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ABSTRACT

Recent knowledge editing methods have primarily focused on modifying structured knowl-
edge in large language models. However, this task setting overlooks the fact that a signif-
icant portion of real-world knowledge is stored in an unstructured format, characterized
by long-form content, noise, and a complex yet comprehensive nature. Techniques like
“local layer key-value storage” and “term-driven optimization”, as used in previous methods
like MEMIT, are not effective for handling unstructured knowledge. To address these
challenges, we propose a novel Unstructured Knowledge Editing method, namely UnKE,
which extends previous assumptions in the layer dimension and token dimension. Firstly,
in the layer dimension, we propose non-local block key-value storage to replace local layer
key-value storage, increasing the representation ability of key-value pairs and incorporating
attention layer knowledge. Secondly, in the token dimension, we replace “term-driven
optimization” with “cause-driven optimization”, which edits the last token directly while
preserving context, avoiding the need to locate terms and preventing the loss of context
information. Results on newly proposed unstructured knowledge editing dataset (Un-
KEBench) and traditional structured datasets demonstrate that UnKE achieves remarkable
performance, surpassing strong baselines. In addition, UnKE has robust batch editing
and sequential editing capabilities. The code is available in the anonymous repository:
https://anonymous.4open.science/r/UnKE-BC5F.

1 INTRODUCTION

Ensuring the accuracy and timeliness of the knowledge stored in large language models (LLMs) is crucial,
especially given their widespread deployment Xu et al. (2023); Chen & Shu (2023; 2024). To address this
challenge, knowledge editing (Yao et al., 2023; Zhang et al., 2024b; Cheng et al., 2023; Mao et al., 2023) has
emerged as a promising approach, enabling timely updates to the knowledge embedded in LLMs.

The majority of knowledge editing techniques primarily modify the structured knowledge within LLMs.
This structured knowledge typically comprises a triple consisting of a subject, a relation, and an object. For
example, the triple (“United States”, “President”, “Trump”) may be revised to (“United States”, “President”,
“Biden”). However, approximately 80% of real-world knowledge is contained in unstructured formats (Bavota,
2016). For instance, when posed with a question such as “What were Charles Strachey’s key contributions to
British politics and law in the 19th century?”, the desired answer is an informative and free-form text (refer to
Table 13 for specifics), as opposed to a mere entity. Furthermore, when using LLMs, users typically seek
comprehensive text output rather than simple entity-level representations. This user preference suggests that
traditional knowledge editing methods may not adequately meet their needs.

Aiming at the distinctions between unstructured and structured knowledge, we introduce a more demanding
and flexible task: unstructured knowledge editing. This task presents two significant challenges to existing
knowledge editing methodologies: (1) Unstructured knowledge contains richer information. Specifically,
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findings in Section 3.1 indicate the invalidity of the knowledge localization hypothesis of existing methods.
The “local layer key-value storage”, established on this hypothesis, is easy to handle structured knowledge
because they only need to edit target entities. However, this approach proves inadequate for handling
unstructured knowledge with complex context, relational information, and a large number of entities (see
Appendix I). (2) Unstructured knowledge is presented in a more free form. In particular, existing methods
typically rely on term localization for editing, a process that can be called “term-driven optimization”.
Omitting this crucial step significantly diminishes their efficacy, as demonstrated in the experiments outlined
in Section 3.2. However, locating these terms within unstructured text poses a significant challenge, as
illustrated by the case discussed in Table 13. Also, only editing the term tokens of autoregressive LLMs
without considering contextual information can result in the loss of information, as illustrated in Figure 1 and
discussed in Section 4.1.

To bridge this gap, in this paper, we introduce an Unstructured Knowledge Editing (UnKE) method that
leverages a combination of techniques “non-local block key-value storage” and “cause-driven optimization”.
As shown in Figure 1, specifically, we argue that unstructured knowledge is not strictly limited to particular
(local) MLP layers or knowledge neurons, but is distributed collaboratively across multiple layers (non-local).
To this end, we expand previous hypotheses in two dimensions. Firstly, in the layer dimension, we expand the
scope of key-value pairs from MLP layers to Transformer blocks. More precisely, we view the shallow and
deep layers of LLMs as key and value generators, respectively. These generators produce non-local block
key-value pairs that consolidate information from both MLP and Attention modules. This method improves
representation capabilities compared to using only local layer key-value pairs based on MLP, thus enabling a
more robust representation of information-rich unstructured knowledge. Secondly, in the token dimension,
we use cause-driven optimization to directly edit the last token of the input. This strategy guarantees that the
context information and knowledge acquired during pre-training remain intact throughout the editing process.
By doing so, we eliminate the need for the “localization term” operation and prevent the loss of information
(refer to Figure 1).

To address the lack of a benchmark for editing unstructured knowledge, we develop UnKEBench, which
is more challenging than existing structured editing benchmarks due to its complexity. UnKE significantly
outperforms existing baselines across several evaluation metrics within UnKEBench, showcasing its ability to
accurately handle information-rich and free-format unstructured knowledge. Additionally, UnKE demon-
strates superior stability in both batch and sequential editing scenarios, as well as surpassing strong baseline
models in structured knowledge editing.

2 RELATED WORKS

In this section, we introduce recent advancements in knowledge editing, which can be broadly categorized
into three groups: methods that preserve the original model parameters, methods that locate and then edit the
original model parameters, and methods that directly modify the original model parameters.

Preserving Model Parameters One category focuses on introducing additional parameters, while the other
focuses on involving knowledge in in-context learning (ICL). For adding parameters, SEARC (Mitchell et al.,
2022b) utilizes a classifier to differentiate between input that requires editing and input that does not. If
editing is necessary, the trained counterfactual model is employed for prediction; otherwise, using the original
model. T-Patcher (Huang et al., 2023) incorporates and trains specific neurons in the final feedforward
network layer for the sample that requires editing, e.g. their functionality activated solely when encountering
the edited sample. Additionally, (Hartvigsen et al., 2023) proposed GRACE, a lifelong model editing method
that generates a discrete local editing codebook while preserving the model weights unchanged. While
training additional parameters may be effective for editing knowledge triples, their success with unstructured
knowledge is limited by the number of parameters. For ICL, IKE (Zheng et al., 2023) utilizes ICL for
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Figure 1: Comparison of UnKE with previous knowledge editing methods. Previous studies assumed that
knowledge is stored in the form of key-value pairs in local MLP layers and edited according to specific
term positions, such as subjects. However, this Local Layer KV has difficulty representing information-rich
unstructured knowledge, and only editing specific terms will cause information loss. In contrast, UnKE uses
a non-local block KV produced by transformer layers and considers the positions of all input tokens during
the editing process. Compared with previous methods, it solves the above problems and shows excellent
unstructured knowledge editing capabilities.

knowledge editing, while MeLLo (Zhong et al., 2023) enhances multi-hop knowledge editing capabilities by
decomposing complex multi-hop problems into sub-problems and integrating them with retrieval techniques.
However, both methods face challenges in efficiently editing a large amount of knowledge within a single
model, primarily due to limitations in parameter count and context window length, especially for unstructured
knowledge with verbosity, noise, and interdependencies.

