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ABSTRACT

Multimodal Large Language Models (MLLMs) have demonstrated impressive
capabilities across various tasks, but still struggle with complex mathematical
reasoning. Existing research primarily focuses on dataset construction and method
optimization, often overlooking two critical aspects: comprehensive knowledge-
driven design and model-centric data space modeling. In this paper, we introduce
WE-MATH 2.0, a unified system that integrates a structured mathematical knowl-
edge system, model-centric data space modeling, and a reinforcement learning
(RL)-based training paradigm to comprehensively enhance the mathematical rea-
soning abilities of MLLMs. The key contributions of We-Math 2.0 are fourfold:
(1) MathBook Knowledge System: We construct a five-level hierarchical sys-
tem encompassing 491 knowledge points and 1,819 fundamental principles. (2)
MathBook-Standard & Pro: We develop MathBook-Standard, a dataset that
ensures broad conceptual coverage and flexibility through dual expansion. Addi-
tionally, we define a three-dimensional difficulty space and generate 7 progressive
variants per problem to build MathBook-Pro, a challenging dataset for robust
training. (3) MathBook-RL: We propose a two-stage RL framework compris-
ing: (i) Cold-Start Fine-tuning, which aligns the model with knowledge-oriented
chain-of-thought reasoning; and (ii) Progressive Alignment RL, leveraging average-
reward learning and dynamic data scheduling to achieve progressive alignment
across difficulty levels. (4) MathBookEval: We introduce a comprehensive bench-
mark covering all 491 knowledge points with diverse reasoning step distributions.
Experimental results show that MathBook-RL performs competitively with ex-
isting baselines on four widely-used benchmarks and achieves strong results on
MathBookEval, suggesting promising generalization in mathematical reasoning.

1 INTRODUCTION

Large Language models (LLMs) have demonstrated remarkable capabilities across a wide range of
tasks (Achiam et al., 2023; DeepSeek-AI, 2025; Jaech et al., 2024; Wan et al., 2024; Trinh et al., 2024;
Xin et al., 2024). Building on this foundation, Multimodal Large Language Models (MLLMs) have
shown impressive performance in visual question answering (VQA) (Bai et al., 2025b; Zhu et al.,
2025; Guo et al., 2025), optical character recognition (OCR) (Ye et al., 2023b;a; Wei et al., 2024),
and object detection (Liu et al., 2025b; Ren et al., 2024). However, MLLMs still face difficulties with
complex reasoning tasks, particularly in visual mathematical problem-solving, where generalization
remains a fundamental challenge (Lu et al., 2023; Zhang et al., 2024a; Wang et al., 2024).

Recent efforts to enhance mathematical reasoning in MLLMs have primarily focused on three
directions: dataset construction Lu et al. (2021a); Zhang et al. (2024b); Shi et al. (2024a); Wang et al.
(2025), preference optimization Zhuang et al. (2024); Luo et al. (2025), and reinforcement learning
(RL) Huang et al. (2025); Meng et al. (2025). Foundation approaches aggregated datasets from
diverse mathematical domains Shi et al. (2024b). Subsequent efforts introduce structured supervision
formats (e.g., Chain-of-Thought (CoT)) combined with preference optimization to guide step-by-step
reasoning Zhuang et al. (2025). More recently, RL-based studies with curriculum-based training
have been employed to further improve model performance on complex reasoning tasks Huang et al.
(2025); Wan et al. (2025). Despite this progress, several fundamental challenges remain:
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Table 1: Comparison of We-Math 2.0 with several representative multimodal mathematical datasets.
Dataset Usage Data

Annotation
Knowledge-level

Annotation
Principle-level

Annotation
Difficulty

Levels

Geometry3K Lu et al. (2021a) Training Data & Benchmark Manual - - -
MathV360K Shi et al. (2024a) Training Data Collection - - 4
We-Math Qiao et al. (2024a) Benchmark Manual ✓ - -
GeoSense Xu et al. (2025) Benchmark Manual ✓ ✓ -

We-Math 2.0 (Ours) Training Data & Benchmark Manual ✓ ✓ 8

(1) Lack of a comprehensive knowledge system: Existing MLLMs show uneven performance
across different subfields of math reasoning. Lu et al. (2023); Wang et al. (2024) Unfortunately,
current datasets suffer from limited coverage of knowledge points and domain diversity, underscoring
the necessity of establishing a more systematic knowledge system.

(2) Lack of model-centric difficulty modeling: Existing multimodal training datasets primarily
perform difficulty annotation based on human learning stages Meng et al. (2025). However, recent
studies (Lei et al., 2024; Qiao et al., 2024b; Lu et al., 2023) reveal that MLLMs do not exhibit
learning patterns that align well with these human-defined levels. This highlights the need for a more
model-centric approach to modeling data difficulty.

(3) Lack of emphasis on reasoning generalization: MLLMs are capable of solving complex
problems, but perform poorly on corresponding subproblems Qiao et al. (2024b) as well as on similar,
same-type tasks Zou et al. (2024). This underscores the current training methods’ focus on problem
memorization rather than fostering reasoning generalization.

To address these limitations, we introduce WE-MATH 2.0, a versatile framework that combines a
structured mathematical knowledge system, model-centric data space modeling, and a reinforcement
learning-based training paradigm to comprehensively improve MLLM’s reasoning capabilities (see
Table 1. In detail, we begin by establishing the MathBook Knowledge System, a five-level hierarchy
comprising 491 knowledge points and 1,819 fundamental principles (see Figure 1). This structure is
systematically derived from sources such as Wikipedia and open-source textbooks, refined through
hierarchical clustering, and further revised by human experts.

Building on this foundation, we introduce MathBook-Standard, a dataset featuring comprehensive
annotations at the level of 1,819 knowledge principles, along with carefully curated problems to
ensure broad, balanced coverage, particularly in underrepresented mathematical domains. To foster
deeper conceptual understanding, MathBook-Standard employs dual expansions: "multi-images per
question" and "multi-questions per image", enabling diverse problem sets that achieve conceptual
flexibility. Crucially, we propose a pivotal three-dimensional difficulty modeling framework that
redefines mathematical problem construction. By explicitly modeling "step complexity", "visual
complexity" and "contextual complexity", each problem is systematically expanded into seven
difficulty levels to form MathBook-Pro. This design enables structured, progressive learning for
MLLMs, laying a strong foundation for improved reasoning across difficulty levels.

To further enhance MLLMs’ general mathematical reasoning ability, we propose MathBook-RL, a
two-stage reinforcement learning framework for progressive and robust training:

(1) Cold-Start Fine-tuning: We first adopt a supervised fine-tuning that guides the MLLM to
learn knowledge-oriented CoT reasoning, internalizing it to acquire conceptual understanding and
structured problem-solving paradigms. (2) Progressive Alignment RL: We propose a curriculum-
based RL paradigm. Leveraging the "one-question-multi-image" and knowledge-point features in
MathBook-Standard, we first align the model’s analogical reasoning by introducing an average
reward mechanism. Building on this foundation, we progressively train the MLLM on MathBook-Pro
and further introduce two dynamic scheduling strategies: i) Knowledge Increment Scheduling:
When errors occur due to complex reasoning steps, the model is adaptively redirected to relevant
incremental-step samples in MathBook-Standard. ii) Modality Increment Scheduling: When errors
stem from increased modality complexity, the model is guided through single-modality incremental
problems. This targeted curriculum enables effective knowledge transfer across difficulty levels.

To comprehensively evaluate MLLMs’ reasoning capability, we introduce MathBookEval, a bench-
mark covering all 491 knowledge points with diverse step distributions. Experimental results show
that MathBook-RL performs competitively with existing baselines on four widely used benchmarks
and substantially improves generalization and robustness. In summary, our contributions are:
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• We propose the MathBook Knowledge System, a five-level hierarchical framework with 491
knowledge points and 1,819 fundamental principles, enabling systematic and comprehensive
mathematical knowledge supervision.

• We develop MathBook-Standard and MathBook-Pro, two novel datasets that combine com-
prehensive step-wise annotation, dual expansions for conceptual flexibility, and a principled
three-dimensional difficulty modeling framework for structured and progressive learning.

• We introduce MathBook-RL, a two-stage RL framework that integrates structured knowledge
supervision and dynamic data scheduling, improving the reasoning capabilities of MLLMs.

• We present MathBookEval, a benchmark designed to comprehensively evaluate model reasoning
across diverse knowledge points and step distributions. Extensive experiments demonstrate that
our approach achieves remarkable performance in both generalization and robustness.

2 RELATED WORK

Visual Mathematical Reasoning. Recently, visual mathematical reasoning has advanced rapidly Shi
et al. (2024a); Zhang et al. (2024b); Zhuang et al. (2024); Han et al. (2024); Luo et al. (2025).
Benchmarks such as MathVista Lu et al. (2023) and MathVision Wang et al. (2024) assess overall
performance, while MathVerse Zhang et al. (2024a) and Dynamath Zou et al. (2024) examine reason-
ing mechanisms and robustness. Methodologically, progress has been made through visual–textual
alignment Shi et al. (2024a); Zhang et al. (2024b); Wang et al. (2025), step-wise reasoning Zhuang
et al. (2024); Luo et al. (2025), and RL-based optimization Huang et al. (2025); Zhang et al. (2025);
Meng et al. (2025); Chen et al. (2025); Liu et al. (2025a); AI et al. (2025); Wan et al. (2025); Zheng
et al. (2025); Yang et al. (2025a); Team et al. (2025a); Hong et al. (2025); Team et al. (2025b), which
show promising gains on complex tasks. However, robust and generalizable visual reasoning remains
an open challenge. Therefore, we propose a systematic, model-centric knowledge system, integrate it
with RL-based alignment and a new dataset, aiming to provide fresh insights for the community.

3 WE-MATH 2.0

Overview. In this section, we introduce WE-MATH 2.0, a unified system designed to advance
visual mathematical reasoning in MLLMs, developed from three key aspects: (1) We construct a five-
level MathBook Knowledge System (§3.1), systematically organizing 491 knowledge points and
1,819 fundamental principles for comprehensive mathematical supervision. (2) We propose a Multi-
Dimensional data construction pipeline (§3.2), incorporating seed problem construction, variant
expansion, and principled three-dimensional difficulty modeling. (3) We introduce MathBookEval
(§3.3), a benchmark aligned with our knowledge system for systematic evaluation.

3.1 MATHBOOK KNOWLEDGE SYSTEM

System Overview. We construct a five-level hierarchical MathBook Knowledge System orga-
nized by the “Definition–Theorem–Application” paradigm (Fitzpatrick, 2008). The core is a set of
knowledge points K = {k1, k2, . . . , kN}, N = 491, spanning primary to university mathematics.
Each ki is associated with a set of fundamental principles Pi = {pi1, . . . , pimi}, mi ∈ [1, 7], where
P =

⋃N
i=1 Pi and |P| = 1,819. (Figure 3 illustrate examples of principles within the MathBook

Knowledge System, while Figure 8 shows how problems are aligned with the system.)

Hierarchical Construction via Human-AI Collaboration. We construct K through a hybrid
process. Human experts first design an initial structure Khuman based on authoritative sources,
including textbooks, Wikipedia, and national curriculum standards. In parallel, we sample 30K
problems from the existing math dataset Lu et al. (2021b); Johnson et al. (2017); Gao et al. (2023);
Shi et al. (2024a); Peng et al. (2024); Luo et al. (2025); Zhuang et al. (2024); Zhang et al. (2024b),
merging them into a unified dataset. We then use GPT-4o OpenAI (2024) to assign multi-level
topic tags T = {t1, . . . , tn}, followed by hierarchical clustering on the semantic similarity matrix
S ∈ Rn×n to obtain an AI-generated structure Kauto. The final knowledge point set K is produced by
expert-guided integration of Khuman and Kauto, with independent review for quality assurance.
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We-Math 2.0

Probability

· Definition of random events
· Relationships between random 
events
· Calculation of random events
· Definition of random variables
· Definition of distribution 
functions
·Calculation of geometric 
probability models
· One-dimensional continuous 
variables and their distribution…

- Core features: infinite possible 
results (such as a dart landing 
anywhere on a target), uniform 
distribution of results
- One-dimensional geometric 
probability: use length ratio to 
calculate probability (such as the 
probability that a random 
number in the interval [0,30] falls 
on [10,15] is 𝟓

𝟑𝟎
= 𝟏

𝟔
…

·Differences between different 
sampling methods
· Choose appropriate survey and 
sampling methods
· Classification addition counting 
principle
· Step-by-step multiplication 
counting principle
· Calculation of the number of 
combinations…

- The formula for calculating 
the number of combinations:

C𝒏𝒎 = 𝒏!
𝒎!(𝒏*𝒎)!

