
Towards Principled Representation Learning to Improve Overlap in Treatment
Effect Estimation

Oscar Clivio1 David Bruns-Smith2 Avi Feller2 Chris Holmes1

1University of Oxford
2University of California, Berkeley

Abstract

A common approach to mitigate undesirable ef-
fects of poor overlap is to use well-crafted repre-
sentations of covariates as adjustment sets. In this
abstract, we motivate quantifying the overlap in-
duced by a representation using the χ2-divergence,
show that the overlap improvement under this met-
ric is precisely how much the representation does
not predict the propensity score, which confirms
intuitions in previous work, and discuss next steps.

1 INTRODUCTION

1.1 PROBLEMS WITH POOR OVERLAP

A critical assumption for identification of the average treat-
ment effect (ATE) is overlap, i.e. that the propensity score,
the probability of receiving the treatment given covariates, is
different from 0 and 1 almost surely. Indeed, the conditional
average treatment effect (CATE) is not identified on any
covariate value with propensity score 0 or 1, and can only
be estimated on such values using extrapolation [Nethery
et al., 2019, Pfister and Bühlmann, 2024, Khan et al., 2024].
Even when overlap is verified, estimation of the ATE might
remain difficult when the propensity score is not bounded
away from 0 or 1, even though identification of the CATE
for any covariate value, thus of the full ATE, is possible.
First, estimators involving an inverse propensity score such
as IPW or doubly-robust estimators might exhibit outsize
errors [Petersen et al., 2012, Li et al., 2019, D’Amour and
Franks, 2021]. More generally, estimators might exhibit
slow convergence or confidence intervals based on root-n
consistency might not be available [Rothe, 2017, D’Amour
et al., 2021, Hong et al., 2020]. This is problematic as as-
suming that the propensity score is bounded away from 0
or 1 might not even be realistic, notably in high dimensions
[D’Amour et al., 2021].

To mitigate issues with poor overlap, one set of approaches
is to move the goalposts, that is change the estimand to the
ATE on a (weighted) population where the propensity score
is further away from 0 or 1 [Crump et al., 2009, Matsouaka
and Zhou, 2020]. However, not only do such methods tar-
get a different estimand than the original ATE but the gap
between these two estimands can also be large, especially
when covariates are high-dimensional [Petersen et al., 2012,
D’Amour et al., 2021]. In contrast, another set of approaches
changes not the population but instead the adjustment set to
a representation of covariates, that is their image through
a given mapping [Luo et al., 2017, D’Amour and Franks,
2021, Wu and Fukumizu, 2022, Breitholtz et al., 2023]. In-
deed, this representation will be expected to have a propen-
sity score further away from 0 or 1 compared to initial co-
variates, improving overlap, and verify unconfoundedness,
preserving the original ATE as an estimand.

While such approaches have demonstrated better perfor-
mance compared to adjusting on original covariates, they
still rely on stringent model well-specification assumptions,
and it is unclear how exactly they mitigate poor overlap
and how this translates into improved performance. In the
following, we provide our first results towards principled
learning of flexible representations that mitigate poor over-
lap to improve performance : we show that the lack of
overlap can be quantified using a misoverlap measure us-
ing χ2-divergences, and improvement of this misoverlap
when using a representation instead of original covariates
is precisely given by how much the representation does not
predict treatment assignment. This notably confirms previ-
ous intuitions in the literature.

2 FORMALISATION, NAILING THE
OBJECTIVE

Let us note covariates as X , the binary treatment as A,
each potential outcome as Y (a) for a ∈ A := {0, 1}, the
observed outcome as Y . Assume we observe i.i.d samples
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(Xi, Ai, Yi) ∼ P . For a random variable Z and a treatment
value a ∈ A, let

Ea[.] = E[.|A = a], τ(Z) := E1[Y |Z]− E0[Y |Z],

τ̄Z := E[τ(Z)], σ2
a(Z) := Var(Y |A = a, Z),

ea(Z) := P (A = a|Z), p(a) := P (A = a),

We make the canonical assumptions of unconfoundedness
wrt X , SUTVA and overlap wrt X . Notably, we place our-
selves in a weak overlap regime, where the propensity score
is always different but not bounded away from 0 and 1. A
common metric for assessing the impact of the proximity
of ea(ϕ(X)) to 0 or 1 on the variability of estimators of
τ̄ϕ := τ̄ϕ(X) is the efficiency bound of τ̄ϕ [Hahn, 1998,
Crump et al., 2009], which gives the lowest possible vari-
ance of any regular and asymptotically linear (RAL) semi-
parametric estimator of τ̄ϕ using the sample (ϕ(Xi), Ai, Yi),
where X has been replaced with ϕ(X). It is given by

Veff(τ̄
ϕ) = E

[∑
a∈A

σ2
a(ϕ(X))

ea(ϕ(X))
+
(
τ(ϕ(X))− τ̄ϕ)2

)]
.

