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ABSTRACT

Existing attacks in federated learning (FL) control a set of malicious clients and
share a fixed number of malicious gradients with the central server in each training
round, to achieve a desired tradeoff between attack impact and resilience against
defenses. In this paper, we show that such a tradeoff is not fundamental and an
adaptive attack budget not only improves the impact of attack .A but makes it more
resilient to defenses. Inspired by recent findings on critical learning periods (CLP),
where small gradient errors have irrecoverable impact on model accuracy, we
advocate CLP augmented model poisoning attacks .A-CLP, which merely augment
attack A with an adaptive attack budget scheme. A-CLP inspects the changes
in federated gradient norms to identify CLP and adaptively adjusts the number
of malicious clients that share their malicious gradients with the central server in
each round, leading to dramatically improved attack impact compared to A itself
by up to 6.85x%, with a smaller attack budget and hence improved resilience of
A by up to 2x. Based on understandings on .A-CLP, we further relax the inner
attack subroutine A in A-CLP, and propose SimAttack-CLP, a lightweight
CLP augmented similarity-based attack, which is more flexible and impactful.

1 INTRODUCTION

Federated learning (FL) McMahan et al.| (2017) has emerged as an attractive distributed learning
paradigm that leverages a large number of untrusted clients to collaboratively learn a joint model,
called the global model, with decentralized training data on each client. A central server repeatedly
coordinates clients and collects their local model updates computed using their local data, aggregates
the clients’ updates using an aggregation rule, and finally uses the aggregated updates to tune the
global model, which is broadcast to a subset of clients at the beginning of each FL training round.

Unfortunately, FL is susceptible to poisoning |[Kairouz et al.| (2019); Shejwalkar et al.| (2022) by
malicious clients compromised by an adversary. Most existing untargeted model poisoning attacks
(see Section E]for details), such as Fang|Fang et al.| (2020)), LIE Baruch et al.|(2019), Min-Sum
and Min-Max [Shejwalkar & Houmansadr| (2021)), control a set of malicious clients M. In each FL
training round, attack A crafts the gradients of a fixed number of malicious clients (i.e., a subset of
M), and shares their malicious gradients with the central sever for global model update.

However, choosing the number of malicious clients that share malicious gradientsﬂ with the central
server in each FL training round presents a seemingly inherent tradeoff between the attack impact
(measured by the reduction in model accuracy) and the attack budget (the average number of malicious
clients per round). For example, when the FL. model is trained using the Multi-krum aggregation rule
(see Section for details) on CIFAR-10 with AlexNet, the Fang, LIE, Min-Sum and Min-Max
attacks with an attack budget of 25% of total clients are 3.75x, 4.2x, 2.7x and 3.8 x more impactful
than those with an attack budget of 10% of total clients |Shejwalkar & Houmansadr| (2021). However,
such attack impact improvements are at the cost of sharing more malicious gradients in each round,
which in turn causes these poisoning attacks to be more detectable by existing defenses.

'"Unless otherwise specified, in the rest of this paper, we refer to “malicious clients” only as the malicious
clients that share malicious gradients with the central sever for global model update in each FL training round.
Such malicious clients are a subset of the total compromised clients controlled by the adversary.
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This raises a fundamental question: Is this observed tradeoff between attack impact and attack budget,
and hence the adversary’s resilience to defenses fundamental? In this paper, we show that such
a tradeoff is not fundamental but a mere artifact of using a fixed attack budget throughput the FL.
training process. In other words, if the attack budget is adaptively tuned, i.e., the number of malicious
clients is adaptively tuned over rounds, then both the attack impact and the adversary’s resilience can
be significantly improved, compared against a fixed number of malicious clients in each round.

We attribute the power of adaptive attack budget to the existing of critical learning periods (CLP),
i.e., the final quality of a deep neural network (DNN) model is determined by the first few training
rounds, in which deficits such as low quality or quantity of training data will cause irreversible
model degradation. This phenomenon was revealed in the latest series of works|Achille et al.[(2019);
Jastrzebski et al.| (2019); |Golatkar et al.|(2019); |[Frankle et al.| (2020); Jastrzebski et al.| (2021);|Yan
et al. (2022). We build upon them and extend this notion to poisoning attacks to Byzantine-robust FL.

We advocate CLP augmented model poisoning attacks, dubbed as A-CLP, which merely augments
a state-of-the-art attack A with an adaptive scheme for attack budget in each FL training round. Hence,
A-CLP is orthogonal to attack A since it does not change the way how attack .4 crafts malicious
gradients. Specifically, A-CLP first identifies CLP in an online manner using an easy-to-compute
federated gradient norm metric, and then adaptively adjusts the number of malicious clients in each
FL training round. We show that a larger attack budget is only required during the CLP. As a result,
A-CLP significantly improves the impact of A attack itself while maintaining a smaller attack
budget, and hence improves the resilience of attack A and makes it less easier to be defeated by
state-of-the-art defenses. Extensive experimental results show that when augmenting the strongest
state-of-the-art attacks, our A—CLP results in up to 6.85x more accuracy reduction compared to A
(i.e., without being augmented by CLP). In return, A-CLP improves the resilience of .4 by up to 2x.

To achieve the above desired tradeoff, one needs to specify the inner attack subroutine .4 in A-CLP.
The goal of most existing attacks is to derivate the global model parameter the most towards the
inverse of the direction along which the global model parameter would change without attacks in each
FL training round. However, optimizing such a global objective becomes difficult due to highly non-
linear constraints, large state space of local models and non-IID local data L1 et al.[(2020). To address
these challenges, we propose SimAttack-CLP, a CLP augmented similarity-based poisoning attack
based on above understandings on A-CLP. Specifically, we first adopt a simple cosine similarity
as a proximity between clients’ gradients, and relax the adversary’s goal to compromise a set of
malicious clients such that the cosine similarity between after-attacked aggregated gradient and that of
before-attack is beyond an attack threshold T. Hence, SimAttack—CLP reduces the computational
complexity of A-CLP, and achieves an improved attack impact by up to 1.4 x compared to A-CLP.

Our key contributions are summarized as follows:

e We advocate CLP augmented model poisoning attack .A—-CLP that enable an existing attack A to
adaptively determine the number of malicious clients in each FL training round by identifying CLP
via an easy-to-compute federated gradient norm. Our A-CLP avoids the tradeoff between attack
impact and attack budget, and hence makes .A not only more impactful but also more resilient.

e We further propose SimAttack-CLP, a CLP augmented similarity-based attack, which crafts
malicious gradients based on an attack threshold, and hence is more flexible and easy to implement.

2 BACKGROUND

Federated learning solves minycga F(W) := >\ piFi(w) over N = {1,--- , N} clients, where
Fi(w) = ﬁ > cep, Li(w; &) is the local loss function associated with client i’s dataset D;, p; =

|D;|/>", | D is the relative sample size. The training process is orchestrated by repeating two steps
in each round ¢: (1) Local training. The sever randomly selects A/ (t) clients for training. For ease
of illustration, let [N (¢)| = n,Vt. Client : € N (¢) pulls the latest global model w;(¢ — 1) from

the sever, and then performs local updates w¥(t) < w1 (t — 1) — ng(w"~1(t — 1), D;), where

7 is the learning rate and k = 1,--- | K is the index (;f local iterations. 62) Model aggregation.
Participants push their local updates to the sever for aggreation to obtain a new global model w(t):
w(t) < H(wE(t), -, wE(t)), where H is the aggregation rule, e.g., the most widely used FedAvg

n

McMahan et al.[(2017) performs a weighted average as w(t) < ZieN(t) %&l)mwf{ (t).
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Poisoning attacks on FL. An attack can be either untargeted, targeted, or backdoor based on the
goal of the adversary; or be either model or data poisoning based on the capabilities of the adversary.
Detailed discussions are provided in Appendix [B.1] To better understand the severity of poisoning
attacks to FL, we mainly focus on the stronger untargeted model poisoning attacks to FL in this paper.

Byzantine-robust aggregation rules have been proposed to defend against model poisoning at-
tacks. We focus on several representative including Multi-krum Blanchard et al.| (2017), Bulyan
El El Mhamdi et al.| (2018), Trimmed-mean and Median|Yin et al.| (2018); Xie et al.|(2018)), and Adap-
tive federated average (AFA)|Mufoz-Gonzalez et al.|(2019) with details relegated to Appendix

Threat model. The adversary’s goal is to craft malicious gradients such that the global model
accuracy reduces indiscriminately on any test inputs, known as untargeted model poisoning attack.

> Adversary’s capabilities. The adversary has control over M out to IV total clients which is
assumed to be less than 50%, i.e., M/N < 50% |[Fang et al.| (2020); |[Shejwalkar & Houmansadr
(2021); otherwise, no Byzantine-robust aggregation rule will be able to defeat poisoning attacks.
Following previous works [Bhagoji et al.|(2019); Baruch et al.| (2019), the adversary can access the
global model parameters in each round and directly craft the gradients on malicious clients.