- The properties of the number 
of combinations: 
symmetry

C𝒏𝒎 = C𝒏𝒏*𝒎,
boundary value 

C𝒏𝟎 = C𝒏𝒏 = 𝟏
…

· Definition of cone
· Structural features of cone
· Section of cone
· Volume of cylinder…

- The surface area of a cube is
𝑺 = 𝟔𝒂𝟐

- Comparative analysis: 
Difference from the surface area 
of a sphere 

𝑺 = 𝟒𝝅𝒓𝟐

the surface area of a cube is 
larger under the same volume…

· Definition of polar coordinate system
· Definition of plane rectangular coordinate system
· Representation and equation of straight line
· Distance formula between two points…

· Definition of line segment
· Definition of straight line
· Definition of ray
· Calculating the area of a circle…

Plane geometry

- Matrix addition: Add 
two matrices and add 
corresponding elements. 
Let 

𝑨 = (𝒂𝒊𝒋)𝒎×𝒏
𝑩 = (𝒃𝒊𝒋)𝒎×𝒏

then
𝑨 + 𝑩 = (𝒂𝒊𝒋 + 𝒃𝒊𝒋)𝒎×𝒏

…

Linear
algebra

· Concept of vectors
· Modulus of vectors
· The magnitude of a 
vector 
…

· Definition of sufficient 
condition
· Definition of necessary 
condition
· Definition of necessary 
and sufficient condition
…

- Sufficient condition: If 
condition A holds, then 
conclusion B must hold, 
denoted as 

A ⇒B
…

Functions
and equations

Statistics

Analytical geometrySolid geometry Graph
theoryLogicVectors

- Vector modulus: the size (length) of a 
vector, denoted as ∥ 𝜶 ∥,The modulus of
an n-dimensional vector is

𝜶 = 𝒂𝟏, 𝒂𝟐,⋯ , 𝒂𝒏
∥ 𝜶 ∥ is 

𝒂𝟏𝟐 + 𝒂𝟐𝟐 +⋯+ 𝒂𝒏𝟐
- Equal vectors: vectors with the same 
modulus and direction.
…

· Basic concepts of 
graphs
· Basic concepts of 
trees
· Graph traversal
…

- A tree is an 
undirected graph that 
is connected. There 
are no cycles in a tree. 
When a tree has n 
vertices, it has exactly 
(n-1\ edges. 
…

· Summation of a 
sequence
· Definition of a 
geometric sequence
· Definition of a linear 
function
…

- The basic form of a 
linear function: a 
function of the form 

𝒚 = 𝒌𝒙 + 𝒃
where k and b are 
constants and 𝒌 ≠ 𝟎
…

Fundamental Skills Basic Calculation MethodsNumbers and Quantities

· Definition of integers
· Definition of fractions
· Understanding the number axis…

· Four operations on complex numbers
· Conversion between exponential and logarithmic expressions
· Definition of square…

· Observe natural images
· Measure
· Count
· Find patterns…

- Plane shape recognition: Identify 
basic geometric shapes from natural 
or architectural images. 
- Angles and proportions: Measure or 
estimate angles, length proportions…

- A fraction is composed of a numerator, a 
denominator, and a fraction line, 
representing a part of a whole 
- Basic properties of fractions: The value of 
a numerator and denominator remains 
unchanged when multiplied together unless 
the number is zero. a÷b=a/b (b≠0)…

- Integer addition definition: the operation of combining two 
numbers into one number, addend + addend = sum, knowing 
the sum and one addend, we can find the other addend
- Integer subtraction definition: the operation of finding the 
other addend when the sum of two addends and one of the 
addends is known, minuend - subtrahend = difference, 
subtraction and addition are inverse operations…

- Circle area calculation formula: 
𝑺 = 𝝅𝒓𝟐

in polar coordinates

𝑺 = :
𝟎

𝟐𝝅
:
𝟎

𝒓
𝝆𝒅𝝆𝒅𝜽

- Area and circumference 
relationship: 

𝑺 =
𝑪𝟐

𝟒𝝅
…

- The distance formula between two points in the rectangular 
coordinate system: The distance between two points in the 
plane A(x₁, y₁) and B(x₂, y₂)

𝒅 = (x₂ − x₁)𝟐+(y₂ − y₁)𝟐

- The distance formula between two points in the rectangular 
coordinate system in space: The distance between two points 
in three dimensions A(x₁, y₁, z₁) and B(x₂, y₂, z₂)

𝒅 = (x₂ − x₁)𝟐+(y₂ − y₁)𝟐+(z₂ − z₁)𝟐

…

· Definition of matrix
Basic operations on 
matrix
· Complex operations 
on matrix
…

1,819
Principles

491
Knowledge Points

Examples

Figure 1: Overview of MathBook, including knowledge points, principles, and sample problems.

Fine-Grained Principle Annotation. Given the constructed K, we employ GPT-4o to annotate
the step-level knowledge points for each problem qj ∈ Q = {q1, . . . , qM} by mapping each step
in its chain-of-thought solution to the corresponding ki ∈ K. This yields a mapping M1 : qj 7→
(ki1 , ki2 , . . . ), forming a set of step-level solution paths for each knowledge point. Next, for each
ki, GPT-4o summarizes the set of theorems and principles used across all associated solution paths,
resulting in a mapping M2 : ki 7→ {pi1, . . . , pimi

}. Finally, these AI-extracted principles are
consolidated and cross-checked with those written by human experts, with iterative refinement to
ensure completeness and accuracy of P . Detailed guideline of our system are listed in Appendix B.1.

3.2 MULTI-DIMENSIONAL DATA CONSTRUCTION

In this section, we introduce our data construction pipeline: MathBook-Standard & MathBook-Pro.

3.2.1 MATHBOOK-STANDARD: SEED AND VARIANT PROBLEM CONSTRUCTION

Seed Problem Construction. To ensure rich coverage and high-quality design, we construct problems
based on the knowledge system following 3 guidelines: (1) All diagrams are rendered with GeoGebra
for precise geometric representation; (2) Problems focus on math essence, avoiding reliance on
superficial visual cues; (3) Each problem strictly corresponds to its designated principle set Pi. To
achieve these, we adopt a “model-assisted, expert-led” workflow. Given a knowledge point ki ∈ K
and its associated principle set Pi, an LLM first generates a draft problem, including the question,
answer, and XML script. We then use GeoGebra, a software that renders diagrams from XML-based
scripts, to automate the generation of draft images: GLM(ki, pij) → (qdraft

i , adraft
i , xxml draft

i ). The
resulting visual drafts serve as references to guide human experts in constructing problems and
diagrams via GeoGebra scripting. In practice, almost all drafts were revised or reworked by experts,1
in order to avoid reliance on superficial visual cues and ensure proper alignment with the underlying
mathematical principles. The final seed problem set is Dseed = {(ki, pij , qi, ai, Ii, xxml

i )}, covering
all knowledge points and principles. The detailed GeoGebra-based diagram generation guidelines
can be found in the Appendix B.2.1.

Variant Problem Expansion. To further enhance the diversity and generalization ability of the
dataset, we systematically construct two types of variants based on each seed problem:

(1) One-Problem-Multi-Image Variants (DImgVar): Given a seed problem (qi, ai, Ii) ∈ Dseed,
we fix the problem statement qi and knowledge annotation (ki, pij), and generate a set of im-
ages {I(1)i , I

(2)
i , . . . , I

(m)
i } by varying the parameters in GeoGebra while maintaining the under-

1Only 1.2% of the drafts were directly adopted by experts.
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SFT Pre-aligned RL Dynamic Scheduling RL

(c) MathBook-Pro

Three-Dimensional-Difficulty

(a) Pipeline

(b) MathBook-Standard

Seed

One-Problem-Multi-Image

One-Image-Multi-Problem

Find the measure of angle ∠BOC.

3. Find the measure of angle ∠DOB.

Find the measure of angle ∠BOC.

1.  Find the measure of angle ∠OBC.

2. What type of angle is ∠BOC?

[1.8K]

[5.8K]

[4.5K]

[4K]

Figure 2: Overview of MathBook dataset and the corresponding training phase.

lying geometric construction. Each image corresponds to a different geometric instantiation (e.g.,
acute/obtuse/right triangle), resulting in distinct answers a

(t)
i : {(qi, a(t)i , I

(t)
i ) ∈ DImgVar, t =

1, . . . ,m}. This approach enriches the visual data diversity while preserving semantic consistency.

(2) One-Image-Multi-Problem Variants (DQstVar): Given a seed image Ii, we construct multiple new
problems q(s)i targeting different knowledge points k(s)i and principles p(s)ij , curated by experts with

language model assistance: {((q(s)i , a
(s)
i , Ii) ∈ DQstVar, s = 1, . . . , n}. This strategy leverages the

reusability of high-quality diagrams to generate diverse problem variants.

By systematically applying these variant construction methods to each seed problem, we build the
MathBook-Standard dataset with rich semantic and visual diversity.

3.2.2 MATHBOOK-PRO: THREE-DIMENSIONAL DIFFICULTY MODELING

To systematically characterize problem complexity from a model-centric perspective, we define a
three-dimensional difficulty space for each seed problem along three orthogonal axes (in Figure 2):

(1) Step Complexity (ϕs): Knowledge-oriented reasoning depth is quantified by the number of
involved knowledge points, which from the MathBook knowledge system. Given a seed problem
with l process-oriented knowledge points, we construct variants requiring l′ > l (with at least six).

(2) Visual Complexity (ϕv): We increase complexity by adding auxiliary elements (e.g., lines) to the
original image via GeoGebra, while preserving the core structure.

(3) Contextual Complexity (ϕc): Captures the contextualization of the problem statement. We vary
the textual context from concise mathematical descriptions to complex linguistic scenarios.

Each seed problem (q0, a0, I0) ∈ Dseed serves as the origin in a structured difficulty space. To enable
controlled and interpretable expansion, we generate derived problems by varying a single dimension
d ∈ {ϕs, ϕv, ϕc} at a time, yielding variants (q(d)i , a

(d)
i , I

(d)
i ). Through multiple rounds of such single-

axis transformations, we progressively construct more complex problems by composing changes
across multiple dimensions. Formally, the most advanced variant takes the form: (q∗, a∗, I∗) =
ϕs ◦ ϕv ◦ ϕc(q0, a0, I0). In MathBook-Pro, the expansion along each dimension is implemented as:

(1) Along the ϕs dimension, we introduce intermediate conclusions as new conditions, enabling a
knowledge-driven, progressive deepening of reasoning, expressed as Ki+1 = Ki + 1, where Ki

denotes the number of knowledge points involved at step i. In MathBook-Pro, the most complex step
variants involve at least 6 knowledge points.

(2) Along the ϕv, we increase visual complexity by adding auxiliary lines, altering geometric
configurations or introducing new spatial constructs via GeoGebra, while preserving the core structure.

5
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(3) Along ϕc, we embed the mathematical core into real-world contexts or linguistically abstract
scenarios, increasing the semantic and contextual demands of the problem statement.

By expanding along the defined dimensions, we generate a set of difficulty-controlled problem
variants for each knowledge point, forming the difficulty modeling subset Ddifficulty of MathBook-Pro.

3.3 MATHBOOKEVAL

Design Principles. To ensure the quality and interpretability of annotations in visual math reasoning
tasks, MathBookEval is designed based on the following principles: (1) Comprehensive Knowledge
Coverage: Problems involve 491 knowledge points, spanning primary to university level, demonstrat-
ing broad coverage. (2) Multi-level Reasoning Depth: Each problem integrates 1–10 knowledge
points, compared to 1–3 (Level 1) in existing process-oriented benchmarks, as illustrated in Figure 27.
Notably, our annotation adheres to three principles: (1) integrating public and newly constructed
problems under a unified guideline; (2) expert step-by-step annotation with explicit knowledge-point
mapping; and (3) independent cross-validation, retaining only consistently annotated items.

Data Statistics and Evaluation Protocol. MathBookEval contains 1,000 fully annotated problems,
covering all 491 knowledge points in the unified knowledge system K, with 600 problems collected
from existing benchmarks and 400 newly curated (Detailed statistics are presented in Table 8). We
provide detailed statistics and splits along two key dimensions: (1) Reasoning Dimension: Problems
are divided by reasoning steps into three levels: 1-3 (Level 1), 4-6 (Level 2), and 7-10 (Level
3), reflecting different reasoning depths. (2) Knowledge Dimension: The 491 knowledge points
are grouped into 4 domains and 13 subdomains, covering primary to university level. Figure 27
demonstrates superior coverage of knowledge points and reasoning depth. All problems are in
multiple-choice or fill-in-the-blank format.

4 METHODOLOGY

In this section, we introduce MathBook-RL, a two-stage framework that progressively guides MLLMs
to develop reasoning capabilities from easy to hard. The first stage is a cold-start fine-tuning phase
that establishes a knowledge-driven reasoning paradigm (§4.1); the second is a dynamic reinforcement
learning phase that enhances the model’s generalization ability (§4.2).

4.1 COLD-START FINE-TUNING

The cold-start supervised fine-tuning (SFT) stage aims to instill explicit awareness of knowledge
system and a knowledge-driven reasoning paradigm, avoiding rote memorization. The initial training
set Dinit is built from MathBook-Standard, which fully covers all 491 knowledge points. To improve
rationale interpretability, we use GPT-4o OpenAI (2024) to rewrite each sample with natural language
explanations that explicitly reference the relevant knowledge. The model is then trained using
standard supervised fine-tuning: LSFT(θ) = E(x,y)∼Dinit [− logPθ(y | x)]. This stage enhances the
model’s ability to internalize the knowledge system and follow knowledge-guided reasoning chains.

