
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SELF-TAUGHT EVALUATORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Model-based evaluation is at the heart of successful model development – as a re-
ward model for training, and as a replacement for human evaluation. To train such
evaluators, the standard approach is to collect a large amount of human preference
judgments over model responses, which is costly and the data becomes stale as
models improve. In this work, we present an approach that aims to improve evalu-
ators without human annotations, using synthetic training data only. Starting from
unlabeled instructions, our iterative self-improvement scheme generates contrast-
ing model outputs and trains an LLM-as-a-Judge to produce reasoning traces and
final judgments, repeating this training at each new iteration using the improved
predictions. Without any labeled preference data, our Self-Taught Evaluator can
improve a strong LLM (Llama3-70B-Instruct) from 75.4 to 88.3 (88.7 with major-
ity vote) on RewardBench. This outperforms commonly used LLM judges such as
GPT-4 and matches the performance of the top-performing reward models trained
with labeled examples.

1 INTRODUCTION

Large language models (LLMs) rely on strong evaluators at every stage of the development lifecycle.
They are used at training time as reward models to align with human preferences (Bai et al., 2022;
Ouyang et al., 2022) or for iterative self-improvement (Yuan et al., 2024), and at inference time as
an alternative to human evaluation (Li et al., 2023; Chiang & Lee, 2023; Wang et al., 2023a; Liu
et al., 2023). Improvements in evaluation capabilities will thus clearly benefit this entire workflow
– including empowering the scientific research process itself as we aim to develop better overall
techniques.

Building such strong evaluator models usually relies on large amounts of high-quality preference
data from human annotation over model responses, which can be costly and time-consuming to
collect, as it requires expert annotation for challenging tasks (e.g., coding and mathematics). This
dependency on human-generated data poses significant challenges for scaling to new tasks or eval-
uation criteria. Furthermore, as new models inevitably improve over older ones, these existing
annotations will typically become outdated, as the judgments are based on annotations of older, less
performant, model responses.

In this work, we instead explore an iterative self-training approach (Figure 1) which uses no human
annotated preferences in the training loop, relying purely on synthetically generated data. Given a
seed model, our method first uses prompting to generate contrasting synthetic preference pairs for
a given input, such that one response is designed to be inferior to the other. Next, using the model
as an LLM-as-a-Judge, we generate reasoning traces and judgments for these pairs, which we can
label as correct or not given our synthetic preference pair design. After training on this labeled data
we obtain a superior LLM-as-a-Judge, from which we can then iterate the whole process in order
for it to self-improve.

In our experiments, starting from Llama-3-70B-Instruct, the proposed method improves the accuracy
on RewardBench (Lambert et al., 2024) from 75.4 to 88.7 (with majority vote, or 88.3 without).
This matches or outperforms the performance of reward models derived from the same Llama-3-
70B-Instruct model that uses human annotations, for example using the HelpSteer2 dataset (Wang
et al., 2024c) of 10k annotations achieves 85.6 using the same LLM-as-a-Judge setup.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Generate good
 response

Judge data

Prompt

Synthetic LLM-as-a-Judge Data Creation Optimization

Next iteration model

Judge
LLM

 Sample
judgments

SFT
training

 Select
correct
verdicts

LLM
Generate

similar
instruction Generate bad

 response to

Figure 1: Self-Taught Evaluator iterative training scheme.

2 RELATED WORK

LLM-based Evaluators While traditional evaluation benchmarks employ automated metrics that
require a reference answer (Wang et al., 2019; Rajpurkar et al., 2016), these types of benchmarks can
pose severe limitations when evaluating open-ended or complex instructions where multiple valid
answers are possible (e.g., creative writing and coding). Because human evaluation per response can
be costly, many recent works have proposed LLMs as effective evaluators. These come in several
flavors: as classifiers that output scores directly (Zhu et al., 2023; Wang et al., 2024a) or via LLM-
as-a-Judge prompting that can first generate a chain-of-thought in natural language, which helps
provide explanations for judgments (Zheng et al., 2023). Responses can also be scored alone (Kim
et al., 2023) or pairwise relative to each other (Dubois et al., 2023; Li et al., 2023; Bai et al., 2023;
Saha et al., 2024). LLM evaluation shows great promise as a scalable proxy for human raters, and
in the case of LLM-as-a-Judge as an explainable proxy as well (Ye et al., 2024; Zheng et al., 2023).
However, many of these “off-the-shelf” evaluators demonstrate high variance across many tasks
(Bavaresco et al., 2024), indicating the need for improved methods.

Synthetic Data Synthetic data has emerged as a promising solution for efficiently acquiring train-
ing examples and can be particularly valuable in settings where real-world data can be hard to access
(e.g., weather data covering all conditions (Lam et al., 2023)) or where correct annotations can be
challenging to acquire (e.g., coding tasks (Liu et al., 2024)). Additionally, synthetic data has the
benefit of being easily customizable to specific requirements, such as different evaluation criteria or
safety constraints (Kim et al., 2023; El Emam et al., 2020; Howe et al., 2017). The use of synthetic
data has been beneficial in model alignment (Lee et al., 2023), improving the original model’s capa-
bilities (Yuan et al., 2024; Li et al., 2024a; Yu et al., 2024; Li et al., 2024b), and teaching the model
new skills (Schick et al., 2023; Lanchantin et al., 2023). In the context of evaluation, synthetic data
has been used to measure tasks such as factuality (Wei et al., 2024; Feng et al., 2023), safety (Perez
et al., 2023; Hubinger et al., 2024), coding (Gu et al., 2024), and general instruction following (Zeng
et al., 2024), showing strong correlation with real human judgments. The West-of-n approach (Pace
et al., 2024) has been used to improve reward models by constructing preference pairs using the best
and worst scoring pairs from an initial model. For LLM-as-a-Judge models specifically, synthetic
responses have been generated by prompting the LLM to produce a given quality response (Kim
et al., 2023).

3 METHOD

We consider the setting of pairwise evaluation using the LLM-as-a-Judge approach (Zheng et al.,
2023) that takes:

• an input (user instruction) x; and

• two possible assistant responses y(A) and y(B) to the user instruction x; and
• the evaluation prompt containing the rubric and asking to evaluate and choose the winning

answer, see e.g., Figure 8.

The goal of the LLM-as-a-Judge model is to output a preference of which response y is better: A
or B. In order to do this it is common to output, prior to the final judgment, a chain-of-thought (or

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Prompt Template for Generating Response Pairs with Synthetic Preference

Below is a conversation between an user and an AI Assistant.

{Instruction}

The start of Assistant’s Answer
{Baseline Response}
The end of Assistant’s Answer

Please first generate a modified instruction that is highly relevant but not semanti-
cally identical to the instruction above from the user. Then write a high-quality answer
which is a good response to the modified instruction but not a good response to the original
user question. IMPORTANT: Please strictly follow the following format:

User Question Modified
<provide a modified instruction here>

The start of Assistant’s answer to the modified instruction
<provide a high-quality response to the modified instruction>
The end of Assistant’s answer to the modified instruction

Figure 2: Generating Synthetic Response Pairs. We use the following prompt template which is
used to generate a “worse response” yl. Given an instruction x and baseline response yw generated
by an instruction-following LLM as usual, this prompt is used to first generate a “noisy” version x′

of the original instruction x, and then a best-attempt yl at responding to x′. yl is then treated as a
poor response to x, giving a preference pair ywi ≻ yli.

