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Abstract
Explainable AI (XAI) has intrigued researchers
since the earliest days of artificial intelli-
gence. However, with the surge in AI-based
applications—especially deep neural network
models—the complexity and opacity of AI
models have intensified, renewing the call for
explainability. As a result, an overwhelming
number of methods have been introduced,
reaching a point where surveys now summarize
other surveys on XAI. Yet, significant chal-
lenges persist, including unresolved debates on
accuracy-explainability tradeoffs, conflicting
evaluation metrics, and repeated failures in sanity
checks. Further complications arise from fairness
violations, robustness issues, privacy concerns,
and susceptibility to manipulation. While there’s
broad agreement on the importance of XAI,
expert panels and major conferences continue to
reveal that the only consensus on how to achieve
it is a lack of one. This has led some to question
whether the discord stems from a fundamental
absence of ground truth for defining “the” correct
explanation.

This position paper argues that explainable AI
is, in fact, a supervised problem—albeit with a
target rooted in a profound, often elusive, under-
standing of reality – in this sense, XAI is causal
discovery in disguise. By reframing XAI queries
as causal inquiries—whether about data, models,
or decisions—we prove the necessity and suffi-
ciency of causal models for XAI, encouraging
community convergence around advanced meth-
ods for concept and causal discovery, potentially
through interactive, approximate causal inference.
We contend that without such a model, XAI re-
mains limited by its lack of ground truth, keeping
us entrenched in uncertainty.

1Anonymous Institution, Anonymous City, Anonymous Re-
gion, Anonymous Country. Correspondence to: Anonymous Au-
thor <anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1. Introduction
As early as the 1980s, the challenge of explainable AI (XAI)
has been recognized as both critical and ambiguously de-
fined (Kodratoff, 1994). Numerous attempts to tackle this
issue have led to a diverse array of methods, which are or-
ganized and categorized across various surveys. Notable
works include those focusing specifically on neural net-
works (Yosinski et al., 2015; Montavon et al., 2018; Samek
et al., 2021), as well as broader surveys addressing explain-
able AI in general (Doshi-Velez & Kim, 2017; Došilović
et al., 2018; Hoffman et al., 2018; Guidotti et al., 2018;
Lipton, 2018; Adadi & Berrada, 2018; Gilpin et al., 2018;
Miller, 2019; Gunning et al., 2019; Du et al., 2019; Tjoa
& Guan, 2020; Arrieta et al., 2020; Carvalho et al., 2019;
Murdoch et al., 2019). With each of these survey papers
exceeding 1,000 citations, it’s perhaps enough to warrant a
survey of surveys (Speith, 2022).

Despite the very many attempts, the field continues to grap-
ple with fundamental questions. The definitions of ex-
plainability and interpretability may not always be agreed
upon (Preece et al., 2018; Ehsan & Riedl, 2024; Leblanc
& Germain, 2024; Namatevs et al., 2022; Marcinkevičs
& Vogt, 2020), and debates over accuracy-explainability
tradeoffs have split the community into proponents of in-
herent vs. post-hoc explainability approaches (Rudin, 2019;
Gunning & Aha, 2019; Laugel et al., 2019). The lack of con-
sensus over definitions and methodologies is further com-
pounded by concerns over fairness (Von Kügelgen et al.,
2022), robustness (Yeh et al., 2019; Ghorbani et al., 2019;
Kindermans et al., 2019; Hamon et al., 2020), privacy vio-
lations (Shavit & Moses, 2019b), and the susceptibility of
explanations to being manipulated or fooled (Dombrowski
et al., 2019; Shavit & Moses, 2019a; Heo et al., 2019; Slack
et al., 2020; Sullivan & Verreault-Julien, 2022; Wickstrøm
et al.). Due to the lack of ground truth explanations, the com-
munity has been compelled to pursue an axiomatic frame-
work for defining explainability (Sundararajan et al., 2017;
Janizek et al., 2021; Amgoud & Ben-Naim, 2022), yet, de-
spite their axiomatic appeal, later work has shown failures
in essential sanity checks (Adebayo et al., 2018; Tomsett
et al., 2020; Karimi et al., 2023).

This position paper posits that the persistent discord in
XAI arises not from an absent ground truth but from a

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Position: Explainable AI is Causal Discovery in Disguise

Explain...

What?

How?

Why (not)?
X

f

Y

Q1: What ex-
plains the distribu-
tion of the data?

Q2: What underlying
factors generate the data?

Q3: How does the model trans-
form inputs into outputs?

Q4: How do the model’s
internal mechanisms function?

Q5: Why does the model
make a specific deci-

sion for a given input?

Q6: Why would the de-
cision differ if the in-

put had been different?

Figure 1: Core methods in XAI for explaining f : X → Y are categorized by purpose into data-based (“What?”, X),
model-based (“How?”, f ), and decision-based (“Why (not)?”, Y ) questions.

ground truth that exists, albeit as an elusive and chal-
lenging target: the causal model that governs the world.
While acknowledging the difficulty of obtaining this world
model, we argue that the real barrier to consensus in XAI
lies in the field’s near-total disregard for actively seeking
it. Causal assumptions, we contend, are essential to bring
coherence to XAI by addressing core questions through
a principled lens; without such assumptions, XAI meth-
ods risk providing explanations that lack rigor, reliability,
or generalizability. Motivations for interpretability are di-
verse: some practitioners use XAI to debug data or models,
others need it for regulatory compliance or trust-building
with end-users, and yet others seek actionable insights for
interventions. The purpose for seeking interpretability there-
fore shapes the specific explanatory methods chosen. For
instance, debugging data often requires unveiling biased pat-
terns, whereas actionable insights require identifying causal
drivers of outcomes.