4.2 PROGRESSIVE ALIGNMENT REINFORCEMENT LEARNING

(1) Pre-aligned RL. Prior to the dynamic scheduling stage, we perform initial RL training on
MathBook-Standard dataset to ensure that the model develops genuine understanding of mathematical
knowledge. Specifically, we utilize the DImgVar subset, where each group contains multiple variants
of the same knowledge principle: (qi, a

(t)
i , I

(t)
i ) ∈ DImgVar, t = 1, . . . ,m. To encourage consistent

and robust performance across different formulations, we adopt a mean-based reward function:
r = 1

m

∑m
t=1 r

(t), where r(t) = 0.9 if the answer is correct, 0.1 if only the format is correct, and 0
otherwise. Specifically, for problems corresponding to the same knowledge principle, rollout rewards
are first sorted within each problem. Next, the mean reward at each sorted position is calculated
across these problems and subsequently employed in the calculation of Ai. Instead of focusing on
individual problems, this design integrates rewards across all problems corresponding to the same
knowledge principle, thereby providing a more comprehensive critic.
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(2) Dynamic Scheduling RL. In this section, we introduce a dynamic RL algorithm based on
MathBook-Pro. The training process is organized as a curriculum along a main trajectory of increasing
difficulty, primarily centered on the knowledge dimension. For each base problem (q0, a0, I0),
denoted as x0, we construct a sequence of increasingly challenging variants as follows:

x0 → ϕs(x0) → ϕs ◦ ϕv(x0) → ϕs ◦ ϕc(x0) → ϕs ◦ ϕv ◦ ϕc(x0) (1)

where ϕs denotes increasing the number of knowledge points, ϕv and ϕc denotes increasing visual
complexity and contextual abstraction. This forms a progressive path from basic to advanced
reasoning for each knowledge anchor.

Incremental Learning Mechanism. At each curriculum transition x → ϕ(x), if the model fails
on ϕ(x) after succeeding on x, we introduce an incremental learning step. Specifically, we define
the incremental set ∆(x, ϕ) as a collection of samples that isolate the new knowledge or modality
introduced by ϕ. The model is first trained on ∆(x, ϕ) to address the incremental challenge, then
reattempts ϕ(x). Concretely:

• Knowledge Increment Scheduling: For x0 → ϕs(x0), if the model fails on ϕs(x0), we construct
∆(x0, ϕs), comprising auxiliary problems x′

0 that target the new knowledge point(s) from ϕs.
• Modality Increment Scheduling: For ϕs(x0) → ϕs ◦ ϕv(x0) (or ϕs ◦ ϕc(x0)), if the model fails

on the more complex sample, we construct ∆(ϕs(x0), ϕv) (or ∆(ϕs(x0), ϕc)), which contains
samples isolating the new visual or contextual complexity.

This incremental adaptation, denoted by ∆(x, ϕ) at each step, ensures that the model can efficiently
bridge the gap between curriculum stages. Notably, our overall RL objective is optimized using
Group Relative Policy Optimization (GRPO) (Shao et al., 2024), which extends PPO by estimating
the baseline from group scores instead of a separate critic. The GRPO objective is:

J (θ) = E[q ∼ P (Q), {oi}Gi=1 ∼ πθold(O|q)] 1
G

G∑
i=1

1

|oi|

|oi|∑
t=1{

min

[
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
Âi,t, clip

(
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
, 1− ϵ, 1 + ϵ

)
Âi,t

]
− βDKL [πθ||πref ]

}
,

(2)

where ϵ and β are hyperparameters, q denotes the input, {oi}Gi=1 are sampled outputs, and ri is the
corresponding reward. Âi,t is the normalized advantage value for the i-th trajectory in the group. This
curriculum-driven RL process, augmented with explicit incremental adaptation at each stage, enables
the MLLM to progressively master complex, multi-dimensional reasoning tasks while preserving
stability and generalization across knowledge, visual, and contextual variations.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. All training data are sourced from WE-MATH 2.0 in compliance with copyright and
licensing requirements, and all expert-constructed problems will be released under appropriate CC
licenses. We use 1K, 5.8K and 4K samples for SFT, pre-aligned RL, and dynamic scheduling RL
stages, respectively. Experiments are conducted on four standard mathematical reasoning benchmarks:
MathVista Lu et al. (2023), MathVision Wang et al. (2024), MathVerse Zhang et al. (2024a), and
We-Math Qiao et al. (2024a). Detailed evaluation protocols are provided in Appendix C.5.1.

Baselines. We conduct our training based on both Qwen2.5-VL-7B and Qwen2.5-VL-3B, and
compare our method with three categories of baselines: (1) Closed-source models (e.g., GPT-
4o OpenAI (2024)); (2) Open-source general models (e.g., InternVL2.5 series Chen et al. (2024a),
Qwen2.5-VL series Bai et al. (2025b)); (3) Open-source reasoning models (e.g., R1-VL Zhang
et al. (2025)). Our evaluation is based on VLMEvalKit Duan et al. (2024). Detailed descriptions of
baselines are provided in Appendix C.5.2.

5.2 MAIN RESULTS

Table 2 displays the performance of our MathBook-7B across various benchmarks. Overall, our
method achieves remarkable performance, clearly demonstrating its superiority. Further analysis
reveals the following observations. (Results for the 3B setting are provided in Appendix C.2.)
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Table 2: Performance comparison across four widely-used mathematical reasoning benchmarks. Each
benchmark follows its standard evaluation metric: MathVista and MathVision use accuracy, We-Math
reports the strict score, and MathVerse evaluates on the vision-only subset with accuracy. Data sizes
used for SFT and RL are annotated in blue and red, respectively.

Model #Data Avg. MathVista MathVision We-Math MathVerse

Closed-source

GPT-4o-latest - 54.0 71.6 43.8 50.6 49.9
Gemini-1.5-Pro - 53.6 67.9 41 50.5 54.8

Open-source (General)

Qwen2.5-VL-7B - 42.6 68.2 25.1 36.0 41.1
InternVL2.5-8B-BoN-8 - 41.7 68.2 25.6 38.6 34.5

Open-source (Reasoning)

Math-PUMA-7B 1.88M - 47.9 - 19.2 26.0
URSA-8B 2.96M 37.8 58.8 28.7 32.8 31.0
R1-OneVision-7B 155K+10K - 64.1 29.9 30.1 -
R1-VL-7B 260K+10K - 63.5 24.7 22.7 -
MM-Eureka-7B 15K 45.2 73.0 26.9 34.5 46.2
WeThink-7B 120K+20K 47.5 71.6 26.0 48.0 44.2
VLAA-Thinker-7B 25K 46.0 68.0 26.4 41.5 48.2
OpenVLThinker-7B 35K+15K - 72.3 25.9 - -

MathBook-7B (Ours) 1K+9.8K 48.7 73.0 28.0 48.4 45.2
∆ (vs Qwen2.5-VL-7B) - +6.1 +4.8 +2.9 +12.4 +4.1

(1) Overall superiority of MathBook. Compared to the backbone Qwen2.5-VL-7B, MathBook-7B
achieves over a 6% improvement across all benchmarks, validating the effectiveness of our approach.

(2) Effectiveness of progressive alignment reinforcement learning on knowledge generalization.
Focusing on the We-Math benchmark, which requires solving both complex multi-step questions and
their corresponding subproblems, MathBook-7B outperforms strong RL baselines. This demonstrates
the effectiveness of progressive alignment reinforcement learning in knowledge generalization.

(3) Less is More: Efficiency with limited training data. MathBook-7B achieves strong performance
using only 9.8K training samples. We attribute this to the high-quality, structured mathematical
knowledge system we constructed, enabling efficient alignment and generalization with limited data.

5.3 RESULTS ON MATHBOOKEVAL

Table 3: Results of the ablation study. MVt:
MathVista; MVs: MathVision; WM: We-Math)
Method SFT RL-Pre RL-Dyn MVt MVs WM
M0 ✓ ✓ ✓ 73.0 28.0 48.4

M1 ✓ ✓ - 72.4 27.0 47.2
M2 ✓ - ✓ 72.0 26.3 43.3
M3 - ✓ ✓ 71.5 26.3 46.7
M4 ✓ - - 65.8 25.7 38.3

To investigate MLLM abilities in reasoning depth
and knowledge coverage breadth, we conduct Math-
BookEval and observe the following (see Table 5).
Complete results are provided in Appendix B.4.6.

(1) MLLMs performance negatively correlates
with the number of required knowledge points.
As reasoning steps increase, model accuracy de-
clines. In particular, problems requiring 7–10
knowledge points yield the lowest accuracy (be-
low 50%). These results highlight the challenge of
multi-step reasoning and validate knowledge points as a key measure for modeling problem difficulty.

(2) MLLMs perform well on algebra but struggle with geometry. Along the knowledge dimension,
most MLLMs demonstrate strong performance in algebra, achieving accuracies above 50%. However,
their consistently poor performance in geometry highlights ongoing challenges in spatial reasoning.

(3) Larger models yield more consistent improvements across all dimensions. Within the
InternVL2.5 and Qwen2.5-VL families, increasing model size leads to consistent gains across all
dimensions and in overall scores, emphasizing the role of scale in enhancing reasoning capabilities.
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Table 5: The performance of different MLLMs on MathBookEval for reasoning evaluation. Acc.:
Accuracy; FS.: Foundational skills; PS.: Probability and statistics; Geo.: Geometry; Alg.: Algbra

Models Acc. Reasoning Knowledge
Level1 Level2 Level3 FS. PS. Geo. Alg.

Closed-source MLLMs

GPT-4o 50.8 52.8 48.9 41.7 33.8 57.6 44.2 67.2
GPT-4V 42.8 44.0 43.0 31.9 36.8 56.6 33.5 59.4

Open-source MLLMs

InternVL2.5-78B 51.8 52.5 51.8 45.8 50.0 64.2 42.6 67.6
Qwen2.5-VL-72B 57.1 58.3 56.4 50.0 52.9 58.5 52.1 68.8

LLaVA-OneVision-72B 43.0 44.8 42.0 31.9 38.2 52.8 37.0 53.5
InternVL2.5-8B 37.9 40.7 34.5 27.8 33.8 46.2 31.4 50.0
Qwen2.5-VL-7B 46.7 50.1 43.0 33.3 44.1 58.5 38.8 60.2

LLaVA-OneVision-7B 31.6 34.3 28.0 23.6 36.8 41.5 24.9 41.0
R1-VL-7B 38.0 41.9 32.6 27.8 38.2 38.7 32.3 50.4

MM-Eureka-7B 50.0 50.6 51.5 38.9 47.1 52.8 44.0 62.9
MathBook-7B 50.4 52.0 48.2 45.8 57.4 67.9 40.5 63.3

5.4 QUANTITATIVE ANALYSIS

Ablation Study. As shown in Table 3, we conduct ablation studies on the training stages. M0
denotes MathBook-7B, while M1–M4 represent models at different training stages (RL-Pre: Pre-
aligned RL; RL-Dyn: Dynamic Scheduling RL). We lead to following two key findings:

(i) Both RL stages contribute significantly. Each RL stage (M0-M3) yields progressive improve-
ments over M4. In particular, pre-aligned reinforcement learning (RL) in the first stage yields
impressive results on MathVista and We-Math benchmarks, highlighting the crucial role of knowl-
edge learning in enhancing mathematical reasoning abilities. (ii) SFT alone offers limited gains,
but is crucial for unlocking RL potential. Comparing M0, M3, M4, we find that SFT alone yields
marginal improvements over the Qwen2.5-VL backbone. However, when combined with RL, SFT
version substantially boosts overall performance, highlighting its critical role in shifting the model’s
reasoning paradigm and enabling more effective RL optimization.

Table 4: SFT Data Analysis. SFT
(Str.) and SFT (Lar.) denotes struc-
tured and large-scale SFT training.

Setting MVt MVs WM

M0 73.0 28.0 48.4

SFT(Str.) 71.9 26.0 46.7
SFT(Lar.) 72.8 27.0 49.0

Analysis of SFT Data Paradigm and Scale. We explore the
impact of data paradigm and scale during the SFT stage. Based
on the M0 setting, we consider two variants: (1) Replacing the
natural language CoT format with a structured, step-wise CoT
format (Zhuang et al., 2024) aligned with K; (2) Increasing
the SFT data scale with larger datasets (from 1K to 15K).

(i) Natural language CoT outperforms the structured step-
wise format in SFT. As shown in Table 4, natural language
CoT outperforms the structured format in RL. This highlights
the advantage of natural language prompts in cultivating flexible reasoning, which in turn strengthens
visual mathematical reasoning skills. (ii) Minimal SFT suffices to unlock RL potential. Scaling
up SFT data does not improve performance. Models trained on minimal, well-curated data perform
comparably or even better than those trained on larger datasets, suggesting that a small, high-quality
SFT set suffices to establish the reasoning paradigm for effective RL.