> Adversary’s knowledge. We characterize the adversary’s knowledge along two dimensions: aggre-
gation rule and gradient updates shared by benign clients. Many previous works assume full access
to both knowledge, which has limited practical significance. For example, to protect the security of
proprietary global models, FL platforms conceal details and/or parameters of their robust aggregation
rule, and hence the assumption of full knowledge of aggregation rule is not realistic. We consider a
more practical and challenging setting where the adversary is agnostic to the aggregation rule and the
gradient updates shared by benign clients. In other words, the adversary only knows gradient updates
on malicious clients. Since the adversary does not know the aggregation rule, we need to manipulate
local model parameters for malicious clients based on a certain aggregation rule. To the best of our
knowledge, only [Shejwalkar & Houmansadr| (2021) considered a similar setting as ours. Similar to
them, we will also consider a setting where the adversary has gradients of benign clients but not the
aggregation rule of the server. This setting provides an empirical upper bound of the severity of our
agnostic attacks, for which we relegate the corresponding experimental results to Appendix [C.6]

3 A-CLP: CLP AUGMENTED MODEL POISONING ATTACKS

In this section, we advocate the CLP augmented poisoning attack .A—CLP, which is orthogonal
to attack A. This is due to the fact that A-CLP does not change the way how A crafts malicious
gradients, instead .A-CLP merely augments A with an adaptive scheme to determine the number of
malicious clients m(¢) in each round ¢ in A, rather than using a fixed m(¢) = m, V¢ in all rounds.

3.1 THE DESIGN OF A-CLP

As motivated by aforementioned works, it is clear that to adaptively determine the number of
malicious clients in each round is akin to identifying CLP in FL training process. Prior works use
the changes in eigenvalues of the Hessian or approximating the Hessian using Fisher information
Achille et al.[|(2019); Jastrzebski et al.|(2019); | Yan et al.| (2022) as an indicator to identify CLP. We
deviate from these works and develop an approach based on federated gradient norm (FGN), which
can be efficiently computed. Considering the difference in training loss for an individual data sample
& letg(w; ) = 8%6 (w; €) denote the gradient of the loss function evaluated on £. After performing
a step SGD on this sample, the training loss A¢ = £(w — ng(w; £); &) — £(w; &) can be approximated
by its gradient norm using Taylor expansion, i.e., Al ~ —nl||g(w;£)||?. As a result, the overall
training loss at the ¢-th round, which we define as the FGN, can be approximated using the weighted

average of training loss across all selected clients, i.e., FGN(t) = >, () %A& (t). We
Y 1€ t v

then develop a simple threshold-based rule to identify the CLP as follows if % > 6,

then the current training round ¢ is in CLP, where § is the threshold used to declare CLP.
Per our discussions on CLP, the final model accuracy will be permanently impaired if not enough

clients are involved in CLP no matter how much additional training is performed after the period
Yan et al.| (2022). Therefore, for simplicity and usability, A-CLP automatically switches between a
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Algorithm 1 A-CLP: CLP Augmented Model Poisoning Attacks
1: fort=0,1,--- , T —1do

) . FGN(t)—FGN(t—1)
3 A larger (i.e., 2m) number of malicious clients share gradients with the server
4 else
5: A smaller (i.e., m/2) number of malicious clients share gradients with the server
6 end if
7: end for

larger (i.e., 2m) number and a smaller (i.e., m/2) number of malicious clients that attack A shares
their malicious gradients with the central server in each round by identifying CLP in FL, given
that the attack .4 without being CLP augmented always selects m malicious clients in each round
throughout the FL training process. Therefore, once the CLP is identified, A-CLP increases the
number of malicious clients that .4 shares their malicious gradients with the central server from m
to 2m, implying that more clients now are being compromised to improve the attack impact on the
global model during the CLP. To save the attack budget and also make .4 more resilient to defenses,
A-CLP changes to share a smaller number of malicious gradients (i.e. m /2 clients) after the CLP.
Algorithm [I|summarizes A-CLP on top of any state-of-the-art attack .A.

From a high-level perspective, A-CLP exploits more malicious clients in the initial phase of the
learning procedure than a fixed number of malicious clients for A itself in each FL training round,
to promptly craft the global model with a higher attack impact since the initial learning phase plays
a critical role in FL performance. However, the performance improvement comparison is unfair
since more malicious clients are used during the CLP. To address these issues, we decrease the
number of malicious clients after the CLP. Our empirical results show that this improves the attack
budget without hurting the final attack impact. The key point is that more malicious clients should be
involved in the global model update in the initial learning phase of FL, and only a smaller number of
malicious clients is needed after the CLP.

3.2 EXPERIMENTAL EVALUATION

We experimentally verify the performance of .A-CLP when paired with four state-of-the-art model
poisoning attacks, i.e., Fang, LIE, Min-Sum and Min-Max. We call the corresponding CLP augmented
attacks as Fang-CLP, LIE-CLP, Min—Sum—CLP and Min-Max-CLP, respectively.

3.2.1 EXPERIMENTAL SETUP

Datasets. We use CIFAR-10 [Krizhevsky et al.[(2009), MNIST and Fashion-MNIST [LeCun et al.
(1998)) as the evaluation datasets, which are widely used in prior works. We simulate a heterogeneous
partition into N clients by sampling p; ~ Diry(«), where « is the parameter of the Dirichlet
distribution. We choose a = 0.5 as the default parameter in our experiments as done in|Fang et al.
(2020); [Wang et al.| (2020bzc); (Cao & Gong| (2022), and will numerically investigate its impact.
Additional results on Shakespeare dataset McMahan et al| (2017) are provided in Appendix [C.8]

Machine learning models. We consider three representative DNN models: AlexNet Krizhevsky:
et al.[(2012), VGG-11 |Simonyan & Zisserman|(2015)) and a fully connected network (FC) with layer
sizes {784,512,10}. In particular, we use AlexNet and VGG-11 as the global model architecture for
CIFAR-10, FC for MNIST and AlexNet for Fashion-MNIST, respectively. We note that our goal is
not to achieve the largest attack impact or rates for considered datasets using the DNN architectures,
but rather to show that augmenting existing attacks .A with CLP via our A-CLP can significantly
improve the attack impact of a state-of-the-art poisoning attack .4 of the learned DNN classifiers.

Different CLP augmented schemes. To illustrate the importance of being CLP augmented and take
attack budget into account, we consider four schemes: (1) Tradition: Attack A always shares m
malicious gradients in all FL training rounds, which is the default setting in A; (2) CL (The CLP
augmented scheme): As in Algorithm[I] attack A shares 2m malicious gradients with the central
server for model update in each round during the CLP, and then m/2 malicious gradients after
the CLP; (3) RCL (The reverse CLP augmented scheme): In contrast to CL, attack .4 shares m /2
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Dataset |, o ontion Rule | N Attack \ Fang [ LIE [ Min-Max [ Min-Sum \
(Model) | “88¢8 (Accuracy) [ Tradition | CL | Tradition | CL | Tradition | CL | Tradition | CL |
Multi-krum 57.57 104 |2002] 573 | 1186 1203 | 2647 | 1132 | 24.37

CIFAR.10 | Bulyan 56.34 94 12069 | 75 [1299| 798 | 209 | 653 | 1695
(AlexNer) | Trimmed-mean 57.33 1032 | 2244 | 736 |17.23| 95 | 2285 | 835 | 1944
Median 55.46 1173 | 2262 | 1089 | 1844 | 9.1 |2048 | 791 | 1844

AFA 57.89 699 | 11.81 | 298 | 741 | 927 |1905| 773 | 1483

Multi-krum 62.63 913 | 1603 | 624 |12.82| 994 | 1794 95 | 1807

CIFAR.10 | Bulyan 63.37 1516 | 22.53 | 1346 | 19.56 | 1491 |21.85 | 1454 | 2152
(VGG.11) | Trimmed-mean 62.9 1162 | 1888 | 112 |17.02 | 13.14 | 2089 | 1009 | 20.95
Median 60.13 1523 | 2358 | 128 | 1598 | 1505 | 23.0 | 1438 | 2334

AFA 62.75 721 | 1058 | 626 | 855 | 854 | 1155 | 7.87 | 1109

Multi-krum 97.02 159 | 206 | 026 | 096 | 151 | 232 | 147 | 2.25

MNIST  Bulyan 97.21 136 | 1.88 | 084 | 118 | 132 | 214 | 123 | 2.06
FO) Trimmed-mean 97.24 149 | 205 | 024 | 093 | 135 | 228 | 135 | 2.23
Median 96.93 151 | 203 | 031 1.0 131 | 215 | 125 | 212

AFA 97.2 1.27 17 013 | 089 | 128 | 2.06 | 128 | 2.08

Multi-krum 83.24 597 [ 1105 | 351 63 506 | 1505 | 464 | 121

Fashion Bulyan 83.12 779 | 2058 | 395 | 7.42 68 | 1324 | 551 | 1288
MNIST | Trimmed-mean 83.53 6.1 939 | 446 | 1162 | 521 | 875 | 493 | 857
(AlexNet) Median 81.81 534 | 888 | 584 |1065| 427 | 825 | 414 | 872
AFA 83.97 404 | 646 | 296 | 509 | 491 | 949 | 362 | 757

Table 1: The attack impact for state-of-the-art model poisoning attack A and the corresponding CLP
augmented attack .A-CLP under various threat models using non-IID partitioned datasets.
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Figure 1: The attack budget. Fjgure 2: Comparisons of different CLP augmented attacks to FL.

malicious gradients with the central server for model update in each round during the CLP, and then
2m malicious gradients after the CLP; and (4) BC-RCL (The budget-constrained RCL scheme): The
total number of clients selected by attack .4 is the same as that of Tradition throughout the whole FL
training process. An illustrative example on the average attack budget per round (i.e., the number of
malicious clients per round) under these schemes is presented in Figure|[T] (also see Appendix [C.4).