“reasoning chain”), which is a set of steps generated in natural language that helps the model decide
its final judgment.

Such models can be used as pairwise reward models to build training data for preference optimiza-
tion, e.g., for training methods like DPO (Rafailov et al., 2023), Iterative DPO (Xu et al., 2023)
and Self-Rewarding methods (Yuan et al., 2024). They can also be used for evaluation; e.g., many
popular benchmark leaderboards are built by using a fixed LLM-as-a-Judge evaluation model (Li
et al., 2023) such as GPT4 (Achiam et al., 2023).

We propose a novel recipe for training such an evaluator. Our overall method is an iterative train-
ing scheme that bootstraps improvements by annotating the current model’s judgments using con-
structed synthetic data – so that the Self-Taught Evaluator is more performant on the next iteration.

Our overall pipeline is thus as follows:

• Initialization: We assume access to a large set of human-written user instructions, e.g., of
the type that is commonly collected in production systems, and an initial seed LLM.

• Instruction Selection: We next select a challenging, balanced distribution of user instruc-
tions from the uncurated set by categorizing them via LLM.

• Response Pair Construction: For each user instruction (example) we create a preference
pair of two model responses (chosen & rejected), generating them via prompting such that
the rejected response is likely of lower quality than the chosen response.

• Iterative Training: We then iterate the following two steps:

(i) Judgment Annotation: For each example, we sample from the current model up to N
times LLM-as-a-Judge generated reasoning traces and judgments. If we find a correct
judgment we add that example to our training set, otherwise we discard it.

(ii) Model Fine-tuning: We fine-tune the model on the newly constructed training set
which yields an updated model for the next iteration.

Note that in each iteration of training the size of the training set depends on the quality of the current
model. We expect that as the model improves, the size of the training set will increase as well, as the
model will be able to find more correct judgments, giving the model a kind of automatic curriculum.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 INITIALIZATION

We assume we have access to a pool of user instructions {xi}. Each sample xi can either be one
single text instruction or a multi-turn dialog history of turns between the user and the assistant, with
the last turn being an instruction or question from the user. Instructions typically involve different
skills such as general knowledge and reasoning, coding, safety, and mathematical reasoning.

3.2 INSTRUCTION SELECTION

Given a pool of human-written user instructions, there may be a large degree of noise, as well as an
imbalance in terms of topic, variety, difficulty, and ability of the model to answer. We therefore aim
to select a subset of instructions to generate high-quality synthetic responses and judgments that can
be further used for training.

We classify each input using an LLM into a given category, for example coding, reasoning, brain-
storming, etc. The precise prompt we use is given in Figure 7. We are then free to select data from
within those categories, and to discard certain categories not deemed to be useful for training.

3.3 RESPONSE PAIR CONSTRUCTION

For each input xi in our curated training pool, we next generate preference data involving two
responses y(w)

i and y
(l)
i where w is expected to be preferable (winning) over l (losing). We achieve

this by generating the data in a synthetic manner without using human annotation.

Given the instruction xi, we first prompt an instruction-following LLM to generate a baseline re-
sponse ywi as usual. We then prompt the LLM to generate a “noisy” version of the original instruction
x′
i = ϕ(xi). We do this using the prompt template given in Figure 2, where we ask to “generate

a modified instruction that is highly relevant but not semantically identical to the instruction above
from the user.” We then prompt the LLM for a high-quality response yli to x′

i, which would not be a
good response for xi. This yields a synthetic preference ywi ≻ yli for the original input xi.

This paired data is then used to construct training examples:

(xi, y
(A)
i , y

(B)
i)

where we randomize the order of whether the winner is w = A or w = B, which is important to
deal with position bias for LLM-as-a-Judge inference.

3.4 JUDGMENT ANNOTATION

Our LLM-as-a-Judge model is used to generate evaluation judgments (reasoning chains and verdicts)
{ji} for each training example ei := (xi, y

(A)
i , y

(B)
i) in the following manner: for a given input ei,

we collect N diverse evaluations J := {j1i , . . . , jNi } by sampling from the model. We then apply
rejection sampling to filter J by removing jni when the final verdict disagrees with the ground truth
labeling, derived from Subsection 3.3. We then select a single correct reasoning chain and verdict at
random from the pool of correct solutions. If no such judgment exists (J is empty) then we discard
the example.

This now allows us to construct our final training examples of synthetic preferences for fine-tuning:

((xi, y
(A)
i , y

(B)
i), ji).

3.5 MODEL FINE-TUNING (ITERATIVE TRAINING)

Our Self-Taught Evaluator (LLM-as-a-Judge model) is first initialized with the seed LLM. The
model is then trained in an iterative manner. At each iteration, we annotate the training examples
with judgments as described in Subsection 3.4 using the current model, giving training examples
{(xi, y

(A)
i , y

(B)
i , ji)}. These are used to train the next iteration’s model by fine-tuning. Note that we

initialize from the seed model at each iteration.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training. Our initial model M0 is initialized from Llama3-70B-Instruct. In each iteration i =
1, . . . T , we use model Mi−1 from the previous iteration to generate synthetic preferences followed
by judgments on the training data, and then fine-tune Llama3-70B-Instruct again. We use fairseq2
library (Balioglu, 2023) for instruction finetuning and vLLM (Kwon et al., 2023) for inference.
During training the negative log-likelihood loss is only applied to the evaluation part, i.e., ji of the
training example. Training hyperparameters are provided in Table 7. Model selection is done using
a combination of pairwise judgment accuracy and position bias computed over the held out set.
Sampling parameters used for generations are provided in Table 8.

Instructions and Responses. We start with a large pool of human-written instructions {xi} from
the WildChat dataset (Zhao et al., 2024). To perform prompt selection, we annotate the category of
each instruction with the Mixtral 22Bx8 Instruct model, using the template in Figure 7 and select
20,582 examples in the reasoning category, as we expect these to be challenging inputs. For the
selected inputs we generate synthetic responses ywi and yli using Mixtral 22Bx8 Instruct following
Subsection 3.3 and Figure 2.

Judge Annotation. For each training example, we sample N = 15 judgments from the model
Mi−1 and retain one positive sample ji per example. Then over the entire dataset we sample the
same amount of examples from different labels (“A is better”, “B is better”) to ensure balanced
training. Judgements for training M0 were sampled from Mixtral 22Bx8 Instruct, and from the
Llama model being trained in all subsequent iterations.

The training data is constructed as (<system prompt>, {(xi, y
(A)
i , y

(B)
i , ji)}). We generate 10k

synthetic examples for the first iteration of training. We use the standard system prompt from MT-
Bench and RewardBench as shown in Figure 8.

Majority Vote Inference. As LLM-as-a-Judge uses chain-of-though reasoning chains generated
by the LLM followed by a verdict, it is known that majority vote inference can yield improvements
in these cases (Wang et al., 2023b). At inference time when evaluating final performance we sample
generations N times, and take the final judgment to be the most common verdict.

