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ABSTRACT

Vision-Language-Action (VLA) models have advanced autonomous driving, but
existing benchmarks still lack scenario diversity, reliable action-level annotation,
and evaluation protocols aligned with human preferences. To address these lim-
itations, we introduce DriveAction, the first action-driven benchmark specifi-
cally designed for VLA models, comprising 16,185 QA pairs generated from
2,610 driving scenarios. DriveAction leverages real-world driving data proac-
tively collected by drivers of autonomous vehicles to ensure broad and representa-
tive scenario coverage, offers high-level discrete action labels collected directly
from drivers’ actual driving operations, and implements an action-rooted tree-
structured evaluation framework that explicitly links vision, language, and action
tasks, supporting both comprehensive and task-specific assessment. Our exper-
iments demonstrate that state-of-the-art vision-language models (VLMs) require
both vision and language guidance for accurate action prediction: on average, ac-
curacy drops by 3.3% without vision input, by 4.1% without language input, and
by 8.0% without either. Our evaluation supports precise identification of model
bottlenecks with robust and consistent results, thus providing new insights and a
rigorous foundation for advancing human-like decisions in autonomous driving.

1 INTRODUCTION

Early autonomous driving systems were predominantly designed with a modular architec-
ture (Huang et al., 2021; Wang et al., 2022; Shi et al., 2022; Huang et al., 2023; Shi et al.,
2024), separating perception, prediction, planning, and control into independently optimized com-
ponents. Recently, advances in large-scale multi-modal data and computational power have led to
new paradigms, including end-to-end approaches (Hu et al., 2023; Jiang et al., 2023; Weng et al.,
2024; Li et al.,, 2024; Tian et al., 2024) and Vision-Language-Action (VLA) models (Hwang et al.,
20245 Xu et al., 2024; Zhou et al., 2025a;b), significantly enhancing system generalization and com-
plex task performance. Despite these advancements, current systems still struggle with real-world
diversity and replicating human driving preferences. Accordingly, within the VLA paradigm, com-
prehensive and rigorous evaluation of the entire pipeline is increasingly crucial in both academia
and industry.

Recent benchmarks and datasets represent significant progress, yet they still struggle to capture the
diversity, complexity, and behavioral characteristics of real-world driving. Most existing bench-
marks (Qian et al., 2024; Guo et al., 2024; Nie et al., 2024; Sima et al., 2024) are constructed from
open-source datasets (Dosovitskiy et al., 2017; Caesar et al., 2020; Sun et al., 2020; Mao et al., 2021;
Krasin et al., 2017; Shang et al., 2019), resulting in limited source variety. Typically, these datasets
are designed for object-level perception tasks and thus overlook the contextual richness and human
intent intrinsic to realistic driving decisions. In addition, critical and challenging scenarios—such
as road merges and exits, interactions with pedestrians, and construction zones—remain largely un-
derrepresented, making evaluation results less relevant to practical deployment risks. Furthermore,
the distribution of driver behaviors is highly imbalanced, with simple maneuvers like going straight
dominating the data, while more complex events are insufficiently covered, leading to inadequate
assessment of challenging behaviors.

Existing approaches to action ground truth annotation exhibit several limitations. Some works (Qian
et al., 2024; Guo et al., 2024) do not provide action-level annotations and focus only on perception
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or understanding tasks. Other approaches (Kim et al., 2018; Malla et al., 2023; Sima et al., 2024;
Xie et al., 2025) utilize manually annotated action labels, but such labels are often generated after
driving behavior occurs and therefore do not faithfully reflect real-time driving intent and decisions.
This gap in high-fidelity action labels restricts the reliability and realism of current evaluation.

Regarding the design of evaluation systems, most existing benchmarks do not fully capture the core
logic of driving decision-making. Some works focus primarily on isolated tasks such as video cap-
tioning (Kim et al., 2018), object recognition (Qian et al., 2024), or spatial understanding (Guo
et al., 2024), without systematically covering the entire process from vision to action. For bench-
marks that do address the full decision pipeline (Sima et al., 2024; Xie et al., 2025), a forward logic
is often adopted, starting from perception and proceeding sequentially through prediction, planning,
and action modules. However, this may not adequately represent a goal-driven paradigm that con-
siders dependencies from the perspective of final decisions. As a result, current evaluation standards
may not be closely aligned with realistic human driving decisions, highlighting the need for more
comprehensive and goal-oriented evaluation frameworks.

To address these challenges, we present DriveAction, the first action-driven autonomous driving
benchmark specifically designed for VLA models. Our key contributions are as follows:

* Driver-Contributed Broad-Coverage Driving Scenarios. DriveAction is constructed
from real-world data proactively collected by drivers of autonomous vehicles, which funda-
mentally distinguishes it from existing benchmarks and provides a wide spectrum of both
everyday and challenging driving scenarios. Manual curation guarantees a comprehensive
and representative collection of driving scenarios and actions.

* Human Driving Preference-Aligned Ground Truth. Action labels are collected directly
from real-time driving operations, faithfully capturing human intent at the moment of
decision-making. To align with the output granularity of end-to-end large models, these
labels are discretized into high-level actions, which reflect the categorical nature of hu-
man driving decisions. All labels are manually verified to ensure validity, with erroneous,
unreasonable, or illegal behaviors excluded.

¢ Action-Rooted Tree-Structured Evaluation. DriveAction introduces an action-rooted,
tree-structured evaluation framework, which dynamically determines the required vision
and language tasks based on the target action and enables unified and systematic evaluation
of the V-L-A pipeline. By supplying key scenario information, the framework enables
evaluation within a realistic context and mitigates hallucinated outputs. It supports both
comprehensive and task-specific evaluation, analyzing the effects of vision and language
information on final action decisions and identifying model bottlenecks.

2 RELATED WORKS

2.1 AUTONOMOUS DRIVING MODELS

Autonomous driving was initially approached through modular systems (Huang et al., 2021; Wang
et al., 2022; Shi et al., 2022; Huang et al., 2023; Shi et al., 2024), in which perception, prediction,
planning, and control modules were developed and optimized independently. Subsequently, research
progressed towards end-to-end architectures (Hu et al., 2023; Jiang et al., 2023; Weng et al., 2024;
Li et al.,, 2024) that directly learn mappings from raw sensory inputs to actions. With advances in
vision-language models (VLMs), hybrid approaches have emerged, in which VLMs are integrated
into end-to-end architectures as independent modules that provide low-frequency driving sugges-
tions (Tian et al., 2024). Most recently, the VLA paradigm (Hwang et al., 2024; Xu et al., 2024;
Zhou et al., 2025a;b) has been established, enabling deeper integration of end-to-end models and
VLMs for richer context understanding and greater generalization, further highlighting the growing
need for dedicated and comprehensive evaluation benchmarks.

2.2 LANGUAGE-RELATED BENCHMARKS FOR AUTONOMOUS DRIVING

Existing works can be grouped into four categories. The first focuses on video captioning and ex-
planation, represented by BDD-X (Kim et al., 2018), which links actions with textual descriptions,
and DRAMA (Malla et al., 2023), which uses question-answer annotations to identify risk objects
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and their corresponding causes. The second emphasizes spatial perception. For example, NuSce-
nesQA (Qian et al., 2024) is designed for object-level and multi-modal question answering, while
DriveMLLM (Guo et al., 2024) evaluates spatial and localization capabilities. The third focuses on
general scene understanding, including TextVQA (Singh et al., 2019), Next-qa (Xiao et al., 2021),
and RealWorldQA (xAl, 2024), which evaluate models on text recognition, video behavior compre-
hension, and visual understanding in real-world scenarios. The fourth emphasizes evaluation across
the entire autonomous driving pipeline, including Reason2Drive (Nie et al., 2024), DriveLM (Sima
et al., 2024), and DriveBench (Xie et al., 2025), which use a forward logic starting from perception,
thus insufficiently aligned with goal-driven dependencies and realistic human driving behaviors.