Locate-Then-Edit Another branch of methods adopts a locate-and-edit approach. Initially, they identify the
specific parameters associated with the target knowledge and subsequently modify those parameters directly to
effectuate the desired knowledge editing. KN (Dai et al., 2022) introduces the concept of knowledge neurons
and utilizes them to incorporate specific factual knowledge without the need for fine-tuning. ROME (Meng
et al., 2022) introduces a causal tracking method to identify the layer that requires editing. Subsequently, it
employs Rank-One Model Editing to modify the weights of the feedforward layer, thereby updating specific
factual associations. MEMIT (Meng et al., 2023) is an enhanced version of ROME, capable of editing
knowledge in batches. These methods operate under the assumption that knowledge is stored locally within
MLP layers or neurons, which proves inadequate when confronted with unstructured knowledge.

Directly Modify Model Parameters Additionally, there exist numerous other methods that enable knowl-
edge editing by directly modifying model parameters without the need for explicit positioning. MEND
(Mitchell et al., 2022a) introduces auxiliary networks and enables scalable editing by decomposing gradients,
thereby facilitating efficient and effective knowledge editing. To enhance the stability and effectiveness of
knowledge editing in large language models, StableKE (Wei et al., 2024c) employs additional knowledge for
fine-tuning, presenting an approach that brings about significant improvements. As knowledge transitions
from a structured to an unstructured format, the process of editing them becomes time-consuming, leading to
a degradation in performance.

3 MOTIVATIONS

To investigate why conventional knowledge editing techniques are inadequate for editing unstructured
knowledge, we carry out pertinent experiments and determined that: (1) the hypothesis that knowledge is
locally stored is unsuitable for information-rich unstructured knowledge and (2) term-driven optimization is
notably sensitive to specialized terms, however it is difficult to locate them in unstructured knowledge.
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3.1 LLMS STORE KNOWLEDGE NON-LOCALLY
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Figure 2: Impact of different edited layers on the per-
formance of MEMIT in editing structured and unstruc-
tured knowledge. The x-axis indicates the starting layer
number for editing, and the number of edited layers
is 5. Bert-Score is a metric in UnKEBench; a higher
value indicates better model performance.

Hypothesis 1: Knowledge is stored in specific lo-
cal parameters of LLMs. We refute this hypothesis
through a contradiction approach. Initially, meth-
ods such as ROME and MEMIT utilize causal trac-
ing, believing that knowledge is localized within the
early MLP layers, thus targeting these layers for edit-
ing. Employing MEMIT, we conduct experiments to
edit structed and unstructed knowledge across vari-
ous layers using the Counterfact dataset (Meng et al.,
2022) and UnKEBench (Section 5.1). The results,
presented in the Figure 2, are crucial. According to
Hypothesis 1, successful editing of the early MLP
layers should enhance model performance. Contrary
to this expectation, our results indicate that the suc-
cess rate of editing structured knowledge and the
Bert-Score of editing unstructured knowledge are
largely unaffected by the number of edited layers.
Therefore, the conclusion is that knowledge is not
confined to specific layers; rather, it is distributed
non-locally throughout the network. Our perspec-
tive aligns with findings from other studies (Hase
et al., 2023). Combining the non-local characteristics of knowledge and the conclusions that also exist in the
attention layer (Li et al., 2024; Wei et al., 2024a), we advocate for the adoption of non-local block key-value
storage, endowed with enhanced representational abilities, over local layer key-value storage. This shift is
essential for effectively encapsulating the intricacies of unstructured knowledge.

3.2 TERM-DRIVEN EDITING LACKS ROBUSTNESS

Table 1: Performance comparison on KEBench: Im-
pact of locating the subject. Ori-Acc and Para-Acc
represent the accuracy for the original question and
the paraphrased question, respectively. None Subject
indicates the last token to the question.

Method Subject None Subject

Ori-Acc Para-Acc Ori-Acc Para-Acc

ROME 77.90 68.40 44.10 23.60
MEMIT 74.80 64.30 37.60 27.10

Hypothesis 2: Knowledge editing is driven by spe-
cific terms in sentences. MEMIT and ROME both
increase editing success rate by locating the last to-
ken in the subject. As shown in the Table 1, omitting
this step causes their performance to drop signifi-
cantly on KEBench (Wei et al., 2024c). For struc-
tured knowledge, the subject can be easily identified;
however, for unstructured knowledge, accurately de-
termining the subject is challenging due to its dis-
tributed semantics. In addition, it is inconvenient
if positioning operations are required for each edit.
Therefore, we argue that this step should be omitted
in unstructured knowledge editing and editing can be performed directly at the sentence level.

4 UNKE: UNSTRUCTURED KNOWLEDGE EDITING METHOD

Building on the above motivations, our study proposes two primary solutions: (1) Employing non-local block
key-value storage instead of local layer key-value storage to capture information-rich unstructured knowledge
effectively, and (2) opting for causal-driven optimization over term-driven optimization for editing purposes
to eliminate positional term operations and mitigate the loss of contextual information.
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4.1 NON-LOCAL BLOCK KEY-VALUE STORAGE

Many studies (Wang et al., 2024; Yao et al., 2024) suggest that the initial layers in LLMs store foundational
knowledge, processing inputs to extract general information. In the deeper layers, target information is
already present in the residual stream. The main role of these deep layers is to refine and enhance the model’s
confidence in its predictions, increasing the likelihood of accurate outputs—an effect known as the ”early
decoding” phenomenon (Yao et al., 2024).

Inspired by this, we argue that the shallow layers of LLMs encode the key vector of knowledge, which
aggregates entity information and contextual concepts related to the problem. The deep layers decode this
key vector into a value vector, responsible for integrating target information into the residual stream. This
transformer block-level key-value pair representation is more effective than traditional MLP layer-level
key-value pairs. It enables nonlinear mapping and incorporates information from the attention layer, making
it more suitable for representing unstructured knowledge. Specifically, we consider the L-th layer of the
LLM as a boundary, dividing it into two distinct components: a key generator and a value generator. These
components produce key vectors and value vectors, respectively. Experience indicates that a value of 7 is more
suitable for L. For detailed experimental information regarding the value of L, please refer to Appendix F.
Next, we formalize the process of generating Transformer block-level key-value pairs.

