, showing FP , FN , TP , and
TN , for all three querying rules along with the baseline (no
querying at all) on offline images from the calibration and
test dishes for the food item detector module m1 (top table)
and high-level action selector module m2 (bottom table).
trade off between task performance and human workload.

Rather than framing one rule as definitively superior, our
findings show that the suite of rules offers different trade-
offs depending on system design goals. If maximizing the
average test success rate across the modules is prioritized,
then Rule 1—and more generally, instance-independent rules
that use calibrated confidence intervals—might offer stronger
task performance with a reasonable number of queries as
they have fewer FN cases and recover several TP cases.
If minimizing the number of queries, while still achieving
reasonable performance, or maximizing average test nMCC
across the modules is more important, instance-dependent
rules that use success rate intervals like Rule 2, may be
preferred for their stability and lower workload, with a low
number of FP cases and recover a few TP cases.

In this way, the querying rules form a generalizable toolkit
for safe and efficient human-in-the-loop decision-making in
LLM and VLM based systems. Our results suggest that
safety-critical LLM/VLM applications may benefit from se-
lecting rules aligned with the desired trade-off between user
workload and task success. Across both modules, all rules
improve task performance, while requiring only a handful
of queries, demonstrating the value of incorporating uncer-
tainty and workload estimates into the decision-making. One
promising future direction would be to incorporate learning
from the human feedback, where we use techniques such as
retrieval-augmented generation (RAG) [26] to improve the
foundation model’s performance on future food items, thus
further improving system safety.

Overall, our modular querying framework contributes to
the goal of building trustworthy, human-aligned robotic sys-
tems. By leveraging foundation model uncertainties and pre-
dicted user workload, we show how robots can intervene only
when necessary—achieving safer, more accurate behavior
with minimal user disruption. These querying strategies are
not only effective in assistive feeding, but can be generalized
to other foundation model-driven robotics pipelines.
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