We see that it can be very large or even infinite when either
propensity score ea(ϕ(X)) is not bounded away from 0. We
further make the following technical assumption.

Assumption 2.1. ∃
¯
σ2 > 0,∀a ∈ A, σ2

a(X) ≥
¯
σ2

Assumption 2.1 is not stringent as σ2
a(x) has experimen-

tally been shown to be large in areas with small ea(x) [Hill
and Su, 2013, Zhang et al., 2020], i.e. those which might
already make the efficiency bound large. Then, Veff(τ̄

ϕ) can
be lower bounded, yielding our objective (all proofs in the
Supplementary).

Proposition 2.2. Under Assumption 2.1,

Veff(τ̄
ϕ) ≥

¯
σ2O(ϕ) where O(ϕ) :=

∑
a∈A

χ2
a(ϕ) + 1

p(a)

where each χ2
a(ϕ) := Ea

[(
p(ϕ(X))
p(ϕ(X)|a) − 1

)2]
is the χ2-

divergence between P (ϕ(X)|a) and P (ϕ(X)).

This justifies finding ϕ minimizing O(ϕ), which we refer
to as the misoverlap of ϕ. It is minimal when ϕ(X) ⊥⊥ A;
however such ϕ might destroy confounding information
contained in X . In general, τ̄X is equal to the ATE, which
τ̄ϕ is not necessarily. Thus, we are looking for ϕ minimizing
both O(ϕ) and CE(ϕ) := |τ̄X − τ̄ϕ|, where the latter term
can be understood as a measure of how much ϕ preserves
unconfoundedness, or a confounding error.

3 THE IMPROVEMENT IN OVERLAP IS
A BALANCING SCORE ERROR

In previous work [Luo et al., 2017, D’Amour and Franks,
2021, Wu and Fukumizu, 2022], using strong assumptions

on the data generating process, the representation ϕ was cho-
sen to have a zero confounding error by design and improve
overlap by predicting the outcome rather than the treatment
assignment. Indeed, as a ϕ predicting the treatment assign-
ment perfectly would leave the propensity scores untouched,
it has been posited that a ϕ should incorporate outcome infor-
mation to make propensity scores less “extreme” [D’Amour
and Franks, 2021]. We formalize this next : we show that
how badly ϕ predicts treatment assignment is exactly how
much it improves overlap according to our misoverlap.

Proposition 3.1. if O(X) := O(Id) < ∞, the reduction of
misoverlap from X to ϕ(X), O(X)−O(ϕ), is equal to

∑
a

p(a)Ea

[(
1

ea(X)
− Ea

[
1

ea(X)

∣∣∣∣ϕ(X)

])2
]

We see that this term is a squared balancing score error in
the sense that (i) it is always non-negative, (ii) it is zero iff
the propensity score e1(X) is a function of ϕ(X) a.s., i.e. if
ϕ(X) is a balancing score [Rosenbaum and Rubin, 1983],
(iii) it generally is a weighted sum of the mean squared
errors between each treatment-wise inverse propensity score
(itself a bijection of the propensity score e1(X)) and its best
predictor from ϕ(X). Thus, the improvement in overlap
from X to ϕ(X) is always non-negative, confirming the
intuition that a representation always improves overlap, and
at the same time given by how badly ϕ(X) predicts the
propensity score e1(X), confirming another intuition.

We can allow for more flexible representations by minimiz-
ing the confounding error instead of enforcing it at zero
exactly. Clivio et al. [2024] show that the confounding er-
ror is bounded by the balancing score error, thus minimize
the latter. Our analysis shows that this is not suited for
improving overlap ; instead we argue for minimizing the
confounding error while maximizing the balancing score er-
ror. Further, while we focused on the variance of estimators
of the representation-wise estimand τ̄ϕ, it would also be
desirable to characterize their bias wrt that estimand. Thus,
future work should find representations optimally balanc-
ing three terms : the difference between the original and
representation-wise estimands (confounding error), the bias
of an estimator of the representation-wise estimand, and the
variance of this estimator (controlled by overlap).

Acknowledgements

O.C. was supported by the EPSRC Centre for Doctoral
Training in Modern Statistics and Statistical Machine Learn-
ing (EP/S023151/1). D.B-S. and A.F. were supported in part
by the Institute of Education Sciences, U.S. Department
of Education, through Grant R305D200010. C.H. was sup-
ported by the EPSRC Bayes4Health programme grant and
The Alan Turing Institute, UK.