Let fθ = f1
θ1
◦· · ·◦f l

θl
◦· · ·◦fN

θN
denote an autoregressive LLM with parameters θ, which can be regarded as an

N -layer Transformer decoder, and ◦ stands for cascade symbol. For the l-th layer, we denote it as f l
θl

, where
θl represents the parameters of this layer. Then the key generator is represented as f l≤L

θk
= f1

θ1
◦ · · · ◦ fL

θL
,

and the value generator fL<l≤N
θv

= fL+1
θL+1

◦ · · · ◦ fN
θN

, where θk and θv are parameters of the key generator
and the value generator respectively.

For a given question q = [q1, q2, . . . , qn], the key vector k should be expressed as

k = f l≤L
θk

([q1, q2, . . . , qn]), (1)

where qi represents the i-th token of the question, and n represents the number of question tokens.
Function f l≤L

θk
(·) represents the last token representation of f l≤L

θk
forward propagation. We use hl

q =

[hl
q,1, h

l
q,2, . . . , h

l
q,n] to represent the hidden state of q in the l-th layer. Then we can also conclude that

k = hL
q,n. It is worth noting that for term-driven methods, the term position t they locate is usually less than

n. Due to the causal attention mechanism, the key vectors they generate do not store information about the
position after the term, resulting in information loss. Please see the next section for details. The value vector
v is

v = fL<l≤N
θv

([hL
q,1, h

L
q,2, . . . , k]). (2)

At this time, the basic information contained in key vector k has been decoded by the value generator into
target information, which is then written into the residual stream to become value vector v. Our goal is to
modify them to obtain the editing target a = [a1, a2, . . . , am], where m represents the number of target
tokens. The process is denoted as (k 7→ k∗, v 7→ v∗), where k∗ and v∗ represent the key vector and value
vector we expect to get. In the next section, we elaborate on cause-driven optimization.

4.2 CAUSE-DRIVEN OPTIMIZATION

The core idea of cause-driven optimization is uncomplicated and effective, that is, the last token of the
autoregressive LLMs aggregates the information of all previous tokens, so editing should be performed based
on this as an anchor. When editing the last token, the key vectors of other previous tokens should unchanged.

First, we calculate the key vector k∗ and value vector v∗ to be modified based on the editing target a. Inspired
by previous work (Meng et al., 2023), we find k∗ = hl

q,n + δn directly by optimizing the residual vector δn

5
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using gradient descent. We formalize this process as

k∗ = hl
n + argmin

δn

−log Pfθ(hL
q,n 7→hL

q,n+δn)(a|q), (3)

where fθ(h
L
q,n 7→ hL

q,n + δn) means that we replace the hidden state hL
q,n (also be expressed as original key

vector k) with k∗. Then we can calculate v∗ using Eq. 2. If we freeze the parameters of the value generator
fL<l≤N
θv

, optimizing Eq. 3 to a sufficiently small value implies that if we obtain k∗ = f l≤L
θk

(q1, q2, . . . , qn),
then we can decode the target a.

We now introduce the process of optimizing the key generator f l≤L
θk

to obtain the key vector k∗. f l≤L
θk

store a
large number of key vectors K0 = [k1 | k2 | . . . | kE ] during the pre-training process, which can be activated
by specific inputs D0 = [d1 | d2 | . . . | dE ] to generate corresponding value vectors V0 = [v1 | v2 | . . . | vE ].
We can express it as

f l≤L
θk

≜ argmin
θ̂

E∑
i=1

∥ f l≤L

θ̂
(di)− ki ∥2, (4)

where E represents the number of knowledge key-value pairs introduced during pre-training, which can be
regarded as +∞. Therefore during the optimization process we should minimize the parameter changes of
f l≤L
θk

and produce a new key generator f l≤L

θ
′
k

that can generate the new key k∗. We formalize this process as

f l≤L

θ
′
k

≜ argmin
θ̂

(

E∑
i=1

∥ f l≤L

θ̂
(di)− ki ∥2 + ∥ f l≤L

θ̂
(q)− k∗ ∥2), (5)

where θ
′

k represents the updated parameters. This approach minimizes the impact of adding new key-value
pairs on the original key-value pairs. In particular, we are able to edit a batch of u unstructured knowledge at
one time, which we denote by K1 = [k∗1 | k∗2 | . . . | k∗u]. Eq. 5 can be changed to

f l≤L

θ
′
k

≜ argmin
θ̂

(

E∑
i=1

∥ f l≤L

θ̂
(di)− ki ∥2 +

u∑
j=1

∥ f l≤L

θ̂
(qj)− k∗j ∥2). (6)

To avoid the addition of new keys affecting the generation of original keys, we only optimize the last layer
of the key encoder fL

θL
. In order to optimize Eq. 6, we randomly select a number C of pre-training samples

to simulate the knowledge fL
θL

learned during pre-training. Assuming that i-th pre-training sample can
be represented as ti = [ti1, t

i
2, . . . , t

i
P ], where P represents the number of i-th pre-training sample tokens.

Before performing optimization, we first calculate the key vector kit,p = fL
θL
(hi,L−1

t,1 , hi,L−1
t,2 , . . . , hi,L−1

t,p )

corresponding to the p-th token in i-th pre-training sample, where hi,L−1
t,p represents the vector of the p-th

token of the i-th pre-training sample in the l-th layer. During the editing process, we need to ensure that
the key vector corresponding to each token of the pre-training sample remains unchanged, so as to retain
the knowledge acquired by the model during pre-training to the greatest extent and prevent catastrophic
forgetting.

Finally, consider that when optimizing the key generator f l≤L
θk

to generate the k∗, changes in parameters
of f l≤L

θk
may cause the representation of the context hL

c = [hL
q,1, h

L
q,2, . . . , h

L
q,n−1] to change after passing

through the f l≤L
θk

, thereby reducing the model performance. Therefore, we impose constraints to ensure that
the context representation hL

c is not changed during the editing process, which leads to the final optimization

6
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goal, which is

fL
θ
′
L

=argmin
θ̂L

(

C∑
i=1

P∑
p=1

∥ fL
θ̂L
(hi,L−1

t,≤p )− kit,p ∥2︸ ︷︷ ︸
Key Preservation Loss

+

u∑
i=1

n−1∑
j=1

∥ fL
θ̂L
(hi,L−1

q,≤j )− kiq,j ∥2︸ ︷︷ ︸
Key Causal Loss

+

u∑
i=1

∥ fL
θ̂L
(hi,L−1

q,≤n )− k∗,iq ∥2︸ ︷︷ ︸
Key Learning Loss

),

(7)

where hi,L−1
t,≤p represents tokens less than or equal to p in the i-th pre-train sample, and hi,L−1

q,≤j represents
tokens less than or equal to i in the j-th question to be edited. Key Preservation Loss ensures that the key
generator retains the keys stored during pre-training, enabling the preservation of original knowledge. Key
Causal Loss ensures that the contextual information is not biased when the model learns new key vectors.
Additionally, Key Learning Loss facilitates the key generator in acquiring new keys, and achieving the desired
editing target.