4.2 OTHER DATA SOURCES

To understand the effectiveness of the proposed method, we generate synthetic judgments using the
same approach but based on the following data sources:

• HelpSteer2 (Wang et al., 2024c). We generate evaluations conditioned on the scores of
helpfulness, correctness, coherence, complexity and verbosity provided the dataset. We
use the aggregated score to derive the ground truth preference for each example using the
recommended weighting [0.65, 0.8, 0.45, 0.55,−0.4]1.

• GSM8K (Cobbe et al., 2021). We sample from an instruction-following model multiple
times to get yw when the final solution agrees with the ground truth and yl vise versa.

• Coding instructions from WildChat. Similar to the “reasoning” prompts we selected from
WildChat used in the main experiment, we also experimented with prompts annotated with
the “Coding” category.

• hh rlhf (Bai et al., 2022). We generate evaluations on the prompts and responses provided
in the “harmless base” training split. Then we take human preferences provided by the
dataset as ground truth to perform rejection sampling to construct judgments.

4.3 EVALUATION

We evaluate the accuracy of our Self-Taught Evaluator model on the following benchmarks:
1Recommended weighting was taken from https://huggingface.co/nvidia/Llama3-70B-SteerLM-RM.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

• RewardBench (Lambert et al., 2024). We use the standard evaluation protocol provided by
the leaderboard.

• MT-Bench (Zheng et al., 2023). We report agreement rate with human judgments when
examples with ties are excluded.

• HelpSteer2 (Wang et al., 2024c). We evaluate on the validation split.

5 RESULTS

5.1 REWARDBENCH

Results on RewardBench are given in Table 1. We find that our Self-Taught Evaluator which is
trained iteratively on synthetic data without any annotated preference labels significantly improves
over the seed Llama3-70B-Instruct model, matching top-performing reward models trained with
labeled data. Our approach improves its results across training iterations, and achieves an overall
score of 88.3 on iteration 5, while the seed model it starts from obtains 75.4. Training an LLM-as-
a-Judge in a similar manner starting from the same seed using the labeled HelpSteer2 data we only
obtain 85.6, hence we obtain superior performance without using human labeled data. Compared to
the seed model, we observe improvements using our approach in evaluating instructions in the Chat
Hard, Safety and Reasoning categories, while being worse on the easier Chat category – perhaps
because our unlabeled training data focused the model on harder examples.

Improving results further with majority voting As also shown in Table 1, with 32-sample ma-
jority voting, our third iteration of Self-Taught Evaluator model reaches an overall performance of
88.7 on RewardBench, outperforming many other existing reward models.

5.2 MT-BENCH

We report results on MT-Bench in Table 2. Unlike RewardBench, the MT-Bench dataset contains tie
votes (A and B are considered equally good). Since our models are trained to give binary decisions,
we only report the agreement on non-tie examples. For each pair of responses A and B, we test two
orders: where response A appears first and response B appears first, and average the results. We
find that our Self-Taught Evaluator again outperforms the Llama3-70B-Instruct seed model, and is
on par or slightly outperforms GPT4-0125.

5.3 HELPSTEER2

Results on the HelpSteer2 validation set are given in Table 3. We report the average accuracy of
two orders and three seeds by swapping the response order in a similar manner, as well as reporting
both orders separately (right answer first or second) to test for position bias. We further compute the
position-consistent accuracy, treating a judgment as incorrect when a model has different predictions
on the two orderings. We use the human labels from the Helpsteer2 dataset and treat the response
with higher summed scores as the better response. We find that our Self-Taught Evaluator method
improves both average accuracy and position-consistent accuracy compared to the seed Llama-3-
70B-Instruct model.

6 ABLATIONS AND ANALYSIS

6.1 SYNTHETIC DATA FROM OTHER SOURCES

In Table 4, we compare Self-Taught Evaluator models trained on synthetic preferences constructed
from different sources. We found data sources focusing on different skills, such as coding, mathe-
matical reasoning, etc. are all effective in turning a strong instruction-following LLM into a strong
LLM-as-a-Judge. Intuitively, we find that data sources generally improve the categories in Reward-
Bench that are related to their distribution.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Model Overall Chat Chat Hard Safety Reasoning
Llama-3-70B-Instruct (seed) 75.4 97.6 58.9 69.2 78.5
Self-Taught Evaluator, trained on synthetic data only
Iteration 1 83.9 98.3 69.0 85.7 82.6
Iteration 2 86.0 97.5 75.4 89.5 81.7
Iteration 3 87.5 97.2 79.1 89.7 83.9
Iteration 4 87.7 98.0 80.3 90.5 82.2
Iteration 5 88.3 96.6 84.2 91.5 81.0

w/ majority voting using 32 samples 88.7 96.9 84.0 91.5 82.5
Baselines with Labeled Data
Llama-3-70B-Instruct w/ HelpSteer2, LLM-as-a-Judge 85.6 96.9 70.0 88.8 86.7
nvidia/Llama3 70B RM with HelpSteer2, classifier * 88.8 91.3 80.3 92.8 90.7
Other SoTA LLM-as-a-Judge baseline models
GPT4 0125 * 84.3 95.3 74.3 87.2 86.9
Gemini 1.5 Pro 0514 * 88.1 92.3 80.6 87.5 92.0
Llama3.1-405B-Instruct 83.7 98.0 75.1 74.7 86.8
Llama3.1-70B-Instruct 82.2 97.8 69.7 76.3 85.2

Table 1: RewardBench Results. Our Self-Taught Evaluator trained on synthetic data without
any human annotated preference labels matches top-performing reward models trained with labeled
data. Models marked with (*) are taken from the RewardBench leaderboard.

Model Agreement with Human
Llama-3-70B-Instruct (seed) 77.8
Self-Taught Evaluator, trained on synthetic data only

Iteration 1 79.0
Iteration 2 78.7
Iteration 3 78.9
Iteration 4 77.5
Iteration 5 78.9

w/ majority voting using 32 samples 79.5
Other SoTA LLM-as-a-Judge baseline models
GPT4-0125 79.1

Table 2: MT-Bench Results. Our Self-Taught Evaluator trained on synthetic data without any
human annotated preference labels performs on par with GPT-4 judgments.

Model 0-1 Acc 1-0 Acc Avg Acc Position-consistent Acc
Llama-3-70B-Instruct (seed) 65.2 65.8 65.5 56.5
Self-Taught Evaluator, trained on synthetic data only
Iteration 1 68.1 68.7 68.4 59.4
Iteration 2 69.6 69.4 69.5 58.8
Iteration 3 70.3 71.2 70.8 61.1
Iteration 4 71.0 71.7 71.4 61.9
Iteration 5 71.6 70.3 71.0 60.6

Table 3: HelpSteer2 results. Iterative training on synthetic preferences improves position-
consistent accuracy compared to Llama3-70B-Instruct, measured on the HelpSteer2 (Wang et al.,
2024c) validation split.

Source for
Model synthetic preferences Overall Chat Chat Hard Safety Reasoning
Llama-3-70B-Instruct 75.4 97.6 58.9 69.2 78.5

safety (hh rlhf) 79.6 97.2 55.4 87.0 78.8
math (GSM8K) 79.3 96.1 58.8 79.4 83.0
coding (WildChat) 79.4 96.6 55.9 85.3 79.7
reasoning (WildChat) 83.5 97.5 70.6 84.2 81.6

Table 4: Supervised fine-tuning with synthetic preferences from different sources improves Llama-
3-70B-Instruct on various categories, as measured on RewardBench. Largest improvement in each
category is highlighted in bold.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: Distribution of curated training set of selected instructions compared to the full WildChat
dataset.