Several studies have highlighted the importance of causality
in XAI, identifying specific areas where a causal founda-
tion could improve existing methods. Karimi et al. (2020;
2021) advocate for incorporating causal relationships into
counterfactual explanations to enable actionable outcomes,
while Chou et al. (2021) and Baron (2023) critique existing
counterfactual methods for lacking causal grounding, which
they argue leads to spurious correlations and incomplete
explanations. Similarly, Carloni et al. (2023) highlight the
absence of causality in current XAI as a critical limitation,
emphasizing its necessity for building trust in AI systems.
Finally, Beckers (2022) highlights causality’s potential for
action-guiding explanations in XAI, and Chen et al. (2023)
propose integrating causal discovery into XAI methods to
enhance interpretability, leading to more actionable expla-
nations. Our aim is to unify and expand on these insights
to emphasize that almost all XAI approaches, from model
attributions to concept-based methods, implicitly demand
causal reasoning.

In the following sections, we categorize existing XAI meth-
ods based on the purpose of questions they address, illus-
trating specific areas where causal assumptions clarify and
enhance each approach. We then review various causal
frameworks for formally grounding these methods, demon-
strating that causal assumptions are not only sufficient but
necessary for rigorous, reliable, and generalizable expla-
nations in XAI. We also discuss how causal representation
learning tasks underpin these approaches, bridging recent
work in circuit-based interpretability and abstraction to show
the breadth of causal discovery’s impact on XAI. We con-
clude with future research suggestions.

2. Background on Explainable AI (XAI)
To understand the role of causality in explainable AI (XAI),
we first categorize existing XAI methods based on the pri-
mary purpose of their explanations: the data X , the model
f ,1 or the decisions Y . As in Figure 1, these questions can
be organized into three categories of questions based on
purpose:

• Data-based (“What?”): Uncovering the structure and
significance of the data X .

• Model-based (“How?”): Exploring how the model f
transforms input X into output Y .

• Decision2-based (“Why (not)?”): Interpreting specific
output Y for given input X and model f .

By structuring XAI methods within this framework, we
highlight gaps due to a lack of causal grounding, setting a
foundation for our argument that causality is essential for
rigorous, valid XAI.

1Here, f represents the predictive model to be explained, dis-
tinct from the causal model of the world, M.

2Like Miller (2019), we use “decision” to refer broadly to AI
system outputs, such as categorizations or action choices.
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2.1. Data-Based Interpretability (“What?”)

Data-based interpretability focuses on understanding the
structure and characteristics of the input data X , answering
questions such as:

Q1: “What explains the distribution of the data?”
Q2: “What underlying factors generate the data?”

Data-based interpretability methods are particularly useful
for exploratory data analysis and in contexts where under-
standing biases or clusters within the data is crucial. Exam-
ple methods include:

• Attention Mechanisms (Vaswani et al., 2017) are widely
used in neural networks, especially transformers, allow-
ing the model to dynamically focus on relevant parts of
the input X for each prediction. This highlights which
components of X the model finds important, providing
insights into the data structure and dependencies therein.

• Dimensionality Reduction (e.g., PCA, t-SNE (Van der
Maaten & Hinton, 2008)) maps high-dimensional data
X to a lower-dimensional space, revealing structures and
clusters. This helps identify key patterns and assess their
impact on predictions.

These approaches align closely with the principles of causal
discovery, which aims to identify the causal relationships
and dependencies within the data itself (Spirtes et al., 2001;
Pearl, 2009). By revealing the structure of X and uncover-
ing influential features, these methods help illuminate un-
derlying patterns that may influence model behavior. For ex-
ample, clustering and dimensionality reduction techniques
highlight significant groupings and trends within the data,
while attention mechanisms focus on key features that con-
tribute to predictions. Such methods provide an essential
foundation in XAI, as understanding the causal dependen-
cies within X aids in detecting data biases and ensuring
robust performance in the model’s outputs.

2.2. Model-Based Interpretability (“How?”)

Model-based interpretability seeks to explain the function
f , specifically how the model processes input X to produce
output Y . This category addresses questions such as:

Q3: “How does the model transform inputs into outputs?”
Q4: “How do the model’s internal mechanisms function?”

Model-based interpretability is essential in regulatory and
high-stakes environments where transparency into f ’s work-
ings is required. These methods include:

• Feature Interaction Methods (e.g., Partial Dependence
Plots (Friedman, 2001), Accumulated Local Effects (Ap-
ley & Zhu, 2020)) explore interactions within f by show-

ing how different features affect Y . Partial Dependence
Plots, for instance, illustrate the effect of one or two
features on Y while other features are kept constant, re-
vealing interactions in f .

• Feature Attribution Methods (e.g., LIME (Ribeiro
et al., 2016), SHAP (Lundberg & Lee, 2017)) decom-
pose f(X) to assign an importance score to each feature
in X , indicating its contribution to the output Y . Some
works interpret these attributions as estimates of local
(individual) causal effects (Chattopadhyay et al., 2019),
suggesting that LIME can be approximated via input
gradients in sufficiently smooth regions.

• Saliency and Visualization Methods (e.g., Saliency
Maps (Simonyan et al., 2013), Grad-CAM (Selvaraju
et al., 2016)) visualize gradients to identify important re-
gions in X that affect Y , such as which image pixels are
influential in a prediction. Grad-CAM, for example, gen-
erates a heatmap highlighting image regions that impact
the model’s output.