Table 1: Comparison of DriveAction and Existing Benchmarks

Benchmark Scenario Source Label Logic
BDD-X Caption/explanation Self-collected Manual None
DRAMA Caption/explanation Self-collected Manual Chain
NuScenesQA spatial perception nuScenes None None
DriveMLLM spatial perception nuScenes None None
TextVQA general understanding Open Images None None
Next-ga general understanding VidOR None None
RealWorldQA general understanding Self-collected None None
Reason2Drive AD System nuScenes, Waymo, ONCE Open source Chain
DriveLM AD System nuScenes, CARLA Manual Graph
DriveBench AD System DriveLM Manual Graph
DriveAction AD System Driver-contributed Real-time operations Tree

3 DRIVEACTION

Inspired by existing benchmarks, we introduce DriveAction, the first action-driven benchmark
specifically designed for VLA models, leveraging real-world driving preferences. The following
sections provide a comprehensive description of DriveAction. Specifically, Section 3.1 highlights
how driver-contributed and carefully curated data enable extensive scenario coverage and diverse
action representation. Section 3.2 details action labels aligned with human-like decision making,
collected from real-time driving operations and validated through multi-stage review. Section 3.3
introduces the action-rooted, tree-structured evaluation framework, supporting flexible and rigorous
assessment of models across the full V-L-A pipeline.

3.1 DRIVER-CONTRIBUTED BROAD-COVERAGE DRIVING SCENARIOS

As shown in the Source column of Table 1, DriveAction uniquely aggregates real-world data col-
lected by drivers of company-operated autonomous vehicles, in contrast to previous benchmarks
that rely on self-collected or open-source data. Our dataset covers 148 cities and includes records of
the complete lineup of mass-produced vehicles in our deployment. To ensure a comprehensive and
representative collection of driving scenarios and actions, we perform multiple rounds of manual
selection and quality control.

Table 2 summarizes the seven key scenario categories in DriveAction, each paired with represen-
tative actions and concise descriptions to illustrate the coverage and annotation strategy. These
scenarios span a wide range of real-world driving conditions, including ramp and side road merg-
ing/splitting, as well as navigation- and efficiency-driven lane changes. The coverage extends be-
yond typical urban and highway environments to encompass challenging contexts such as complex
intersections, construction zones, congestion, and interactions with vulnerable road users. Each sce-
nario is associated with a variety of fine-grained actions—such as lane changes, deceleration, and
bypass maneuvers—enabling detailed analysis of decision-making across diverse driving situations.

3.2 HUMAN DRIVING PREFERENCE-ALIGNED GROUND TRUTH

DriveAction derives action labels directly from actual driving operations, enabling accurate, real-
time capture of driver intent and decisions. This contrasts with previous benchmarks, which rely on
manual or open-source annotation, as indicated in the Label column of Table 1.
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Table 2: Overview of Driving Scenarios and Action Categories in DriveAction

Scenario Actions Description

On/Off Ramp Forward-left, Forward-right Merge/split at ramps

Main/Side Switch Forward-left, Forward-right Merge/split main and side roads

Navigation Lane Change Lane change left/right Change to the target lane as indicated by navigation

Efficiency Lane Change Lane change left/right Covers overtaking slow vehicles, avoiding stationary vehicles,
and handling construction or congestion

Bypass VRU Bypass left/right For bypassing vulnerable road users

Intersection Left, Right, Straight, U-turn, Stop, Decelerate, For- Turning maneuvers at regular and complex intersections

ward/Backward left/right
Segment Keep Regular cruising scenarios on segments

DriveAction adopts discretized high-level actions as ground truth, which matches the output granu-
larity of end-to-end large models and better reflects the categorical nature of human decisions. For
example, in lane change scenarios, instead of relying on trajectories sampled at high frequency,
DriveAction captures decisions made at key points—such as whether to initiate a lane change and
which direction to take—better matching the lower decision frequency of large models. This design
provides a more suitable and fair evaluation standard for current autonomous driving models.

To ensure the reliability and validity of the action labels, all data undergo multiple rounds of manual
verification, and instances with erroneous, unreasonable, or illegal behaviors are excluded. Specif-
ically, this includes accidental control inputs such as mistaken acceleration or steering, behaviors
inconsistent with the traffic environment such as abrupt stopping without obstacle, and violations of
traffic regulations, including actions like crossing solid lane markings.

3.3 ACTION-ROOTED TREE-STRUCTURED EVALUATION

To establish an evaluation framework that systematically evaluates models across the full spectrum
of real-world driving decisions, we propose an action-rooted, tree-structured evaluation architecture
in DriveAction, which dynamically maps complex driving actions to the required vision and lan-
guage tasks. The integration of rich contextual information ensures that decisions are made within
a complete and realistic environment, and the highly flexible evaluation system supports both com-
prehensive V-L-A evaluation and task-specific evaluation.

3.3.1 TASK DEFINITION

Table | presents a comparison of the evaluation logic between DriveAction and existing benchmarks.
Most current benchmarks either lack an explicit evaluation logic chain or, when such logic is present,
adopt chain- or graph-based structures. DriveAction is the first to introduce an action-rooted, tree-
structured framework as its evaluation logic. By leveraging action-driven tree dependencies, our
evaluation paradigm systematically integrates V-L-A tasks into an extensible framework. This al-
lows for dynamic subtask composition tailored to each action and enables comprehensive decision
evaluation even in complex or long-tail scenarios. Such a structure substantially enhances both the
expressiveness and future-oriented applicability of the benchmark.
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Figure 1: Action-Rooted Tree-Structured Task Architecture in DriveAction
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Figure 1 illustrates the task architecture of DriveAction, which uses the action space as the root,
explicitly defines the corresponding language tasks required for each action, and further maps each
language task to its dependent vision tasks. This hierarchy is organized into three layers: the top
layer consists of action nodes, such as lane change and intersection turning, representing final deci-
sion outputs of the model. The middle layer consists of language tasks, such as navigation following
and traffic light following, which provide scene understanding for each action. The bottom layer
comprises vision tasks, responsible for detecting and recognizing key environmental elements, such
as lanes, traffic signs, and obstacles. Although the evaluation framework is modeled as a dependency
tree descending from actions, the underlying model inference still follows the conventional V-L-A
order. This design offers a systematic and targeted evaluation structure, thus closely matching the
information flow and reasoning processes of real-world autonomous driving systems.

DriveAction comprises 14 independent tasks, including 7 vision tasks and 7 language tasks, as
illustrated in Figure 1. All tasks are evaluated in a question-answering (QA) format, including both
selection and judgment modes. Figure 2 presents the QA distribution across vision, language, and
action levels, ensuring sufficient and representative coverage within each layer of the VLA hierarchy.
For instance, turn actions constitute a significant portion, which aligns with their high frequency in
real-world scenarios. All task definitions and example QA pairs are detailed in the Appendix.
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Figure 2: Distribution of QA Pairs Across Tasks in DriveAction
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Figure 3: Example of the V-L-A Pipeline in Traffic Sign Task

Figure 3 uses the traffic sign task to exemplify the complete V-L-A evaluation pipeline in DriveAc-
tion. The process begins with detecting traffic signs, where the model is required to identify both
their presence and type. Upon successful detection, the model must then interpret whether the sign
is relevant to the current driving context and its own behavior. If the sign is deemed impactful,
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the model is expected to make an appropriate driving decision accordingly. Through this V-L-A
pipeline, DriveAction comprehensively evaluates the model’s ability to transition from low-level
perception to high-level understanding, and ultimately to informed decision-making.