5 EXPERIMENTS

Due to the lack of datasets for compiling unstructured knowledge, we developed UnKEBench (Section 5.1).
Subsequently, we assess the model’s efficacy in unstructured knowledge editing (Section 5.2) and structured
knowledge editing (Section 5.3). Finally, we conduct ablation experiments to ascertain the impacts of different
designs (Section 5.4).

5.1 CONSTRUCTION OF UNKEBENCH

The unstructured texts are notably lengthy and contain knowledge that extends beyond simple knowledge
triples or linear fact chains. To effectively manage this complexity, we divide our construction approach into
four distinct phases.

1. We employ meticulously crafted instructions to guide ChatGPT in formulating the most appropriate
question Q for each text A, thus creating an unstructured knowledge pair (Q,A).

2. To refine our evaluation mechanism, we use detailed instructions to prompt ChatGPT to generate a
paraphrased version of each original question, denoted as Qp, for every original question Q.

3. We leverage knowledge decomposition strategies and engage ChatGPT to produce multiple sub-question
and sub-answer pairs (Qi

s, A
i
s) for each (Q,A).

4. Finally, we randomly sample five questions from MMLU (Hendrycks et al., 2021) for each example to
evaluate the general ability of the edited model.

Details and examples of constructing UnKEBench are provided in the Appendix B. Due to space limitations,
we introduce the differences between existing knowledge editing benchmarks and UnKEBench in Appendix A.
Our evaluation framework for unstructured knowledge editing mirrors the complexity of the task by integrating
four critical dimensions: word-level overlap, semantic similarity, factual correctness and general ability.

• Lexical Similarity metrics, including BLEU Papineni et al. (2002) and various ROUGE scores Lin (2004)
(ROUGE-1, ROUGE-2, and ROUGE-L), provide insight into the lexical and n-gram alignment between
the model-generated text and the target answers, based on both the original and paraphrased questions.
These metrics are fundamental in assessing the surface-level accuracy of the edited content.

7
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Table 2: Unstructured knowledge editing performance with different methods. During the editing process,
we set the batch size to 1. With each editing instance, the parameters of the modified model are rebuilt. The
decoding process employs a temperature of 0.001. To ensure fair comparison, the 7-th layer of parameters
of the model is specifically targeted for editing across FT-L, ROME, and UnKE. The figures to the left and
right of the ’/’ symbol denote the evaluation outcomes for output of the model in response to the original and
paraphrased questions, respectively. FC. stands for Factual Correctness.

Method Semantic Similarity Lexical Similarity FC. General Ability
Bert-Score BLEU Rouge-1 Rouge-2 Rouge-L FactScore MMLU

Based on LLaMA2-7B-Chat 29.78

FT-A 2.56 / 2.58 1.01 / 1.02 0.92 / 0.92 0.01 / 0.01 0.92 / 0.92 8.74 29.570.21↓
FT-L 11.63 / 10.16 6.14 / 5.52 7.55 / 6.78 1.37 / 1.28 7.26 / 6.53 15.69 29.270.51↓
ROME 76.52 / 74.29 38.71 / 33.42 47.31 / 41.64 28.89 / 20.93 45.05 / 39.06 24.44 29.780.00↓
MEMIT 75.90 / 74.46 35.79 / 33.19 43.55 / 41.39 23.11 / 19.89 40.96 / 38.81 26.39 29.770.01↓
MEND 69.99 / 64.71 24.10 / 29.23 45.36 / 45.06 31.75 / 29.33 44.05 / 43.77 24.17 28.501.28↓
UnKE 99.61 / 93.09 98.63 / 76.85 98.77 / 78.62 98.33 / 70.66 98.73 / 77.70 42.49 29.680.10↓

Based on Qwen1.5-7B-Chat 32.43

MEMIT 74.72 / 76.82 48.89 / 48.71 49.50 / 48.18 34.59 / 31.50 47.55 / 46.04 17.81 31.690.74↓
UnKE 96.51 / 90.40 92.85 / 75.66 91.74 / 72.68 88.19 / 60.59 91.40 / 70.44 40.08 32.030.40↓

• Semantic Similarity. As word-level overlap metrics alone are insufficient for capturing the nuanced
understanding a model must exhibit. To bridge this gap, we evaluate semantic similarity by leveraging an
embedding encoder (specifically, the all-MiniLM-L6-v2 model1) to quantify the depth of comprehension
of the model of the text, ensuring a balanced evaluation that transcends mere lexical matching.

• Factual Correctness. In order to evaluate in a more fine-grained manner whether the edited model
has indeed understood the unstructured knowledge, we use FactScore Min et al. (2023) to evaluate the
accuracy of the edited model in processing sub-questions and their corresponding answers. This metric is
similar to the multi-hop accuracy in some structured knowledge editing benchmarks.

• General Ability. We follow the code in MMLU (Hendrycks et al., 2021) to evaluate each MMLU sample.
We then average the scores of five MMLU samples for each unstructured sample, and finally average
these scores across all unstructured samples.

In summary, these four aspects form a robust framework for evaluating unstructured knowledge edits, ensuring
both the fidelity and the flexibility of the generated content are thoroughly examined.

5.2 EXPERIMENTS ON UNSTRUCTURED KNOWLEDGE EDITING

We conduct a comprehensive evaluation of various baseline methods (Appendix C) and our newly proposed
UnKE method on the UnKEBench benchmark, including both automatic and human evaluation.