• Surrogate and Simplified Models aim to approximate
complex models f in specific regions using inherently
interpretable models (e.g., decision trees, linear mod-
els). Towell & Shavlik (1993) extract rules to enhance
interpretability in neural networks, and LIME provides
local explanations through linear models (Ribeiro et al.,
2016). While MASALA adapts locality for improved fi-
delity (Anwar et al., 2024), MaLESCaMo introduces
causal surrogate models (Termine et al., 2023), and
Laugel et al. (2018) focus on locality for surrogates in
post-hoc interpretability.

• Model-Intrinsic Interpretability Approaches use inter-
pretable models like linear models, decision trees, and
rule-based systems, allowing direct inspection of f ’s
parameters to understand how X maps to Y without post-
hoc explanations. For instance, Generalized Additive
Models (GAMs) model responses as sums of functions
of predictors (Hastie & Tibshirani, 1987). The Bayesian
Case Model uses representative cases for interpretabil-
ity (Kim et al., 2014), while the Bayesian Rule Set frame-
work learns interpretable rule sets (Wang et al., 2017).
Interpretable Decision Sets provide a joint framework for
description and prediction, facilitating comprehensible
decision-making processes (Lakkaraju et al., 2016).

These approaches are closely related to understanding
causal mechanisms (Pearl, 2000; Peters et al., 2017)—the
specific processes through which changes in input features
X influence the output Y . By attributing importance to
features, analyzing interactions, and approximating inter-
nal model logic, these methods help uncover the pathways
within f that drive model predictions. For example, fea-
ture attribution methods quantify each feature’s contribution
to Y , aligning with causal mechanisms by revealing how
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particular inputs influence the model’s output. Similarly,
saliency maps and feature interaction methods highlight
key regions and feature dependencies within f , providing
an interpretative view of how the model operates. This
mechanistic understanding is essential in domains where
transparent explanations are required, as it allows stakehold-
ers to see not only which features matter but also how they
interact to produce predictions.

2.3. Decision-Based Interpretability (“Why (not)?”)

Decision-based interpretability focuses on explaining spe-
cific outputs Y for given inputs X and model f , addressing
questions such as:

Q5: “Why does the model make a specific decision for a
given input?”

Q6: “Why would the decision differ if the input had been
different?”

Decision-based interpretability is valuable in applications
where understanding the rationale behind individual deci-
sions and possible alternatives is crucial, such as in per-
sonalized recommendations or legal judgments. Example
methods include:

• Counterfactual and Example-based Methods (Wachter
et al., 2017) illustrate what minimal changes to X would
be necessary to alter the output Y , providing insight into
decision boundaries by showing hypothetical scenarios
in which the decision would differ.

• Post-hoc Concept-based Explanation Methods (e.g.,
TCAV) (Kim et al., 2018) explain Y in terms of high-
level human-defined concepts, rather than individual fea-
tures of X . TCAV, for example, assesses the relevance of
specific concepts (like “striped” or “curved”) to a predic-
tion, offering an interpretable, concept-level explanation.

These methods draw on concepts from actual causal-
ity (Halpern, 2016) by using counterfactual reasoning to
explore why a particular outcome was reached. Halpern
and Pearl’s causal model formalizes this approach, defining
causes through counterfactual dependencies that clarify nec-
essary and sufficient conditions for an outcome (Halpern &
Pearl, 2005). In practical terms, answering “why” questions
involves identifying the minimal changes in X that would
alter Y , thereby uncovering the causal factors influencing
the decision. Counterfactual reasoning provides actionable
insights, as it clarifies the conditions under which an al-
ternative outcome could occur. This concept of causality
has also been extended by Woodward (2005), who argues
that interventions and counterfactuals provide a foundation
for understanding causal explanations and model behavior.
By leveraging such causal insights, decision-based inter-
pretability approaches not only highlight decision bound-

aries but also enhance understanding of model outcomes
and potential user actions. This purpose-driven categoriza-
tion of data-based, model-based, and decision-based XAI
methods structures the response to XAI questions posed
in Figure 1. However, lacking causal assumptions limits
robustness and generalizability across contexts. Below, we
introduce causal foundations and explore how causal mod-
els address these XAI gaps. We will also see how existing
lines of circuit-based interpretability and causal abstraction
further strengthen the claim that explanation is causal dis-
covery in disguise.

3. Background on Causality
Causality aims to model the relationships between variables
where one variable causes changes in another, thereby going
beyond mere statistical correlations to capture the under-
lying mechanisms of the data-generating process. Unlike
correlations, causal relationships entail directional influ-
ence, allowing one to predict the effect of interventions
and counterfactuals in the system (Pearl, 2009). Multiple
frameworks formalize causality, including the Potential Out-
comes framework (Rubin, 2005), Graphical Models (Spirtes
et al., 2001), and Structural Causal Models (SCMs) (Pearl,
2009), each offering unique perspectives on understand-
ing causation. For the purposes of this work, we adopt
Pearl’s SCM framework, as it provides a rigorous formalism
for reasoning about causal mechanisms, interventions, and
counterfactuals—critical components for constructing XAI
systems. We formalize the claim that access to the true
causal model, represented as an SCM, is both sufficient and
necessary for addressing purpose-driven methods on the
“What?”, “How?”, and “Why (not)?” of explanations.

3.1. Preliminaries

To ground our claims, we define key concepts and notations
employed throughout this section.