3.3.2 SCENARIO INFORMATION DESIGN

DriveAction incorporates key scenario context into each evaluation prompt, ensuring that models are
assessed under complete and realistic conditions, and mitigating hallucinatory reasoning. Specifi-
cally, three types of scenario information are provided:

* Consecutive Visual Frames: The model is given three consecutive visual frames captured
immediately prior to the decision-making, thus supporting temporal reasoning in dynamic
contexts.

» Navigation Instruction: Directly obtained from the in-vehicle navigation system, these
instructions provide crucial route guidance, upcoming turns, and target lane information,
thus defining clear decision objectives and path planning guidelines.

* Vehicle Speeds: Ego and target vehicle speeds, obtained from onboard sensors, quantify
both the current and desired driving states. As dynamic information unavailable from im-
ages alone, they are essential for lane changes, overtaking, and acceleration decisions.

To assess the impact of scenario information, we examine the lane change task before an intersection
under two conditions: with and without navigation instructions. As shown in Figure 4, the model
reliably selects the correct lane when informed of an upcoming right turn, whereas lacking this guid-
ance, it often makes “hallucinated” decisions misaligned with the driving goal. This highlights the
necessity of scenario information for reliable and context-aware evaluation in autonomous driving.
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Figure 4: Effect of Navigation Information Design on Model Decision Evaluation

3.3.3 FLEXIBLE EVALUATION MODES

The architecture of VLA models requires evaluation methods that measure not only overall end-
to-end performance, but also the effectiveness of each individual task. To this end, DriveAction
introduces a flexible evaluation framework supporting both comprehensive and task-specific assess-
ments. This enables analysis of how vision and language information influence action decisions and
facilitates the identification of model bottlenecks within specific tasks.

The comprehensive evaluation focuses on the model’s final decision outputs, where QA pairs from
upstream vision (V) and language (L) tasks are optionally introduced as textual input for action
decisions. Throughout all evaluations, basic scenario information is consistently provided. Four
evaluation modes are supported:

* Full Pipeline Mode (V-L-A): Provides QA pairs from both V and L tasks, evaluating
action performance under fully informed conditions.

* Vision-Only Mode (V-A): Only QA pairs from V tasks are provided, with no high-level L
information available.

* Language-Only Mode (L-A): Only QA pairs from L tasks are provided, with no high-level
V information available.
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* Uninformed Mode (A): No upstream QA pairs are injected, evaluating the model’s ability
to make reasonable decisions relying purely on internal reasoning and existing knowledge
without high-level external guidance.

By analyzing and comparing the results across these four modes, the framework can systematically
reveal the model’s reliance on different modalities and its generalization and reasoning abilities, thus
supporting in-depth analysis of autonomous driving decision mechanisms.

The task-specific evaluation is conducted for each node in the hierarchical tree structure, provid-
ing fine-grained assessment of model capabilities. This approach yields valuable insights into the
model’s strengths and weaknesses in perception, reasoning, and decision-making skills, such as
lane detection and traffic light recognition (vision tasks), navigation following and traffic rule un-
derstanding (language tasks), as well as concrete driving maneuvers such as lane changes and in-
tersection turns (action tasks). While comprehensive evaluation measures overall decision-making,
task-specific evaluation pinpoints the performance of individual components. Combining both offers
a complete view of model capabilities.

4 EXPERIMENTS

In this section, we evaluate the performance of various VLMs on the DriveAction benchmark under
multiple experimental settings. We present both comprehensive and task-specific evaluations to
provide an in-depth assessment of model capabilities. Additionally, we include experiments with
domain-specific driving models. Further experimental results are provided in the Appendix.

4.1 EXPERIMENTAL SETUP

We evaluate twelve widely adopted VLMs, divided into non-reasoning and reasoning categories.
Non-reasoning models generate answers directly from input without explicit intermediate steps, and
include GPT-40 (Hurst et al., 2024), GPT-40 mini (OpenAl, 2024a), GPT-4.1 (OpenAl, 2025a),
GPT-4.1 mini (OpenAl, 2025a), Claude 3.5 Sonnet (Anthropic, 2024), Claude 3.7 Sonnet (An-
thropic, 2025), and Qwen-Max-Latest (Bai et al.,, 2023). Reasoning models employ step-by-step
reasoning to generate more human-like responses, and include ol (OpenAl, 2024b), 03 (Ope-
nAl, 2025b), Claude 3.7 Sonnet Thinking (Anthropic, 2025), Doubao-1.5-vision-pro-32k (Doubao,
2025), and Gemini 2.5 Pro (DeepMind, 2025). Model performance is measured by accuracy across
all question types. All experiments are implemented using VLMEvalKit (Duan et al., 2024).

To provide further context within the driving domain, we conduct comparative evaluations
against several benchmarks, including BDD-X (Kim et al., 2018), Next-qa (Xiao et al., 2021),
TextVQA (Singh et al., 2019), RealWorldQA (xAl, 2024), and Reason2Drive (Nie et al., 2024).
Since there are currently no open-sourced VLMs specifically finetuned for driving scenarios, we
train two lightweight on-vehicle models with different architectures using proprietary driving data:
one with a non-MOE architecture (0.5B) and the other with an MOE architecture (8x0.4B).

4.2 COMPREHENSIVE EVALUATION

Table 3: Model Performance (%) in Comprehensive Evaluation Modes

Model V-L-A V-A L-A A
Non-Reasoning

GPT-40 88.84 84.72 86.52 81.01
GPT-40 mini 90.37 89.06 86.81 85.16
GPT-4.1 90.35 85.95 87.53 81.71
GPT-4.1 mini 91.43 89.45 88.00 85.72
Claude 3.5 Sonnet 89.36 84.15 8535 80.63
Claude 3.7 Sonnet 86.31 80.80 82.56 80.67
Qwen-Max-Latest 91.32 88.38 89.16 84.33
Reasoning

ol 93.56 90.20 89.67 84.71
03 92.19 86.61 88.66 8223
Claude 3.7 Sonnet Thinking 91.76 86.50 87.92 81.88
Doubao-1.5-vision-pro-32k 91.15 86.90 87.94 80.60
Gemini 2.5 Pro 91.86 86.81 88.93 83.60
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Table 3 reports model accuracies under the four evaluation modes described in Section 3.3.3, inves-
tigating how access to visual and language information affects final action decisions in autonomous
driving. Across the board, all models achieve their highest accuracy in the full pipeline mode (V-L-
A) and the lowest in the uninformed mode (A). Notably, removing either visual or language modality
leads to a consistent decline in performance. Our results reveal that state-of-the-art VLMs require
both vision and language guidance for optimal decision making: on average, accuracy drops by
3.3% without vision input, by 4.1% without language input, and by 8.0% without either.

A closer comparison of different models reveals trends that generally align with their intended de-
sign. Reasoning models typically outperform non-reasoning models, especially in the V-L-A mode,
where models such as ol (OpenAl, 2024b) and 03 (OpenAl, 2025b) achieve the highest accura-
cies (exceeding 92%). However, this advantage does not always hold. In the A mode, some non-
reasoning models perform as well as or better than reasoning models.