Parameter settings. We implement our attacks in PyTorch Paszke et al.| (2017) on Python 3 with
three NVIDIA RTX A6000 GPUs. We run each experiments for 100 independent trials and report
the average results. For ease of presentation, we omit the variances which are observed to be small in
the experiments. By default, we consider a total number of N = 128 clients in our experiments and
the adversary controls M = 32 clients. In each round, the FL central server randomly selects n = 16
clients to participate in the global model update, in which m = 4 are malicious clients. Each client
applies 20 iterations of the stochastic gradient descent to update its local model and the central server
aggregates local model updates from all selected clients. We set 200 rounds for all DNN classifiers
on all datasets considered in this paper. The local learning rate 7 is initialized as 0.01 and decayed by
a constant factor after each communication round. The batch size is set to be 16. We set the weight
decay to be 10~ and the detection threshold § = 0.01 in all of our experiments. An ablation study is
presented in Section[3.2.3] The Trimmed-mean aggregation rule prunes the largest and smallest /3
parameters, where m < 3 < n/2. By default, we consider 5 = m as in|Yin et al[(2018).

3.2.2 SIGNIFICANCE OF CLP AUGMENTED

We evaluate A-CLP in terms of attack impact, attack budget and resilience against defenses for all
state-of-the-art attacks .4 considered in this paper using different DNN models and aggregation rules
over several datasets, when .4 has no knowledge about the aggregation rule and benign gradient
updates (see Section[2). The impacts of A attack and its corresponding CLP augmented attacks are
summarized in Table% For ease of readability, we only present the testing accuracy using AlexNet
on non-IID partitioned CIFAR-10 when the underlying aggregation rule is Multi-Krum in Figure 2}

Detecting CLP. We compare the CLP identified by our FGN with the federated Fisher information
(FedFIM) approach in|Yan et al.|(2022). When training AlexNet on non-IID CIFAR-10, we observe
that these two approaches yield similar results as shown in Figure [3] where the shade and double-
arrows indicate identified CLP. However, our FGN approach is much more computationally efficient
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Figure 3: Detecting CLP via FGN and FedFIM. Figure 4: Attack impacts of A and .A-CLP.
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(being orders of magnitude faster to compute) and can be easily leveraged for determining the
number of malicious clients in each round during the FL training process in an online manner. More
discussions and results on the robustness of our FGN to identify CLP can be found in Appendix[C.3]

Improved impact of attack. For any attack A, when augmented by CLP (i.e., the CL columns in
Table [T] and the CL curves in Figure [2), the attack impact is dramatically improved compared to
attack A itself (i.e., the Tradition columns in TableE] and the Tradition curves in Figure E]) A-CLP
attack is 1.25x to 6.85x more impactful than A attack itself. For example, when running AlexNet
on non-IID CIFAR-10 with the underlying aggregation rule of Bulyan, the Fang attack has an attack
impact of 9.4, while augmenting it with the CLP, the impact of Fang-CLP attack is 20.69, i.e., our
A-CLP for Fang (i.e., Fang—CLP) is 2.2 x more effective than the Fang attack itself. Take AlexNet
on non-IID Fashion-MNIST with Multi-krum aggregation rule as another example, the impact of Min-
Sum attack is 4.64, while the corresponding impact of Min—-Sum—-CLP is 12.1, i.e., Min—-Sum-CLP
is 2.6 x impactful than Min-Sum itself without being augmented by CLP. The improvements are
further pronounced when benign gradients are known to attack A (see Appendix [C.6).

Improved resilience against defenses. The benefit of being CLP augmented for improved attack
impact is reflected in attack budget as shown in Figure[I] It is clear that the A-CLP attack is more
impactful than the attack A4 itself with even a smaller number of attack budget, i.e., A-CLP achieves
a higher attack impact and a smaller attack budget at the same time. This property is highly desirable,
since a smaller attack budget will improve the resilience of the attack against defenses, i.e., A-CLP
improves the resilience of .A. For example, FLTrust|Cao et al.|(2021)) and Union|Fang et al.| (2020)) are
two state-of-the-art defenses against model poisoning attacks. We present the attack impact of Fang,
LIE, Min-Sum and Min-Max when they are defended by FLTrust and Union with Trimmed-mean
using AlexNet on non-IID partitioned CIFAR-10 in Figure[d} It is clear that being CLP augmented
significantly improves the attack effectiveness, e.g., the impact of Min-Sum attack is 5.6% when
defended by Union, while the impact of Min—-Sum—CLP attack is 13.2%, i.e., the CLP makes
Min-Sum 2.36 x impactful and hence makes Union 2.36 x less effective to defeat Min—-Sum-CLP.

Importance of properly leveraging CLP. To further advocate the importance of being CLP aug-
mented, we consider two variants of A-CLP, i.e., RCL and BC-RCL in Figure On the one hand,
RCL only exhibits a slight better or even similar attack impact as the Tradition. In other words, if
attack A only shares malicious gradients from a smaller number of malicious clients during the CLP,
it will require A to share malicious gradients from a much larger number of malicious clients after
the CLP in order to achieve a slighter better or even similar attack impact as the Tradition. This
finding on the importance of being CLP augmented in the FL training process and properly leveraging
CLP to adaptively determine the number of malicious clients is consistent with recently reported
observations that the initial learning phase plays a key role in determining the outcome of the training
process |Achille et al.| (2019); Jastrzebski et al.| (2019);|Yan et al.| (2022)). Further exacerbating the
importance of properly leveraging CLP is the fact that RCL achieves similar attack performance as
Tradition at the cost of a significant increase in the attack budget, i.e., a 78% attack budget increase
(i.e., average 7.12 vs. 4 attack per round as shown in Figure[T). On the other hand, if we reduce the
attack budget, i.e., keeping the total attack budget the same as that of Tradition, we observe that the
impact of BC-RCL attack is significantly worse that Tradition. This coincides with the intuition
and the functionality of CLP periods in FL training that if the learning models cannot be sufficiently
crafted in early training phases, additional attacks cannot improve the attack impact.

Takeaway 1. We show that attack A should be augmented by CLP to determine the number of
malicious clients to share gradients with the central server for global model update in each FL training
round to avoid the tradeoff between attack impact and attack budget, and hence the vulnerability to
defenses. In other words, A-CLP dramatically improves both the attack impact and the vulnerability
of A, and hence make it harder to be defeated by existing defenses. In addition, CLP should be
leveraged in a proper manner, i.e., more malicious clients are only needed during the CLP.
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Figure 5: CLP detection threshold 9. Figure 6: Participated malicious client number.

3.2.3 EFFECT OF MODEL PARAMETERS

We conduct an ablation study to investigate the impacts of hyperparameters. Due to space constraints,
we relegate some results to Appendix

Sensitivity of CLP detection threshold. As discussed in Section [3| the CLP can be efficiently
identified using our proposed FGN metric via the simple threshold-type rule. We now evaluate the
sensitivity of the threshold value § to declare CLP. Figure [3]illustrates the final model accuracy of
Fang-CLP, LIE-CLP, Min-Sum—CLP and Min-Max—-CLP attacks to FL. with the Multi-krum
and Trimmed-mean aggregation rules using AlexNet on non-IID partitioned CIFAR-10. It is clear
that the CLP declaration determined by ¢ has an observable effect on the impact of A-CLP attack.
This is because as § becomes larger, fewer rounds in the initial training phases are declared as CLP.
As aresult, A-CLP only uses a larger number of malicious clients to participate in the global model
update in fewer rounds according to Algorithm[I] and hence the effect of being CLP augmented on
the attack impact is shallowed. However, we observe that even using a large threshold, e.g., § = 0.5,
A-CLP is more impactful than A itself. For example, when § = 0.5 with Trimmed-mean aggregation
rule, the impact of Min—-Sum-CLP is 27.5% on CIFAR-10, while that of Min-Sum is 16.7%. For
ease of simplicity and from Figure[5] we set § = 0.01 in all of our experiments.