Definition 3.1 (Structural Causal Model (SCM)) An
SCMM is a tuple ⟨U,V,F, P (U)⟩, where:

• U = {U1, U2, . . . , Um} is a set of exogenous (unob-
served) variables.

• V = {V1, V2, . . . , Vn} is a set of endogenous (observed)
variables.

• F is a set of structural equations fV : V ∈ V, where
each fV maps the parents of V and relevant exogenous
variables to V , i.e., V = fV (pa(V ), UV ). F specifies
the causal mechanisms underlying the data-generating
process, providing a mechanistic description of causal
relationships.

• P (U) is a joint probability distribution over the exoge-
nous variables U.
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Definition 3.2 (Causal Graph) The causal graph G asso-
ciated with an SCMM is a directed acyclic graph (DAG)
where nodes represent variables in V, and edges represent
direct causal relationships as specified by the structural
equations in F. This graph provides a visual representation
of causal dependencies and is a fundamental tool for identi-
fying causal pathways and potential confounders (Spirtes
et al., 2001; Pearl, 2009).

Definition 3.3 (Observ., Interv., and Counterf. Queries)
Access to an SCM M enables analysis involving three
primary types of queries, each offering unique insights into
the relationships captured byM:

• Observational Queries: These involve probabilities com-
puted from the observed data distribution P (V). They de-
scribe associations between variables as observed with-
out external manipulation and are limited to capturing
correlations rather than causation.

• Interventional Queries: Interventions modify the under-
lying structural equations in F to estimate causal ef-
fects. Such interventions are denoted by the do-operator,
do(·), representing an exogenous alteration that severs
the usual dependence of a variable on its causal parents,
allowing for predictions under manipulated conditions.
For example, the query P (Y = y|do(X = x)) estimates
the probability of Y = y when X is set to x by interven-
tion (Pearl, 2009).

• Counterfactual Queries: Counterfactual queries explore
hypothetical scenarios that diverge from observed reality,
posing “what if” questions about alternative outcomes.
For a given observed outcome, counterfactual reasoning
considers what the outcome would have been had certain
variables taken different values. This requires condition-
ing on observed data to infer observed values exogenous
variables, U = u, and then modifying variables, X = x′,
to then predict YX=x′(u) counterfactuals (Rubin, 2005;
Pearl, 2009).

Definition 3.4 (Causal Discovery) Unlike the queries
above which presuppose a causal model, causal discov-
ery (Spirtes & Zhang, 2016; Malinsky & Danks, 2018;
Glymour et al., 2019; Nogueira et al., 2022; Eberhardt,
2017; Vowels et al., 2022) aims to infer the causal graph G
from observational or experimental data, an essential step
for constructing accurate causal models. This process faces
challenges, including latent confounders, data scarcity, and
reliance on assumptions like causal sufficiency. Methods
for causal discovery include constraint-based approaches
(e.g., PC algorithm) (Spirtes et al., 2001), score-based
methods (Huang et al., 2018), and functional causal models
(e.g., additive noise models) (Peters et al., 2017). The
ability to uncover causal relationships is crucial for XAI, as
it directly affects the fidelity of the explanations generated.

4. Sufficiency and Necessity of Causality for
Explainable AI

In the following theorems, we first formalize the sufficiency
claim, followed by the necessity claim.

Definition 4.1 (Accurate and Complete Answers to Q1-6)
Following Pearl (2009), we say an answer to any of the
six core XAI questions (Q1–Q6 in Figure 1) is accurate
and complete if it coincides exactly with what the true
Structural Causal Model (SCM)M predicts for that query.
Concretely:

• Observational correctness (Q1, Q2): The distribution of
observed variables and the underlying generating factors
match those inM.

• Interventional correctness (Q3, Q4): The effect of ma-
nipulating inputs or tracing internal mechanisms reflects
the causal structure ofM.

• Counterfactual correctness (Q5, Q6): The counterfac-
tual outcome YX=x′(u) for a specific exogenous state u
matches the counterfactual computed underM.

Theorem 4.2 (Sufficiency of the True SCM for XAI)
LetM = ⟨U,V,F, P (U)⟩ be the unique true Structural
Causal Model of the data-generating process. Under stan-
dard assumptions (acyclicity, no unmeasured confounders,
well-defined exogenous variables), having full access toM
is sufficient to provide accurate and complete answers to
the six core XAI questions (Q1–Q6) depicted in Figure 1.

Proof Sketch (Full proof in App. A) SinceM specifies:

1. The causal graph G over the endogenous variables V,
2. A set of structural equations F indicating how each

Vi ∈ V depends on its parents pa(Vi) and possibly
exogenous UVi ,

3. The distribution P (U) over the exogenous variables,

it uniquely determines the joint distribution of all variables,
any interventional distribution via the do-operator do(·), and
any counterfactual query via abduction–action–prediction
(Pearl, 2009). Mapping these distributions to to Q1–Q6:

• Q1 (Distribution of data) and Q2 (Underlying factors).
The law of structural models allows us to derive P (V)
exactly fromM, and we see how exogenous variables U
and functions fVi

generate the observed data.
• Q3 (How does the model process inputs?) and Q4

(How do internal mechanisms operate?). By tracing
causal pathways in G (and applying F iteratively), we
reveal how input X propagates to output Y through in-
termediate variables (hidden layers or sub-modules).

• Q5 (Why a specific decision?) and Q6 (Why would
the decision differ?). Given (X = x, Y = y), we infer
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exogenous u (abduction), modify X ← x′ (action), and
compute YX=x′(u) (prediction). This explains both why
the model made its decision and how it would change
under a different input.