4.3 TASK-SPECIFIC EVALUATION

Table 4: Model Performance (%) on Navigation, Efficiency, Dynamic, and Static Tasks

Navigation Efficiency Dynamic Static
Model v L A v L A v L A v L A
Non-Reasoning
GPT-40 66.8 752 782 73.7 84.1 54.8 873 93.8 98.9 87.0 972 933
GPT-40 mini 65.6 71.7 86.0 732 82.1 58.8 83.8 94.3 98.0 78.0 975 923
GPT-4.1 71.3 71.7 827 82.8 85.6 61.1 89.5 96.7 99.4 85.9 99.0 91.3
GPT-4.1 mini 68.3 783 87.0 735 86.6 67.7 86.4 94.9 99.4 84.6 98.7 93.8
Claude 3.5 Sonnet 71.1 715 852 722 83.0 56.0 84.0 874 98.9 84.1 90.4 89.4
Claude 3.7 Sonnet 65.8 71.0 82.7 62.7 72.6 60.8 73.7 732 97.8 79.0 65.2 82.7
Qwen-Max-Latest 64.5 76.2 88.7 78.8 81.5 59.2 88.9 93.5 98.2 89.7 99.0 91.8
Reasoning
ol 67.5 76.8 88.3 772 854 66.4 87.6 93.7 98.7 85.7 98.7 93.8
03 67.9 80.4 87.9 76.5 85.1 65.5 86.3 923 99.0 859 96.0 89.4
Claude 3.7 Sonnet Thinking 70.2 78.7 87.7 72.4 82.1 59.6 82.4 90.6 98.4 84.1 96.2 82.7
Doubao-1.5-vision-pro-32k 68.2 825 88.9 74.6 83.2 58.6 873 95.0 98.2 87.0 98.5 90.9
Gemini 2.5 Pro 70.9 79.6 89.7 759 853 71.1 89.6 92.6 99.5 85.1 97.7 90.4

Table 5: Model Performance (%) on Road Marking, Traffic Light, and Sign Tasks

Road Marking Traffic Light Sign
Model v L A A% L A v L A
Non-Reasoning
GPT-40 76.4 90.4 94.0 56.7 822 65.7 779 80.3 82.0
GPT-40 mini 623 853 93.7 58.0 83.7 88.0 745 67.0 82.0
GPT-4.1 73.1 91.7 93.1 67.2 829 61.4 83.2 87.1 83.1
GPT-4.1 mini 743 874 93.1 443 68.5 69.5 71.7 75.3 80.9
Claude 3.5 Sonnet 70.6 80.4 93.0 65.1 55.0 573 76.8 70.1 83.1
Claude 3.7 Sonnet 66.8 58.2 91.1 40.3 54.6 52.5 53.0 55.8 83.1
Qwen-Max-Latest 74.8 85.3 91.9 51.9 834 82.1 78.9 77.1 85.4
Reasoning
ol 73.8 92.0 92.6 59.3 84.3 68.3 723 81.3 84.3
o3 70.9 83.5 89.9 49.8 61.7 54.8 723 71.8 79.8
Claude 3.7 Sonnet Thinking 68.7 87.4 90.5 54.0 70.0 60.0 68.5 70.9 82.0
Doubao-1.5-vision-pro-32k 82.6 88.0 91.5 56.6 75.4 59.7 82.3 81.2 84.3
Gemini 2.5 Pro 84.3 87.1 87.6 59.0 66.9 57.7 78.9 72.5 84.3

As summarized in Tables 4 and 5, we conduct a detailed task-specific evaluation to analyze model
capabilities across diverse tasks, revealing substantial variability in performance across tasks and
models. For example, in Table 4, models attain higher accuracy on Dynamic and Static tasks, which
may be attributed to the prevalence and clear annotation of such cases in training data. The rela-
tively strong performance on obstacle-related tasks compared to Efficiency tasks further suggests
that current models adopt conservative strategies, favoring collision avoidance over optimizing for
efficiency. In contrast, Navigation tasks remain a persistent challenge: while most models can re-
spond to explicit navigation instructions, their substantially lower scores indicate limited proficiency
in accurate lane localization and comprehensive navigation understanding.

As shown in Table 5, models again exhibit notable task-dependent variation across Road Marking,
Traffic Light, and Sign tasks. Most models demonstrate strong performance on Road Marking
and Sign tasks, whereas accuracy on Traffic Light tasks is consistently lower for several models,
highlighting this area as a persistent bottleneck.
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4.4 DRIVING DOMAIN MODELS EVALUATION

We evaluate domain-specific model performance on DriveAction and several existing benchmarks
using the two proprietary on-vehicle models described above. To ensure fair comparison, the aver-
age score (0—100) across all questions is reported for each benchmark as a unified metric. As shown
in Table 6, DriveAction reveals the most pronounced difference between models, while other bench-
marks show only minor changes or decreases, indicating varying sensitivity to model improvements.

Table 6: Overall Performance of Driving Models Across Benchmarks

Benchmark Non-MOE (0.5B) MOE (8 x0.4B) Score Difference
Reason2Drive 78.87 67.75 —11.12
BDD-X 52.81 50.11 —2.70
TextVQA 39.04 41.30 +2.26
RealworldQA 51.64 54.24 +2.60
NextQA 55.02 59.23 +4.21
DriveAction 67.40 79.78 +12.38

Tables 7 and 8 show task-specific results for the driving models. The MOE model consistently
outperforms the non-MOE model on most tasks, especially in Navigation_L, Navigation_A, and
Dynamic_L, with the exception being Traffic_Light_V. These gains are due to the MOE model’s
better interpretation of navigation instructions and dynamic risks, while the non-MOE model tends
to default to ‘keep lane‘ and underestimate obstacles. Importantly, despite the limited parameter
scale, our on-vehicle models perform comparably to public generalist VLMs on most tasks.

Table 7: Driving Model Performance (%) in Task-Specific Evaluation (I)

Navigation Efficiency Dynamic Static
Model v L A v L A A\ L A \% L A

Non-MOE (0.5B)
MOE (8 x0.4B)
Score Difference

533 433 51.6
65.2 75.3 89.0
+11.9 +32.0 +37.4

55.9 57.6 38.1
71.6 76.6 52.7
+15.7 +19.0 +14.6

75.3 64.2 93.6
80.8 86.7 96.9
+5.5 +22.5 +3.3

59.4 76.7 76.2
78.0 96.9 89.3
+18.6 +20.2 +13.1

Table 8: Driving Model Performance (%) in Task-Specific Evaluation (II)

Road Marking Traffic Light Sign
Model \ L A v L A v L A
Non-MOE (0.5B) 55.7 68.9 88.1 56.8 733 79.3 41.9 53.1 579
MOE (8 x0.4B) 66.3 83.8 94.8 442 86.5 95.3 522 54.6 68.4
Score Difference +10.6 +14.9 +6.7 -12.6 +13.2 +16.0 +10.3 +1.5 +10.5

We further analyzed the unexpected performance drops on Reason2Drive (Nie et al., 2024) and
BDD-X (Kim et al., 2018). For Reason2Drive (Nie et al., 2024), declines are mainly due to am-
biguous or mislabeled questions about vehicle presence or position. For BDD-X (Kim et al., 2018),
inconsistencies between scene descriptions and annotations in causal reasoning tasks, especially
with traffic lights, negatively affect scores. These issues underscore limitations in question clarity
and annotation quality in existing benchmarks.

5 CONCLUSION

In summary, we present DriveAction, the first action-driven benchmark for VLA models, introduc-
ing: (1) a broad-coverage driving dataset collected by drivers of autonomous vehicles; (2) human
driving preference-aligned ground truth, with action labels from real-time driver operations and
manual verification; and (3) an action-rooted, tree-structured evaluation framework for comprehen-
sive, task-specific assessment. Our experiments demonstrate that model performance is highest
when both visual and language inputs are provided, and drops when either modality is removed.
DriveAction exhibits greater sensitivity and fine-grained discrimination between models compared
to existing benchmarks. In future work, we aim to analyze model driving styles and support person-
alized model recommendations to better meet individual user needs.
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ETHICS STATEMENT

All authors have carefully read and fully abide by the ICLR Code of Ethics. We confirm that this
submission adheres to the highest standards of research integrity, fairness, and transparency.