References

Adam Breitholtz, Anton Matsson, and Fredrik D Johans-
son. Unsupervised domain adaptation by learning using
privileged information. arXiv preprint arXiv:2303.09350,
2023.

Oscar Clivio, Avi Feller, and Christopher C Holmes. To-
wards representation learning for weighting problems in
design-based causal inference. In The 40th Conference
on Uncertainty in Artificial Intelligence, 2024.

Richard K Crump, V Joseph Hotz, Guido W Imbens, and
Oscar A Mitnik. Dealing with limited overlap in esti-
mation of average treatment effects. Biometrika, 96(1):
187–199, 2009.

Alexander D’Amour and Alexander Franks. Deconfounding
scores: Feature representations for causal effect estima-
tion with weak overlap. arXiv preprint arXiv:2104.05762,
2021.

Alexander D’Amour, Peng Ding, Avi Feller, Lihua Lei, and
Jasjeet Sekhon. Overlap in observational studies with
high-dimensional covariates. Journal of Econometrics,
221(2):644–654, 2021.

Jinyong Hahn. On the role of the propensity score in efficient
semiparametric estimation of average treatment effects.
Econometrica, pages 315–331, 1998.

Jennifer Hill and Yu-Sung Su. Assessing lack of common
support in causal inference using bayesian nonparamet-
rics: Implications for evaluating the effect of breastfeed-
ing on children’s cognitive outcomes. The Annals of
Applied Statistics, pages 1386–1420, 2013.

Han Hong, Michael P Leung, and Jessie Li. Inference on
finite-population treatment effects under limited overlap.
The Econometrics Journal, 23(1):32–47, 2020.

Samir Khan, Martin Saveski, and Johan Ugander. Off-policy
evaluation beyond overlap: partial identification through
smoothness. arXiv preprint arXiv:2305.11812, 2024.

Fan Li, Laine E Thomas, and Fan Li. Addressing extreme
propensity scores via the overlap weights. American
journal of epidemiology, 188(1):250–257, 2019.

Wei Luo, Yeying Zhu, and Debashis Ghosh. On estimating
regression-based causal effects using sufficient dimension
reduction. Biometrika, 104(1):51–65, 2017.

Roland A Matsouaka and Yunji Zhou. A framework for
causal inference in the presence of extreme inverse proba-
bility weights: the role of overlap weights. arXiv preprint
arXiv:2011.01388, 2020.

Rachel C Nethery, Fabrizia Mealli, and Francesca Dominici.
Estimating population average causal effects in the pres-
ence of non-overlap: The effect of natural gas compressor
station exposure on cancer mortality. The annals of ap-
plied statistics, 13(2):1242, 2019.

Maya L Petersen, Kristin E Porter, Susan Gruber, Yue Wang,
and Mark J Van Der Laan. Diagnosing and responding
to violations in the positivity assumption. Statistical
methods in medical research, 21(1):31–54, 2012.

Niklas Pfister and Peter Bühlmann. Extrapolation-aware
nonparametric statistical inference. arXiv preprint
arXiv:2402.09758, 2024.

Paul R Rosenbaum and Donald B Rubin. The central role
of the propensity score in observational studies for causal
effects. Biometrika, 70(1):41–55, 1983.

Christoph Rothe. Robust confidence intervals for average
treatment effects under limited overlap. Econometrica,
85(2):645–660, 2017.

Pengzhou Abel Wu and Kenji Fukumizu. β-intact-VAE:
Identifying and estimating causal effects under limited
overlap. In International Conference on Learning Repre-
sentations, 2022.

Yao Zhang, Alexis Bellot, and Mihaela Schaar. Learning
overlapping representations for the estimation of individ-
ualized treatment effects. In International Conference
on Artificial Intelligence and Statistics, pages 1005–1014.
PMLR, 2020.



Towards Principled Representation Learning to Improve Overlap in Treatment
Effect Estimation

(Supplementary Material)

Oscar Clivio1 David Bruns-Smith2 Avi Feller2 Chris Holmes1

1University of Oxford
2University of California, Berkeley

A PROOF OF PROPOSITION 2.2

For any treatment value a and random variable, let τa(Z) = Ea[Y |Z] we have

σ2
a(ϕ(X)) = Var(Y |A = a, ϕ(X))

= Ea

[
(Y − τa(ϕ(X)))

2
∣∣∣ ϕ(X)

]
= Ea

[
Ea

[
(Y − τa(ϕ(X)))

2
∣∣∣ X,ϕ(X)

] ∣∣∣ ϕ(X)
]

from the tower property

= Ea

[
Ea

[
(Y − τa(ϕ(X)))

2
∣∣∣ X] ∣∣∣ ϕ(X)

]
as knowledge of X implies knowledge of ϕ(X)

≥ Ea

[
Ea

[
(Y − τa(X))

2
∣∣∣ X] ∣∣∣ ϕ(X)

]
as τa(X) = Ea[Y |X]

= Ea

[
σ2
a(X)

∣∣ ϕ(X)
]

by definition of σ2
a(X)

≥ E
[
¯
σ2
∣∣ ϕ(X)

]
by Assumption 2.1

=
¯
σ2.