BecauseM yields precise observational, interventional, and
counterfactual results, it provides complete and accurate
explanations for all six questions. Thus, knowing the true
SCM is sufficient for XAI.

Theorem 4.3 (Necessity of the True SCM for XAI)
Suppose a dataset V is generated by a true but unknown
SCM M. If an alternative model M̂ does not match M
in at least one structural equation or in its exogenous
distribution P (U), then there exists at least one of the six
XAI questions (Q1–Q6) for which M̂ cannot provide an
accurate and complete answer.

Proof Sketch (Full proof in App. A) Recall that accurate
and complete answers require reproducing exactly the obser-
vational, interventional, or counterfactual results fromM.
We prove by contradiction:

1. Assume M̂ is a different SCM thanM but still claims
to yield correct answers for all Q1–Q6.

2. There are three broad query types:
• Observational (Q1–Q2): If M̂ differs in F or P (U),

it may induce a different joint distribution over V,
contradicting Q1 or misidentifying underlying data
factors (Q2).

• Interventional (Q3–Q4): Even if M̂ matches obser-
vationally, the do-operator do(X = x) can produce
different outcomes in M̂ vs.M due to differences in
causal structure or confounding assumptions (Pearl,
2009).

• Counterfactual (Q5–Q6): Counterfactual questions
rely on abduction–action–prediction with the true
exogenous state. A mismatch in structural equations
leads to different counterfactual results.

3. Hence, there must be at least one question Q1–Q6 where
M̂’s answer diverges fromM’s. This contradicts the
assumption that M̂ is correct for all XAI questions.

Therefore, to guarantee accuracy and completeness across
all six questions simultaneously, access to the true SCMM
is necessary for XAI.

4.1. Discussion on Robustness and Limitations

Theorems 4.2 and 4.3 assume access to the true Struc-
tural Causal Model (SCM) M = ⟨U,V,F, P (U)⟩, en-
suring accurate and complete answers to XAI questions
(Q1–Q6). However, in real-world applications, such oracle-
level causal knowledge is rarely accessible. Instead, we
must rely on estimated models M̂ that approximate M,

introducing challenges in accuracy and reliability.

Partial Causal Knowledge and Sensitivity Analysis.
Since complete causal knowledge is typically unavailable,
practitioners often incorporate known causal relationships
into M̂ to refine explanations beyond purely statistical meth-
ods. This approach reduces reliance on spurious correlations
but does not guarantee correctness. To assess robustness,
sensitivity analysis (Saltelli et al., 2004) can quantify the
stability of explanations under small perturbations to M̂.
However, even systematic robustness checks cannot ensure
validity when the underlying model is fundamentally mis-
specified.

Challenges in Learning the Causal Model (Causal Dis-
covery). An alternative approach is to inferM via causal
discovery methods, but this presents several key challenges:

• Faithfulness and Causal Sufficiency. Causal discovery
typically assumes faithfulness (i.e., observed independen-
cies reflect true causal structure) and causal sufficiency
(i.e., no hidden common causes). If these assumptions
fail, the inferred causal structure may be incorrect.3

• Sample Complexity and Computational Constraints.
Even when causal sufficiency holds, reliable causal
discovery requires a large sample size, especially in
high-dimensional settings. The number of samples re-
quired grows exponentially with the number of vari-
ables, making exhaustive search computationally infeasi-
ble (Kalisch & Bühlman, 2007).

• Identifiability and Equivalence Classes. Even with
unlimited data and valid assumptions, causal discovery
methods often recover only a Markov equivalence class
of DAGs—multiple causal graphs that imply the same
observational dependencies (Spirtes et al., 2001). This
ambiguity means that without interventional data, key
causal relationships may remain unresolved.

Takeaway. The ideal of fully accurate and complete XAI,
as established in Theorems 4.2–4.3, is difficult to achieve
due to the limitations above. In light of these challenges,
correlation-based explanations (e.g., feature importances,
saliency maps) may suffice when the goal is to detect pat-
terns, biases, or anomalies rather than to enable interven-
tions. Nonetheless, a more nuanced view is that the required
level of causal grounding depends on the stakeholder’s ob-
jective. When reliability matters—such as in high-stakes
decision-making—approximate causal models, even if im-
perfect, can yield explanations that address the diverse inter-
pretability questions in Fig. 1.

3Consider three variables (X,Y, Z) where Z is an unmeasured
confounder influencing both X and Y (i.e., Z → X , Z → Y ).
Without observing Z, the learned M̂ may wrongly suggest a direct
causal link between X and Y , leading to incorrect explanations.

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Position: Explainable AI is Causal Discovery in Disguise

5. A Way Forward
Recognizing these challenges, we propose strategic direc-
tions to address them, focusing on two interrelated tasks:
Concept Discovery and Relation Discovery. By advancing
methods in these areas, we can approximate causal models
more effectively and enhance explainable AI. Despite the
limitations, we encourage the community to embrace these
challenges, as they are essential steps toward realizing that
explainable AI is, in essence, causal discovery in disguise.

5.1. Dual Challenges in Causal XAI:
Concept Discovery and Relation Discovery

Concept Discovery. Effective explanations require a
shared language of interpretable concepts {Zi} that align
with the stakeholder’s understanding. Explanations should
be constructed using well-defined, semantically clear vari-
ables to ensure meaningful communication. Current XAI
methods vary along a Concept-Alignment Spectrum:

• Fully Specified Concepts: At one end, methods
like SHAP (Lundberg & Lee, 2017) and causal re-
course (Karimi et al., 2021) provide explanations using
features Xi with direct semantic meaning, such as age or
income. These methods produce mappings ϕ : X → R
that quantify feature contributions and support actionable
interventions.