6 CONCLUSION

In this work, we present WE-MATH 2.0, a unified framework for multi-modal mathematical reason-
ing. It comprises: (1) MathBook Knowledge System, a five-level hierarchy covering 491 knowledge
points and 1,819 fundamental principles for comprehensive supervision; (2) MathBook-Standard
and MathBook-Pro, two richly annotated datasets with conceptual expansions and principled dif-
ficulty modeling for structured learning; (3) MathBook-RL, a two-stage reinforcement learning
framework that leverages knowledge-guided supervision and dynamic data scheduling; and (4) Math-
BookEval, a benchmark for evaluating reasoning across diverse knowledge and step distributions.
Extensive experiments validate MathBook’s effectiveness in enhancing generalization of MLLMs.
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REPRODUCIBILITY STATEMENT

Data. We ensure that all datasets developed in this work, including MathBook Knowledge System,
MathBook-Standard, MathBook-Pro, and MathBookEval, will be fully released upon publication. To
support reproducibility during the review phase, we provide representative data samples (up to the
maximum size allowed by the submission system, 100MB) in the supplementary material.

Experimental Setup. The experimental protocol, including dataset sizes, training stages, and
evaluation benchmarks, is described in Section 5 and Appendix C.1. In addition, our code contains
complete environment specifications (e.g., requirements.txt), along with scripts for dataset
preparation, training, and evaluation. These files ensure that the reported results can be reproduced
on standard hardware with minimal configuration.

Code and Model Checkpoints. We include the full code in the supplementary material, together with
scripts for data preparation, training, and evaluation. Due to file size limitations, pretrained model
checkpoints cannot be submitted at this stage. Upon acceptance, we will release all checkpoints in
the camera-ready version to facilitate rapid validation of our results.

Methodology. We detail the proposed framework in Section 3 and Section 4. Specifically, we
(i) specify the MathBook Knowledge System (five-level hierarchy; 491 knowledge points; 1,819
principles), (ii) describe the MathBook-Standard pipeline with two orthogonal expansions (one-
question–multi-image; one-image–multi-question), (iii) formalize the three-axis difficulty space for
MathBook-Pro (step, visual, contextual) yielding seven progressive variants per seed, and (iv) present
MathBook-RL, a two-stage training paradigm.

ETHICS STATEMENT

Licensing and Open Access. For all referenced or incorporated data in WE-MATH 2.0, we only
use existing datasets with clear and appropriate licenses. All data curated by our team will be released
under the CC BY 4.0 license, ensuring open access for the research community. The entire MathBook
dataset, including both external and newly constructed components, will be made publicly available
to facilitate further research and development.

Data Sources and Privacy. All data in WE-MATH 2.0 are either sourced from publicly available
datasets or generated by our expert team, and do not contain any personal user information. Therefore,
there are no privacy concerns related to our dataset.

Expert Compensation. Experts involved in annotation are compensated on a per-task basis, with
payment issued only after cross-validation and quality assurance. All compensation meets or exceeds
the local minimum wage standards.
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A BROADEN IMPACT

Towards principled and generalizable mathematical model training. WE-MATH 2.0 provides a
comprehensive and structured mathematical knowledge system, which fills the gap left by previous
works that lack a complete and systematic framework. By introducing a five-level hierarchy with
491 knowledge points and 1,819 fundamental principles, MathBook enables more principled and
interpretable mathematical learning for MLLMs. The dual expansion strategy ("multi-images per
question" and "multi-questions per image") and the three-dimensional difficulty modeling not only
enrich the diversity of training data but also facilitate robust and progressive learning. This system-
atic approach can inspire future research to adopt knowledge-driven and model-centric data space
modeling, leading to more reliable and generalizable mathematical reasoning models. Furthermore,
the fine-grained annotations and progressive difficulty levels provide a valuable resource for bench-
marking and analyzing the strengths and weaknesses of different MLLMs, promoting transparency
and interpretability in model development.

Bridging AI and Education: high-quality datasets for teaching and learning. WE-MATH 2.0’s
datasets are not only designed for model training but also have significant educational value. Each
problem is accompanied by a GeoGebra (GGB) file, which can serve as high-quality teaching material
for educators and students. The hierarchical knowledge system and step-wise annotations make it
easier to design personalized learning paths and targeted exercises, supporting adaptive learning and
formative assessment. The multi-modal and multi-perspective problem sets encourage students to
develop flexible thinking and deepen their conceptual understanding. By bridging the gap between
AI research and educational practice, MathBook has the potential to enhance mathematics education,
facilitate interactive and engaging learning experiences, and support the development of intelligent
tutoring systems.

Enhancing RL generalization through progressive and dynamic training. WE-MATH 2.0 intro-
duces a novel, model-centric curriculum for RL-based training, where problems are systematically
organized from easy to hard based on explicit difficulty modeling. This approach provides a new
perspective for designing RL curricula, enabling more effective and efficient learning. The "one-
question-multi-image" and "one-image-multi-question" strategies, together with dynamic scheduling
mechanisms, enhance the robustness and generalization of RL-trained models. These innovations
can inspire the broader RL community to explore curriculum learning, dynamic data scheduling, and
multi-modal data augmentation for complex reasoning tasks. Moreover, these hierarchical knowledge
approaches also offers a new solution for tool learning. MathBook thus serves as a valuable testbed
for advancing RL methods in the context of mathematical reasoning and beyond.

B DETAILS OF WE-MATH 2.0

B.1 MATHBOOK KNOWLEDGE SYSTEM

B.1.1 HIERARCHICAL STRUCTURE OF KNOWLEDGE POINTS

As illustrated in Figure 3, we provide an overall view of the hierarchical structure of knowledge points
in the MathBook Knowledge System. Figures 4–7 further present partial examples of different
substructures at varying depths of the hierarchy. The system is organized as a five-level hierarchical
structure of knowledge points K = {k1, k2, . . . , kN}, where N = 491 denotes the total number
of knowledge points at the lowest level of the hierarchy. The first level consists of four categories:
Geometry, Fundamental Skills, Algebra, and Probability and Statistics.

The construction of K follows a two-track, human-AI collaborative process. First, an initial version
Khuman is constructed by collecting and merging knowledge point lists from authoritative sources,
including Wikipedia, open-source mathematics textbooks, and national curriculum standards. This
initial structure is deduplicated, reorganized, and refined for logical consistency and comprehensive
coverage.

In parallel, a large-scale problem set Q is collected, including 30,000 sampled from existing math
datasets. GPT-4o is used to assign multi-level topic tags T = {t1, . . . , tn} to each problem, and a
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Figure 3: Overall view of the hierarchical structure of knowledge points in MathBook.

semantic similarity matrix S ∈ Rn×n is computed. Hierarchical clustering is then applied to S to
generate an AI-assisted hierarchical structure of knowledge points Kauto.

Finally, the AI-assisted structure Kauto is integrated with the initial structure Khuman through systematic
comparison, merging, and revision. The Kauto serves as a reference for revising and refining the
manually constructed hierarchical structure of knowledge points, resulting in the final knowledge
point set K.

B.1.2 KNOWLEDGE PRINCIPLES

As shown in Figures 9–12, we provide several examples of knowledge principles, which include
definitions, theorems, and other foundational statements associated with each knowledge point.
The annotation of principles P =

⋃N
i=1 Pi (|P| = 1,819) also follows a two-track, human-AI

collaborative approach.

Based on the constructed knowledge hierarchy K, a set of core principles for each knowledge point
ki is first drafted, referencing authoritative sources such as Wikipedia, textbooks, and international
curriculum standards.

In parallel, for each ki, a set of representative problems from Q is selected and their chain-of-thought
(CoT) solutions are annotated. Each step in the CoT is mapped to the corresponding knowledge point
using GPT-4o, and the relevant CoT steps for each ki are extracted. The CoT steps associated with
each knowledge point are then aggregated and reviewed to supplement, refine, and validate the set of
principles for ki.

This process is repeated iteratively, consolidating both the expert-written and data-driven principles,
cross-checking against original sources and annotated solution paths, until the set of principles Pi for
each knowledge point is comprehensive and precise.

This process is repeated iteratively, consolidating both the expert-written and data-driven principles,
cross-checking against original sources and annotated solution paths, until the set of principles Pi for
each knowledge point is comprehensive and precise. As illustrated in Figure 8, we further provide
an example from We-Math 2.0, where each problem is explicitly aligned with its corresponding
knowledge point and associated principle.
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Figure 4: Overview of the hierarchical structure of knowledge points in MathBook (1).
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Figure 5: Overview of the hierarchical structure of knowledge points in MathBook (2).
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Figure 6: Overview of the hierarchical structure of knowledge points in MathBook (3).
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Figure 7: Overview of the hierarchical structure of knowledge points in MathBook (4).
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Figure 8: An example from We-Math 2.0 showing how each problem is explicitly aligned with a
specific knowledge point and its associated principle.

1. Definition of an acute triangle: A triangle where all three interior angles are less than 
90° (e.g., angles of 50°, 60°, 70°), with all altitudes located inside the triangle and the 
orthocentre inside as well; used in stable structural designs (e.g., Eiffel Tower trusses).

2. Definition of a right triangle: A triangle with one 90° angle (e.g., sides 3, 4, 5 satisfy 3² 
+ 4² = 5²), the other two angles are complementary (α + β = 90°), and the Pythagorean 
theorem a² + b² = c² is used in GPS triangle positioning for coordinate calculations.

3. Definition of an obtuse triangle: A triangle with one interior angle greater than 90°
and less than 180° (e.g., angles of 100°, 40°, 40°), where the side opposite the largest 
angle is longest; its corresponding altitude lies inside the triangle, but the other two 
altitudes need to be extended outside the triangle (e.g., for structural stress distribution 
in engineering blueprints).

Principle:

Geometry-Plane Geometry-Basic Plane Figures-Triangles
-Classification of triangles

1. Definition of adjacent supplementary angles: Two adjacent angles (sharing one common 
side) whose measures sum to 180° are called adjacent supplementary angles (e.g., lines 
AB and CD intersect at O, then ∠AOC and ∠COB are adjacent supplementary angles).

2. Characteristics of adjacent supplementary angles: (1) A common side is shared and lies 
between the angles; (2) the other sides are extensions of each other in opposite directions; 
(3) their sum is a straight angle (mathematical expression: ∠α + ∠β = π). Used in 
geometric proofs to complete angle relationships.

3. Judgment of adjacent supplementary angles: If two angles share one side and their non-
common sides form a straight line, then they are adjacent supplementary angles (e.g., if ∠1 
and ∠2 share side OA and OB lies on straight line AB). Applications: constructing interior 
angles of parallelograms, computing hinge opening angles in doors/windows.

4. Vector expression of adjacent supplementary angles: If the angle between two vectors is θ, 
then the sum of the angle and its adjacent supplement is θ + (180°− θ) = 180°.

Principle:

Geometry-Plane Geometry-Relationships Between Figures
-Intersection and Perpendicularity-Adjacent supplementary angles

1. Cross-section of a cone: a cross-section parallel to the base is a circle (radius r' = r * h'/h, 
where h' is the distance from the apex), used in layered volume calculation.

2. A vertical cross-section along the height is an isosceles triangle (base = 2r, height = h, 
area = r * h), used in symmetric cutting of cone sculptures.

3. An oblique section results in a conic section: depending on the angle, the section may be 
an ellipse (angle < angle between generator and height), a parabola (parallel to 
generator), or a hyperbola (angle > angle between generator and height). These are used 
in classifying conic sections and applied in satellite dish design and spotlight reflection 
paths.

Principle:

Geometry-Solid Geometry-Basic Solid Figures-Cones
-Section of a cone

1. Object combination: Combine known basic solid figures into a new object and 
calculate the volume of the new object. Usually, the volume of the basic solid figures as 
the combination elements can be calculated separately, and finally the volume of the 
irregular figure can be obtained by adding them up.

2. Object disassembly: Remove a part of the volume from the known basic solid figure 
and calculate the volume of the new object. Usually, the volume of the original solid 
figure and the removed volume can be calculated separately, and finally the volume of 
the irregular figure can be obtained by subtracting them.