Then, it is clear that Veff(τ̄
ϕ) ≥

¯
σ2
∑

a∈A Ea

[
1

ea(ϕ(X))

]
. For any a ∈ A, noting Z = ϕ(X),

p(a) · Ea

[
1

ea(ϕ(X))

]
= E

[
p(a)

p(A = a|Z)

]
= E

[
p(Z)

p(Z|A = a)

]
from Bayes’ rule

=

∫
p(z)

p(z|A = a)
· p(z)dz

=

∫
p(z)

p(z|A = a)
· p(z)

p(z|A = a)
· p(z|A = a)dz

= Ea

[(
p(Z)

p(Z|A = a)

)2
]
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= Ea

[(
p(Z)

p(Z|A = a)
− 1

)2
]
+ 1 as

p(Z)

p(Z|A = a)
is a density ratio so Ea

[
p(Z)

p(Z|A = a)

]
= 1

= χ2
a(ϕ) + 1

which gives the result. □

B PROOF OF PROPOSITION 3.1

From Proposition 3.4 of Clivio et al. [2024],

p(ϕ(X))

p(ϕ(X)|a)
= Ea

[
p(X)

p(X|a)

∣∣∣∣ϕ(X)

]
P (.|a)-a.s. (1)

and from the above,

χ2
a(ϕ) = Ea

[(
p(ϕ(X))

p(ϕ(X)|a)

)2
]
− 1 (2)

so

O(X)−O(ϕ) =
∑
a∈A

1

p(a)
·
(
χ2
a(X)− χ2

a(ϕ)
)

where χ2
a(X) := χ2

a(Id)

=
∑
a∈A

1

p(a)
·

(
Ea

[(
p(X)

p(X|a)

)2
]
− Ea

[(
p(ϕ(X))

p(ϕ(X)|a)

)2
])

from Equation 2

=
∑
a∈A

1

p(a)
·

(
Ea

[
Ea

[(
p(X)

p(X|a)

)2
∣∣∣∣∣ ϕ(X)

]]
− Ea

[(
p(ϕ(X))

p(ϕ(X)|a)

)2
])

from the tower property

=
∑
a∈A

1

p(a)
·

(
Ea

[
Ea

[(
p(X)

p(X|a)

)2
∣∣∣∣∣ ϕ(X)

]]
− Ea

[
Ea

[
p(X)

p(X|a)

∣∣∣∣ϕ(X)

]2])
from Equation 1

=
∑
a∈A

1

p(a)
· Ea

[
Ea

[(
p(X)

p(X|a)

)2
∣∣∣∣∣ ϕ(X)

]
− Ea

[
p(X)

p(X|a)

∣∣∣∣ϕ(X)

]2]
from the linearity of the expectation

=
∑
a∈A

1

p(a)
· Ea

[
Var
(

p(X)

p(X|a)

∣∣∣∣ ϕ(X), A = a

)]

=
∑
a∈A

1

p(a)
· Ea

[
Ea

[(
p(X)

p(X|a)
− Ea

[
p(X)

p(X|a)

∣∣∣∣ϕ(X)

])2
∣∣∣∣∣ ϕ(X)

]]

=
∑
a∈A

1

p(a)
· Ea

[(
p(X)

p(X|a)
− Ea

[
p(X)

p(X|a)

∣∣∣∣ϕ(X)

])2
]

from the tower property

=
∑
a∈A

1

p(a)
· Ea

[(
p(a)

p(a|X)
− Ea

[
p(a)

p(a|X)

∣∣∣∣ϕ(X)

])2
]

from Bayes’ rule

=
∑
a∈A

p(a)Ea

[(
1

ea(X)
− Ea

[
1

ea(X)

∣∣∣∣ϕ(X)

])2
]
,

which proves the result. Assumption 2.1 simply ensures that all expectations are well-defined □


	Introduction
	Problems with poor overlap

	Formalisation, nailing the objective
	The improvement in overlap is a balancing score error
	Proof of Proposition 2.2
	Proof of Proposition 3.1