• Low-Level Features: At the other end, methods like
saliency maps (Simonyan et al., 2013) highlight groups of
pixels in images, which lack inherent semantic meaning
and require abstraction to align with human concepts.

• Concept-Based Methods: In the middle, methods like
TCAV (Kim et al., 2018) attempt to align explana-
tions with predefined concepts by measuring alignment
with existing embeddings. However, TCAV is limited
to known concepts and cannot discover new, relevant
concepts—the “unknown unknowns”—that may be cru-
cial for understanding the model’s behavior.

To enhance concept discovery, we advocate for methods
that can uncover and represent new concepts, potentially via
causal approaches such as Concept Bottleneck Models (Koh
et al., 2020), Causal Concept Effect (Goyal et al., 2019), and
Neuro-Symbolic Concept Learners (Mao et al., 2019; Ellis
et al., 2023) which offer promising directions by treating
concepts as entities that facilitate action and interpretability.
These methods enable both structured learning and deeper
understanding by integrating causal reasoning into concept
discovery. Moreover, concepts should be identified at a
granularity that is useful to a given stakeholder (or audi-
ence). Even if we had a perfect SCM of low-level features
(e.g., pixels), explanations would remain unhelpful unless
translated to higher-level abstractions that align with human
mental models (Rubenstein et al., 2017; Beckers & Halpern,

2019). Future research should thus emphasize learning and
serving these causal concepts at the right level of detail,
possibly via user interaction or iterative refinement.

Relation Discovery. Discovering causal relationships
among identified variables {Vi} remains a foundational
challenge in interpretability. Traditional causal discov-
ery and structure learning aim to infer a directed acyclic
graph G = (V,E), where V represents variables and E
captures causal dependencies. Established algorithms like
PC (Spirtes et al., 2001) and score-based methods (Huang
et al., 2018) provide structure but are often computationally
demanding in high-dimensional settings. We propose lever-
aging advances in causal representation learning (Bengio
et al., 2019; Schölkopf et al., 2021), which strive to cap-
ture both the concept space and causal structure. These
approaches can deepen interpretability by jointly learn-
ing representations that are both semantically meaningful
and causally informative. However, the scalability chal-
lenge becomes especially pressing for large-scale or high-
dimensional models (e.g., LLMs). Here, purely symbolic
or conditional-independence-based causal discovery can be
prohibitively slow. Exploring approximations such as sparse
regressions, online structure learning, or domain-guided
heuristics (Granger, 1969) may be necessary to handle real-
world data at scale.

5.2. Leveraging Approximate Models and Interactive
Approaches

In practice, obtaining a fully accurate causal model is often
infeasible due to data and computational limitations. To
address this, we advocate for approximate causal models
supplemented by interactive, user-driven methods. By itera-
tively refining causal structures through user feedback and
interventions, approximate models can better align with real-
world needs, enabling users to validate and adjust causal
assumptions as needed.

In scenarios where full causal structure discovery is imprac-
tical, interactive approaches enable iterative refinement of
causal models based on user interactions and counterfac-
tual queries. This user-in-the-loop methodology aligns with
recent advances in chain-of-thought reasoning (Wei et al.,
2022) and large language models (e.g., GPT-4), allowing
explanations to evolve with stakeholder feedback, enhanc-
ing their relevance and causal grounding. Moreover, an
interactive process can reveal the “right” level of abstraction
for each user’s goals (Teso et al., 2023), acknowledging
that an exhaustive model of the world is neither feasible nor
desirable for most tasks. Instead, explanations should focus
on those causal factors that the user can understand and
act upon, effectively capturing a subset of the world’s SCM
aligned with the user’s mental model (Gerstenberg et al.,
2021; Gerstenberg, 2024).
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5.3. Summary of Recommendations

Despite its limitations, our core thesis remains: explainable
AI is causal discovery in disguise. Advancing methods in
concept and relation discovery will enable the construction
of approximate causal models that enhance the rigor, relia-
bility, and applicability of explanations. We encourage the
community to invest in:

1. Developing Robust Causal Discovery Algorithms:
Improving methods to better handle high-dimensional
data, hidden confounders, and model misspecification.
Future work should also explore multi-level abstrac-
tions (Rubenstein et al., 2017; Beckers & Halpern, 2019)
to balance expressivity with user interpretability.

2. Advancing Causal Representation Learning: Jointly
learning concepts and causal relations that are inter-
pretable, stable, and scalable. Concept discovery should
align with users’ internal models, recognizing that no
single “correct” variable decomposition exists univer-
sally (Teso et al., 2023). This calls for methods that
bridge machine-learned representations with human-
understandable structures.

3. Promoting Interactive Explanations: Engaging stake-
holders in refining causal models through iterative feed-
back. This aligns with “explanatory interactive learn-
ing” (Teso & Kersting, 2019), where users refine models
by correcting explanations, steering causal learning to
ensure relevance and actionability.

By pursuing these directions, we can mitigate the practical
challenges of causal XAI while moving toward a principled
foundation for explainability.