Data Privacy and Ownership: The data used in this study were collected exclusively by company-
operated vehicles and are solely owned by our company. No user or third-party data, personal infor-
mation, or privacy-sensitive materials are involved, and the dataset does not contain any personally
identifiable information from users. If externally captured images happen to contain personal infor-
mation such as faces or license plates, these elements are strictly anonymized in accordance with all
relevant regulatory requirements prior to any storage, processing, or analysis.

Human Annotation and Labor Practices: All human annotators who contributed to dataset label-
ing and verification were officially employed by our company through signed formal employment
contracts. Their salaries were set above the legally mandated minimum wage in our region, and all
annotators received benefits and protections in strict accordance with local labor laws and company
regulations.

To the best of our knowledge, there are no conflicts of interest or other ethical issues associated with
this work. We are committed to ongoing compliance with all relevant legal, institutional, and ethical
guidelines as stipulated by the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our benchmark. A detailed descrip-
tion of the data content and structure is provided in the supplementary materials, where a sample
JSONL file is included. We will publicly release the entire dataset and related resources upon ac-
ceptance and the conclusion of the anonymity period, enabling researchers to fully reproduce and
build upon our results.

LLM USAGE STATEMENT

LLMs were utilized in two aspects of this work. First, LLMs assisted in refining and optimizing
the writing of the manuscript, including language polishing and structural adjustments. Second,
LLMs played a role in generating QA pairs within the benchmark, following a controlled process
and manual verification to ensure quality and accuracy. At all stages, the authors maintained full
responsibility for the content and integrity of the work. All outputs from LLMs were thoroughly
reviewed, curated, and validated by the authors.
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A  DATASET STRUCTURE AND ACCESS

This section presents a complete description of the dataset structure and all its fields:

question_slice_id: The unique identifier for a slice. Multiple related questions may corre-
spond to the same slice and share this ID.

qa_l0: The primary task category of the question, corresponding to one of the three modal-
ities: Vision, Language, or Action.
ga_l1: The secondary task category of the question, specifying the concrete sub-task within
the V-L-A categorization (e.g., Navigation Position).
question_category: The type of question, which can be either choice_questions or
true_false_gquestions.
content_cn / content_en: The question and answer content in Chinese and English, respec-
tively:
— question: The question text.
— options (only for choice_questions): All available options and their correspond-
ing texts.
— answer: The standard answer. For choice_questions, this is the option label; for
true_false_questions,itis True orFalse.
image_0, image_1, image_2: Three consecutive visual frames captured immediately prior

to the decision-making moment, providing temporal context for dynamic scene understand-
ing.

B TASK SPECIFICATIONS AND QA EXAMPLES

B.1 DETAILED TASK SPECIFICATIONS

The benchmark includes the following tasks, each defined in the tree-structured task architecture
introduced in the main text, with a specific evaluation focus as described below:

Navigation Position: Concerns accurate localization of the ego vehicle within the current
road structure, such as determining the exact lane and corresponding lane direction.

Navigation Following: Focuses on understanding navigation instructions, including
whether the vehicle is in a navigation-recommended lane and the potential for missed ma-
neuvers due to lane changes or maintenance.

Efficient Route Detection: Relates to the assessment of accessibility and suitability of the
ego and adjacent lanes in terms of current traffic conditions.

Efficient Route Following: Explores how lane accessibility and route conditions impact
the ego vehicle’s driving decisions and travel efficiency.

Dynamic Object Detection: Deals with identifying the position, type, and motion of dy-
namic obstacles, such as vehicles or pedestrians, present in the scene.

Avoid Dynamic Collision: Concerns the ability to identify whether dynamic obstacles
pose a potential safety risk to the ego vehicle, with a focus on avoiding collisions.

Static Object Detection: Addresses identification of the position and type of static obsta-
cles, such as road facilities or fixed barriers.

Avoid Static Collision: Relates to determining the potential safety risk posed by static
obstacles, ensuring robust static collision avoidance.

Road Marking Detection: Focuses on identifying road markings, including lane lines,
crosswalks, stop lines, and directional arrows.

Road Marking Following: Examines the understanding of road markings and their influ-
ence on the ego vehicle’s driving behavior.

Traffic Light Detection: Involves detecting the presence of traffic lights, as well as deter-
mining their number, types, and relevant directions in the scene.
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 Traffic Light Following: Examines how recognized traffic light states affect the ego vehi-
cle’s passage through intersections, including appropriate stop or go actions.

 Traffic Sign Detection: Involves recognizing the contents of traffic signs and localizing
their positions within the scene.

 Traffic Sign Following: Addresses whether recognized traffic sign information should
influence the ego vehicle’s driving behavior.

B.2 REPRESENTATIVE QA EXAMPLES

All questions for each task are first generated as candidate QA pairs using a two-stage prompting
framework with large language models (LLMs), and are subsequently screened by human annota-
tors for validity. In the first stage, the LLM analyzes the scenario—Ileveraging key ground-truth
attributes—to produce a structured scene report and assess whether specific environmental factors
affect the ego vehicle’s behavior. Based on this analysis, the second stage involves generating tar-
geted, context-aware QA pairs. Table 9 presents a representative QA example for each task type,
including a sample question, its corresponding answer, and an illustrative image.

Table 9: Representative QA examples for each task in the benchmark

Task

Question

Answer

Image

Navigation
Position

102 meters ahead, the navigation indicates a right
turn. There are two lanes ahead, with the lane at-
tributes from left to right being: straight + left turn,
straight + right turn. Please drive in the rightmost
lane. What is the attribute of the current lane?

A: Straight + Left Turn

B: Straight + Right Turn

C: Left Turn Only

D: Right Turn Only

Navigation
Following

104 meters ahead, the navigation indicates to pro-
ceed to the front right. There are four lanes ahead,
with lane attributes from left to right being: bus
lane, straight, straight, and right turn. Please drive
in the rightmost lane. If your vehicle continues in
the current lane, you will not be able to follow the
navigation instructions smoothly.

True

Efficient
Route
Detection

Please judge based on the image: There is a large
vehicle traveling in the lane to the right of your car,
which may affect the space available for your car
to change lanes to the right.

True

Efficient
Route
Following

As shown in the figure, the current speed of the ve-
hicle is 8.61 km/h, while the ideal speed is 30.0
km/h. Based on the information in the image,
which of the following best explains the difference
between the current speed and the ideal speed?

A: There are no vehicles in front of the car, and the
road is clear

B: The car is going downhill and needs to slow
down

C: There are vehicles in front of the car, causing
the actual speed to be lower than the ideal speed
D: The car is passing through a tunnel with a lower
speed limit
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Table 9 — Continued from previous page

Task Question Answer Image
Which of the following is a dynamic obstacle actu-
ally present in front of your vehicle during a right
Dynamic turn? . L
Obicct A: An e}ectrlc two-wheeler crossing in front of A
jec
Detection your vehlcle. .
B: A pedestrian walking on the crosswalk
C: A white van parked in the left lane
D: A taxi following behind your vehicle
Based on the image, while making a left turn,
which of the following is the most important po-
tential dynamic safety risk factor at the current in-
tersection that requires special attention?
Avoid A: Oncoming vehicles suddenly accelerating
Dynamic through the intersection
Collision B: Motor vehicles near the zebra crossing on the
right may cross into the vehicle’s left-turn path
C: A truck parked on the left side of the road sud-
denly starting to move
D: Changes in the traffic light signal in the distance
Is there any static obstacle blocking the adjacent
Stati lane to the left of the current lane of your vehicle?
tatic - .
Object A: There isa guardrail
Detection B: There is a ﬂowqr bed
C: There is no static obstacle
D: There is a construction barrier
‘What impact do the presence of the curb and green-
belt on the right side of your vehicle have on mak-
. ing a right turn?
ét\;(;lg A: You can drive onto the sidewalk at w.ill B
Collisi B: You .need_ to be careful to stay within the lane
ollision
and avoid driving over the curb
C: You can cross the curb to make a right turn
D: You can temporarily park on the greenbelt
As shown in the figure, what type of lane line is
between the current lane and the adjacent lane on
Road the left?
Marking A: Solid line A
Detection B: Dashed line
C: Double solid line
D: No lane line
As shown in the figure, there is a central dividing
line on the left side of the current lane. What im-
pact does the presence of this dividing line have on
the driving behavior of your vehicle?
R A: You may change lanes across this dividing line , \
oad .
Marking at will . D
Followi B: You may temporarily use the other lane to over-
ollowing

take

C: You may make a U-turn under any circum-
stances

D: You should stay within your own lane and must
not cross this dividing line
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Table 9 — Continued from previous page