Figure 4: Distribution of inferred complexities of curated training data versus all instructions in
WildChat.

Figure 5: Distribution of estimated output lengths of curated training data versus all instructions in
WildChat.

6.2 SYNTHETIC BAD RESPONSE GENERATION

In our experiments we generate synthetic data by first generating a modified instruction, and then
a good response for the modified instruction – with the aim that this will be a bad response for
the original instruction. An alternative is to just prompt an LLM to generate a bad response to
the original instruction directly. We use the prompt template given in Figure 10 and otherwise
conduct training as before on the same set of reasoning-based instructions. This approach obtains
a RewardBench overall score of 80.7, which still works – but is worse than using our proposed
approach, which achieves 83.8.

6.3 COMPARISON OF SYNTHETIC DATA WITH HUMAN ANNOTATED DATA

We conducted the same iterative training using labeled preference data from HelpSteer2 (Wang
et al., 2024c), rather than synthetic data. On RewardBench, as is shown in Table 5, the improvement
from each iteration is smaller and the final model did not outperform iterative training on synthetic
preferences. We note that these experiments use data to train an LLM-as-a-Judge. Other results in
the literature have used the HelpSteer2 to train classifier-based reward models with slightly better
results on RewardBench, e.g., obtaining 88.8 using Llama-3-70B, see Table 1.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 6: Distribution of inferred categories of curated training data versus all instructions in Wild-
Chat.

Model Overall Chat Chat Hard Safety Reasoning
Llama-3-70B-Instruct (seed) 75.4 97.6 58.9 69.2 78.5
Self-Taught Evaluator, trained on labeled HelpSteer2 preferences
Iteration 1 85.6 96.9 70.0 88.8 86.7
Iteration 2 86.3 96.1 72.4 91.1 85.7
Iteration 3 87.0 95.0 74.2 91.2 87.8
Iteration 4 87.0 94.1 77.2 91.6 85.1

Table 5: Iterative training with labeled data also shows improvement on RewardBench. However,
it does not outperform iterative training with synthetic preferences .

synthetic:HelpSteer2 ratio Overall Chat Chat Hard Safety Reasoning
1 : 0 0.835 0.975 0.706 0.842 0.816
0 : 1 0.856 0.969 0.700 0.888 0.867
1 : 1 0.842 0.972 0.681 0.881 0.836
1 : 2 0.858 0.972 0.711 0.891 0.857
1 : 5 0.847 0.975 0.681 0.889 0.844
2 : 1 0.833 0.972 0.689 0.847 0.823
5 : 1 0.858 0.972 0.726 0.880 0.853

Table 6: Mixing data sources in different proportions can improve performance of the fine-tuned
model. Synthetic preference data is generated with the Llama3-70B-Instruct model.

6.4 ITERATIVE TRAINING BY INITIALIZING FROM LABELED DATA

We further explore how to utilize labeled data in our pipeline. We first finetune a model on Help-
steer2 Wang et al. (2024c) and use this model to generate judgements. In this way, we obtain
synthetic data by utilizing a model finetuned on labeled data. We conducted iterative training and
present results in Table 12. We observed good performance compared to the seed model (Llama-3-
70B-Instruct), however it does not clearly outperform conducting iterative training with unlabeled
data alone.

6.5 COMBINING SYNTHETIC AND HUMAN LABELED PREFERENCE DATA

We compare how combining synthetic preference data with human labelled preference data affects
model performance. In particular, we combine synthetic preferences generated from reasoning Wild-
Chat prompts with the human labeled HelpSteer2 dataset (train split) and report performance in
Table 6. We compare to first-iteration models trained on single data source, and select the best
checkpoint for joint training using the validation split of HelpSteer2 and holdout set of synthetic
preferences (in-distribution), as well as safety and code synthetic preferences (out-of-distribution).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

We then report evaluation results on RewardBench. The results show that overall the models re-
tain strong performance across different data mixing weights, with slight improvements on overall
accuracy.

6.6 INSTRUCTION COMPLEXITY

We analyze the length distribution of the curated training set of selected instructions in Figure 3. The
dataset has a long-tail distribution of input length, with most of the examples less than 500 tokens.
In contrast, the full dataset (i.e., the full data before the instruction selection step of Subsection 3.2)
has a cluster of very long instructions, containing content such as long-form coding instructions or
transcripts.

We further instruct Llama-3-70B-Instruct to infer the complexity (using a score of 1–5) and category
of each input instruction, as well as the length of the expected output, following the procedure in
Yuan et al. (2024). From Figure 4 and Figure 6, we see that the curated dataset has more complex
instructions involving logical reasoning/science whereas the full dataset has a greater proportion
focused on relationships and entertainment. Finally, in Figure 5 we see that the anticipated length
of the response is higher for the full dataset than the curated one, perhaps because of the greater
frequency of lengthy, and sometimes repetitive instructions.

7 CONCLUSION

We present a scalable approach to build a strong generalist evaluator to perform model-based evalu-
ation of LLM outputs. Our method constructs synthetic preferences over pairs of responses without
using any human annotation. Our Self-Taught evaluator with iterative training over these synthetic
preferences greatly boosts the accuracy of a strong seed LLM (Llama3-70B-Instruct) as an evaluator,
from 75.4 to 88.7 on RewardBench, a new state-of-the-art for generative LLM-as-a-Judge methods.

8 LIMITATIONS

Generative LLM-as-a-Judge models usually have longer outputs and thus higher inference cost than
reward models that simply output a score, as LLM-as-a-Judge typically first generates a reasoning
chain. On the other hand, models that generate long reasoning chains are more susceptible to pro-
ducing hallucinated content. This highlights a trade-off between encouraging deeper reasoning and
mitigating the risk of generating inaccurate or fabricated information. Further, we have used rela-
tively large LLMs in this work (70B parameters) and made no study of whether our approach works
on smaller models. Since we use a seed model to generate first synthetic preferences during our iter-
ative training scheme, one of the assumptions is that the model is capable of generating reasonable
evaluations. Thus, our approach is limited by having a capable instruction fine-tuned model which
is already reasonably aligned to human (or legal/policy) preferences. Furthermore, we only investi-
gated and reported metrics involving evaluation accuracy improvements, rather than computational
requirement concerns. While LLM-as-a-judge models can also be utilized to provide reward signals
for optimizing LLM performance, our evaluation did not explore this application. Future work could
investigate the potential benefits of using our model in this context. We also only investigated pair-
wise evaluation, i.e., comparing two responses, whereas it is also possible to use LLM-as-a-Judge
models (or any other model) to evaluate the quality of single responses, e.g., giving them a score out
of 5 or 10, rather than a pairwise A vs B judgment. We leave evaluating single responses to future
work.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Yushi Bai, Jiahao Ying, Yixin Cao, Xin Lv, Yuze He, Xiaozhi Wang, Jifan Yu, Kaisheng Zeng, Yijia
Xiao, Haozhe Lyu, Jiayin Zhang, Juanzi Li, and Lei Hou. Benchmarking foundation models with
language-model-as-an-examiner. In Thirty-seventh Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2023. URL https://openreview.net/forum?
id=IiRHQ7gvnq.