5.4. Alternative Views: The Limitations of SCMs for
Representing Human Intuition

While we argue that explainable AI is fundamentally a prob-
lem of causal discovery, an opposing perspective questions
whether Structural Causal Models (SCMs) are the right
framework for capturing human reasoning and intuition.
Specifically, SCMs are often criticized for their limited ex-
pressiveness in representing rich, structured mental models
of the world. Human reasoning frequently operates through
intuitive theories (Gerstenberg & Tenenbaum, 2017), which
go beyond the propositional nature of SCMs. For exam-
ple, in physics, people intuitively understand the world in
terms of objects, forces, and attributes (e.g., mass, elasticity,
friction), rather than abstract causal graphs. When reason-
ing counterfactually, humans naturally ask questions such
as “What if this object hadn’t been there?” or “What if a
reasonable person had acted differently?”—queries that are
difficult to formalize in an SCM, where variables typically
represent discrete events or predefined states. Unlike SCMs,
which encode causal mechanisms as structured equations

over variables, human cognition often blends causal rea-
soning with spatial, temporal, and qualitative constraints,
making it unclear whether SCMs are the best mathematical
framework for modeling how people construct and interpret
explanations.

One response to this challenge is to extend SCMs with hier-
archical abstractions that align with how humans structure
knowledge. Recent work on causal abstraction models
and neuro-symbolic reasoning offers promising directions
by introducing layers of representation that move beyond
traditional SCM constraints. However, these approaches
remain an open area of research, and critics argue that a
truly human-aligned XAI framework may require funda-
mentally different tools—potentially drawing from cogni-
tive science, probabilistic programs, or physics-inspired
models—to bridge the gap between mechanistic causality
and intuitive human understanding.

5.5. Conclusion

The vast landscape of explainable AI is marked by an over-
whelming number of methods, surveys, and perspectives,
all of which underscore the field’s current lack of consensus.
This paper argues that achieving such consensus hinges on
reframing XAI as causal discovery, demonstrating through
formal necessity and sufficiency results that causal assump-
tions are both essential and adequate to address purpose-
driven questions around the “What?”, “How?”, and “Why
(not)?” of explanations. By positioning explanations within
a causal model, researchers and practitioners can align on
clearer, more robust foundations for XAI, effectively view-
ing it as causal discovery in disguise.

Building on this viewpoint, we advocate for advancing con-
cept discovery and relation discovery to identify variables
and causal links at a level of abstraction that matches stake-
holders’ mental models. In practice, approximate causal
modeling and interactive refinement are key. By iteratively
engaging users (e.g., through counterfactual queries or ex-
planatory interactive learning), we can converge on a causal
representation that offers actionable insights while accom-
modating the complexities of real-world systems.

Ultimately, we encourage the community to see beyond
fragmented XAI methods and move toward a unified causal
framework—one that embraces multi-level abstractions, in-
teractive approaches, and real-world constraints. Although
challenges like scalability, incomplete domain knowledge,
and unmeasured confounders remain, they should be viewed
not as barriers but as opportunities to refine and extend
causal discovery methodologies for explainable AI. By do-
ing so, we believe the field can progress toward a shared,
actionable approach to XAI that balances rigor, utility, and
adaptability for diverse stakeholders.
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Position: Explainable AI is Causal Discovery in Disguise

A. Sufficiency and Necessity of Causality for
Explainable AI

Theorem 4.2 (Sufficiency of the True SCM for XAI)
LetM = ⟨U,V,F, P (U)⟩ be the unique true Structural
Causal Model of the data-generating process. Under stan-
dard assumptions (acyclicity, no unmeasured confounders,
well-defined exogenous variables), having full access toM
is sufficient to provide accurate and complete answers to
the six core XAI questions (Q1–Q6) depicted in Figure 1.

Proof We proceed by examining each question individually,
using the predefined variables and formal language.

Q1: What explains the distribution of the data?

The SCMM specifies the structural equations F and
the distribution P (U). The joint distribution of the
endogenous variables V can be derived fromM using
the law of structural models:

P (V) =

∫
U

∏
Vi∈V

δ
(
Vi− fVi(pa(Vi), UVi)

)
P (U) dU

where δ(·) is the Dirac delta function ensuring that Vi

satisfies its structural equation, and pa(Vi) are the par-
ents of Vi in the causal graph G associated with M.
Since we can derive P (V) fromM, we can fully ex-
plain the distribution of the data, accounting for all de-
pendencies and relationships specified by the structural
equations and exogenous distributions.

Q2: What underlying factors generate the data?

In the SCMM, the exogenous variables U represent
the underlying factors that are not determined within
the model but affect the endogenous variables through
the structural equations. Each endogenous variable Vi

is generated by: Vi = fVi(pa(Vi), UVi). Access toM
gives both the exogenous variables U and the structural
equations F, allowing us to identify and understand the
underlying factors generating the observed data.

Q3: How does the model transform inputs into outputs?

Suppose the AI model takes inputs X ⊆ V and produces
outputs Y ⊆ V. The causal pathways from X to Y are
specified in the causal graph G associated withM. The
structural equations define how each variable depends
on its parents: Vi = fVi(pa(Vi), UVi). By following
these equations along the paths from X to Y, we can
trace how inputs are transformed into outputs through
the model. Specifically, we can compute the effect of X
on Y by recursively evaluating the structural equations.

Q4: How do the model’s internal mechanisms function?

Internal mechanisms (e.g., hidden layers, intermedi-
ate computations) are represented by intermediate en-
dogenous variables H ⊆ V in the SCM. The struc-
tural equations for the internal variables are: Hj =
fHj (pa(Hj), UHj ) By analyzing these equations and
their dependencies, we can understand how the internal
variables operate and contribute to the processing of
inputs X to outputs Y. The causal graph G of modelM
shows the connections between X, H, and Y, allowing
us to trace the flow of information and causation through
the model’s internal structure.