Participated malicious client number. As discussed in Section our A-CLP automatically
switches between a larger and a smaller number of malicious clients that attack A shares their
malicious gradients with the central server during the FL training. For simplicity, we set the number
to be 2m and m/2 in Algorithm [1| given that A without being CLP augmented always selects m
malicious clients in each round. We now vary the larger (resp. smaller) number to be m, 2m, 3m, 4m
(resp. m,m/2,m/3, m/4). As shown in Figure@ as a larger number of malicious clients is selected
during the CLP, the final accuracy are more severely degraded, which is consistent with above
observations (see Takeaway 1). However, as more malicious clients are involved during the CLP, the
average attack budget is also increased (see Figure[T). To balance the tradeoff between attack impact
and attack budget, and for simplicity, we choose the larger number to be 2m in our experiments.

. O . : ---- Fang LIE --#-- Min-Max Min-Sum
Non-IID degrees of dat_a.dlst.rlbutlon. .We snnplate A e LEGLP o MiMacOLP  MinSumoLP
heterogeneous data partition into NN clients using the s = il i
<50, =
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Dirichlet distribution with parameter «.. As observed in 7,
Figure [7]using AlexNet on CIFAR10, when the non-IID  Fao =
degree increases, the impacts of Fang—CLP, LIE-CLP, §§Z
Min-Sum-CLP and Min-Max-CLP attacks increase. %2
This is quite intuitive since a higher degree of non-IID

data makes the Byzantine-robust aggregation rule harder

to detect and remove malicious gradients. As a result, the
attack crafts more malicious gradients without being detected and hence improve their attack impacts.
In addition, we observe that our A-CLP consistently outperforms its counterpart .4 across all settings.
Without loss of generality, we set & = 0.5 in all of our experiments.

a a
(a) Multi-krum (b) Trimmed-mean

Figure 7: Non-IID degree.

4 CLP AUGMENTED SIMILARITY-BASED ATTACK

As discussed in Section the inner attack subroutine (i.e., A) in A-CLP crafts malicious gradients
via solving a difficult optimization problem to deviate the global model parameter the most towards
the inverse of the direction along which the global model parameter would change before-attack
(see Appendix [D]for details). To avoid solving a complex optimization, we relax the inner attack
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subroutine and propose SimAttack-CLP, a lightweight CLP augmented similarity-based poisoning
attack. For ease of presentation, we present SimAttack-CLP with all benign gradients known.

Intuition. Most Byzantine-robust FL aggregation rules are distance-based, i.e., removing gradients
that lie outside of the clique formed by benign gradients. In particular, the distances could be from
benign gradients Alistarh et al.| (2018)), or difference between £,-norms of benign and malicious
clients|Sun et al.|(2019)), or distributional differences with benign gradients Bhagoji et al.[{(2019). A
natural idea to maximize the performance of the adversary is to ensure that malicious gradients lie
within the clique of benign gradients. However, to guarantee such a similarity is far from trivial. As
discussed earlier, optimizing a complex global objective is often difficult [Fang et al.| (2020). Instead
of solving a complex global optimization problem to determine the changing directions, why not
simply craft the malicious clients’ gradients based on the proximities between their local models?

The design of SimAttack—-CLP. Our key insight is that it is sufficient to approximate an inverse
direction that deviates the malicious gradient updates based on proximities between the adversary’s
local updates, but not necessarily the most towards the inverse direction of global model update as in
existing attacks .4. The number of such malicious clients in each round is determined by the identified
CLP as in Algorithm[I] This naturally leads to two questions: (i) how to measure the proximity or
distance? and (ii) how to determine the attack goal of the adversary in each communication round?

For the choice of measure, the £, distance has been used has a heuristic between models. However,
this often suffers from huge computational overheads due to the large state space of local models
to search. The cosine similarity between the gradients calculated by updates of model parameters
is an alternative measure, which is lightweight. Specifically, the cosine similarity between gradient

updates of any two clients ¢ and ¢’ is defined by F(g;(¢), g; (t)) := %. The expectation

of F (-, ) remains asymptotically constant as dimensionality increases |[Radovanovi¢ et al.| (2010).

Using this similarity measure, the goal of the adversary boils down to craft the gradients of m®-?

malicious clients such that the cosine similarity between the after-attacked aggregated gradient
computed by the adversary and that of before-attack is 7 € [—1, 1], where 7 is a system-wide control
knob, which the adversary can set to tradeoff between the severity of attacks and possibility to
be defensed. The number of malicious clients is m©“F = 2m if the current round is in CLP, and
otherwise m/2 as in A-CLP. We call 7 as the attack threshold. The choice of T is very much
dependent on the adversary, and having 7 as an adversary input adds to the “flexibility”” of the overall
attacking framework and ultimately, shows the wide applicability of our SimAttack-CLP.

Therefore, for a given attack threshold 7, the goal of the adversary is to find changing directions via
i, Vi to craft gradients of each of m®* malicious clients by solving

}—(g(t)a g(t)) =T, (D

where g(t) and g(t) are given in (5) and (6), respectively, and g, (t) = g, (t) + sy, Vi = 1, - ,mP.
The key challenge is that the adversary does not know the aggregation rule. To address this, we
make one approximation. Specifically, we assume that the adversary adopts an “average rule” to
approximate the aggregation rule of the server, i.e., g(t) ~ = > g.(¢), g(t) ~ 2 Y g,(¢), and

= Z;ZCILP A;. Then we have g(t) ~ g(t) + As(t), from which we can easily solve a so-called
“global” \ that is common for all m®“* malicious clients (See Proposition in Appendix @

Since in practical FL systems, clients often have heterogeneous data distributions and system ca-
pabilities |[Kairouz et al.| (2019); Bonawitz et al.| (2019); Hsieh et al.[ (2020), and hence a hetero-
geneous changing direction determined by );, V¢ is more preferable than a “global” one A\ across
all malicious clients. To achieve this goal, we first leverage the definition of cosine similarity

mCLP -
to obtain F(g(t),g(t)) = M%M Then the changing direction to craft each mali-

[HOIIHEOI >
cious gradient Vi can be approximated by F(g(t),g,(t)) = % ~ 7. When combined with

g,(t) = g;(t) + A;s¢, we can determine \;, Vi:

Lemma 1. Suppose that \; is the changing direction to craft malicious gradient of the malicious

client i, Vi = 1,--- ,mCP. Then for any given attack threshold T, the value of \; satisfies
t),g.(t)) — t)|lg(t
\ = EO£®) ~le@UEO] o ar o
g(t)Ts(t)
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Remark 1. Our SimAttack—CLP can be easily generalized to the case where benign gradients
are unknown to the adversary. Since the adversary does not have benign gradients, the changing
directions s(t), Vt are not known and hence we cannot directly solve for \; using . However, the
before-attack local models on malicious clients are known to the adversary. Hence, similar to|Fang
et al.|(12020); Shejwalkar & Houmansadr|(2021)), we estimate the changing directions using the mean
before-attack local model of malicious clients. In other words, if the mean of the j-parameter is
larger than the j-th global model parameter received from the central sever in the current round,
then s;(t) is approximated to be 1, and otherwise —1. Using this approximation, we can obtain the

changing directions, which we denote as §, and hence the \;, Vi using .

Experimental evaluation. We compare the performance of SimAttack-CLP with state-of-the-art
CLP augmented attacks (see Section[3). We consider the same experimental setup as in Section [3.2]
Note that Fang requires the knowledge of the aggregation rule. Also, Min-Sum and Min-Max
outperform Fang when the aggregation rule is unknown Shejwalkar & Houmansadr| (2021). Hence
we exclude the comparisons with Fang here since our SimAttack—CLP is also fully agnostic to the
aggregation rule. For ease of readability, we relegate the results of testing accuracy to Appendix

> Impact of attacks. The impacts of SimAttack—-CLP at- DU T aeguion R | A4*—cie | simavtack-cie
tack and that of the best among LIE-CLP, Min—Sum-CLP Muli-Krum 2647 2855
and Min-Max—CLP attacks (see Table [T)), which we denote | &0 Tnnff%?;ean §2§0§9§ %;61
as A*-CLP, are reported in Table 2] Our SimAttack-CLP AR | 1905 027
is consistently more impactful than the strongest of exiSting | ey, | B | 258 2403
poisoning attacks. For example, SimAttack—CLP is I.1x | ®o T"MAgi\"' %}Eg %g
more impactful than A*-CLP attack for AlexNet and VGG- Ve 252 2%
11 models on non-IID partitioned CIFAR-10. Combined with | ™57 | tammcinen | 228 e
results in Table[I} SimAttack-CLP is up to 2.9x more im- “her 208 rs
pactful than the strongest state-of-the-art LIE, MIN-Sum and | runion | Buyen | 2058 ot
Min-Max attacks. Similarly, SimAttack—CLP is 1.4x and | diexe Tria:i" }9(’,425 iz%

1.1x more impactful than A*-CLP attack for FC model on non-
IID MNIST and AlexNet model on non-IID Fashion-MNIST, Table 2:  Attack impacts of
respectively, and hence is 9.6x and 3.3 x more impactful than SimAttack-CLP and A*-CLP.
the strongest state-of-the-art attacks, respectively.