3. …

Principle:

Geometry-Solid Geometry-Basic Solid Figures
-Volume of irregular solids

1. Conditions for two lines to be parallel: When the slopes of the two lines are equal, that 
is, k1 = k2 , and the intercepts are different (such as y=2x+3 and y=2x-5 are parallel); 
Parallel determination questions (verifying whether the two lines are parallel) and 
equation construction questions (finding equations parallel to the known lines); Easy 
mistakes: Ignoring the same intercepts leads to the coincidence of the lines

2. Conditions for two lines to be perpendicular: When the product of the slopes of the two 
lines is -1, that is, k1 , k2 = -1 , or one line is perpendicular (slope does not exist) and 
the other is horizontal k=0; vertical determination questions (verifying the 
orthogonality of lines) and geometric construction questions (finding the equation of 
the perpendicular line to a given line); easy mistakes: ignoring the special cases of 
vertical and horizontal lines (such as x=3 and y=5 are perpendicular)

3. …

Principle:

Geometry-Analytic Geometry-Analytic Geometry
-Definition of the slope of a line

1. Parametric equation processing: For the equation with parameters 
x2+y2+Ax+By+C=0, the fixed point satisfies A,B,C and the coefficients are 
independent of the parameters (for example: the equation x2+y2+λx+(1-λ)y-5=0 needs 
to solve λ(x - y +1) + (x2+y2 + y -5)=0 to get x=1,y=2)

2. Geometric condition method: Use the equation of the circle system (such as the 
intersection line of two circles and the third circle) to determine the fixed point; Easy 
to make mistakes: Failure to completely eliminate parameters leads to missed 
solutions, and parameter-related items are mistakenly regarded as independent 
conditions; Question type: Find all the fixed points that the circle passes through (for 
example: k(x2+y2)+x+y+1=0 passes through the fixed point), prove that the circle 
system passes through the fixed point, and find the equation parameters at a known 
fixed point

3. …

Principle:

Geometry-Analytic Geometry-Circles
-Problem of a circle passing through a fixed point

Geometry

Figure 9: Examples of knowledge principles corresponding to specific knowledge points in MathBook
(1).
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1. Comparison of function values: Compare y-values of different functions at the same x-value.
2. Comparison of rate of change: Compare slopes (rate of increase/decrease) over the same 

interval.
3. Comparison of extrema: Compare maximum/minimum values of different functions.
4. Comparison of definite integrals: Compare the area enclosed between the curve and the x-

axis.

Principle:

Fundamental Skills-Compare sizes in images

1. Definition of natural numbers: Non-negative integers, used for counting or ordering.
2. Definition of positive integers, negative integers, and zero: Positive integers: Greater than 0, 

typically used for quantity. Zero: Neither positive nor negative, represents “none” or a 
reference point. Negative integers: Less than 0, representing opposite quantities.

3. Set notation: The set of integers is denoted by Z. The set of natural numbers is denoted by N.

Principle:

Fundamental Skills-Understanding Numbers and Quantities-Compare sizes in 
images-Definition of integers

1. Definition of square: Square refers to the result of multiplying a number by itself, that is, a 
number multiplied by itself. For example, the square of 2 is 2×2=4. In mathematics, the 
symbol “²” is used to represent a square, for example, 2²=4

2. Non-negativity of square: The square of any real number is non-negative, that is, the square 
root does not have a negative solution (such as (-3)²=9≥0)

3. Parity of square: If a number is even, then its square is also an even number (such as 4²=16); 
if it is odd, its square is also an odd number (such as 5²=25)

4. Definition of square number: A square number is the square of an integer, which can be 
written in the form of a perfect square (such as 1=1², 4=2², 9=3², 16=4²)

Principle:

Fundamental Skills-Basic Calculation Methods-Squaring and Square Rooting-
Definition of square

1. The essential definition of division: the inverse operation of multiplication, that is, to find 
another factor given a product and a factor. If a× b=c, then c÷ b=a (where b≠0), 
represented by "÷" or fraction line "/", such as a÷ b or a/b, the divisor cannot be zero 
(undefined in mathematics) does not satisfy the commutative law (6÷2≠2÷6)

2. The concept of remainder: when it cannot be divided evenly, the remaining part is called the 
remainder (such as 7÷3=2 remainder 1)

3. Practical application: allocate resources , calculate the average. Easy to make mistakes: the 
remainder unit is not marked, ignore the divisibility condition

4. Reciprocal association: a÷ b=a×(1/b), division is converted into multiplication by the 
reciprocal

Principle:

Fundamental Skills-Basic Calculation Methods-Four Arithmetic Operations-
Definition of division

Fundamental Skills

Figure 10: Examples of knowledge principles corresponding to specific knowledge points in Math-
Book (2).

1. Random event: An experiment satisfies the condition that it can be repeated under the same 
conditions, and all possible results are clearly known. If the results of each experiment are 
uncertain, then the experiment is a random experiment, such as shooting a basketball and 
flipping a coin. Results that may or may not appear in an experiment are called random 
events. Events that must occur in each experiment are called inevitable events, and events 
that must not occur are called impossible events, denoted as empty set.

2. Sample space: Each possible result of a random experiment is called a sample point, and the 
set of all sample points is called the sample space. Random events are always composed of 
several basic events.

3. …

Principle:

Probability and Statistics-Probability-Random Events
-Definition of random events

Probability and Statistics

1. The principle of frequency estimation probability: approximate the true probability by the 
frequency of events in a large number of repeated experiments (the mathematical basis is the 
law of large numbers: when the number of experiments is ! → ∞, the frequency is
$!(&) → ((&)

2. Application scenarios: weather forecast (historical rainfall frequency predicts the 
probability of precipitation tomorrow), gambling game winning rate calculation (long-term 
statistics of roulette)

3. Formula example: The frequency of the number 6 appearing in 600 dice tossing is 98 times, 
and the estimated probability is )( = "#

$%% ≈ 0.163

Principle:

Probability and Statistics-Probability-Probability Calculation
-Estimating probability using frequency

1. To complete a task with multiple steps, multiply the number of ways for each step (formula: 
N = m1 * m2 * ... * mk, e.g., 4-digit password, each digit has 10 choices → 10^4 = 10,000). 
Key condition: steps must be ordered and independent (e.g., “choose shirt” then “choose 
pants”).

2. Application scenarios: password combinations (letters + numbers), travel routes (3 paths 
from A to B, 2 from B to C → total = 3×2 = 6)

3. Special cases: repetition allowed (e.g., repeated license plate letters), partial restrictions 
(e.g., phone number cannot start with 0). Question types: restricted permutations (e.g., 3-
digit numbers formed from 1–9 with no repeats)

Principle:

Probability and Statistics-Statistics-Principles of Counting-Addition and 
Multiplication Principles-Step-by-step multiplication counting principle

1. At least/at most problems: "at least m" is total combinations minus combinations less than m 
(e.g., “at least 3 qualified items” = total − C(n,0) − C(n,1) − C(n,2), formula:
C(n , k)at_least_m = Σ&'(! C(n , i), e.g., probability of at least 2 defective items in 10 = 1 − 
(C(10,0)+C(10,1)) / 210

2. Element distribution problems: same items to different people → use divider method (e.g., 
10 identical balls to 3 people, each gets ≥1: C(9,2) = 36), allowing empty box: 
C(n+k−1,k−1) (e.g., 7 balls into 4 boxes: C(10,3) = 120)

3. Balls into boxes problem: distinguishable balls into distinguishable boxes (m choices per 
ball → mn); indistinguishable balls into distinguishable boxes (divider method); 
indistinguishable balls into indistinguishable boxes (integer partitions, e.g., Stirling numbers)

Principle:

Probability and Statistics-Statistics-Principles of Counting-Combinations
-Combination-based counting problems

Figure 11: Examples of knowledge principles corresponding to specific knowledge points in Math-
Book (3).
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1. Concept of analytical expression: A way to express a function using mathematical 
formula (e.g., uniform motion s = vt, direct proportionality y = kx); may be explicit (e.g., 
y = x³) or implicit (e.g., x² + y² = 1).

2. Types of expressions: Linear (e.g., y = 3x–2), quadratic (e.g., y = x²+2x+1), exponential 
(e.g., y = 2^x), logarithmic (e.g., y = ln x), trigonometric (e.g., y = A sin(ωx+φ)), 
piecewise (e.g., y = {x, x ≥ 0; –x, x < 0}).

3. Determining the expression: Given type, solve for parameters: use method of 
undetermined coefficients (e.g., let y = kx + b, plug in (2,5) and (3,7) → solve for k = 2, 
b = 1); given graph, derive expression using vertex (e.g., parabola with vertex (1,–3) → 
y = a(x–1)²–3, then plug in a point to solve a), or asymptotes (e.g., hyperbola y = k/x → 
determine k); construct expression from conditions (e.g., profit model y = –x² + 50x –
100, or physical law y = A cos(ωt)).

Principle:

Algebra-Functions and Equations-Understanding Functions
-Analytical expression of functions

1. Definition of a sequence: A sequence is a collection of numbers arranged in a specific 
pattern, where each number is called a term, denoted as a1, a2 , a3… (e.g., the natural 
number sequence 1, 2, 3, …)

2. Expression of terms: a1 is the first term (initial term), an is the nth term (e.g., in the 
sequence 2, 4, 6, …, a1 = 2, a2= 4)

3. Methods of representing a sequence: Listing method: directly listing finite terms (e.g., 1, 
3, 5, 7, 9) or infinite terms (e.g., 1, 1/2, 1/3, …); General term formula: using an = f(n) 
(e.g., an = 2n - 1 generates the odd number sequence 1, 3, 5, …); Recursive formula: 
defining a term based on previous terms (e.g., Fibonacci sequence an = a{n-1} + a{n-2} with 
initial values a1 = 1, a2 = 1)

Principle:

Algebra-Functions and Equations-Fundamentals of Sequences
-Definition and representation of sequences

1. True propositions: Statements consistent with facts or logic (e.g., “In an isosceles 
triangle, the base angles are equal” – true, “2+2=4” – true, “The Earth is a planet” –
true); False propositions: Statements that contradict facts or logic (e.g., “1 > 2” – false, 
“The Sun revolves around the Earth” – false, “All prime numbers are odd” – false 
because 2 is an even prime)

2. Truth of conditional propositions: In statements like “If A then B” (A → B), it is false 
only when A is true and B is false; in all other cases, it is true (e.g., “If it rains, the 
ground is wet” is false when it rains but the ground is dry)

3. Compound propositions: Formed by logical connectors like and, or, not (e.g., “2+2=4 
and 3>5” is false, “x>1 or x<0” is true when x=2)

4. Role of counterexamples: A single counterexample disproves a universal statement (e.g., 
“All birds can fly” is disproved by the ostrich)

Principle:

Algebra-Logic-Necessary and Sufficient Conditions
-Definition of true and false propositions

1. Definition of vector: a quantity that has both magnitude (modulus) and direction (such 
as velocity, force), as opposed to scalars (such as temperature, mass). Two elements of 
a vector: magnitude (such as velocity rate) and direction (such as the direction of 
force).

2. Representation of vector: geometrically represented by directed line segments (such as 
the vector from the starting point (") to the end point ($) is denoted by 
AB, algebraically represented by coordinates (such as two-dimensional vector (( =
(3,4)). Symbols of vectors: bold lowercase letters (such as () or symbols with arrows 
(such as *), zero vector is denoted by *) (direction is arbitrary, modulus is 0)

3. Basics of vector operations: addition (parallelogram law or triangle law), subtraction 
(adding opposite vectors), scalar multiplication (changing modulus, direction may be 
reversed)

Principle:

Algebra-Vectors-Concept of vectors

1. In linear algebra, a matrix is a rectangular array of numbers, which can be real 
numbers or complex numbers. Matrices are usually denoted by capital letters, such as A. 
Each number in a matrix is called an element or entry of the matrix.

2. The size of a matrix is determined by its number of rows and columns, typically 
expressed as m×n, where m is the number of rows and n is the number of columns. 
An m×n matrix is a rectangular array consisting of m rows and n columns, with a 
number at each position. A matrix can be expressed as A=(aij)m×n, where aij is an 
element of the matrix, i represents the row index, and j represents the column index.

3. …

Principle:

Algebra-Linear Algebra-Vectors and Matrices-Matrices
-Definition of matrices

1. Definition of a tree: A tree is an undirected graph that is connected. There are no 
cycles in a tree. When a tree has n vertices, it has exactly (n-1) edges.

2. Basic terms for a tree: Root, the starting vertex of the tree, has no parent vertex. Parent 
node, the direct predecessor of a vertex. Child node, the direct successor of a vertex. 
Sibling node, a vertex with the same parent node. Ancestor, all vertices on the path 
from the root to the vertex. Descendants, all vertices from the vertex to the leaves. 
Leaves, vertices with no child nodes. Internal nodes, non-leaf nodes. Depth, the length 
of the path from the root to a vertex. Height, the length of the path from a vertex to the 
farthest leaf.

3. …

Principle:

Algebra- Graph Theory-Tree
-Basic concepts of trees

Algebra

Figure 12: Examples of knowledge principles corresponding to specific knowledge points in Math-
Book (4).
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B.2 MATHBOOK-STANDARD

B.2.1 GEOGEBRA-BASED DIAGRAM GENERATION.

As described in the main text, all diagrams in MathBook-Standard are rendered using GeoGebra,
a dynamic mathematics software that enables precise and reproducible geometric constructions.
GeoGebra supports both interactive design and programmatic generation of diagrams, making it
highly suitable for large-scale dataset creation. In our workflow, each problem is paired with a
high-quality diagram constructed in GeoGebra, ensuring mathematical rigor and visual clarity. For
automated and scalable generation, we leverage GeoGebra’s ability to encode diagrams as scripts
(e.g., XML, as shown in Figure 13), which allows for efficient parameter variation and reproducibility,
but the core advantage lies in GeoGebra’s expressive power and accuracy for mathematical figures.