Q5: Why does the model make a specific decision for a
given input?

Given a specific input X = x and the observed output
Y = y, we can perform abduction to infer the values
of the exogenous variables U = u consistent with these
observations. Using the inferred u and the structural
equations F, we can then trace the causal pathways from
X = x to Y = y, identifying the causal mechanisms
and intermediate variables that led to the decision.

Q6: Why would the decision differ if the input had been
different?

To answer this counterfactual question, we consider an
alternative input X = x′ while keeping the inferred
exogenous variables U = u fixed at the values inferred
during abduction. Finally, comparing the counterfactual
output Y∗ with the original output Y = y to under-
stand how and why the decision would differ under the
alternative input.

Overall Conclusion In each case, access to the true SCM
M provides sufficient information—whether through com-
puting distributions, tracing causal pathways, or performing
counterfactual reasoning—to accurately and completely an-
swer each of the six XAI questions.

Theorem 4.3 (Necessity of the True SCM for XAI)
Suppose a dataset V is generated by a true but unknown
SCM M. If an alternative model M̂ does not match M
in at least one structural equation or in its exogenous
distribution P (U), then there exists at least one of the six
XAI questions (Q1–Q6) for which M̂ cannot provide an
accurate and complete answer.

Proof We will demonstrate that without causal informa-
tion—specifically, without access to the true SCMM—it
is impossible to answer the six core XAI questions. We
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Position: Explainable AI is Causal Discovery in Disguise

proceed by addressing each question individually, using the
predefined variables and formal language established earlier.

Q1: What explains the distribution of the data?

Without causal information, we only have access to
the observational distribution P (V) of the endogenous
variables V. However, P (V) encodes statistical associ-
ations but not causal relationships. Statistical dependen-
cies in P (V) can arise from various causal structures,
such as direct causation, confounding, or even collider
effects.
Illustrative Example: Consider three variables X , Y ,
and Z with the following causal structures:
1. Confounding: Z is a common cause of X and Y ,

i.e., Z → X , Z → Y .
2. Causal Chain: X causes Z, which in turn causes

Y , i.e., X → Z → Y .
3. Collider: X and Y both cause Z, i.e., X → Z ←

Y .
All these structures can produce similar statistical as-
sociations between X and Y in P (V). Without causal
assumptions or knowledge of the underlying SCM, we
cannot distinguish among these possibilities.

Q2: What underlying factors generate the data?

In an SCM M = ⟨U,V,F, P (U)⟩, the exoge-
nous variables U and structural equations F define
how the observed data V are generated: Vi =
fVi

(pa(Vi), UVi
), ∀ Vi ∈ V Without access toM, we

lack knowledge of both U (the unobserved factors) and
F (the causal mechanisms). Consequently, we cannot
accurately model the data-generating process.

Q3: How does the model transform inputs into outputs?

Suppose the AI model is represented as a function
f : X → Y. Without causal information, we can
estimate the conditional distribution P (Y | X) from
observational data. However, this distribution reflects
statistical associations, not necessarily causal effects.
Potential issues include:
• Confounding: A hidden variable Z ∈ V (or Z ∈ U)

affects both X and Y, inducing spurious associa-
tions.

• Reverse Causation: The true causal direction might
be Y → X.

• Feedback Loops: Cyclic dependencies complicate
the interpretation of P (Y | X).

Without the causal graph G, we cannot compute the
interventional distribution: P (Y | do(X = x)) which
reflects the causal effect of setting X to x.

Q4: How do the model’s internal mechanisms function?

Internal mechanisms involve the causal interactions
among hidden or intermediate variables within the
model. Let H ⊆ V represent internal variables (e.g.,
hidden layers in a neural network). The structural equa-
tions for H and their causal relationships with X and Y
are given by: Hj = fHj (pa(Hj), UHj ) Without knowl-
edge ofM, we cannot specify these equations or the
causal graph G, preventing us from understanding how
H mediates between X and Y.

Q5: Why does the model make a specific decision for a
given input?

Explaining a specific decision requires identifying the
causal factors that led from the input X = x to the
output Y = y. To perform this explanation, we need to:
1. Abduction: Infer the exogenous variables U = u

consistent with X = x and Y = y.
2. Trace Causal Pathways: Use the structural equa-

tions to identify how changing X affects Y.
WithoutM, we cannot perform abduction because U
and F are unknown. Additionally, we cannot trace
causal pathways without the causal graph G.

Q6: Why would the decision differ if the input had been
different?

Answering this question requires counterfactual rea-
soning, which involves considering a hypothetical sce-
nario where the input is X = x′ (different from the
observed X = x) and determining the corresponding
output YX=x′(u). As per Pearl (2009), computing
counterfactuals involves:
1. Abduction: Infer U = u from the observed data

(X = x,Y = y).
2. Action: Modify the structural equations to reflect

the counterfactual intervention do(X = x′).
3. Prediction: Compute the counterfactual outcome

YX=x′(u) using the modified model.
Without the SCMM, none of these steps can be per-
formed accurately.

Overall Conclusion The absence of causal informa-
tion—specifically, the structural causal modelM—restricts
us to the observational distribution P (V ), preventing us
from identifying underlying data-generating mechanisms,
understanding causal pathways within the model, and
performing counterfactual reasoning. Consequently, causal
information is essential for providing accurate and reliable
explanations in XAI. Without it, explanations may be
incomplete, incorrect, or misleading.
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