> Resilience against defenses. We further compare the re- == gae

W SimAttack-CLP

silience of SimAttack-CLP and A*-CLP. Figure [§] illus-
trates the attack impact of SimAttack—CLP and A*-CLP
when defended by FLTrust|Cao et al.| (2021) and Union Fang
et al.| (2020), respectively, where C+A, C+V, M+F, and F+A Ry AL
represent AlexNet on CIFAR-10, VGG-11 on CIFAR-10,FCon . "™ o

MNIST, and AlexNet on Fashion-MNIST, respectively. We ob- Flgure 8:  Attack 1mpafts of
serve that SimAttack-CLP is more resilient than A*-cLp SimAttack-CLP and A*-CLP
in all settings. For example, SimAttack-CLP makes FLTrust wh§n defended. by FLTrust and
1.6x less effective to be defeated than A*-CLP using VGG-11 Ur}lon under various threat models
on CIFAR-10 with unknown benign gradients. using non-TD partitioned datasets.

0=C+A —C+V _M+F F+A
acl

Takeaway 2. Two fundamental differences between SimAttack-CLP and existing attacks con-
tribute to the superior performance of SimAttack—CLP. First, rather than solving a complex
optimization problem to maximize the difference in the direction between malicious and benign
gradients, a key insight in the design of SimAttack—CLP is that it is sufficient to approximate the
largest derivation via an attack threshold. This flexible control knob relaxes the assumptions (see
Section[l)) needed in state of the arts|Fang et al.|(2020); [Shejwalkar & Houmansadr (2021), whose
performance largely depend on these hyperparameters. In addition, SimAttack—CLP carefully
crafts the gradient of each malicious client (i.e., using different \;) due to the practical heterogeneity
among FL clients, rather than a single attack across all malicious clients, e.g., \Fang et al.|(2020).

Second, SimAttack—CLP leverages CLP to adaptively determine the number of malicious clients in
each round. Though being CLP augmented also significantly improves the impact of these attacks (see
Section[3.2), our SimAttack—-CLP is still superior than their A—CLP counterparts. We conjecture
that a flexible attack threshold, rather than a maximal attack, fits better with CLP, which contributes
to the superior performance of SimAttack—CLP. Building a better theoretical understanding of
SimAttack—CLP is an avenue for future work.
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A SUMMARY OF NOTATIONS

We summarize the major notations used in the paper in Table 3]

Table 3: Notations.

Symbol Meaning

the poisoning attack/adversary
the aggregation rule of FL.
client ¢, where i € N = {1,--- ,N}
the total number of clients in the system
the total number of compromised clients controlled by adversary .4
the number of clients selected by the central server for model update
in each FL training round
m the number of malicious clients that share malicious gradients with
the central server in each FL training round
w;(t)  model parameter of client ¢ before attack
g;(t)  gradient of client ¢ before attack

SEZs2>

g,(t)  gradient of client s after attack

F(-,-)  the cosine similarity between two gradients

55(t) the j-th global model parameter’s changing direction
T an adversary defined attack threshold

B EXTENSIVE REVIEW ON BACKGROUND

B.1 POISONING ATTACKS ON FEDERATED LEARNING

FL is vulnerable to various poisoning attacks|Bagdasaryan et al.| (2020); Baruch et al.|(2019); Bhagoj1
et al.| (2019); Blanchard et al. (2017); Fang et al.| (2020); Jagielski et al.| (2018)); |Shejwalkar &
Houmansadr| (2021)), which can be categorized into two classes based on the adversary’s goal and
capabilities. On the one hand, an attack can be either untargeted, targeted, or backdoor based on
the goal of the adversary. The goal of untargeted attacks is to minimize the accuracy of the global
model on any test input El EI Mhamdi et al.| (2018)); Mahlouyjifar et al.|(2019); [Baruch et al.| (2019);
Fang et al.[(2020); Xie et al.|(2020); Shejwalkar & Houmansadr{(2021); the goal of targeted attacks
is to minimize the accuracy on specific test inputs, and maintaining high accuracies on the rest of test
inputs [Bhagoji et al.|(2019); [Sun et al.|(2019); while backdoor attacks target on reducing the utility
on test inputs that contain a specific signal called the trigger Bagdasaryan et al.| (2020); Wang et al.
(2020a); Xie et al.| (2019). To this end, untargeted attacks can completely cripple the global model
and hence pose more severe threats to FL.

On the other hand, an attack can be either model or data poisoning based on the capabilities of
the adversary. In model positioning attacks [EI El Mhamdi et al.| (2018); |Bhagoji et al| (2019);
Bagdasaryan et al.|(2020); [Fang et al.|(2020); Xie et al.[|(2020); Shejwalkar & Houmansadr{ (2021)),
the adversary directly manipulates the gradients on malicious devices before sharing them with the
server in each communication round, while in data positioning attacks [Mufoz-Gonzalez et al.[(2017);
Jagielski et al.|(2018), the adversary can only indirectly manipulate the gradients on malicious clients
by poisoning training datasets on the clients. As a result, model poisoning attacks often achieve
higher attack impacts on FL. Therefore, to better understand the severity of poisoning attacks to FL,
we mainly focus on the stronger untargeted model poisoning attacks to FL in this paper.

B.2 BYZANTINE-ROBUST AGGREGATION RULES

The mean aggregation rule has been widely used in non-adversarial settings |Dean et al.| (2012);
Konecny et al.|(2016); [McMahan et al.| (2017), which, however, is not robust and can be manipulated
by even a single malicious clientBlanchard et al.|(2017); [Yin et al.| (2018)); Bagdasaryan et al.| (2020);
Bhagoji et al.[(2019). Therefore, multiple Byzantine-robust aggregation rules Blanchard et al.[(2017);
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El El Mhamdi et al.| (2018)); [Y1in et al.| (2018); [ Xie et al.| (2018)); Munoz-Gonzalez et al.| (2019);
Alistarh et al.|(2018)); |(Chang et al.[|(2019); He et al.| (2020); (Cao et al.| (2021)) have been proposed to
defend against poisoning attacks. In the following, we review several representative Byzantine-robust
aggregation rules that will be used in this paper.

Multi-krum Blanchard et al.|(2017). Krum Blanchard et al.|(2017) selects gradients from the set
of its input gradients that is close to its n — m — 2 neighbor gradients in squared Euclidean norm
space with m being an upper bound on the number of malicious clients and n being the number of
participated clients in each FL training round. The intuition is that malicious gradients need to be far
from benign ones in order to poison the global model. To effectively utilize the knowledge shared by
the clients in each round, Multi-krum selects a gradient using Krum from a remaining set, adds it to
a selection set and removes it from the remaining set. It has been shown that when m < n/2 — 1,
Multi-krum converges for certain objective functions. Since Multi-krum significantly outperforms
Krum in terms of the global model accuracy, we will focus on Multi-krum in this paper.

Bulyan El El Mhamdi et al. (2018). Mhamdi et al. |[El El Mhamdi et al.| (2018) showed that a
malicious gradient remains close to benign gradients while having a single gradient dimension with a
large value and thus prevent convergence of the global model. As such, Bulyan was proposed which
first iteratively applies Multi-krum to select € (6 < n — 2m) local models, and then use a variant of
trimmed mean to aggregate 6 local models. To guarantee robustness, it requires 7 > 4m + 3 to hold,
see |El El Mhamdi et al.| (2018)) for more details.

Trimmed-mean Yin et al.| (2018); Xie et al.| (2018) coordinate-wisely aggregates each dimension
of input gradients separately. Specifically, for a given dimension j, the j-th parameters of n local
models {gi }i=1,... .n, Trimmed-mean removes the largest and smallest /5 of them, and computes the
mean of the remaining n — 23 parameters as the j-th dimension of the global model. It is shown that
Trimmed-mean achieves order-optimal error rates when m < 3 < n/2 for strongly convex objective
functions.

Median |Yin et al. (2018); Xie et al. (2018) is also a coordinate-wise aggregation rule. Unlike
Trimmed-mean, it takes the median as the j-th dimension of the global model. Like Trimmed-mean,
it has also been shown that Median achieves an order-optimal error rate when the objective function
is strongly convex.

Adaptive federated average (AFA) Munoz-Gonzalez et al./(2019). AFA first computes a weighted
average of collected gradients in each communication round. Then it computes cosine similarities
between the weighted average and each of the collected gradients. Finally, AFA discards the gradients
with similarities out of a range, which is a simple function of mean, median and standard deviation of
the similarities.

C EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS OF A-CLP

We experimentally verify the performance of . A—CLP when paired with four state-of-the-art poisoning
attacks, i.e., Fang, LIE, Min-Sum and Min-Max. We call the corresponding CLP-aware poisoning
attacks as Fang—-CLP, LIE-CLP, Min—Sum—CLP and Min-Max-CLP, respectively.