Compared to general-purpose plotting libraries such as Python’s matplotlib, GeoGebra offers
richer geometric primitives and more precise control over mathematical relationships, supporting
a broader range of problem types and visual styles (Table 6). As shown in Figures 14, 15, and 16,
diagrams generated by GeoGebra exhibit higher fidelity and better alignment with mathematical
conventions, which is essential for both algorithmic evaluation and educational use. It is evident that
the complexity and precision of these diagrams would be difficult to achieve using Python-based
plotting tools alone.

Table 6: Comparison between GeoGebra and Python Plotting tools.

Tool Command Line
Plotting

Interactive
Graphic Editing

Image
Re-editing

Precise Parameter
Control

GeoGebra ✓ ✓ ✓ ✓
Python Plotting ✓ ✗ ✗ Limited

B.2.2 DATASET DIVERSITY AND VARIANT CONSTRUCTION.

Building on the GeoGebra-based pipeline, we systematically construct a diverse dataset as detailed
in the main text. For each knowledge point and principle, a seed problem is designed with a
corresponding diagram. To further enhance diversity, we introduce two types of variants: one-
problem-multi-image (generating multiple diagram instances for the same problem by varying
parameters in GeoGebra) and one-image-multi-problem (curating multiple questions for a single
diagram, each derived from different knowledge points or mathematical principles). Representative
examples of seed problems and their variants are shown in Figure 17– 24, demonstrating the flexibility
and extensibility of our approach.

By leveraging GeoGebra’s capabilities, MathBook-Standard achieves both high-fidelity geometric
representation and systematic dataset expansion, ensuring rich semantic and visual diversity for
mathematical reasoning tasks.
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<command name="Polygon">
<input a0="A" a1="B" a2="C" a3="D" />
<output a0="PolygonABCD" a1="AB" a2="BC" a3="CD" a4="AD" />

</command>

<command name="Prism">
<input a0="PolygonABCD" a1="5" />
<output a0="Prism" a1="E" a2="F" a3="G" a4="H" a5="faceABFE" a6="faceBCGF" 

a7="faceCDHG" a8="faceADHE" a9="faceEFGH" a10="AE" a11="edgeBF" a12="CG" a13="edgeDH" 
a14="edgeEF" a15="edgeFG" a16="edgeGH" a17="edgeEH" />
</command>

XML

GGB

Figure 13: Overview of the GeoGebra interface and part of the corresponding XML script, showing
core commands for defining geometric objects.
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Examples (1)

Figure 14: Overview of a group of GeoGebra-generated images in MathBook (1).

Examples (2)

Figure 15: Overview of a group of GeoGebra-generated images in MathBook (2).
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Examples (3)

Figure 16: Overview of a group of GeoGebra-generated images in MathBook (3).

Example 1

Seed

One-Problem-Multi-Image

One-Image-Multi-Problem

How many triangles are there in the picture?

3. How many angles are there in the picture?

How many triangles are there in the picture?

1. How many triangles are there in the picture?

2. How many line segments are there in the picture?

Figure 17: An example of MathBook-Standard data instance (1).
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Example 2

One-Problem-Multi-Image

One-Image-Multi-Problem

Compare the magnitudes of the fractions
represented by the shaded parts in circles A and B.

3. Compare the size of the fractions represented by the 
blank parts in circle A and circle B.

1. What is the difference between the fractions indicated 
by the shaded areas of Circle B and Circle A?
2. What is the sum of the fractions indicated by the 
shaded areas of Circle B and Circle A?

Seed

Compare the magnitudes of the fractions represented by the shaded parts 
in circles A and B.

Figure 18: An example of MathBook-Standard data instance (2).

Example 3

One-Problem-Multi-Image

One-Image-Multi-Problem

Seed

What three-dimensional geometric solid is generated by 
rotating the figure about the dotted line?

1. What three-dimensional geometric solid is generated 
by rotating the figure about the dotted line?

3. What is the shape of the base of the solid generated 
by rotation?

2. What type of figure represents the side profile of a 
solid generated by rotation?

What three-dimensional geometric solid is generated by rotating the figure about 
the dotted line?

Figure 19: An example of MathBook-Standard data instance (3).
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Example 4

One-Problem-Multi-Image

One-Image-Multi-Problem

What is the Angle between the two straight lines in the 
figure?

3. What is the intercept of the straight line l1?

1. What is the slope of the straight line l1?

2. What type of triangle is formed by the two lines and 
the y-axis in the figure?

What is the Angle between the two straight lines in the figure?

Seed

Figure 20: An example of MathBook-Standard data instance (4).

Example 5

One-Problem-Multi-Image

One-Image-Multi-Problem

What are the in-degree and out-degree of vertex B 
respectively?

Seed

What are the in-degree and out-degree of vertex B respectively?

3. Does a cycle exist in the figure?

1. What are the in-degree and out-degree of vertex A 
respectively?
2. What is the length of the shortest path from C to B?

Figure 21: An example of MathBook-Standard data instance (5).
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Example 6

One-Problem-Multi-Image

One-Image-Multi-Problem

Seed

Determine the monotonically increasing interval of the 
function in the graph.

3. Determine the symmetry points of the functions in the 
graph.

Determine the monotonically increasing interval of the function in the graph.

1. Determine the monotonically decreasing interval of the 
function in the graph.

2. Determine the zero point of the function in the graph.

Figure 22: An example of MathBook-Standard data instance (6).

Example 7

One-Problem-Multi-Image

One-Image-Multi-Problem

Seed

Divide the circles in the following picture into 3 
equal parts. How many are there in each part?

3. If all circles are tightly packed into a square shape, 
how many circles are on the outermost layer?

Divide the circles in the following picture into 3 equal parts. 
How many are there in each part?

1. Divide the circles in the following picture into 2 
equal parts. How many are there in each part?
2. If the circles are arranged in a rectangular grid 
with 3 rows, how many columns are there?

Figure 23: An example of MathBook-Standard data instance (7).
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Example 8

One-Problem-Multi-Image

One-Image-Multi-Problem

Seed
The vector OA can be decomposed into the vectors i
and j shown in the figure. What are the coordinates of 
vector OA?

3. What is the modulus of vector OA?

The vector OA can be decomposed into the vectors i and j shown in the figure. 
What are the coordinates of vector OA?

1. What is the abscissa of vector OA?

2. What is the ordinate of vector OA?

Figure 24: An example of MathBook-Standard data instance (8).
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B.3 MATHBOOK-PRO

As shown in Figure 25, we present a concrete example from MathBook-Pro to illustrate the con-
struction and expansion of problem variants within the three-dimensional difficulty space. The seed
problem, positioned at the origin, focuses on the arc length formula in plane geometry, and involves
knowledge points such as definition of angle, definition of circles, four arithmetic operations of
integers and four arithmetic operations of fractions.

We first demonstrate how the seed problem is expanded along each individual dimension:

Step Complexity: The number of required knowledge points is increased by introducing new
intermediate conclusions as conditions. In this example, the extended variant requires not only the
arc length formula, but also incorporates circumference of a circle and area of a circle as additional
knowledge points. The solution to the new problem depends on the answer to the seed problem,
reflecting a progressive deepening of reasoning.

Visual Complexity: The original diagram is enhanced by adding shaded regions, which increases
the visual and interpretive demands while keeping the core mathematical focus unchanged.

Contextual Complexity: The problem statement is recontextualized from a direct geometric descrip-
tion to a real-world application scenario. Although the narrative becomes more complex, the essential
assessment of the arc length formula remains at the core.

By systematically combining these single-dimension expansions, we further generate multi-
dimensional variants that integrate increased step, visual, and contextual complexity. In total,
starting from the seed problem, we construct 7 variants corresponding to all possible combinations
of the three dimensions. Each new variant is constructed through progressive modifications to both
the problem statement and the accompanying image, resulting in a diverse and interpretable set
of difficulty-controlled problems. The full set of variants and their corresponding dimensions are
summarized in Table 7.

As shown in Figure 26, MathBook-Pro supports the Dynamic Scheduling RL framework by pro-
viding difficulty-controlled problem variants. These structured training samples enable progressive
adaptation across different difficulty levels in a dynamic training process.

Table 7: Difficulty-controlled variants constructed from the seed problem in MathBook-Pro. Each
variant corresponds to a unique combination of step, visual, and contextual complexity.

Variant Step Visual Contextual

Seed - - -

Variant 1 ✓ - -
Variant 2 - ✓ -
Variant 3 - - ✓
Variant 4 ✓ ✓ -
Variant 5 ✓ - ✓
Variant 6 - ✓ ✓
Variant 7 ✓ ✓ ✓

B.4 MATHBOOKEVAL

B.4.1 DATASET CONSTRUCTION AND ANNOTATION PROTOCOL.

To ensure both comprehensive knowledge coverage and rigorous, interpretable annotations for
visual mathematical reasoning, MathBookEval is constructed through a multi-stage, process-oriented
pipeline. We begin by integrating representative samples collected from five open-source benchmarks:
MathVista Lu et al. (2023), MathVerse Zhang et al. (2024a), MathVision Wang et al. (2024), We-
Math Qiao et al. (2024a) and DynaMath Zou et al. (2024), systematically filtering out redundant or
highly similar items to maximize diversity in knowledge point combinations and reasoning patterns.
All problems are re-annotated under unified guidelines, ensuring consistency in annotation style and
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Step
Complexity

Visual
Complexity

Contextual
Complexity

For the farm shown in the figure, if the shaded
area needs to be fully paved with tiles, how much
tile area should be purchased in advance?

As shown in the figure, arc CD is the fence
of a circular farm. Now this fence is to be
used to enclose a regular hexagonal flower
bed. What is the area of the flower bed?

As shown in the figure, arc CD is the fence of a
circular farm. Now the fence needs to be rebuilt. What
length of fencing material should be purchased?

Find the length of the arc
corresponding to the shaded
sector in the figure.

What is the arc
length of CD?

As shown in the figure, arc CD is the fence of a
circular farm. Find the length of the arc fence
corresponding to the shaded area.

Find the area of a circle whose
circumference is equal to the
length of arc CD.

Find the area of the
shaded region.

Figure 25: An example from MathBook-Pro in the difficulty space.

Figure 26: Overview of the Dynamic Scheduling RL training stage with MathBook-Pro.

granularity. For each problem, at least two human experts independently provide a complete, step-
by-step solution, where each step is explicitly decomposed according to the underlying knowledge
point(s) from the unified knowledge system K. This knowledge-point-based decomposition is
fundamental: it enables precise and systematic quantification of reasoning depth, as each reasoning
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Figure 27: Comparison of MathBookEval and open-source benchmarks

step directly corresponds to a specific knowledge point. Only those problems for which the set of
annotated knowledge points at each step is exactly consistent across expert annotations are retained in
the final dataset, ensuring high reliability and objectivity. To address knowledge points and reasoning
depths insufficiently covered by existing benchmarks, additional samples are newly constructed by
human experts following the same process-oriented, knowledge-point-level annotation protocol. As a
result, MathBookEval comprises both collected samples from open-source benchmarks and newly
constructed samples, achieving balanced and comprehensive coverage across mathematical domains
and reasoning complexities, with every annotation step tightly aligned to the relevant knowledge
points for robust reasoning depth modeling.

B.4.2 TASK DIMENSIONS.

MathBookEval is organized along two dimensions, capturing both the diversity of mathematical
knowledge and the depth of reasoning required for problem solving.

(1) Reasoning Dimension: Problems are categorized by the number of reasoning steps required to
reach the solution. Each step is explicitly defined and directly mapped to a specific knowledge point
in the unified knowledge system K. We define three levels: Level 1 (1–3 steps, basic reasoning),
Level 2 (4–6 steps, intermediate reasoning), and Level 3 (7–10 steps, complex reasoning). This
step-by-step annotation based on knowledge points allows for clear and objective quantification of
reasoning depth, enabling detailed analysis of model performance across different levels of reasoning
complexity.

(2) Knowledge Dimension: The 491 knowledge points in K are distributed across 4 top-level
domains and 13 subdomains, all of which are covered in the benchmark. Each problem is annotated
with all the knowledge points involved in its solution, and every reasoning step is aligned with a
specific knowledge point. This enables fine-grained evaluation of model capabilities across various
mathematical topics and educational stages.

B.4.3 DATASET STATISTICS.

Table 8 summarizes the key statistics of MathBookEval. The benchmark contains 1,000 fully
annotated problems, covering all 491 knowledge points in the unified knowledge system. Of these,
600 are sourced from open-source benchmarks and 400 are newly constructed to address coverage
gaps and increase diversity. Problems are distributed across multiple formats, including multiple-
choice and fill-in-the-blank, and span a wide range of reasoning depths and knowledge domains.

As shown in Figure 27, we compare MathBookEval and existing benchmarks. In the right panel, the
y-axis represents the percentage of problems at each reasoning level. Note that for some benchmarks,
the total does not reach 100% because we exclude problems that experts annotate as belonging to
other subjects such as physics, chemistry, or biology, in order to ensure a rigorous comparison. It is
evident from the figure that existing benchmarks contain less than 3% of problems at Level 2 (4–6
steps), and none at Level 3 (7–10 steps). In contrast, MathBookEval substantially supplements these
two categories, providing a more comprehensive evaluation of multi-step reasoning abilities.
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Table 8: Key statistics of MathBookEval.
Statistics Number
Total Problems 1,000

- Open-source Benchmarks 600
- MathVista 150
- MathVerse 150
- MathVision 100
- We-Math 100
- DynaMath 100

- Newly Constructed 400

Knowledge Points Covered 491
- Domains 4
- Subdomains 13

Reasoning Depth
- Level 1 (1–3 steps) 62.0%
- Level 2 (4–6 steps) 30.2%
- Level 3 (7–10 steps) 7.8%

B.4.4 EVALUATION PROTOCOL AND METRICS.