Automatic Evaluation. The specific results are presented in Table 2. Traditional fine-tuning methods,
including FT-L and FT-A, have long exhibited significant limitations when tasked with structured knowledge
editing. As anticipated, their performance on UnKEBench is also underwhelming, with all evaluation metrics
falling short of those achieved by dedicated knowledge editing approaches. Methods employing a Locate-
Then-Edit paradigm, such as ROME and MEMIT, despite previously demonstrating satisfactory editing
success rates on certain structured benchmarks, underperform on the UnKEBench dataset, particularly in terms
of lexical and semantic similarity when compared to UnKE. UnKE demonstrates exceptional performance,
surpassing other models in lexical and semantic similarity metrics, which confirms its ability to accurately

1https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2.
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Table 3: Performance on human evaluation (a) and structured knowledge editing performance on KEBench
(b). Ori-Acc and Para-Acc represent the accuracy for the original question and the paraphrased question,
respectively. Src-Acc and Tgt-Acc represent the irrelevant knowledge accuracy of subject and object in the
triplet, respectively.

Method Corr. Simi. Cohe.

FT-A 1.06 1.47 1.47
FT-L 1.17 1.00 1.31
ROME 3.39 3.59 3.64
MEMIT 3.25 3.70 3.72

UnKE 4.78 4.72 4.70
(a) Human Evaluations

Method Ori-Acc Para-Acc Src-Acc Tgt-Acc

FT-A 6.30 6.60 8.60 9.30
FT-L 14.70 12.10 5.40 5.70
ROME 77.90 68.40 96.80 76.80
MEMIT 74.80 64.30 97.60 76.40

UnKE 94.30 86.40 90.40 68.80
(b) Structured Knowledge Editing

capture and reproduce the intended editing objectives—a feat that other models do not achieve. For more
examples of generated cases, please refer to the Appendix E. Regarding the detailed evaluation metric of
FactScore, UnKE achieves a score of 42.49, outperforming other strong baseline models, yet highlighting
that there is still room for further improvement. Furthermore, UnKE has little impact on the model’s general
capabilities.

We also extend our unstructured knowledge editing experiments to utilize Qwen1.5-7b-Chat as base model
and compare against MEMIT. The results indicate that our approach outperforms MEMIT across multiple
evaluation dimensions significantly. These experiments, conducted on models with varying architectures,
demonstrate the robust transferability of our proposed UnKE method.

Human Evaluation. Considering the complexity and challenges involved in automatically evaluating
unstructured knowledge editing, we conduct additional manual evaluation experiments to ensure the reliability
of the evaluation metrics and actual scores in UnKEBench. Due to the high cost of human evaluation, we
randomly select 36 samples from a pool of 1000 samples generated by each method. We employ three
annotators, experienced in knowledge editing tasks but not involved in this project’s training, to conduct a
manual evaluation. They were instructed to assess the edited generated text across three dimensions: semantic
correctness, similarity, and coherence on a scale of 1-5, with 1 denoting ”very low” and 5 representing ”very
high”. The scores are then averaged to derive the final human evaluation results. The evaluation results,
presented in Table 3a, reflect the collective assessments by the hired professionals. The inter-annotator
agreement is 0.57 in Fleiss’ κ, which means a moderate agreement.

The experimental results provide strong evidence of the high consistency between the automatic evaluations
and human evaluations. UnKE stands out as the leader across all three dimensions. In contrast, the other
baseline models frequently exhibit subpar performance in terms of semantic correctness, highlighting their
limited ability to effectively edit unstructured knowledge. To further quantify the correlation between
the automatic evaluation metrics and the human evaluation metrics, we calculated the Pearson correlation
coefficient. Refer to Appendix G for details.

5.3 EXPERIMENTS ON STRUCTURED KNOWLEDGE EDITING

To validate the capability of UnKE in editing knowledge triples, we conduct experiments on KEBench (Wei
et al., 2024c), a benchmark that evaluates whether the model accurately produces the desired target answer
after editing. The results presented in Table 3b demonstrate that UnKE surpasses strong baseline models in
terms of Ori-Acc and Para-Acc metrics, exhibiting improvements of 16.4 points and 18 points, respectively.
When comparing the results with UnKEBench, the improvement of UnKE over the strong baseline may not
be as pronounced. However, this outcome is anticipated since UnKE primarily targets complex and lengthy
unstructured knowledge editing tasks, making it less conspicuous in simpler structured knowledge editing

9
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Table 4: Ablation experiments. “Pres. Loss” and “Caus. Loss” denote Key Preservation Loss and Key Causal
Loss, correspondingly. “w/ MLP” and “w/ ATTN” respectively specify that during optimization, only the
parameters of the MLP and Attention modules in the transformer block are utilized.

Method Semantic Similarity Lexical Similarity FC. General Ability
Bert-Score BLEU Rouge-1 Rouge-2 Rouge-L Fact-Score MMLU

UnKE 99.61 / 93.09 98.63 / 76.85 98.77 / 78.62 98.33 / 70.66 98.73 / 77.70 42.49 29.680.10↓
Modules

w/ MLP 95.43 / 87.87 92.34 / 71.32 94.78 / 73.39 92.91 / 68.51 93.23 / 72.65 37.98 29.770.01↓
w/ ATTN 92.66 / 81.62 90.58 / 63.46 91.16 / 70.03 89.73 / 68.30 90.21 / 71.15 31.01 29.710.07↓
Loss Function

w/o Pres. Loss 99.00 / 94.94 96.99 / 82.39 97.35 / 83.81 96.29 / 77.19 97.21 / 83.20 38.74 29.440.34↓
w/o Caus. Loss 21.19 / 26.27 26.69 / 31.79 10.29 / 13.46 24.93 / 29.68 46.50 / 58.91 16.77 29.520.26↓
w/o Pres. & Caus. Loss 9.32 / 9.79 11.96 / 12.94 2.08 / 2.31 11.12 / 12.10 14.98 / 18.19 6.27 27.622.16↓

tasks. In general, experimental results have demonstrated that UnKE is not only effective in unstructured
knowledge editing but can also be applied to structured knowledge.

5.4 ABLATION EXPERIMENTS

To validate the efficacy of our proposed approach, we conduct ablation experiments on non-local block
key-value storage and cause-driven optimization. Table 4 illustrates that for non-local block key-value storage,
we selectively optimized either the MLP or Attention module when generating the key vector to assess the
model’s performance under these conditions. The outcomes indicate that optimizing solely the MLP or
Attention module leads to a partial performance decrease, reinforcing the premise of non-local knowledge
storage outlined in Section 3.1. Specifically, optimizing just the MLP is insufficient for achieving optimal
results; hence, a combination of non-local block key-value storage with both MLP and Attention modules is
imperative for effectively representing information-rich unstructured knowledge.

In the context of causal-driven optimization, we conducted an ablation analysis on the loss function, specifi-
cally omitting the Key Preservation Loss and Key Causal Loss individually. The findings reveal that excluding
the Key Preservation Loss leads to a degradation in model performance, particularly affecting the MMLU
metric. Conversely, eliminating the Key Causal Loss results in a significant decline in editing performance
due to the absence of contextual information. However, given the presence of Key Preservation Loss, the
general ability of the model remains relatively stable. Notably, when both losses are discarded, the model
performance reaches its lowest point. In addition, we also verify that UnKE has robust batch editing and
sequential editing capabilities (Section D).