Can Balioglu. fairseq2, 2023. URL http://github.com/facebookresearch/
fairseq2.

Anna Bavaresco, Raffaella Bernardi, Leonardo Bertolazzi, Desmond Elliott, Raquel Fernández, Al-
bert Gatt, Esam Ghaleb, Mario Giulianelli, Michael Hanna, Alexander Koller, et al. LLMs instead
of human judges? A large scale empirical study across 20 NLP evaluation tasks. arXiv preprint
arXiv:2406.18403, 2024.

Maosong Cao, Alexander Lam, Haodong Duan, Hongwei Liu, Songyang Zhang, and Kai Chen.
Compassjudger-1: All-in-one judge model helps model evaluation and evolution, 2024.

Cheng-Han Chiang and Hung-yi Lee. Can large language models be an alternative to human eval-
uations? In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of
the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pp. 15607–15631, Toronto, Canada, July 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.acl-long.870. URL https://aclanthology.org/2023.
acl-long.870.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy Liang, and Tatsunori Hashimoto. AlpacaFarm: A simulation framework for
methods that learn from human feedback. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=4hturzLcKX.

Khaled El Emam, Lucy Mosquera, and Richard Hoptroff. Practical synthetic data generation:
balancing privacy and the broad availability of data. O’Reilly Media, 2020.

Shangbin Feng, Vidhisha Balachandran, Yuyang Bai, and Yulia Tsvetkov. FactKB: Generalizable
factuality evaluation using language models enhanced with factual knowledge. In Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 933–952, 2023.

Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I
Wang. CRUXEval: A benchmark for code reasoning, understanding and execution. arXiv preprint
arXiv:2401.03065, 2024.

Bill Howe, Julia Stoyanovich, Haoyue Ping, Bernease Herman, and Matt Gee. Synthetic data for
social good. arXiv preprint arXiv:1710.08874, 2017.

Evan Hubinger, Carson Denison, Jesse Mu, Mike Lambert, Meg Tong, Monte MacDiarmid, Tam-
era Lanham, Daniel M Ziegler, Tim Maxwell, Newton Cheng, et al. Sleeper agents: Training
deceptive llms that persist through safety training. arXiv preprint arXiv:2401.05566, 2024.

Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang, Shayne Longpre, Hwaran Lee, Sangdoo Yun,
Seongjin Shin, Sungdong Kim, James Thorne, et al. Prometheus: Inducing fine-grained evalua-
tion capability in language models. In The Twelfth International Conference on Learning Repre-
sentations, 2023.

Seungone Kim, Juyoung Suk, Shayne Longpre, Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham
Neubig, Moontae Lee, Kyungjae Lee, and Minjoon Seo. Prometheus 2: An open source language
model specialized in evaluating other language models, 2024.

11

https://openreview.net/forum?id=IiRHQ7gvnq
https://openreview.net/forum?id=IiRHQ7gvnq
http://github.com/facebookresearch/fairseq2
http://github.com/facebookresearch/fairseq2
https://aclanthology.org/2023.acl-long.870
https://aclanthology.org/2023.acl-long.870
https://openreview.net/forum?id=4hturzLcKX

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Fer-
ran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, et al. Learning skillful
medium-range global weather forecasting. Science (New York, NY), 382(6677):1416–1421, 2023.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. RewardBench: Evaluating reward
models for language modeling. arXiv preprint arXiv:2403.13787, 2024.

Jack Lanchantin, Shubham Toshniwal, Jason E Weston, Arthur Szlam, and Sainbayar Sukhbaatar.
Learning to reason and memorize with self-notes. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https://openreview.net/forum?id=
ZFwNdsDCRL.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Lu, Thomas Mesnard, Colton Bishop, Victor
Carbune, and Abhinav Rastogi. RLAIF: Scaling reinforcement learning from human feedback
with ai feedback. arXiv preprint arXiv:2309.00267, 2023.

Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng Kong, and Wei Bi. GSM-Plus: A comprehensive
benchmark for evaluating the robustness of llms as mathematical problem solvers. arXiv preprint
arXiv:2402.19255, 2024a.

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Omer Levy, Luke Zettlemoyer, Jason E Weston, and
Mike Lewis. Self-alignment with instruction backtranslation. In The Twelfth International Con-
ference on Learning Representations, 2024b. URL https://openreview.net/forum?
id=1oijHJBRsT.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. AlpacaEval: An automatic evaluator of instruction-following
models, 2023.

Changshu Liu, Shizhuo Dylan Zhang, and Reyhaneh Jabbarvand. CodeMind: A framework to
challenge large language models for code reasoning. arXiv preprint arXiv:2402.09664, 2024.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: NLG
evaluation using GPT-4 with better human alignment. In Houda Bouamor, Juan Pino, and Ka-
lika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 2511–2522, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.153. URL https://aclanthology.org/2023.
emnlp-main.153.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Alizée Pace, Jonathan Mallinson, Eric Malmi, Sebastian Krause, and Aliaksei Severyn. West-of-
N: Synthetic preference generation for improved reward modeling. In ICLR 2024 Workshop
on Navigating and Addressing Data Problems for Foundation Models, 2024. URL https:
//openreview.net/forum?id=7kNwZhMefs.

Ethan Perez, Sam Ringer, Kamile Lukosiute, Karina Nguyen, Edwin Chen, Scott Heiner, Craig
Pettit, Catherine Olsson, Sandipan Kundu, Saurav Kadavath, et al. Discovering language model
behaviors with model-written evaluations. In Findings of the Association for Computational Lin-
guistics: ACL 2023, pp. 13387–13434, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=HPuSIXJaa9.

12

https://openreview.net/forum?id=ZFwNdsDCRL
https://openreview.net/forum?id=ZFwNdsDCRL
https://openreview.net/forum?id=1oijHJBRsT
https://openreview.net/forum?id=1oijHJBRsT
https://aclanthology.org/2023.emnlp-main.153
https://aclanthology.org/2023.emnlp-main.153
https://openreview.net/forum?id=7kNwZhMefs
https://openreview.net/forum?id=7kNwZhMefs
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pp. 2383–2392, 2016.

Swarnadeep Saha, Omer Levy, Asli Celikyilmaz, Mohit Bansal, Jason Weston, and Xian Li. Branch-
solve-merge improves large language model evaluation and generation. In Proceedings of the
2024 Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies (Volume 1: Long Papers), pp. 8345–8363, 2024.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=Yacmpz84TH.

Tu Shiwen, Zhao Liang, Chris Yuhao Liu, Liang Zeng, and Yang Liu. Skywork critic model
series. https://huggingface.co/Skywork, September 2024. URL https://
huggingface.co/Skywork.

Tu Vu, Kalpesh Krishna, Salaheddin Alzubi, Chris Tar, Manaal Faruqui, and Yun-Hsuan Sung.
Foundational autoraters: Taming large language models for better automatic evaluation, 2024.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=rJ4km2R5t7.

Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable preferences
via multi-objective reward modeling and mixture-of-experts. arXiv preprint arXiv:2406.12845,
2024a.

Jiaan Wang, Yunlong Liang, Fandong Meng, Zengkui Sun, Haoxiang Shi, Zhixu Li, Jinan Xu,
Jianfeng Qu, and Jie Zhou. Is ChatGPT a good NLG evaluator? a preliminary study. In
Yue Dong, Wen Xiao, Lu Wang, Fei Liu, and Giuseppe Carenini (eds.), Proceedings of the
4th New Frontiers in Summarization Workshop, pp. 1–11, Singapore, December 2023a. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2023.newsum-1.1. URL https:
//aclanthology.org/2023.newsum-1.1.

Peifeng Wang, Austin Xu, Yilun Zhou, Caiming Xiong, and Shafiq Joty. Direct judgement prefer-
ence optimization, 2024b.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023b. URL
https://openreview.net/forum?id=1PL1NIMMrw.

Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi Zeng, Gerald Shen, Daniel Egert, Jimmy J Zhang,
Makesh Narsimhan Sreedhar, and Oleksii Kuchaiev. HelpSteer2: Open-source dataset for training
top-performing reward models. arXiv preprint arXiv:2406.08673, 2024c.

Jerry Wei, Chengrun Yang, Xinying Song, Yifeng Lu, Nathan Hu, Dustin Tran, Daiyi Peng, Ruibo
Liu, Da Huang, Cosmo Du, et al. Long-form factuality in large language models. arXiv preprint
arXiv:2403.18802, 2024.

Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason Weston. Some things are more cringe
than others: Iterative preference optimization with the pairwise cringe loss. arXiv preprint
arXiv:2312.16682, 2023.

Seonghyeon Ye, Doyoung Kim, Sungdong Kim, Hyeonbin Hwang, Seungone Kim, Yongrae Jo,
James Thorne, Juho Kim, and Minjoon Seo. FLASK: Fine-grained language model evaluation
based on alignment skill sets. In The Twelfth International Conference on Learning Representa-
tions, 2024. URL https://openreview.net/forum?id=CYmF38ysDa.

13

https://openreview.net/forum?id=Yacmpz84TH
https://huggingface.co/Skywork
https://huggingface.co/Skywork
https://huggingface.co/Skywork
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://aclanthology.org/2023.newsum-1.1
https://aclanthology.org/2023.newsum-1.1
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=CYmF38ysDa

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, Zhengying Liu, Yu Zhang, James Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=N8N0hgNDRt.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. Self-rewarding language models. arXiv preprint arXiv:2401.10020, 2024.

Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya Goyal, and Danqi Chen. Evaluating
large language models at evaluating instruction following. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
tr0KidwPLc.

Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie, Yejin Choi, and Yuntian Deng. WildChat:
1M ChatGPT interaction logs in the wild. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=Bl8u7ZRlbM.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging LLM-as-a-judge with MT-bench and chatbot arena. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2023. URL https:
//openreview.net/forum?id=uccHPGDlao.

Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu, and Jiantao Jiao. Starling-7B: Increas-
ing LLM Helpfulness & Harmlessness with RLAIF, 2023. URL https://starling.cs.
berkeley.edu/.

A APPENDIX

A.1 PROMPT TEMPLATES

We provide the prompt templates used for annotating and selecting instructions (Figure 7), annotat-
ing judgments with synthetic preferences (Figure 8), and generating ablation synthetic preference
data with bad responses (Figure 10). Figure 9 illustrates an training example based on synthetic
preference data.

A.2 MORE TRAINING AND EVALUATION DETAILS

We include training hyper-parameters in Table 7 and sampling parameters in Table 8.

Name Value
max seq len 4096
max num tokens 8192
model llama3 70b instruct
dtype bfloat16
data parallelism fsdp
tensor parallel size 8
activation checkpointing true
lr 1.0e-06
betas 0.9, 0.95
final lr ratio 0.2
weight decay 0.1
num lr warmup steps 100
gradient accumulation 1
max num data epochs 2
checkpoint every n steps 100
seed 2

Table 7: Training hyper-parameters used during fine-tuning.

14

https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=tr0KidwPLc
https://openreview.net/forum?id=tr0KidwPLc
https://openreview.net/forum?id=Bl8u7ZRlbM
https://openreview.net/forum?id=uccHPGDlao
https://openreview.net/forum?id=uccHPGDlao
https://starling.cs.berkeley.edu/
https://starling.cs.berkeley.edu/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Prompt Template for Selecting Instructions

I have an instruction below that I would like you to perform three steps of analysis about
the instruction:

<instruction> {instruction} </instruction>

Firstly, categorize the instruction above into one of the following categories:

Coding
Mathematical reasoning
Asking for Advice
Brainstorming
Classification
Closed Question Answering
Creative Writing
Extraction
Inhabiting a Character/Persona
Open Question Answering
Rewriting
Summarization
Knowledge and Reasoning
Humanity, History or Social Studies
Other

Secondly, score the instruction in terms of complexity: how complex you think it is
to answer from 1-10 (where 10 is a complex question whereby first reasoning or break-
ing down the question into multiple subquestions for example might help improve the answer).

Thirdly, indicate how long you think the response to the instruction should be, ei-
ther (a) 1 sentence, (b) 1-3 sentences, (c) 1 paragraph, (d) 2 paragraphs, or (e) 3 or more
paragraphs.

Provide your final response in the following format:
Category: <one of the categories above>
Complexity: <score out of 10>
Length: <choose from (a) to (e)>. DO NOT provide the actual response.

Figure 7: Prompt template for Selecting Instructions. We prompt an instruction following model
to annotate the category of each instruction in order to curate our training data instructions.

Stage Generation for Temperature Top p
Train Judgment 0.7 0.9
Eval MT-Bench 0.0 1.0
Eval Reward Bench (RB) 0.0 1.0
Eval RB w/ maj voting 0.7 0.9
Eval Helpsteer 2 valid 0.7 0.9

Table 8: Sampling parameters (temperature and top p) used during generations at each stage of
training and evaluation.

A.3 POSITION ORDER EVALUATION ON REWARDBENCH

We notice that when we evaluate generative models on RewardBench, the order of two responses in
each example is not fixed. More specifically, for each example, the winning response (yw) can be
randomly placed before or after the losing response (yl). Generative models may output different
judgements when the order of responses changes. Thus, we analyze how the performance varies
when different seeds are used to decide response order. In Table 9, we test our model from the
5th iteration of training on RewardBench with the response order randomly shuffled, as well as two
extreme cases where the winning answer always appear first or last. We recommend to report the
average performance (88.3 for our 5th iteration) of “yw always first” and “yl always first” as it fairly
considers both orders.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Prompt Template for Judgment Annotation

Please act as an impartial judge and evaluate the quality of the responses provided by
two AI assistants to the user question displayed below. You should choose the assistant
that follows the user’s instructions and answers the user’s question better. Your evaluation
should consider factors such as the helpfulness, relevance, accuracy, depth, creativity, and
level of detail of their responses. Begin your evaluation by comparing the two responses and
provide a short explanation. Avoid any position biases and ensure that the order in which
the responses were presented does not influence your decision. Do not allow the length of
the responses to influence your evaluation. Do not favor certain names of the assistants.
Be as objective as possible. After providing your explanation, output your final verdict
by strictly following this format: “[[A]]” if assistant A is better, “[[B]]” if assistant B is better.