C.1 DATASETS

We use CIFAR-10 [Krizhevsky et al.[(2009), MNIST and Fashion-MNIST [LeCun et al.| (1998)) as
the evaluation datasets, which are widely used in prior works. The CIFAR-10 dataset consists of
60,000 3232 color images in 10 classes, where 50,000 samples are for training and the other 10,000
samples for testing. The MNIST and Fashion-MNIST datasets contain handwritten digits with 60,000
samples for training and 10,000 samples for testing, where each sample is an 28 X 28 grayscale images
over 10 classes. We simulate a heterogeneous partition into N clients by sampling p; ~ Diry («),
where « is the parameter of the Dirichlet distribution. We choose o = 0.5 as the default parameter in
our experiments as done in Fang et al.[(2020); Wang et al.| (2020b{c); |Cao & Gong|(2022), and will
numerically investigate its impact.

We further investigate the task of next-character prediction on the dataset of The Complete Works of
William Shakespeare (Shakespeare) (McMahan et al.,[2017), which consists of 74 characters with
734,057 training data and 70,657 testing data.
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C.2 MACHINE LEARNING MODELS

For the classification problems, we consider three representative DNN models: AlexNet|Krizhevsky:
et al.| (2012), VGG-11|Simonyan & Zisserman| (2015)) and a fully connected network (FC) with layer
sizes {784,512, 10}. In particular, we use AlexNet and VGG-11 as the global model architecture for
CIFAR-10, FC for MNIST and AlexNet for Fashion-MNIST, respectively. For the language task, we
train a stacked character-level LSTM language model as in (McMahan et al,[2017). We summarize
the details of AlexNet, VGG-11, FC and LSTM architectures used in our experiments in Tables E],
Bl [6]and[7] respectively. We note that our goal is not to achieve the largest attack impact or rates
for considered datasets using the DNN architectures, but rather to show that augmenting existing
attacks A with CLP via our A-CLP can significantly improve the attack impact of a state-of-the-art
poisoning attack .4 of the learned DNN classifiers.

Parameter Shape Layer hyper-parameter
layer]l.convl.weight 3x64x3x%x3 stride:2; padding: 1
layerl.conv1.bias 32 N/A
pooling.max N/A kernel size:2; stride: 2
layer2.conv2.weight 64 x 192 x 3 x 3 stride: 1; padding: 1
layer2.conv2.bias 64 N/A
pooling.max N/A kernel size:2; stride: 2
layer3.conv3.weight 192 x 384 x 3 x 3 stride: 1; padding: 1
layer3.conv3.bias 128 N/A
layerd.conv4.weight 384 x 256 x 3 x 3 stride:1; padding: 1
layer4.conv4.bias 128 N/A
layerS.conv5.weight 256 x 256 x 3 x 3 stride:1; padding: 1
layer5.conv5.bias 256 N/A
pooling.max N/A kernel size:2; stride: 2
dropout N/A p=5%
layer6.fc6.weight 1024 x 4096 N/A
layer6.fc6.bias 512 N/A
dropout N/A p=5%
layer7.fc7.weight 4096 x 4096 N/A
layer7.fc7.bias 512 N/A
layer8.fc8.weight 4096 x 10 N/A
layer8.fc8.bias 10 N/A

Table 4: Detailed information of the AlexNet architecture used in our experiments. All non-linear acti-
vation function in this architecture is ReLU. The shapes for convolution layers follow (C;,,, Cout, ¢, €).

C.3 BASELINE ATTACKS

We consider the following four strongest model poisoning attacks in the literature, i.e., Fang|Fang
et al.|(2020), LIE Baruch et al.| (2019), Min-Sum and Min-Max [Shejwalkar & Houmansadr (2021]).
Besides Fang, the other three attacks are agnostic to the aggregation rule.

e Fang: An optimization based model poisoning attack model has been proposed in Fang et al. [Fang
et al.| (2020), which can be tailored to several aggregation rules such as Krum, Trimmed-mean and
Median. Specifically, the adversary computes the average 1 of benign gradients that she has access
to. Then the adversary computes —sign(u) and computes a malicious update by solving for a global
coefficient A. The adversary then attacks all malicious clients and change their gradient updates’
direction based on .

e LIE: Small amounts of noises are added to each dimension of the average of benign gradients in
the LIE attack |Baruch et al.|(2019). The small noises can be sufficiently large to adversely impact the
global model and can be sufficiently small to evade detection by the Byzantine-robust aggregation
rules. In particular, the adversary computes the average o and standard deviation o of benign gradients
that she has access to. Furthermore, the adversary computes a coefficient z based on the total number
of benign and malicious clients, and hence obtains the malicious update as y + zo.

o Min-Sum: The Min-Sum attack ensures that the sum of squared distances of the malicious gradients
from all the benign gradients is upper bounded by the sum of squared distances of any benign gradient
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Parameter Shape Layer hyper-parameter
layerl.convl.weight 3x64x3x%x3 stride:1; padding: 1
layerl.convl.bias 64 N/A
pooling.max N/A kernel size:2; stride: 2
layer2.conv2.weight 64 x 128 x 3 x 3 stride:1; padding: 1
layer2.conv2.bias 128 N/A
pooling.max N/A kernel size:2; stride: 2
layer3.conv3.weight 128 x 256 x 3 x 3 stride:1; padding: 1
layer3.conv3.bias 256 N/A
layer4.conv4.weight 256 x 256 x 3 x 3 stride:1; padding: 1
layer4.conv4.bias 256 N/A
pooling.max N/A kernel size:2; stride: 2
layer5.conv5.weight 256 x 512 x 3 x 3 stride:1; padding: 1
layer5.conv5.bias 512 N/A
layer6.conv6.weight 512 x 512 x 3 x 3 stride: 1; padding: 1
layer6.conv6.bias 512 N/A
pooling.max N/A kernel size:2; stride: 2
layer7.conv7.weight 512 x 512 x 3 x 3 stride: 1; padding: 1
layer7.conv7.bias 512 N/A
layer8.conv8.weight 512 x 512 x 3 x 3 stride:1; padding: 1
layer8.conv8.bias 512 N/A
pooling.max N/A kernel size:2; stride: 2
dropout N/A p=20%
layer9.fc9.weight 4096 x 512 N/A
layer9.fc9.bias 512 N/A
layer10.fc10.weight 512 x 512 N/A
layer10.fc10.bias 512 N/A
dropout N/A p=20%
layerl1.fc11.weight 512 x 10 N/A
layerl1.fc11.bias 10 N/A

Table 5: Detailed information of the VGG-11 architecture used in our experiments. All non-
linear activation function in this architecture is ReLU. The shapes for convolution layers follow
(Ci'ru Couta c, C)'

Parameter Shape Layer hyper-parameter
layerl.fcl.weight 1024 x 256 N/A
layerl.fcl.bias 256 N/A
layer2.fc2.weight 256 x 256 N/A
layer2.fc2.bias 256 N/A
layer3.fc3.weight 256 x 10 N/A
layer3.fc3.bias 10 N/A

Table 6: Detailed information of the FC architecture used in our experiments. All non-linear activation
function in this architecture is ReLU. The shapes for convolution layers follow (Cjy,, Cout, ¢, €).

from the other benign gradients. All malicious gradients are kept the same for the maximum attack
impact.

o Min-Max: The Min-Max attack computes the malicious gradients such that its maximum distance
from any other gradient is upper bounded by the maximum distance between any two benign gradients.
As a result, the malicious gradients lie close to the clique of the benign gradients.

C.4 DIFFERENT CLP-AWARENESS SCHEMES

To illustrate the importance of being CLP augmented and take attack budget into account, we consider
the following four schemes for comparisons: (1) Tradition (The original scheme): Attack A always
shares malicious gradients from m malicious clients throughout all FL training rounds, which is the
default setting in A itself; (2) CL (The CLP-based scheme): As in Algorithm [I} attack A shares
malicious gradients from 2m malicious clients with the central server for model update in each round
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Parameter Shape Layer hyper-parameter
layerl.embeding 80 x 256 N/A
layer2.1stm 256 x 512 num_layers=2, batch_first=True
dropout N/A p=5%
layer3.fc.weight 512 x 80 N/A
layer3.fc.bias 80 N/A

Table 7: Detailed information of the LSTM architecture used in our experiments.
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Figure 9: Comparisons of detecting CLP from the perspectives of the FL central server and the
adversary A using AlexNet on Fashion-MNIST with the Multi-krum aggregation rule.

during the CLP, and then from m /2 malicious clients after the CLP; (3) RCL (The reverse CL-based
scheme): In contrast to CL, attack .A shares malicious gradients from /2 malicious clients with the
central server for model update in each round during the CLP, and then from 2m malicious clients
after the CLP; and (4) BC-RCL (The budget-constrained RCL-based scheme): The total number
of clients selected by attack A is the same as that of Tradition throughout the whole FL training
process.

For example, we illustrate the average attack budget per round (i.e., the number of malicious clients
per round) under these schemes in Figure[I] where we run AlexNet on non-IID partitioned CIFA-10
over 200 rounds. In Tradition, attack A always selects m = 4 malicious clients in each round. In
CL, attack A selects 2m = 8 malicious clients during the CLP and m /2 = 2 malicious clients
afterwards, resulting an average attack budget of 2.88 malicious clients per round. Similarly, the
average attack budgets under RCL and BC-RCL are 7.12 and 4, respectively.