MathBookEval incorporates existing evaluation protocols, including both LLM-as-a-judge and rule-
based approaches. To ensure consistency, MathBookEval adopts the LLM-as-a-judge protocol as
the evaluation rule. Specifically, we adopt the LLM-as-a-judge protocol, following MathVista and
MathVerse by employing GPT-4o as the judge model and reporting overall accuracy as the evaluation
metric. The detailed prompt used for evaluation is shown in Table 9.

Table 9: Prompt templates for evaluation on MathBookEval.
Type Prompt Template

Evaluation
Prompt

Now, we require you to solve a math question. Please briefly describe your thought process
and provide the final answer.
For multiple-choice questions, return the selected option and its content. For direct answer
selection, return only the chosen result. For fill-in-the-blank questions, answer directly.
Question: <Question>
Regarding the format, please answer following the template below, and be sure to include
two <> symbols:
<Thought process>: <<your thought process>>
<Answer>: <<your answer>>

B.4.5 EXPERIMENT SETUP

Details of the Evaluated Models. To evaluate the performance of various multimodal large models
on mathematical tasks, we include a diverse set of recent models in our benchmark. Table 10 lists
the release dates and official sources of all evaluated models. Additionally, Table 11 provides an
overview of their architectural designs to support a comprehensive comparison.

Details of the Model Hyperparameters. For all closed-source models accessed via API, we
adopt the standard generation settings and perform inference on CPUs, with the process typically
completing within a day. For open-source models, inference is conducted on a cluster equipped
with 8 NVIDIA A800-SXM4-80GB GPUs, using the hyperparameter configurations provided in the
official inference examples. If no specific instructions are available, default settings are applied. The
detailed generation parameters are summarized in Table 12 and Table 13.
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Table 10: The release time and model source of MLLMs used in MathBookEval
Model Release Time Source

GPT-4o OpenAI (2024) 2024-05 https://gpt4o.ai/

GPT-4V OpenAI (2023) 2024-04 https://openai.com/index/gpt-4v-system-card/

InternVL2.5-78B (Chen et al., 2024b) 2024-12 https://huggingface.co/OpenGVLab/InternVL2_5-78B

InternVL2.5-8B (Chen et al., 2024b) 2024-12 https://huggingface.co/OpenGVLab/InternVL2_5-8B

Qwen2.5-VL-72B (Bai et al., 2025a) 2025-01 https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct

Qwen2.5-VL-7B (Bai et al., 2025a) 2025-01 https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct

Qwen2.5-VL-3B (Bai et al., 2025a) 2025-01 https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct

LLaVA-OneVision-72B Li et al. (2024) 2024-08 https://huggingface.co/lmms-lab/llava-onevision-qwen2-72b-ov-chat

LLaVA-OneVision-7B (Li et al., 2024) 2024-08 https://huggingface.co/lmms-lab/llava-onevision-qwen2-7b-ov

GLM-4V-9B (GLM et al., 2024) 2024-06 https://huggingface.co/THUDM/glm-4v-9b

Table 11: Model architecture of 10 MLLMs evaluated on MathBookEval.

Models LLM Vision Encoder

GPT-4o - -

GPT-4V - -

InternVL2.5-78B Qwen2.5-72B-Instruct InternViT-6B-448px-V2_5

InternVL2.5-8B internlm2_5-7b-chat InternViT-6B-448px-V2_5

Qwen2.5-VL-72B Qwen2.5-72B-Instruct CLIP ViT-bigG-P14

Qwen2.5-VL-7B Qwen2.5-7B-Instruct CLIP ViT-bigG-P14

Qwen2.5-VL-3B Qwen2.5-3B-Instruct CLIP ViT-bigG-P14

LLaVA-OneVision-72B Qwen2-72B SigLip-so400m-P14-384

LLaVA-OneVision-7B Qwen2-7B SigLip-so400m-P14-384

GLM-4V-9B GLM-9B EVA_02_CLIP-E-P14

B.4.6 ADDITIONAL RESULTS ON MATHBOOKEVAL

Table 14 reports the complete results of all evaluated models on MathBookEval, providing a more
comprehensive perspective on model behavior across both reasoning depth and knowledge-coverage
dimensions. Overall, general-purpose open-source MLLMs exhibit stable performance trends, with
larger models such as Qwen2.5-VL-72B and InternVL2.5-78B demonstrating strong accuracy across
multiple reasoning levels and knowledge categories. In contrast, reasoning-oriented systems (for
example, MM-Eureka-7B) show performance patterns influenced by their reasoning-focused training
pipelines, excelling in certain multi-step inference settings while presenting varied outcomes across
different knowledge domains. These results collectively illustrate how different training paradigms
and objectives shape mathematical reasoning capabilities in complementary ways. Within this broader
landscape, MathBook-7B achieves competitive performance across both reasoning and knowledge
dimensions, reflecting the effectiveness of the structured knowledge design and progressive alignment
strategies introduced in We-Math 2.0.

Furthermore, as shown in Figure 31 to Figure 40, we present the performance of different models on
various subdomains in MathBookEval, where subdomains belonging to the same domain are indicated
with the same color. It can be observed that models generally perform worse on geometry-related
problems, especially in subdomains such as solid geometry and analytic geometry, which involve
higher visual complexity and require more advanced reasoning. In contrast, models tend to achieve
better results on algebra and fundamental skills, particularly in subdomains related to computational
methods.

38

https://gpt4o.ai/
https://openai.com/index/gpt-4v-system-card/
https://huggingface.co/OpenGVLab/InternVL2_5-78B
https://huggingface.co/OpenGVLab/InternVL2_5-8B
https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct
https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct
https://huggingface.co/lmms-lab/llava-onevision-qwen2-72b-ov-chat
https://huggingface.co/lmms-lab/llava-onevision-qwen2-7b-ov
https://huggingface.co/THUDM/glm-4v-9b


2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Table 12: Generating parameters for Open-Source MLLMs.
Model Generation Setup

InternVL2.5-78B do_sample = False, max_new_tokens = 1024
InternVL2.5-8B do_sample = False, max_new_tokens = 1024

Qwen2.5-VL-72B do_sample = False, max_new_tokens = 1024
Qwen2.5-VL-7B do_sample = False, max_new_tokens = 1024
Qwen2.5-VL-3B do_sample = False, max_new_tokens = 1024

LLaVA-OneVision-72B do_sample = False, max_new_tokens = 1024
LLaVA-OneVision-7B do_sample = False, max_new_tokens = 1024

GLM-4V-9B do_sample = False

Table 13: Generating parameters for Closed-Source MLLMs.

Model Generation Setup

GPT-4o "model" : "gpt-4o", "temperature" : 0, "max_tokens" : 1024

GPT-4V "model" : "gpt-4-turbo", "temperature" : 0, "max_tokens" : 1024

Table 14: Full results of different MLLMs on MathBookEval. Acc.: Accuracy; FS.: Foundational
skills; PS.: Probability and statistics; Geo.: Geometry; Alg.: Algebra.

Models Acc. Reasoning Knowledge

Level1 Level2 Level3 FS. PS. Geo. Alg.

Closed-source MLLMs

GPT-4o 50.8 52.8 48.9 41.7 33.8 57.6 44.2 67.2
GPT-4V 42.8 44.0 43.0 31.9 36.8 56.6 33.5 59.4

Open-source (General)

InternVL2.5-78B 51.8 52.5 51.8 45.8 50.0 64.2 42.6 67.6
Qwen2.5-VL-72B 57.1 58.3 56.4 50.0 52.9 58.5 52.1 68.8

LLaVA-OneVision-72B 43.0 44.8 42.0 31.9 38.2 52.8 37.0 53.5
InternVL2.5-8B 37.9 40.7 34.5 27.8 33.8 46.2 31.4 50.0
Qwen2.5-VL-7B 46.7 50.1 43.0 33.3 44.1 58.5 38.8 60.2

LLaVA-OneVision-7B 31.6 34.3 28.0 23.6 36.8 41.5 24.9 41.0
Qwen2.5-VL-3B 36.9 38.7 34.2 33.3 35.3 49.1 29.1 49.6

GLM-4V-9B 22.2 23.7 20.5 16.7 26.5 23.6 18.4 28.9

Open-source (Reasoning)

MM-Eureka-7B 50.0 50.6 51.5 38.9 47.1 52.8 44.0 62.9
R1-VL-7B 38.0 41.9 32.6 27.8 38.2 38.7 32.3 50.4

OpenVLThinker-7B 32.6 33.0 32.6 29.2 45.6 38.7 24.9 43.4
VLAA-Thinker-7B 35.7 38.3 31.9 29.2 46.6 42.5 30.2 41.6

MathBook-7B 50.4 52.0 48.2 45.8 57.4 67.9 40.5 63.3

C MORE DETAILS ON MATHBOOK-RL

C.1 IMPLEMENTATION DETAILS

We use Qwen2.5-VL-7B-Instruct as the base model and conduct all experiments on 8×A800 GPUs.
The training process consists of two stages.
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In the first stage, we perform cold-start supervised fine-tuning (SFT) to help the model develop
explicit awareness of knowledge system and a knowledge-driven reasoning paradigm. The SFT stage
uses a learning rate of 1.0× 10−5, is trained for 1 epoch, and adopts a warmup ratio of 0.1.

In the second stage, we apply dynamic reinforcement learning (RL) to further improve the model’s
generalization ability. For RL, we set the rollout temperature to 1.0 and generate 8 rollouts per sample.
The learning rate is set to 1× 10−6, and the maximum completion length is 1024 tokens. The system
prompt used in this stage is illustrated in Table 15. The reward function combines answer accuracy
(weight 0.9) and response format compliance (weight 0.1). Specifically, we use MathVerify to extract
and compare answers for accuracy, while format compliance ensures the output follows the required
structure.

Table 15: The system prompt template for response generation in the RL stage.
Type Prompt Template

System
Prompt

A conversation between User and Assistant. The user asks a question, and
the Assistant solves it. The assistant first outputs the thinking process in
<think> </think> and then provides the final answer(number, option,
phrase, or LaTeX expression as appropriate) in <answer> </answer> tags.
User: {question} Assistant:

C.2 ADDITIONAL EXPERIMENTAL RESULTS FOR MATHBOOK-3B

Table 16 summarizes the performance of MathBook-3B across multiple benchmarks. Our analysis
yields the following observations.

Table 16: Performance comparison between Qwen2.5-VL-3B and MathBook-3B across benchmarks.
Model MathVista MathVision WeMath MathVerse MathBookEval
Qwen2.5-VL-3B 60.8 21.1 22.9 29.1 36.9
MathBook-3B 63.2 24.3 28.1 32.6 40.2

(1) Consistent improvements across benchmarks. MathBook-3B surpasses the Qwen2.5-VL-3B
backbone on all evaluated datasets, with notable gains on WeMath (+5.2), MathBookEval (+3.3), and
MathVerse (+3.5). These results indicate that the structured data design and training methodology
introduced in We-Math 2.0 remain effective even at smaller model scales, enhancing both multimodal
mathematical reasoning and generalization to diverse problem formats.

(2) Performance gains independent of model size. Despite using a significantly smaller backbone,
MathBook-3B achieves improvements comparable in trend to those observed with MathBook-7B.
This suggests that the benefits of We-Math 2.0 arise from its principled knowledge structure and
training pipeline, rather than relying on large model capacity.

C.3 GENERALIZATION TO TEXT-ONLY MATHEMATICAL REASONING TASKS

To further examine whether the structured knowledge design in We-Math 2.0 transfers beyond the
multimodal setting, we additionally evaluate MathBook-7B on two widely used text-only mathemat-
ical reasoning benchmarks: GSM8K (Cobbe et al., 2021) and MATH-500 Lightman et al. (2023).
As shown in Table 17, MathBook-7B achieves consistent improvements over the Qwen2.5-VL-7B
backbone. Although these datasets differ substantially from the multimodal training distribution, the
gains observed here suggest that the structured knowledge supervision introduced in We-Math 2.0
can support more generalizable reasoning behavior across modalities.

C.4 CASE STUDY

To further illustrate the strengths of our approach, we present several representative case studies
comparing our model with the Qwen2.5-VL-7B baseline across different benchmarks.
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Table 17: Results on text-only reasoning benchmarks.
Model MATH-500 GSM8K

Qwen2.5-VL-7B 66.0 86.2
MathBook-7B 67.2 87.6

Case 1: Conciseness and Reasoning Process. Figure 28 compares the response patterns of our
model and the Qwen2.5-VL-7B baseline on We-Math. Our model produces more concise answers,
with a reduced average response length, while still retaining all necessary formulas and reasoning
steps. This demonstrates that our approach effectively mitigates the issue of overthinking, resulting
in more focused and efficient solutions without sacrificing completeness or mathematical rigor.