Task Question Answer Image

The navigation indicates a right turn. As shown in
the figure, please determine the type of traffic sig-
nal ahead in your current lane and the directions it
controls. Choose the option that best matches the
actual situation.
Traffic A: A left-turn arrow signal and a straight-through
Light circular signal, controlling the left-turn and straight B
Detection directions respectively
B: A single circular signal controlling all directions
C: Three circular signals, controlling left-turn,
straight, and right-turn directions respectively
D: Only a straight-through circular signal, control-
ling both straight and right-turn directions

The navigation indicates a left turn. The traffic

Eaf&c light shown in the picture indicates that the vehi- False
g cle should turn left immediately. Is this statement
Following
correct?
In this scenario, what does the sign located on the
. . ; N
Traffic right edge of the road remind vehicles of?
. A: No entry
Sign ; . B
Detection B: Construction
C: School zone
D: Detour indication
When driving through a busy area, is it necessary to
pay extra attention to pedestrians on the roadside?
A: Yes, because the sign warns to watch out for
Traffic pedestrians
Sign B: No, because there are no warning signs on this A

Following  section
C: Only necessary when there are many vehicles
D: No special attention is needed because the speed
is low

C EVALUATION AND CASE STUDY

C.1 COMPARATIVE RESULTS AND ANALYSIS

Figure 5 presents a radar chart summarizing the decision-making performance of various VLMs
across six distinct task categories: Navigation, Efficiency, Dynamic, Static, Road
Marking, Traffic Light, and Sign. This visualization enables a direct comparison of model
capabilities and highlights their strengths and weaknesses across different task categories.

As shown in Figure 5, VLMs achieve strong and consistent decision-making performance on the
Dynamic, Static, and Road Marking categories, with scores that are both high and tightly
clustered across different models, and most results in these first-tier categories are above 90%. Per-
formance in the Navigation and Sign categories is slightly lower, generally ranging from 80%
to 90%, and results remain stable and relatively concentrated, indicating that most VLMs handle
these tasks with reasonable reliability.

In contrast, the Ef ficiency category demonstrates greater performance variability and generally
lower scores, typically in the range of 50% to 70%, suggesting that these tasks are more difficult
for existing VLMs. The Traffic Light category displays the largest spread among all models,
with the highest and lowest scores differing by 35.5%, underscoring this as a particularly challenging
area.

17



Under review as a conference paper at ICLR 2026

Navigation
100.00%

90.00% _g

Sign Efficiency

70.00% GPT-40
GPT-40 mini
GPT-4.1

GPT-4.1 mini

60.00%
50.00% —o—Claude 3.5 Sonnet
Claude 3.7 Sonnet
40.00% ——Qwen-Max-Latest

—o—01

—o—03

Traffic Light » Dynamic

—o—Claude 3.7 Sonnet Thinking
o—Doubao-1.5-vision-pro-32k

——Gemini 2.5 Pro

Road
Marking

Static

Figure 5: Model Performance (%) on Action Across Task Categories

C.2 COMPREHENSIVE EVALUATION RESULTS: CASE STUDY

To further investigate the impact of incorporating vision and language information on model perfor-
mance, we conduct a case study focusing on GPT-4.1 (OpenAl, 2025a). As shown in comprehensive
evaluation results, all models achieve their highest accuracy in the full pipeline mode (V-L-A) and
the lowest in the uninformed mode (A). Based on this observation, we selected representative exam-
ples from various tasks where the model answered correctly under the V-L-A mode but failed with
the A mode. These cases allow us to analyze in detail how the integration of vision and language
information helps the model arrive at the correct answers and improve overall performance.

Table 10, Table 11, Table 12, and Table 13 present representative examples from the efficiency, nav-
igation, traffic light, and road marking tasks, illustrating the impact of incorporating vision and lan-
guage information on model performance. Each row in the table includes the input image (Image),
input question (Question), relevant vision and language context (V&L Info), the ground-truth an-
swer (Ans), the model’s prediction under the A mode (Pred-), and the prediction under the V-L-A
mode (Pred+).

The case study reveals several consistent patterns in model predictions when vision and language in-
formation are absent from the input. For efficiency and navigation tasks, the model tends to maintain
the current lane by default, often overlooking construction zones, drivable areas, or the distinction
between navigation and non-navigation lanes unless explicit visual or contextual cues are given. In
the traffic light task, the model generally opts to stop and wait at intersections, showing limited
ability to interpret the specific direction indicated by the light or discern its current signal state with-
out additional information. For road marking scenarios, the model frequently chooses to change
lanes in the navigation-indicated direction, neglecting lane markings or whether it is already in the
correct lane; when obstacles are present, it is more likely to choose to slow down and wait, even
in cases where overtaking would be permitted by the lane markings. These observations highlight
the model’s dependence on explicit vision and language signals to accurately understand and act in
complex driving situations.
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Table 10: Comprehensive Evaluation Examples on Efficiency Task (w/ & w/o V&L Info)

Image

Question

V&L Info

Based on the information in the image,
what driving action and reasoning should
the vehicle take in the current scenario?
A: Continue straight, because the road
ahead is clear

B: Change to the left lane, because the
left lane is wider

C: Change to the right lane, because the
right lane is unobstructed and passable
D: Stop and wait, because there is a red
light ahead

There are construction
obstacles in front of the
car.

It is necessary to keep
careful driving and proper
distance when the vehicle
is about to enter the ramp.

Based on the image, please deter-
mine which driving behavior the vehicle
should adopt in the current scenario and
explain the reason.

A: Keep going straight, as there are no
vehicles blocking ahead

B: Change to the right lane, as the right
lane is more open

C: Change to the left lane, as the left lane
is more open and helps improve traffic
efficiency

D: Stop immediately, as there is an ob-
stacle ahead

There are vehicles in the
left lane, but the distance
is far and there is plenty
of traffic space.

There are vehicles in
front of the car, and the
left lane is relatively
smooth.

As shown in the figure, the current speed
of the vehicle is 80.78 km/h, and the
ideal speed is 100.0 km/h. Given the cur-
rent road conditions, which driving be-
havior should the driver adopt?

A: Keep going straight, as the road ahead
is clear

B: Change lanes to the left to avoid the
obstacle

C: Change lanes to the right to avoid the
construction area ahead

D: Slow down and stop, waiting for the
road ahead to clear

The front lane is closed by
construction facilities and
cannot continue to pass.

The right lane is clear,
providing  safe  lane-
changing space for the
self-vehicle.

Table 11:

Comprehensive Evaluation Examples on Navigation Task (w/ & w/o V&L Info)

Image

Question

V&L Info

155 meters ahead, the navigation indi-
cates a left turn. There are five lanes
ahead, with the lane attributes from left
to right being: left turn + U-turn, re-
versible lane, straight, straight, and bus
lane. You are instructed to use the left-
most lane. What should you do now to
successfully follow the navigation?