C.5 ROBUSTNESS OF IDENTIFYING CLP

We propose a lightweight FGN metric to identify BN FedFIM  EEE FGN
CLP in federated settings in Section Our nu- 297 4
merical results show that our FGN approach yields _1s @3
similar results as that using the state-of-the-art FIM §1 o Egz
approach [Yan et al| (2022) as shown in Figure [3 éos §1

- =

where we implemented our attacks in PyTorch|Paszke
et al.| (2017) on Python 3 with three NVIDIA RTX oo e Hom . Mo 0 B B B
A6000 GPUs, 48GB with128GB RAM. However, DAt raodel Dataeet oodel
our FGN approach is much more computationally

efficient than FIM approach as shown in Figure [T T] Figure 11: Computation time and memory

consumption of FGN and FedFIM approach
Note that in Figure[3] we compute the FGN from the to detect CLP.

perspective of the FL central server, which controls a

total of N clients and randomly selects n clients for model update in each FL training round. This is
the same setting as in|Yan et al.[(2022) for comparison. Once the central server identifies the CLP, it
may broadcast the information to all cients along with the updated global model at the beginning
of each round. For the defense purpose, the central server may not want to share such information
with the adversary .4, as our A-CLP framework shows that the attack .4 can leverage the CLP
information to significantly improve its attack impact. Since the adversary A controls a set of M
clients, and shares m malicious gradients with the central server for model update in each round,
a natural question is that can the adversary A also detect the CLP by itself? If so, is the identified
CLP the same as that identified by the central server? Here, we provide affirmative answers to these
questions. Specifically, the adversary .4 computes the FGN using the information from the set of M
clients it controls. For ease of readability, we consider to train AlexNet on Fashion-MNIST dataset
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Figure 10: Comparisons of detecting CLP from the perspectives of the FL central server and the
adversary A using AlexNet on Fashion-MNIST with the Trimmed-mean aggregation rule.

Dataset | 4 o oation Rule | N0 Attack \ Fang [ LIE [ Min-Max [ Min-Sum |
(Model) | “88¢8 (Accuracy) [ Tradition | CL | Tradition | CL | Tradition | CL | Tradition | CL |
Multi-krum 57.57 735 | 3288 | 1003 | 1644 | 1988 | 3623 | 1935 | 36.12

CIFAR.10 | Bulyan 56.34 13.61 | 2422 | 1201 | 1932 | 13.11 | 2541 | 1251 |23.32
(AlexNer) | Trimmed-mean 57.33 158 | 3357 | 1402 |2792| 1643 |31.81 | 1519 |29.14
Median 55.46 1777 | 3341 | 1831 |29.22| 1648 |2926 | 1588 |27.37

AFA 57.89 1121|2174 | 366 | 839 | 1511 | 2637 | 1456 | 24.16

Multi-krum 6263 1575 | 2556 | 1047 | 17.62 | 1943 | 2896 | 17.08 | 2747

CIFAR.10 | Bulyan 6337 2073 | 3102 | 206 |2884| 210 |3145| 2065 |31.24
VGG-11) | Trimmed-mean 62.9 2014 | 3157 | 1801 |2542| 2224 |36.72| 2068 | 34.78
Median 60.13 1894 | 349 | 1819 |2609 | 1975 |34.17 | 2002 | 33.52

AFA 62.75 1027 | 21.67| 67 | 1796 | 1287 | 2465 | 1168 | 245

Multi-krum 97.02 204 | 255 | 084 | 155 | 206 | 287 | 212 | 297

MNIST Bulyan 97.21 164 | 224 | 116 2.0 153 | 241 | 171 | 253
(FC) Trimmed-mean 97.24 1.74 24 0.67 1.87 1.76 2.75 1.73 2.71
Median 96.93 1.85 25 0.1 237 1.8 266 | 178 | 277

AFA 97.2 155 | 218 | 028 | 139 18 236 | 174 | 292

Multi-krum 83.24 943 | 2053 | 516 |1043] 923 | 1671 | 941 | 17.63

Fashion Bulyan 83.12 1259 | 2666 | 1132 | 214 | 1179 | 1958 | 1175 | 23.89
MNIST | Trimmed-mean 83.53 674 | 1222 481 | 1173 | 642 | 1033 | 674 | 1104
(AlexNet) Median 81.81 866 | 1518 | 947 |1254| 592 |1032| 6.8 | 1295
AFA 83.97 689 | 13.19 | 289 | 599 76 | 1274 | 776 | 1352

Table 8: The attack impact for each state-of-the-art model poisoning attack A and the corresponding
CLP augmented attack, i.e, A-CLP under various threat models when the benign gradients are
known to attack A. In all settings, the impact of CLP augmented .A-CLP attack is significantly higher
than that of A attack itself.

where the server uses the Multi-krum or Trimmed-mean aggregation rules. We evaluate the CLP
identified by four attacks considered in this paper. As shown in Figures[9]and[I0] where we compute
the FGN from both the perspectives of the central server and the adversary 4, we observe that the
CLPs identified by the central server and the adversary are very similar. Hence, our proposed FGN
approach is robust and can be applied to both the FL central server and the adversary.

C.6 SIGNIFICANCE OF CLP-AWARENESS

Complementary to Table[T} we present the results when the benign gradients are known are known to
attack A in Table[§]and the testing accuracy using AlexNet on non-IID partitioned CIFAR-10 when
the underlying aggregation rule is Multi-Krum with known benign gradients in Figure[T2] We can
draw same conclusions from Table [§]as those from Table [T} and hence we omit further discussions
here.

—8— Tradition —¥— CL —%— RCL —4— BC-RCL
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Figure 12: CLP augmented attacks to FL with the Multi-Krum aggregation rule using AlexNet on
non-IID partitioned CIFAR-10. All attacks know the gradients on benign clients.
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C.7 ADDITIONAL ABLATION STUDY

In our default setting (see Section [3.2.1]), we consider a total number of N = 128 clients in our
experiments and the adversary controls M/ = 32 clients. In each round, the FL central server
randomly selects n = 16 clients to participate in the global model update, in which m = 4 are
malicious clients. We now investigate the impact of these four hyperparameters with Multi-krum
aggregation rules using AlexNet on non-IID partitioned CIFAR-10 as illustrated in Figures[T3] [T4][I3]
and [T6] In each case, we investigate one parameter and keep other three parameters fixed as in
the default setting. Across all settings, the importance of CLP awareness consistently exhibit, i.e.,
A-CLP always outperforms its counterpart in all settings.

C.8 RESULTS ON SHAKESPEARE DATASET

The attack impact of A and A-CLP under various o S Trditon \
. ., s lmm- CL

threat models using non-IID partitioned Shakespeare & N
. . . . 6| - 6
dataset when the gradients of benign clients are either £ SNl N N\
. . % 4 NI AN
unknown or known to the adversary is summarized g N R §
Nl N 2N
Nl N N
NN \

Z

in Table 0] Similar to the observations for image Y
classification tasks, in this next-character prediction B oM i Sum ;na@;-MaxMin-&m
task, we still observe that for any attack A, when (a) FLTrust (b) Union

augmented by CLP (i.e., the CL columns in Table 5] Figure 17: Attack impacts of .4 and A-CLP
the attack impact is dramatically improved compared when defended by FLTrust and Union with

to attack A itself. A-CLP attack is 1.2x to 3.8 . .
. - . . Trimmed-mean using LSTM on non-IID par-
more impactful than A attack itself. Likewise, the ..
titioned Shakespeare.

resilience against defenses is also improved as shown

35
o
|

in Figure[T7]

Benign [ o coation Rule | N0 Attack \ Fang [ LIE [ Min-Max [ Min-Sum |
Clients | 8818 (Accuracy) | Tradition | CL | Tradition | CL | Tradition | CL | Tradition | CL |

Multi-krum 47.14 9.65 11.94 2.65 4.73 8.8 11.75 8.08 11.07

Bulyan 46.52 10.38 13.71 1.63 3.48 8.25 12.14 7.71 11.5

Unknown | Trimmed-mean 46.93 9.03 12.18 2.23 3.98 8.26 11.12 7.92 10.76

Median 45.76 9.09 11.53 1.37 3.16 7.45 10.38 7.05 9.96

AFA 4741 7.19 10.14 4.09 5.5 8.58 10.98 8.47 9.91

Multi-krum 47.14 12.6 14.89 3.73 5.57 12.53 15.35 11.98 14.55

Bulyan 46.52 12.2 14.83 2.32 4.27 12.23 15.58 11.97 14.89

Known Trimmed-mean 46.93 10.18 13.82 33 5.85 9.58 12.57 9.35 12.27

Median 45.76 10.72 13.87 0.93 3.56 9.46 12.52 9.17 12.17

AFA 47.41 9.06 11.39 6.3 8.12 10.1 12.38 9.25 11.28

Table 9: The attack impact for state-of-the-art model poisoning attack A and the corresponding
CLP augmented attack .A-CLP under various threat models using non-IID partitioned Shakespeare
dataset.
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D ADDITIONAL DISCUSSIONS ON CLP AUGMENTED SIMILARITY-BASED
ATTACK