Case 2: Spatial Reasoning Enhancement. Figure 29 highlights the performance of our model on
MathVision. Compared to the baseline, which often fails to correctly interpret or solve such problems,
our model (MathBook-7B) shows clear improvements in spatial reasoning. This is particularly evident
in questions requiring the understanding of geometric relationships or positional logic, indicating that
our training strategy significantly enhances the model’s ability to handle spatially complex scenarios.

Case 3: Knowledge-Oriented and Context-Aware Mathematical Reasoning. In Figure 30, we
compare the responses of our model and the Qwen2.5-VL-7B baseline on MathVista. Our model not
only applies the relevant mathematical concepts correctly but also demonstrates improved integration
of mathematical knowledge with real-world problem contexts. This case exemplifies the model’s
strengthened ability to bridge abstract mathematical reasoning and practical application, reflecting
the benefits of our knowledge-oriented and context-aware training paradigm.

Overall, these case studies provide qualitative evidence that our model achieves more concise, accu-
rate, and contextually appropriate reasoning compared to strong baselines, particularly in scenarios
demanding spatial understanding and knowledge-oriented problem solving.

C.5 EXPERIMENT SETUP

C.5.1 DETAILS OF THE EVALUATION.

We evaluate our model on four representative benchmarks: MathVista Lu et al. (2023), Math-
Verse Zhang et al. (2024a), MathVision Wang et al. (2024), and We-Math Qiao et al. (2024b). During
evaluation, we strictly follow the official scoring protocols provided in the respective benchmark
GitHub repositories to ensure fair and consistent comparison. Specifically, we report results on the
testmini split for MathVista, MathVerse, MathVision, and We-Math. For We-Math, we adopt the
main evaluation metric as defined in the original paper, reporting “Score (Strict)” as the primary
metric. For the other benchmarks, we report the average accuracy as the main evaluation result.

C.5.2 DETAILS OF THE BASELINES

We compare our method with a comprehensive set of baselines from three perspectives: closed-
source models (GPT-4o OpenAI (2024), Gemini-1.5-Pro Team et al. (2023)), open-source general
models (Qwen2.5-VL-7B Bai et al. (2025a), InternVL2.5-8B Chen et al. (2023)), GLM-4V-9B GLM
et al. (2024), LLaVA-OneVision-7B Li et al. (2024), and open-source reasoning models (Math-
PUMA-7B Zhuang et al. (2024), URSA-8B Luo et al. (2025), R1-Onevision-7B Yang et al. (2025b),
R1-VL-7B Zhang et al. (2025), MM-Eureka-7B Meng et al. (2025), WeThink-7B Yang et al. (2025a),
VLAA-Thinker-7B Chen et al. (2025), OpenVLThinker-7B Deng et al. (2025)), which enables a
thorough and multi-faceted comparison to highlight the advantages of our approach.

GPT-4o OpenAI (2024): GPT-4o (“o” for omni) is OpenAI’s 2024 flagship multilingual, multi-
modal large language model that accepts text, images, and audio as input for unified cross-modal
understanding. It is designed for broad adaptability and seamless integration of visual and linguistic
information, supporting complex reasoning across modalities and languages.

Gemini-1.5-Pro Team et al. (2023): Gemini 1.5 Pro, developed by Google DeepMind, is a
multimodal model capable of processing text, images, audio, and video inputs, with an extremely
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Now, we require you to solve a multiple-choice math question. 
Please briefly describe your thought process and provide the final 
answer(option). Question: As shown in the diagram, what is the 
arc length of this sector?
Options:
A. 2π; B. 4π;C. 8π; D. No correct answer
Regarding the format, please answer following the template below, 
and be sure to include two <> symbols:<Thought process>: 
<<your thought process>> <Answer>: <<your option>>

Question:
Comparison of MathBook-7B and Qwen2.5-VL-7B on We-Math

4
90°

Response from Qwen2.5-VL-7B:
<Thought process>: The diagram shows a quarter circle (90 degrees) with a radius of 4 
units. The formula for the arc length of a sector is (θ/360) * 2πr, where θ is the angle in 
degrees and r is the radius. For a 90-degree sector, the arc length is (90/360) * 2π * 4 = 
(1/4) * 2π * 4 = π * 4 = 4π. Therefore, the arc length of this sector is 4π.

<Answer>: B.4π

Response from MathBook-7B:
<Thought process>: The arc length of a sector is calculated using the formula 
\\( \\frac{\\theta}{360} \\times 2\\pi r \\), where \\( \\theta \\) is the angle in degrees and 
\\( r \\) is the radius. Here, \\( \\theta = 90^\\circ \\) and \\( r = 4 \\). Plugging in the values, 
we get \\( \\frac{90}{360} \\times 2\\pi \\times 4 = \\frac{1}{4} \\times 8\\pi = 2\\pi \\). 
Thus, the arc length is \\( 2\\pi \\).
<Answer>: A. 2π

Figure 28: Comparison of MathBook-7B and Qwen2.5-VL-7B on We-Math.

long context window (up to 1–2 million tokens). It is optimized for multi-task proficiency and
structured tool integration, enabling analysis of lengthy and diverse content.

Qwen2.5-VL-7B Bai et al. (2025a): Qwen2.5-VL-7B is an open-source vision-language model
with 7 billion parameters, designed to generate both free-form text and structured outputs such
as bounding boxes and JSON. It emphasizes fine-grained visual understanding and multi-modal
alignment, supporting tasks like document analysis and event detection.

InternVL2.5-8B Chen et al. (2023): InternVL2.5-8B is an 8B-parameter open-source multimodal
model that employs progressive scaling and co-training strategies to align its vision and language
components. It incorporates training optimizations and a curated dataset to enhance cross-modal
reasoning and reduce hallucinations.

GLM-4V-9B GLM et al. (2024): GLM-4V-9B is a 9B-parameter multimodal model built on the
GLM series architecture. It integrates visual understanding and language processing capabilities, and
is optimized using large-scale multimodal data. With specialized architectural design and training
strategies, it demonstrates strong performance in multimodal reasoning tasks and is capable of
effectively handling a variety of vision-centric tasks.
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What do you see if you look at the tower, 
which is made up of two building blocks, 
exactly from above?
<image1>
<image2>

Question:
Comparison of MathBook-7B and Qwen2.5-VL-7B on MathVision

Response from Qwen2.5-VL-7B:
To determine what you would see if you looked at the tower from above, we need to analyze
the shapes of the building blocks that make up the tower.
1. The tower consists of two building blocks: a cylinder and a cone.
2. When viewed from above, the cylinder and the cone will appear as their respective two-
dimensional shapes.
- The cylinder, when viewed from above, appears as a circle.
- The cone, when viewed from above, appears as a triangle.
Since the question asks for the shape you would see from above, we need to identify the 
shape that corresponds to the top view of the cone.
The options provided are:
(A) Circle (B) Triangle (C) Square (D) Triangle (repeated) (E) Square
The correct answer is the shape that represents the top view of the cone, which is a triangle.
Therefore, the answer is \boxed{B}.

Response from MathBook-7B:
<think>The top view of the tower, which consists of a cone and a cylinder, is a circle. 
This is because the top surface of the cone is a circle, and the top surface of the cylinder 
is also a circle. Therefore, the top view is a circle.</think><answer>: A</answer>

Figure 29: Comparison of MathBook-7B and Qwen2.5-VL-7B on MathVision.

LLaVA-OneVision-7B Li et al. (2024): LLaVA-OneVision-7B is an open-source model designed
for unified single-image, multi-image, and video understanding. It adopts an AnyRes visual repre-
sentation strategy to enable cross-scenario capability transfer. Trained via a three-stage curriculum,
it performs well across various benchmarks and exhibits emerging capabilities like video-to-video
difference analysis and multi-camera self-driving video understanding via task transfer from images.

Math-PUMA-7B Zhuang et al. (2024): Math-PUMA-7B is a vision-language model focused
on mathematical reasoning with visual inputs, introducing a three-stage curriculum for aligning
textual and visual modalities. The model is optimized for visual math benchmarks and aims to ensure
consistent problem-solving across formats such as text and diagrams.

URSA-8B Luo et al. (2025): URSA-8B is an 8B-parameter multimodal model targeting chain-of-
thought reasoning in visual mathematical problems, trained on large-scale multimodal CoT datasets.
It employs a reward model for stepwise verification, emphasizing both the generation and validation
of reasoning chains for reliable solutions.

R1-Onevision-7B Yang et al. (2025b): R1-Onevision-7B is a 7B-parameter multimodal reasoning
model that converts images into structured textual representations for symbolic reasoning. It is trained
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Please answer the question requiring an integer 
answer and provide the final value, e.g., 1, 2, 3, 
at the end.
Question: An administrator at the Department of 
Motor Vehicles (DMV) tracked the average wait 
time from month to month. According to the table, 
what was the rate of change between August and 
September? (Unit: minutes per month)

Question:
Comparison of MathBook-7B and Qwen2.5-VL-7B on MathVista

Response from Qwen2.5-VL-7B:
<Thought process>: To find the rate of change between August and September, we need to 
calculate the difference in waiting time and divide it by the number of months between 
August and September.
The waiting time in August is 17 minutes.
The waiting time in September is 14 minutes.
The difference in waiting time is:
17 minutes (August) - 14 minutes (September) = 3 minutes
Since there is only one month between August and September, the rate of change is:
3 minutes / 1 month = 3 minutes per month
Therefore, the rate of change between August and September is 3 minutes per month.

Response from MathBook-7B:
<think>To find the rate of change between August and September, we calculate the 
difference in waiting times and divide by the number of months between them. The waiting 
time in August is 17 minutes, and in September it is 14 minutes. The change is \\( 17 - 14 = 
3 \\) minutes. Since the time decreased, the rate of change is \\(-3\\) minutes per 
month.</think> <answer>-3</answer>

Figure 30: Comparison of MathBook-7B and Qwen2.5-VL-7B on MathVista.

on step-by-step multimodal reasoning annotations and refined with reinforcement learning, enabling
precise multi-hop visual-textual inference.

R1-VL-7B Zhang et al. (2025): R1-VL-7B is an open-source 7B vision-language model designed
for stepwise reasoning, applying Step-wise Group Relative Policy Optimization (StepGRPO) for
dense intermediate rewards. This approach improves logical coherence and multi-step problem-
solving, especially in mathematical and logical tasks.

MM-Eureka-7B Meng et al. (2025): MM-Eureka-7B is a vision-language model based on
Qwen2.5-VL-7B, fine-tuned with the MMK12 dataset and a rule-based reinforcement learning
strategy. It is designed for multidisciplinary visual reasoning in math and science, using rule-based
rewards to guide the learning of complex reasoning steps.

WeThink-VL-7B Yang et al. (2025a): WeThink-VL-7B is a 7B-parameter general-purpose vision-
language reasoning model fine-tuned on Qwen2.5-VL-7B via reinforcement learning. It is trained on
the WeThink dataset and adopts a hybrid reward mechanism combining rule-based verification. The
model enhances performance across both mathematical reasoning and general multimodal tasks by
leveraging a scalable multimodal QA synthesis pipeline for diverse data generation and GRPO.
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OpenVLThinker-7B Deng et al. (2025): OpenVLThinker-7B is an open-source model tailored for
complex vision-language reasoning, built by iterating between lightweight supervised fine-tuning
and curriculum reinforcement learning. SFT initially distills chain-of-thought traces from text-
based reasoning models, while RL refines these behaviors via a two-stage curriculum. It achieves
improvements across six benchmarks, outperforming concurrent models with smaller training data.

VLAA-Thinker-7B Chen et al. (2025): VLAA-Thinker-7B is an open-source large vision-
language model optimized for multimodal reasoning, trained via Group Relative Policy Optimization
with a novel mixed reward module. The mixed reward integrates 4 types of rule-based rewards and 1
open-ended reward, avoiding "pseudo reasoning paths" induced by supervised fine-tuning. It achieves
good performance on the open LMM reasoning leaderboard.

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used solely for grammar correction and minor language polishing. The conception,
methodology, experiments, and analysis presented in this paper were entirely designed and imple-
mented by the authors without relying on LLMs.

Figure 31: Detailed performance of GPT-4o across 13 subdomains.

Figure 32: Detailed performance of GPT-4V across 13 subdomains.

Figure 33: Detailed performance of InternVL2.5-78B across 13 subdomains.
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Figure 34: Detailed performance of Qwen2.5-VL-72B across 13 subdomains.

Figure 35: Detailed performance of LLaVA-OneVision-72B across 13 subdomains.

Figure 36: Detailed performance of InternVL2.5-8B across 13 subdomains.

Figure 37: Detailed performance of Qwen2.5-VL-7B across 13 subdomains.
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Figure 38: Detailed performance of LLaVA-OneVision-7B across 13 subdomains.

Figure 39: Detailed performance of GLM-4V-9B across 13 subdomains.

Figure 40: Detailed performance of Qwen2.5-VL-3B across 13 subdomains.
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