A: Stay in the current lane

B: Change to the right lane

C: Change to the left lane

D: Enter the bus lane

The allowed driving direc-
tion of the lane where the
current vehicle is located
is straight ahead.

The vehicle’s current
lane is not a navigation
lane.

Ans  Pred- Pred+
C A C
C A C
C B C
Ans  Pred- Pred+
C A C
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Table 11 — Continued from previous page

Image Question V&L Info Ans  Pred- Pred+
83 meters ahead, the navigation indicates
a right turn. There are two lanes ahead,
with the lane attributes from left to right
being: left turn, straight + right turn.
Please use Fhe nghlmogt lane. In the cur- The lane attribute of the
rent scenario, what action should the ve- X .
hicle take? current vehicle lane is left
A: Stay in the current lane without turn. C A C
changing direction .
B: Change to the left lane to enter the The ct{neqt lane s
left-turn lane not a navigation lane.
C: Change to the right lane to enter the
straight + right-turn lane
D: Stop at the current position and do not
choose any lane
83 meters ahead, the navigation indicates
to proceed towards the right front. There
are four lanes ahead, with lane attributes
from left to right being: straight, straight, =~ The lane attribute of the
straight, right turn. You should use the current vehicle is straight
rightmost lane. If you need to choose  ahead.
L . . S C B C
the navigation lane, in which direction
should you change lanes? The current lane is
A: Change lanes to the left not a navigation lane.
B: Stay in the current lane
C: Change lanes to the right
D: Stop and wait
Table 12: Comprehensive Evaluation Examples on Traffic Light Task (w/ & w/o V&L Info)
Image Question V&L Info Ans  Pred- Pred+
The na\.llgauon.mdlcales a left Furn. As The signal lights in front
shown in the picture, which driving ac-
. . of the current self-lane
tion should the vehicle take? .
. . include left-turn arrow
A: Follow the left turn signal and imme- . .
. . . lights and straight-ahead
diately turn left through the intersection round liehts A C A
B: Maintain current speed and go straight gnts.
through the intersection At present our own
C: Stop and wait at the intersection P 5 y X
. g vehicle can’t go straight
D: Immediately turn right onto the road . .
on the right through the intersection.
The navigation indicates a direction to
the rear right, as shown in the figure. = The type and control
Considering the current traffic lights and ~ direction of the traffic
the intersection situation, how should  light in front of the lane at
your vehicle proceed in compliance with  the current intersection is
the regulations? a round light, which con-
A: Immediately turn left into the inter-  trols the straight direction. B D B

section

B: Immediately turn right into the inter-
section and pay attention to the situation
at the intersection

C: Continue straight through the inter-
section

D: Stop and wait before the intersection

At present, your own
car can turn right directly
through the intersection
on the premise of ensuring
safety.
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Table 12 — Continued from previous page

Image Question V&L Info Ans  Pred- Pred+
At present, the types
The navigation indicates a left turn. As ?)[fldtrafcflfz:n[];?lhtsdli]:thlr(:):i
shown in the picture, how should your of the selfﬁane are left
vehicle proceed in accordance with the o S
regulations? turnfstralght round !1ghts
A: Follow the left turn signal and imme- a;ﬂ;f?;;f&ﬁgg;iﬁ:{
diately turn left to pass through the inter- . .
section and straight-ahead direc- A D A
B: Maintain your current speed and go tions respectively.
straight through the intersection
C: Immediately turn right onto the road At pres em,f the t~rafﬁc
on the right lights _in front of the
D: Stop and wait at the intersection self—dr}v%ng lan§ allow the
self-driving vehicle to turn
left.
Table 13: Comprehensive Evaluation Examples on Road Marking Task (w/ & w/o V&L Info)
Image Question V&L Info Ans  Pred- Pred+
The navigation indicates a left turn, as There s a lgft
- . turn+straight  arrow  in
shown in the picture. How should the ve- H .
X . L the road sign at the inter-
hicle be driven properly in this situation? section in front of the car
A: Change to the left lane and then turn :
left - .
B: Turn left while staying in the current The roa@ sign n front B A B
lane of the intersection can
C: Change to the right lane and then turn help the driver to Ju.dge
left \x{]hel{l;r 'the . 've':hlc'le
) should continue driving in
D: Make a U-turn the current lane.
The navigation 1nd{cates a r'lght turn. There are lane arrows and
How should the vehicle be driven prop- lane li h di
erly in this situation? fane 1nfes on the ground in
A: Stay in the current lane, slow down, ront of the car.
observe the intersection, and then turn . .
. The road marking line
right between the right lane and A ¢ A
B: Change to the left lane and then turn g
right the own lane_means that
C: Change to the right lane, enter the tc}}llean():/g n‘e/se}i]rlli:)elh‘éalznﬁr
rightmost lane, and then turn right lane it will g
D: Go straight through the intersection :
As shown in the figure, the current speed
of the vehicle is 25.71 km/h, and the
ideal speed is 30.0 km/h. Given the cur- ~ There are obstacles in
rent road conditions, what driving action ~ front of the car, and the
should the vehicle take? traffic on the right side is
A: Keep going straight, as the road ahead ~ limited, but the traffic on
is clear the left side can pass. C D c

B: Detour to the right, as there is more
space on the right side

C: Detour to the left, as there are no ob-
stacles on the left and it can improve traf-
fic efficiency

D: Stop and wait for the obstacle ahead
to move away

The  current  driving
state of the vehicle is to
keep driving in a straight
line in the current lane.

C.3 TASK-SPECIFIC EVALUATION RESULTS: CASE STUDY

To gain deeper insights into the models’ decision-making process across different driving scenarios,
we conduct a case study based on task-specific evaluation using GPT-4.1 (OpenAl, 2025a). By
analyzing representative examples from each task, we aim to understand the patterns and limitations

in the model’s predictions when handling real-world vision, language, and action challenges.

Table 14, Table 15, Table 16, Table 17, and Table 18 present representative examples from the
navigation, efficiency, dynamic, road marking, and traffic light tasks respectively. Each row in the
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table includes the input image (Image), the task type (Type),input question (Question), the ground-
truth answer (Ans), and the model’s prediction (Pred).

For the navigation task, we observe that while performance on the vision and language tasks is
relatively lower, the accuracy in the action task remains high. As shown in Table 14, that even when
the model is unable to accurately identify the vehicle’s current lane, it can often infer the correct
target lane by leveraging information from the navigation broadcast and the provided options.

Table 14: Task-specific Evaluation Examples on Navigation Task (Vision, Language, Action)

Image Type Question Ans Pred

83 meters ahead, the navigation indicates a right
turn. There are two lanes ahead, with lane attributes
from left to right being: left turn, straight + right
turn. Please use the rightmost lane. What is the
Vision lane attribute of your current lane? B A
A: Straight + Right Turn
B: Left Turn
C: Straight
D: Right Turn

83 meters ahead, the navigation indicates a right
turn. There are two lanes ahead, with the lane at-
tributes from left to right being: left turn, straight +
right turn. Please use the rightmost lane. Is a right
Language turn allowed from the rightmost lane? A A
A: Right turn is allowed
B: Only straight is allowed
C: Only left turn is allowed
D: Right turn is not allowed

83 meters ahead, the navigation indicates a right
turn. There are two lanes ahead, with the lane at-
tributes from left to right being: left turn, straight +
right turn. Please use the rightmost lane. In the cur-
rent scenario, what action should the vehicle take?
A: Stay in the current lane without changing direc-
tion

B: Change to the left lane to enter the left-turn lane
C: Change to the right lane to enter the straight +
right-turn lane

D: Stop at the current position and do not choose
any lane

Action

In the efficiency task, we note that despite the model’s strong performance on vision and language
tasks, it may still fail to choose the correct action. Examples in Table 15 demonstrate that, although
the model can correctly identify drivable areas that improve traffic flow, it sometimes conservatively
opts to stay in the current lane rather than change lanes for greater efficiency.