Please act as an impartial judge and evaluate the quality of the responses provided by
two AI assistants to the user question displayed below. You should choose the assistant
that follows the user’s instructions and answers the user’s question better. Begin your
evaluation by first verifying whether each response contains any obvious or subtle errors.
Then propose an appropriate evaluaiton rubric, e.g. 1-5 criteria that are important for
evaluating responses to this specific user question. Continue your evaluation by checking
each response carefully along those criteria. Based on the analysis in previous steps, choose
which response is better overall. Avoid any position biases and ensure that the order in
which the responses were presented does not influence your decision. Do not allow the length
of the responses to influence your evaluation. Do not favor certain names of the assistants.
Be as objective as possible. After providing your evaluation, output your final verdict
by strictly following this format: “[[A]]” if assistant A is better, “[[B]]” if assistant B is better.

[[User Question]]
{instruction}

[The Start of Assistant A’s Answer]
{response A}
[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]
{response B}
[The End of Assistant B’s Answer]

Figure 8: Prompt template for Judgment Annotation. This is the same prompt as used in MT-
Bench and RewardBench.

Seed Average Accuracy
1 88.9
11 88.4
111 88.6
1111 88.7
11111 88.3
yw always first 85.5
yl always first 91.1

Table 9: Average accuracy on RewardBench when order of responses changes.

A.4 USING DIFFERENT MODELS FOR TRAINING DATA GENERATION

In Table 10 we present evaluation on RewardBench of models finetuned on different training data.
Note in our Self-Taught Evaluator approach we can use different LLMs to generate responses and
judgements. Specifically, we try using Mixtral 22Bx8 Instruct or Llama-3-70B-Instruct in various
combinations. We then finetune the Llama-3-70B-Instruct model and test on RewardBench. As
shown in Table 10, the model finetuned on data generated by using the Mixtral 22Bx8 Instruct
model to judge Mixtral 22Bx8 Instruct model generated responses achieves the best performance.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Model Overall Chat Chat Hard Safety Reasoning
Llama-3-70B-Instruct (seed) 75.4 97.6 58.9 69.2 78.5
Self-Taught Evaluator, trained on synthetic data only
Mixtral judge Mixtral 83.9 98.3 69.0 85.7 82.6
Llama3.0 judge Llama3.0 81.4 97.2 66.0 85.0 77.5
Llama3.0 judge Mixtral 80.0 97.5 70.0 72.8 79.4

Table 10: Performance on RewardBench of models finetuned on different training data.

Model Overall writing stem coding math humanities reasoning roleplay extraction
Llama-3-70B-Instruct (seed) 77.8 70 76.9 73.8 80 79.85 78.8 78.8 85.1
Self-Taught Evaluator, trained on synthetic data only
Iteration 1 78.95 71.15 78.95 76.6 81.65 80.25 82.3 80.7 80.25
Iteration 2 78.65 69.6 77.9 82.55 79.15 82.2 80.8 77.6 79.8
Iteration 3 78.9 70.4 78.6 79.35 79.55 82.9 82.3 77.9 80.7
Iteration 4 77.45 71.15 77.25 75.8 73.3 82.6 81.3 78.85 79.35
Iteration 5 78.9 68.45 78.2 81.75 82.5 82.25 81.35 75.15 83.75

w/ majority voting @ 32 79.45 68.45 78.55 82.95 83.75 82.9 82.8 76.35 81.6
Other SoTA LLM-as-a-Judge baseline models
GPT4-0125 79.15 70.4 79.9 82.9 82.1 80.55 80.8 77 80.7

Table 11: MT-Bench Per-category Results. Our Self-Taught Evaluator trained on synthetic data
without any human annotated preference labels performs on par with GPT-4 judgments.

Model Overall Chat Chat Hard Safety Reasoning
Llama-3-70B-Instruct (seed) 75.4 97.6 58.9 69.2 78.5
Self-Taught Evaluator, trained on synthetic data generated by a finetuned model (Helpsteer2)
Iteration 1 87.0 95.8 75.8 90.7 85.8
Iteration 2 86.6 92.2 77.4 91.2 85.8

Table 12: Iterative training on synthetic data generated by a model that is first fine-tuned on labeled
data (Helpsteer2).

Model Overall Chat Chat Hard Safety Reasoning
Llama-2-70B-Instruct 60.7 87.8 42.0 60.6 52.5
Llama-2-70B-Instruct SFT iter1 74.4 96.6 53.9 76.7 70.4
Llama-3-8B-Instruct 64.4 85.5 41.6 67.5 64.8
Llama-3-8B-Instruct SFT iter1 71.5 92.7 44.5 78.6 70.1
Llama-3-70B-Instruct 75.4 97.6 58.9 69.2 78.5
Llama-3-70B-Instruct SFT iter1 83.9 98.3 69.0 85.7 82.6
Llama-3.1-70B-Instruct 82.8 97.5 71.3 76.9 85.4
Llama-3.1-70B-Instruct SFT iter1 86.2 96.1 76.1 86.8 85.7

Table 13: We applied our Self-taught evaluator approach to the LLaMA2, LLaMA3, and LLaMA3.1
models. We present results after the first iteration of supervised fine-tuning. Our approach consis-
tently demonstrates performance improvement across different models, even with just one iteration.

Model Overall Chat Chat Hard Safety Reasoning
Skywork-Critic-Llama-3.1-70B (Shiwen et al., 2024) 93.3 96.6 87.9 93.1 95.5
SFR-LLaMa-3.1-70B-Judge-r (Wang et al., 2024b) 92.7 96.9 84.8 91.6 97.6
Self-Taught Evaluator 88.3 96.6 84.2 91.5 81.0
flame-1.0-24B-july-2024 (Vu et al., 2024) 87.8 92.2 75.7 89.6 93.8
CompassJudger-1-32B-Instruct (Cao et al., 2024) 85.2 98.0 65.1 85.3 92.4
prometheus-8x7b-v2.0 (Kim et al., 2024) 74.5 93.0 47.1 80.5 77.4
prometheus-7b-v2.0 (Kim et al., 2024) 72.0 85.5 49.1 77.1 76.5

Table 14: We present a comparison between our Self-taught evaluator and several other LLM-as-a-
judge models. The state-of-the-art (SOTA) performance is achieved by Shiwen et al. (2024), where
they fine-tune the Llama-3.1-70B instruct model on a pool of various human-labeled preference
datasets, totaling 80K pairs. The remaining models (except for our Self-taught evaluator) are built
on top of different base models but all rely on human-labeled preference datasets. In contrast, our
Self-taught evaluator is based on the Llama-3.0-70B instruct model and only 10K synthetic pairs.
Despite this, it still achieves good performance, demonstrating its effectiveness as an evaluator.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Original Question and Response Modified Question and Response