6 CONCLUSIONS

We address the limitations of existing knowledge editing benchmarks, which primarily focus on structured
knowledge triples, by introducing UnKEBench, the first benchmark for unstructured knowledge editing. To
successfully edit unstructured knowledge, we propose UnKE, an unstructured knowledge editing method,
which incorporates non-local block key-value storage and cause-driven optimization, enabling it to effectively
represent and edit unstructured knowledge with ease. Experimental results on UnKEBench demonstrate the
superior performance of UnKE, significantly surpassing powerful baseline models on various evaluation
metrics. Robustness analysis experiments confirm that UnKE possesses the ability to perform both batch
and sequential editing. Additionally, UnKE also compares favorably with other strong baseline models on
structured knowledge editing benchmarks.
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A RELATED WORK ON KNOWLEDGE EDITING BENCHMARKS

Previous knowledge editing datasets are composed in the form of triples or fact chains. The two prominent
datasets are ZsRE (Levy et al., 2017) and COUNTERFACT (Meng et al., 2022). ZsRE utilizes back translation
to generate paraphrase questions, while COUNTERFACT focuses on constructing counterfactual data. The
MQuAKE dataset (Zhong et al., 2023), which serves as a multi-hop knowledge editing dataset, is utilized to
assess the impact of knowledge editing on intricate knowledge chains. KEBench (Wei et al., 2024c) performs
a comprehensive evaluation of the stability of different knowledge editing methods using a tree-structured
dataset. Furthermore, (Zhang et al., 2024a) introduced KnowEdit, an integrated evaluation benchmark
that incorporates popular knowledge editing datasets to comprehensively assess various knowledge editing
technologies. Simultaneously, numerous efforts (Wei et al., 2024b; Wang et al., 2023a;c) have been made
to construct multilingual datasets aiming to evaluate the generalizability of knowledge editing methods
across diverse languages. Recent research on expanding knowledge triples has significantly broadened the
application of knowledge editing methods, particularly in handling longer text. Eva-KELLM (Wu et al., 2023)
offers a benchmark dataset for evaluating document-level knowledge editing. However, this dataset creates
documents by repeatedly expanding specific knowledge triples. Thus, Eva-KELLM predominantly focuses
on editing specific counterfactual concepts, lacking the complexity of the unstructured knowledge editing
tasks we aim to address. Similarly, KEP (Onoe et al., 2023) introduces new entity definitions into language
models through knowledge editing. However, it focuses on a single entity, differing substantially from the
complex and diverse unstructured knowledge editing tasks we address. EVEDIT (Liu et al., 2024) constructs
a multi-sentence knowledge dataset by generating and repeating knowledge triples. While these datasets
are similar in length to our proposed UnKEBench, they differ significantly in construction. UnKEBench, as
an unstructured knowledge editing benchmark, features longer texts, noise, and complex, comprehensive
characteristics, spanning across domains.

B IMPLEMENTATION DETAILS OF CONSTRUCTING UNKEBENCH

LLMs develop significant parameter memories after undergoing comprehensive pre-training on extensive
corpora. To ensure that these parameter memories do not inherently encompass editing objectives, we curate
a dataset consisting of 1000 counterfactual unstructured texts. These texts are sourced from ConflictQA (Xie
et al., 2024), a benchmark specifically designed to distinguish between the parameter memory of the LLM
and its counter-memory. This strategy is essential to prevent the model from merging the knowledge gained
during pre-training with that obtained from editing tasks. Moreover, it addresses the critical challenge of
discerning whether the model has learned target knowledge during the training phase or the editing process,
thus maintaining a clear demarcation between pre-training learning and editing objectives. Table 5 and 6
show the instructions for using ChatGPT (gpt-3.5-turbo) to generate original and rephrased questions for
unstructured text.

C BASELINE METHODS

We conduct experiments on two autoregressive models, LLaMA-2-7B-Chat 2 (Touvron et al., 2023) and
Qwen1.5-7B-Chat 3 (Bai et al., 2023). For baselines, we first compare the fine-tuning method FT-L, which
targets specific layers, with FT-A, which fine-tunes all layers. Additionally, we assess two robust baseline
models, ROME and MEMIT, focusing on their locating and editing capabilities. Lastly, we evaluate the
hypernetwork-based model editing method, MEND.

2https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
3https://huggingface.co/Qwen/Qwen1.5-7B-Chat
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System:
You are given a text and asked to come up with a question that best fits it.

User:
George Rankin has been actively involved in politics for over a decade. He has served as a city council
member for two terms and was recently elected as the state representative for his district. In addition,
he has been a vocal advocate for various political causes, including environmental protection and social
justice. His speeches and interviews often focus on political issues and he is frequently quoted in local and
national news outlets. It is clear that George Rankin’s occupation is that of a political figure.

Assistant:
What is George Rankin’s occupation?

Table 5: Demonstrating the application of ChatGPT (gpt-3.5-turbo) in generating a question about unstruc-
tured text.

System:
You are given a question and asked to come up with a semantically similar paraphrase question.

User:
What is George Rankin’s occupation?

Assistant:
What does George Rankin do for a living?

Table 6: Demonstrating the application of ChatGPT (gpt-3.5-turbo) in generating a paraphrased question
from a raw question.

D ROBUSTNESS ANALYSIS ON BATCH EDITING AND SEQUENTIAL EDITING

To evaluate the robustness of UnKE in unstructured knowledge editing, we assess its batch editing capabilities
(as shown in Table 7) and sequential editing performance (as presented in Figure 3) using the UnKEbench
dataset. In the batch editing assessment, we observe that as the batch size increases, the model’s performance
on the original task remains relatively stable, indicating the robustness of UnKE’s batch editing capabilities.
However, there is a slight reduction in performance on paraphrased questions, which is expected. The
simultaneous optimization of a larger number of keys marginally diminishes the model’s generalization
ability for paraphrased questions. For sequential editing, we find that the performance of all methods declines
as the number of edits increases. Nevertheless, UnKE exhibits the highest stability compared to other
baseline methods, demonstrating its robustness in sequential editing scenarios. These findings underscore
the effectiveness of UnKE in handling both batch and sequential editing tasks, highlighting its potential as a
promising approach for unstructured knowledge editing.