Table 15: Task-specific Evaluation Examples on Efficiency Task (Vision, Language, Action)

Image Type Question Ans Pred

Based on the image, assess the traffic conditions in
the lane to the left of your vehicle. Which of the
following descriptions best matches the current sit-
uation?
A: There is a vehicle in the left lane, but it is far
away and there is ample space to pass

Vision B: There are several vehicles closely lined upinthe A A
left lane, making it impossible to change lanes
C: The left lane is completely blocked by obstacles
and cannot be used
D: There is a large truck very close to your vehi-
cle in the left lane, making it impossible to change
lanes

Continued on next page
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Table 15 — Continued from previous page

Image Type Question Ans Pred

Please analyze the current driving environment
of your vehicle based on the image information.
‘Which of the following descriptions is the most ac-
curate?

A: There are no vehicles in front of your car, and
Language traffic is smooth B B
B: There is a vehicle blocking in front of your car,

and the left lane is relatively clear

C: The right lane next to your car is completely
empty, suitable for lane changing

D: Your car is surrounded by vehicles in front and
behind, making lane changing impossible

Based on the image, please determine which driv-
ing behavior the vehicle should adopt in the current
scenario and explain the reason

A: Keep going straight, as there are no vehicles
blocking ahead

B: Change to the right lane, as the right lane is more
open

C: Change to the left lane, as the left lane is more
open and helps improve traffic efficiency

D: Stop immediately, as there is an obstacle ahead

Action

For the dynamic task, we find that action accuracy surpasses that of the vision and language tasks.
As illustrated in Table 16, even if the model cannot precisely identify the most hazardous dynamic
obstacles, it tends to select the safest options, such as braking or decelerating, based on empirical
reasoning.

Table 16: Task-specific Evaluation Examples on Dynamic Task (Vision, Language, Action)

Image Type Question Ans Pred

Based on the image, what type of dynamic obsta-
cles around the vehicle during a left turn may affect
the vehicle’s driving behavior?
A: There are several motor vehicles ahead making
- a left turn

Vision B: There are pedestrians crossing the road ahead A A
C: There are non-motor vehicles going straight on
the left side
D: There is an ambulance approaching from behind
with its siren on

Based on the image, when making a left turn at the
current intersection, what is the most important po-
tential dynamic safety risk factor to pay attention
to?

A: A vehicle ahead turning left suddenly slows
down or stops abruptly

B: An oncoming vehicle running a red light

C: The traffic light at the intersection suddenly
turns red

D: The navigation system malfunctions

Language

Based on the image, when making a left turn at
the current intersection and facing a situation where
there are many vehicles turning left ahead, what is
the most standard driving behavior?

A: Maintain a low speed, slow down appropriately,
and be ready to stop at any time

B: Accelerate to overtake the vehicles ahead

C: Change lanes frequently to look for gaps

D: Follow the vehicle in front closely and shorten
the following distance

Action
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In the road marking task, we observe significantly higher action scores compared to vision. Table 17
shows that, although the model may fail to recognize the presence of solid lane lines adjacent to the
vehicle’s current lane, it can still correctly choose to remain in the original lane. Similarly, even if
the model does not detect the presence of a crosswalk, it is often able to infer from the options that
it should slow down and yield to pedestrians.

Table 17: Task-specific Evaluation Examples on Road Marking Task (Vision, Language, Action)

Image Type Question Ans Pred

As shown in the figure, what type of lane line is be-
tween the left side of your vehicle and the adjacent
lane?
Vision A: Solid line A B
B: Dashed line
C: Double yellow line
D: Curb

As shown in the figure, is there a zebra crossing in
front of the right-side sidewalk at the intersection
ahead of your vehicle?
Vision A: There is a zebra crossing A B
B: There is no zebra crossing
C: There is a left-turn waiting area
D: There is a stop line

As shown in the figure, the vehicle is driving nor-
mally in its current lane. Given the current road
conditions, which of the following driving maneu-
Action vers is the most standard? c C
A: Change to the left lane
B: Change to the right lane
C: Continue driving in the current lane
D: Make a U-turn

The navigation indicates a right turn. How should
the vehicle be driven in accordance with regula-
tions?

A: Continue straight through the intersection at the
current speed

B: Change lanes to the left lane

C: Slow down, observe if there are pedestrians at
the crosswalk, and then turn right

D: Change lanes to the right and enter the non-
motorized vehicle lane

Action

For the traffic light task, the model’s action accuracy is notably low. Cases in Table 18 reveal that,
even when the green light is present in the relevant direction, the model shows a tendency toward
conservative behavior, such as waiting at the intersection rather than proceeding.

Table 18: Task-specific Evaluation Examples on Traffic Light Task (Vision, Language, Action)

Image Type Question Ans Pred

The navigation indicates a left turn. As shown in
the figure, considering the current traffic signal and
the navigation information, which of the following
is the most standard driving behavior for your ve-
hicle?

A: Comply with the left turn signal and make a left
Action turn immediately A D
B: Maintain your current speed and go straight

through the intersection

C: Make a right turn through the intersection im-
mediately

D: Stop and wait, do not proceed through the inter-
section

Continued on next page
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Table 18 — Continued from previous page

Image Type Question Ans Pred
The navigation indicates to go straight at the inter-
section, as shown in the figure. Please choose the
driving action that best fits the current scenario.
Action A: Proceed straight through the intersection at the A D
current speed
B: Immediately turn left through the intersection
C: Immediately turn right through the intersection
D: Stop and wait before the intersection
C.4 STABILITY ANALYSIS
Table 19: Stability Analysis Under Different Modes
Model Mode Runl Run2 Run3 Mean =+ Std
V-L-A 91.69 91.53 91.79 91.67 +0.13
GPT-4.1 mini V-A 89.06 89.59 89.23 89.29 £ 0.27
’ L-A 89.20 88.73 88.87 88.93 £0.24
A 84.71 84.50 84.78 84.66 £ 0.15
V-L-A 91.25 91.22 91.43 91.30 £ 0.12
Gemini 2.5 Pro V-A 86.53 86.86 86.42 86.60 £ 0.23
’ L-A 88.99 88.58 88.66 88.75 £ 0.22
A 83.48 83.65 83.36 83.50 £ 0.14

To evaluate the consistency and robustness of model performance under different information input
modes, we conduct a stability analysis by repeating each setting three times and reporting the mean
and standard deviation for each model-mode pair, as summarized in Table 19. Across all settings,
both GPT-4.1 mini (OpenAl, 2025a) and Gemini 2.5 Pro (DeepMind, 2025) demonstrate strong
stability, with standard deviations generally below 0.3. These results indicate that our benchmark
enables stable and objective evaluation of autonomous driving models, ensuring that performance
measurements are reliable and reproducible across repeated trials.

25



	Introduction
	Related works
	Autonomous Driving Models
	Language-Related Benchmarks for Autonomous Driving

	DriveAction
	Driver-Contributed Broad-Coverage Driving Scenarios
	Human Driving Preference-Aligned Ground Truth
	Action-Rooted Tree-Structured Evaluation
	Task Definition
	Scenario Information Design
	Flexible Evaluation Modes


	Experiments
	Experimental Setup
	Comprehensive Evaluation
	Task-Specific Evaluation
	Driving Domain Models Evaluation

	Conclusion
	Dataset Structure and Access
	Task Specifications and QA Examples
	Detailed Task Specifications
	Representative QA Examples

	Evaluation and Case Study
	Comparative Results and Analysis
	Comprehensive Evaluation Results: Case Study
	Task-specific Evaluation Results: Case Study
	Stability Analysis