Background. In the general setting of model poisoning attacks to FL, there is one global optimization
goal, which is to maximize the damage to the global model [Fang et al.| (2020)); [Shejwalkar &
Houmansadr (2021). Specifically, let s;(t) be the changing direction of the j-th global model
parameter in round ¢ when there is no attack, where s;(¢t) = 1 (resp. s;(¢t) = 1) means that
the j-th global model parameter increases (resp. decreases) upon the previous round. Denote
s(t) = (sj(t))j=1,-. ,a- Suppose in round ¢, w;(t) (resp. g;(t)) is the local model (resp. gradient)
update that client ¢ tends to send to the central server when there is no attack, and w;(t) (resp. g,(t))
is the local model (resp. gradient) update if client ¢ is compromised. Like most of the existing attacks,
e.g.,[Fang et al.|(2020); Shejwalkar & Houmansadr| (2021)), we restrict ourselves to

wi(t) == wi(t) — nAist, 3)
which models the deviation between the crafted local model w;(¢) and the before-attack local model
w;(t), with A; > 0. Since w;(t) = w;(t—1) —ng,(t) and W, (¢) = w;(t —1) —ng,(t),where w;(t —1)
is the received latest global model at the beginning of round ¢, from , we have g, (t) = g;(t) + A;s:.
The adversary’s goal is then to derivate the global model parameter the most towards the inverse of

the direction along which the global model parameter would change without attacks at each round ¢,
ie.,

gl(t)l,na L st (g8 — &), “)
st g(t) =H(gi (1), 18 () 8nia (B), -+, 8, (1), (5)
g(t) = H(gl(t)v T 7gm( )7gm+1( )7 e 7gn( ))7 (6)

where #(-) is an aggregation rule (see Section [B.2). Given (3)), Fang et al. [Fang et al.| (2020)
showed that the above optimization problem can be transformed to one with the objective function of
(Ai)i=1,... ,m. However, optimizing such a global objective for (A;);=1.... mm becomes difficult due to
highly non- 11near constraints, large state space of local models and non- IID local data distributions at
each client|Li et al.[(2020). Below, we first provide intuition behind our attack and then propose a
CLP-aware similarity-based poisoning attack, SimAttack—-CLP to compromise malicious clients
in FL.

SimAttack-CLP. Therefore, for a given attack threshold 7, the goal of the adversary is to find the
changing directions via \;, Vi to craft gradients of each of the m“ malicious clients by solving ( .
ie.

F(g(t),8(t) =, ()

where g(t) and g(t) are given 1n and @) respectively, and g, (t) = g;(¢t) + \isy, Vi = 1,--- ,mCLP.
The key challenge in solving (7)) is that the adversary does not know the aggregation rule 7—[( )
address this challenge, we make one approximation. Note that the attack threshold prov1des a
“flexibility” to the adversary so that it does not need to attack towards the most inverse direction
by solving a complex optimization problem, and hence our approximation here can be treated as
part of such a flexibility. As we will demonstrate in our experiments, our SimAttack-CLP attack
using such an approximation for all Byzantine-robust aggregation rules discussed in Section [B.2)can
already substantially increase the attack impact compared to the strongest state of the arts.

Specifically, we assume that the adversary adopts an “average rule” to approximate the aggregation

rule of the server, i.e., g(t) ~ 1 3" | g.(t), 1 g:(t),and \ & Zznclu’ A;. Then we have
g(t) = g(t) + As(t). Combing this approx1mat10n w1th , We can easily solve a so-called “global”
A that is common for all m®" malicious clients. Formally, we have the following proposition.

Proposition 1. Suppose that ) is the changing direction to craft gradients of mC* malicious clients

based on the cosine similarity (7). Then for any given attack threshold T, the value of X satisfies
o 2T V22 —4dxy
B 2x ’

= (1 - 7)llg®)

®)

where x = (g(t)Ts(t))* — 72[lg(®)|*[ls ()] Loand z = 2(r? -

Dllg(®)]1%g(#)Ts(t).
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Figure 18: Comparisons between testing accuracy of SimAttack—-CLP and .A*-CLP, which is the
best among LIE-CLP, Min—Sum-CLP and Min-Max—-CLP. All attacks do not know the gradients
on benign clients.

D.1 ADDITIONAL NUMERICAL RESULTS ON SIMATTACK—CLP

Complementary to attack impact results presented in Table [2| we present the testing accuracy of
SimAttack-CLP and A*-CLP using AlexNet on non-IID partitioned CIFAR-10 in Figure
Similar observations can be made in other cases and hence are omitted here. Again, we observe that
SimAttack-CLP outperforms A*-CLP.

E FEASIBILITY GUARANTEE FOR THE A-CLP FRAMEWORK

As aforementioned, the central sever randomly selects a subset of n out of N clients to participate
in the global model update in each round. In our A-CLP framework, m out of n clients should be
malicious clients. Then a natural question is that how many clients in total (denoted as M ) should
the adversary A control so that our A—CLP framework is feasible? In the following, we provide a
theoretical performance guarantee on the feasibility of A-CLP. In other words, we determine the
so-called control rate M of attack .4 such that the event that at least m malicious clients are selected
in each round ¢ and hence contribute to the global model update, occurs with a probability py, i.e.,

min(M,n)

> N = v ©)

@ =m
Unfortunately, (9) is hard to be solved directly due to the computational complexity, especially when
N is large. Our key insight is that this problem can be equivalently transformed into a hypergeometric
distribution problem |Harkness| (1965); |Guenther| (1978)). Specifically, denote X as a random variable
indicating the number of malicious clients selected by the central server at each round, which follows

the hypergeometric distribution, i.e., X ~ H(n,M,N), with its mean i = ”]]\}4 and variance

7% = "TM (1- %) ]j\\t’f When the total number of clients NN is large, the hypergeometric distribution
can be approximated by the binomial distribution and hence X approximately follows the normal
distribution (i, 52) due to the central limit theorem. As a result, the number of selected malicious
clients X satisfies

P<X>m)=P<X_“>m_’“‘)>po, (10)
g o

where 2=£ ~ (0, 1). Therefore, we can obtain M by solving , which satisfies

o

_ 2 _
M b+ Vb 4ac’ (11
2a
where a = 3¢ + (Q(po))* N3ty b = —275% — (Q(po))* 25 ¢ = m? and Q(po) = 5~

is the quantile of normal distribution. We remark that (TT) can be easily solved for any given
n,m, N » Do-

We now numerically evaluate the performance of our proposed lightweight approximated method
in Equation (TT) to determine the control rate, i.e., M of attack A for any given n,m, N, p;. We
compare it with the exact results computed from Equation (9)), which is order of magnitude complex
than our method in Equation (TIJ). For ease of complexity (mainly for computing Equation (9)), we
consider two cases: (i) NV = 128, and the FL central server selects n = 16, 24 or 32 clients for global
model update in each round; and (ii) N = 256, and the FL central server selects n = 32, 48 or 64
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po = 0.55 Method | n=16 | n=24 | n =32
m = 0.125n %‘ﬁ)";‘% g g ig
m = 0.25n %‘ﬁg’;‘% 31 il 2
m = 0.375n %‘3&‘?% ‘5‘(7) j; jg

Table 10: Comparison of the control rate M computed by Equation (9) and Equation when
N =128 and pg = 0.55.

po = 0.55 Method | n=32 | n=48 | n=064
m = 0.125n %‘ﬁioonn é% ilt gg §§
m = 0.25n Ich{l'ﬁioor?é% 22 2461 245;
m = 0.375n %ﬁiﬁ?% gg gg gg

Table 11: Comparison of the control rate M computed by Equation (9) and Equation (TI)) when
N = 256 and po = 0.55.

clients for global model update in each round. The adversary needs to guarantee m malicious clients
are selected with probability py. Specifically, we consider the following cases with m = 0.125n
tom = 0.375n and pg = 0.55,0.9. The number of malicious clients M that the adversary need to
control computed by Equation (9) and Equation (TI) for the above cases are presented in Tables [I0]
and T2} and Tables[TT]and[T3] respectively. It is clear that the results computed by these two methods
are quite close to each other, especially when n and m become larger. Hence we use our lightweight
method in Equation (TT)) to determine the control rate M for the adversary in our experiments.

po=0.9 Method | n=16 [ n=24 | n=32
m = 0.125n %‘ﬁioonn é% gfli gg ggx
m = 0.25n %‘ﬁ?{?% j; ig 3§
m = 0.375n %ﬁiﬁ?% o1 gl gg

Table 12: Comparison of the control rate M computed by Equation (9) and Equation (TI)) when
N =128 and py = 0.9.
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po=0.9 Method | n=32 | n=48 | n=064
m = 0.125n ;;ﬁig‘ (ﬁ% ® s “
m = 0.25n %‘ﬁﬁ)‘?% 8o & 9
el AR AR

Table 13: Comparison of the control rate M computed by Equation (9) and Equation when
N = 256 and pg = 0.9.
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