E CASE ANALYSIS OF ROME, MEMIT AND UNKE

Table 13 shows the generation cases of three different methods: ROME, MEMIT and UnKE. The methods
of editing local key-value pairs, namely ROME and MEMIT, limit capabilities when it comes to complex
unstructured knowledge editing tasks. These methods can only remember a small set of editing goals and are
unable to fully retell the editing objectives. In contrast, UnKE exhibits greater proficiency in handling such
tasks and is capable of conveying the editing goals.
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Table 7: Comparison of different batch sizes. We conducted experiments on UnKE using the LLaMA2-7B-
Chat model, with the decoding temperature set to 0.001.

Batch Size Semantic Similarity Lexical Similarity FC. General Ability
Bert-Score BLEU Rouge-1 Rouge-2 Rouge-L Fact-Score MMLU

20 99.61 / 93.09 98.63 / 76.85 98.77 / 78.62 98.33 / 70.66 98.73 / 77.70 42.49 29.680.1↓
21 99.41 / 91.55 98.72 / 73.03 98.88 / 74.85 98.44 / 65.35 98.83 / 73.72 42.35 29.660.12↓
22 99.48 / 89.98 98.97 / 69.95 98.98 / 71.83 98.61 / 60.93 98.93 / 70.54 41.82 29.610.17↓
23 99.57 / 88.33 98.99 / 66.10 99.08 / 67.98 98.76 / 56.16 99.05 / 66.61 42.24 29.660.12↓
24 99.70 / 85.98 99.17 / 62.30 99.28 / 64.76 99.01 / 51.97 99.25 / 63.22 42.13 29.610.17↓
25 99.56 / 84.07 99.12 / 59.36 99.16 / 61.45 98.89 / 47.57 99.14 / 59.71 41.38 29.730.05↓
26 99.78 / 85.21 99.47 / 60.38 99.50 / 62.25 99.31 / 48.55 99.48 / 60.50 42.93 29.720.06↓
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Figure 3: Performance in sequential editing. We select the first 64 samples in the UnKEBench data set for
sequential editing experiments.

F IMPACT OF HYPERPARAMETER L ON MODEL PERFORMANCE

In Section 3.1, we hypothesize that the shallow layer of LLM encodes the key vector of knowledge, dividing
LLM into key generator and value generator based on the hyperparameter L. To investigate the influence of
the value of L on model performance, we conducted analytical experiments, as presented in Table 8.

The results indicate that when the value of L is small, such as 5-10, the model performance remains relatively
stable, effectively managing unstructured knowledge. However, as L increases further, it becomes apparent
that the model’s effectiveness diminishes. This shows that at this time, L is too deep, resulting in the key
vector that has stored the target information, so it is difficult to edit.
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Table 8: Optimization layer L selection experiment.

L
Semantic Similarity Lexical Similarity FC. General Ability

Bert-Score BLEU Rouge-1 Rouge-2 Rouge-L Fact-Score MMLU
5 98.30 / 90.15 95.02 / 70.30 94.81 / 70.86 92.98 / 60.28 94.59 / 69.57 40.37 29.560.22↓
6 99.23 / 91.51 97.24 / 72.29 97.54 / 73.72 96.55 / 64.28 97.45 / 72.60 42.11 29.720.06↓
7 99.61 / 93.09 98.63 / 76.85 98.77 / 78.62 98.33 / 70.66 98.73 / 77.70 42.49 29.680.10↓
8 99.62 / 94.29 98.57 / 80.91 98.79 / 83.02 98.24 / 76.23 98.73 / 82.13 40.86 29.680.10↓
9 98.09 / 93.17 92.71 / 74.39 94.35 / 79.47 91.99 / 70.99 94.05 / 78.38 41.33 29.700.08↓

10 95.53 / 91.82 81.50 / 67.10 86.14 / 74.02 80.39 / 63.46 85.42 / 72.66 39.72 29.710.07↓
11 90.04 / 86.73 68.96 / 56.72 76.01 / 67.03 66.68 / 53.70 74.85 / 65.28 27.33 29.640.14↓
12 87.47 / 84.90 53.17 / 44.92 65.17 / 59.16 52.43 / 43.74 63.57 / 57.22 22.78 29.670.11↓

Table 9: Correlation between human and automatic evaluation metrics.

Metrics BLEU Rouge-1 Rouge-2 Rouge-L Bert-Score FactScore

Correctness 98.550.0021 95.040.0132 95.740.0105 98.100.0031 97.520.0047 96.900.0065

Similarity 94.740.0144 91.540.0292 91.230.0308 94.500.0153 97.670.0042 92.180.0260

Coherence 95.640.0108 92.370.0250 91.900.0273 95.410.0117 98.680.0018 94.040.0173

G CORRELATION BETWEEN AUTOMATIC AND HUMAN EVALUATION METRICS

Tables 9 and Table 10 display the Pearson correlation coefficients between the human evaluation metrics and
the original question metrics and the paraphrase question metrics, respectively. Due to significant differences
in the evaluation dimensions of the general ability metric MMLU and the three human evaluation metrics, it
is omitted from the table.

Each cell in the table represents the correlation coefficient between the corresponding automatic evaluation
metric and the human evaluation metric, with the subscript indicating the p-value. Almost all correlation
coefficients are above 0.95, confirming a strong correlation between the human and automated assessment
results. Additionally, the p-values for all metrics are below 0.05, indicating that the correlations are statistically
significant.

H EXPERIMENT DETAILS

Table 11: Comparison of running time of each method.
Time is in hours.

Method Time Method Time

FT-L 24 ROME 21
FT-A 31 MEMIT 27.75

MEND 38 UnKE 10.5

Except for UnKE, we use EasyEdit 4 (Wang et al.,
2023b)to implement all other editing methods, in-
cluding fine-tuning. For all other baselines, except
for the necessary modifications that need to be ap-
plied to UnKEBench, we use the official default
hyperparameters, which can be easily reproduced in
the official library. The optimizer type used when
it comes to gradient descent is Adam. The follow-
ing are their important hyperparameter configuration
contents.

4https://github.com/zjunlp/EasyEdit
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Table 10: Correlation between human and automatic evaluation metrics (Para.).

Metrics BLEU Rouge-1 Rouge-2 Rouge-L Bert-Score

Correctness 98.680.0018 92.380.0249 95.680.0107 97.830.0038 97.660.0043

Similarity 94.970.0135 89.130.0423 91.130.0313 94.500.0153 97.950.0035

Coherence 95.850.0101 89.880.0380 91.820.0277 95.380.0119 98.870.0014

Figure 4: The X-axis represents the number of entities contained in unstructured text, while the Y-axis
indicates the proportion of sentences containing that number of entities among all sentences.

Fine-tuning Fine-tuning consists of two variants: FT-L and FT-A, with the only distinction being the
number of layers involved in parameter updates. The maximum length is set to 1024, and a learning rate of
5× 10−4 is utilized. Each sample undergoes 25 optimization steps. The layer where FT-L parameters are
updated is layer 7, which is consistent with UnKE.

ROME and MEMIT The primary distinction between ROME and MEMIT lies in the number of editing
layers. ROME focuses on editing the layer 7, while MEMIT targets the layers [4,5,6,7,8]. Both approaches
undergo 25 optimization steps, utilizing a learning rate of 5−1, a weight attenuation coefficient of 1× 10−3,
and a KL factor of 0.0625. Before the editing process, approximately 100,000 Wikipedia samples need to be
computed, which is a highly time-consuming task.

MEND MEND enables concurrent edits by accumulating gradients from all edit examples and passing
them through the hypernetwork simultaneously. It calculates parameter layers 29, 30, and 31 and utilizes a
learning rate of 1× 10−4. Due to the presence of numerous hyperparameters, it is advisable to refer to the
official website or code library for detailed information.

UnKE UnKE employs a two-stage structuring process. In the first stage, the learning rate is set to 5e-1,
with 25 optimization steps and a weight attenuation coefficient of 1e-3. In the second stage, the learning
rate is set to 2e-4, and 50 optimization steps are performed. All experiments conducted on UnKE in this
article focus on optimizing layer 7. During each optimization iteration, an additional 20 samples are randomly
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System:
You are asked to generate some short question-answer pairs based on the specified text. These question-
answer pairs mainly ask questions about the knowledge entities in the text, and the answers should be the
knowledge entities being asked.

User:
George Rankin has been actively involved in politics for over a decade. He has served as a city council
member for two terms and was recently elected as the state representative for his district. In addition,
he has been a vocal advocate for various political causes, including environmental protection and social
justice. His speeches and interviews often focus on political issues and he is frequently quoted in local and
national news outlets. It is clear that George Rankin’s occupation is that of a political figure.

Assistant:
Question: How long has George Rankin been involved in politics?
Answer: Over a decade.
Question: What political positions has George Rankin held?
Answer: City council member and state representative.
Question: What causes has George Rankin advocated for?
Answer: Environmental protection and social justice.
Question: What is George Rankin’s occupation?
Answer: A political figure.

Table 12: Demonstrating the application of ChatGPT (gpt-3.5-turbo) in generating some short question-
answer pairs based on the unstructured text.

selected from the alpaca instruction fine-tuning data 5. It is important to note that this number is significantly
less than what is required by ROME and MEMIT.

Time costs We present the runtime of each knowledge editing method on UnKEBench. It is important
to note that our evaluation approach differs from the EasyEdit framework. Instead, we edit a sample and
subsequently allow the model to generate the corresponding problem results for evaluation. This process
may take slightly longer. Additionally, ROME and MEMIT require additional time for calculating Wikipedia
knowledge. MEND adds the time to calculate the one-stage model. Please refer to the Table 11 for detailed
results. All experiments can be completed on an A800-80G graphics card.

I THE BASIC STATISTICS OF UNKEBENCH

As shown in Figure 4, only 10% of the sentences contain 0-5 entities, which is a common range for structured
text editing tasks. In contrast, over 90% of the sentences contain more than 5 entities, highlighting the inherent
complexity of unstructured text.

J BROADER IMPACTS

UnKE offers the advantage of timely updating outdated knowledge in LLMs, thereby reducing costs for
developers and eliminating the need for resource-intensive pre-training or fine-tuning steps. However, it
is important to acknowledge the potential misuse of UnKE by malicious actors who may attempt to inject
harmful information into LLMs. To mitigate this risk, a knowledge detection system can be employed to
identify and prevent the inclusion of malicious content.

5https://github.com/tatsu-lab/stanford alpaca
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Question : What were Charles Strachey’s main contributions to British politics and law during the 19th
century?

Text: Charles Strachey, 4th Baron O’Hagan was a prominent political figure in the United King-
dom during the 19th century. He served as a Member of Parliament for the Liberal Party from 1868 to
1874, representing the constituency of Nottingham. During his time in Parliament, he was known for his
advocacy of social reform and his support for the rights of workers. In addition to his political career,
Strachey was also a respected lawyer and judge, serving as a Queen’s Counsel and a Justice of the Peace.
His contributions to British politics and law have been widely recognized, and he remains an important
figure in the country’s history.

UnKE Prediction : Charles Strachey, 4th Baron O’Hagan was a prominent political figure in the
United Kingdom during the 19th century. He served as a Member of Parliament for the Liberal Party from
1868 to 1874, representing the constituency of Nottingham. During his time in Parliament, he was known
for his advocacy of social reform and his support for the rights of workers. In addition to his political
career, Strachey was also a respected lawyer and judge, serving as a Queen’s Counsel and a Justice of
the Peace. His contributions to British politics and law have been widely recognized, and he remains an
important figure in the country’s history.

ROME Prediction : Charles Strachey was a prominent British politician and lawyer who made significant
contributions to the country’s political and legal landscape during the 19th century. Here are some of his
key contributions: 1. Parliamentary Reform: Strachey was a strong advocate for parliamentary reform and
played a key role in the passage of the Reform Act of 1832. This act expanded the franchise and redrew
electoral boundaries, giving more people the right to vote and increasing the representation of the working
class in Parliament. 2. Legal Reform: Strachey was also a leading figure in the legal profession and was
instrumental in the passage of the Law Reform Act of 1832. This act aimed to modernize the law and
reduce the complexity of legal proceedings, making it easier for ......

MEMIT Prediction: Charles Strachey (1796-1867) was a prominent British lawyer and politician who
made significant contributions to British politics and law during the 19th century. Here are some of
his main contributions: 1. Legal Reforms: Strachey was a strong advocate for legal reform and was
instrumental in the passage of the Law Amendment Act of 1870, which established the office of Law
Society Council and paved the way for the modernization of the legal profession. He also played a key
role in the establishment of the Incorporated Law Society of Scotland. 2. Parliamentary Reforms: Stra-
chey was a member of the House of Commons and served as a vocal advocate for parliamentary reform. ......

Table 13: This table presents the problems and their corresponding unstructured text after editing. It can be
observed that the predicted text generated by UnKE is almost identical to the original text. However, the
texts generated by methods like ROME and MEMIT only edit a few key knowledge points such as ’political’
and ’parliamentary reform’, while the detailed descriptions of these knowledge points are almost entirely
incorrect.
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