Question (x): if detroit is the center of automotive industry of USA,
then why it is so poor?
Response (yw): Detroit, once known as the M̈otor City,ẅas the
heart of the American automotive industry for many years. How-
ever, several factors have contributed to its diminished role in this
sector:
1. Globalization and competition: The rise of foreign automakers
and the globalization of the automotive industry have posed signif-
icant challenges to Detroit’s automakers. Companies like Toyota,
Honda, and Volkswagen have gained market share, forcing Detroit’s
Big Three (General Motors, Ford, and Chrysler) to adapt and com-
pete in a more global market.
2. Technological advancements: The advent of new technologies,
such as electric and autonomous vehicles, has disrupted the tradi-
tional automotive industry. Detroit’s automakers have had to invest
heavily in research and development to stay competitive, which has
put pressure on their financial performance.
3. Labor issues: The United Auto Workers (UAW) union has a
strong presence in Detroit, and labor disputes and strikes have oc-
casionally disrupted production for the Big Three. This has led
to increased labor costs and reduced competitiveness compared to
non-unionized foreign automakers.
4. Environmental regulations: As environmental concerns have
grown, regulatory pressures on the automotive industry have in-
creased. Detroit’s automakers have had to invest in cleaner tech-
nologies and comply with stricter emissions standards, which has
added to their financial burden.
5. Industry consolidation: Over the years, there has been consolida-
tion within the automotive industry, with mergers and acquisitions
reshaping the competitive landscape. This has affected Detroit’s au-
tomakers, as they have had to adapt to new ownership structures and
strategic priorities.
These factors have collectively contributed to the decline of De-
troit’s prominence in the automotive industry. However, the city’s
automakers are working to adapt and innovate in response to these
challenges.

Question(x′): What factors contribute
to the economic disparity in Detroit, de-
spite its historical significance as a hub
for the US automotive industry?
Response (yl): The economic dispar-
ity in Detroit can be attributed to several
factors, including:
1.Decline of the automotive industry**:
Mass layoffs and plant closures led to a
significant loss of jobs and tax revenue.
2.Suburbanization and white flight**:
Middle-class residents moved out of the
city, taking their tax base with them,
and leaving behind a concentrated pop-
ulation of low-income residents.
3.Lack of diversification**: Detroit’s
economy was heavily reliant on the au-
tomotive industry, making it vulnerable
to fluctuations in the market.
4.Racial and socioeconomic dispari-
ties**: Historical discriminatory prac-
tices, such as redlining and segregation,
have contributed to persistent racial and
socioeconomic disparities in the city.
5.Government policies and corrup-
tion**: Poor governance, corruption,
and inefficient use of resources have
hindered the city’s ability to address its
economic challenges.
These factors have cumulatively con-
tributed to the economic disparity in
Detroit, despite its historical signifi-
cance as a hub for the US automotive
industry.

Question (x): There are 3 objects arranged in a line. Someone
says ”the table is to the right of the bag, the table is to the left of
the box and the bag is to the right of the box.” Is the situation just
described possible or impossible? Before answering, take a deep
breath. Think step by step before giving a final answer. My survival
depends on your answer being correct, so concentrate hard.
Response (yw): Let’s break down the statements:
”The table is to the right of the bag.”
”The table is to the left of the box.”
”The bag is to the right of the box.”
From statement 3, we know the order is: box − > bag
From statement 1, we know the order is: bag − > table
Combining these two, we get: box − > bag − > table
Now, let’s look at statement 2: ”The table is to the left of the box.”
This statement contradicts our previous conclusion.
If the table is to the left of the box, then the correct order should be:
table − > box − > bag
However, this contradicts statement 1, which says the table is to the
right of the bag.
Therefore, I conclude that the situation described is IMPOSSIBLE.
The statements are mutually contradictory, and it’s not possible for
all three statements to be true at the same time. There are 3 objects
arranged in a line. Someone says ”the table is to the right of the
bag, the box is to the left of the table and the bag is to the left of the
box.” Please analyze this new situation and determine whether it is
possible or impossible.

Question (x′): There are 3 objects ar-
ranged in a line. Someone says ”the ta-
ble is to the right of the bag, the box is
to the left of the table and the bag is to
the left of the box.” Please analyze this
new situation and determine whether it
is possible or impossible.
Response (yl): Let’s break down the
given statements:
The table is to the right of the bag.
The box is to the left of the table.
The bag is to the left of the box.
From statement 3, we know the order is:
bag − > box
From statement 2, we know the order is:
box − > table
Now, let’s combine these orders:
bag − > box − > table (from state-
ments 2 and 3)
Statement 1 says the table is to the right
of the bag, which is consistent with this
order.
Based on the analysis, it is POSSIBLE
for all three statements to be true at the
same time. The correct order is: bag
− > box − > table.

Table 15: Examples of original question (x) and response (yw) pair, as well as the modified question
(x′) and the corresponding response (yl). 18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Example Judgment Generation

Instruction:
difference in percentage between 16200 and 12000
Response A:
The percentage difference between 16200 and 12000 is approximately 35%.
To calculate the percentage difference, you can use the following formula:
Percentage Difference = [(New Value - Original Value) / Original Value] x 100
In this case, the original value is 12000 and the new value is 16200. So the
calculation would look like this:
Percentage Difference = [(16200 - 12000) / 12000] x 100
Percentage Difference = [4200 / 12000] x 100
Percentage Difference = 0.35 x 100
Percentage Difference = 35%
So the percentage difference between 16200 and 12000 is 35%.
Response B:
The percentage increase from 12000 to 16200 is approximately 35%.
To calculate the percentage change, you can use the following formula:
Percentage Calculation = [(New Value - Original Value) / Original Value] x 100
In this case, the original value is 12000 and the new value is 16200. So the
calculation would look like this:
Percentage Calculation = [(16200 - 12000) / 12000] x 100
Percentage Calculation = [4200 / 12000] x 100
Percentage Calculation = 0.35 x 100
Percentage Calculation = 35%
So the percentage increase from 12000 to 16200 is 35%.
Judgment Generation:
After carefully evaluating the responses from both Assistant A and Assistant B, I will provide
my impartial judgment.
Error Check:
Both responses appear to be error-free in terms of calculation and mathematical operations.
Evaluation Rubric:
To evaluate the responses, I will consider the following 5 criteria:
1. **Accuracy**: Is the calculation correct, and is the answer accurate?
2. **Relevance** : Does the response directly address the user’s question?
3. **Clarity**: Is the explanation clear, concise, and easy to understand?
4. **Formula Application**: Is the formula correctly applied, and are the steps clearly
explained?
5. **Contextual Understanding**: Does the response demonstrate an understanding of the
context and the user’s intent?
Evaluation:
Assistant A:
* Accuracy: 5/5 (correct calculation)
* Relevance: 5/5 (directly addresses the user’s question)
* Clarity: 5/5 (clear and concise explanation)
* Formula Application: 5/5 (correctly applied formula with clear steps)
* Contextual Understanding: 4/5 (uses “percentage difference” which is correct, but could
be more explicit)
Assistant B:
* Accuracy: 5/5 (correct calculation)
* Relevance: 5/5 (directly addresses the user’s question)
* Clarity: 5/5 (clear and concise explanation)
* Formula Application: 5/5 (correctly applied formula with clear steps)
* Contextual Understanding: 3/5 (uses “percentage calculation” which is correct in this case,
but is less precise)
Final Verdict:
Based on the evaluation, I conclude that **[[A]]** is the better response. Although both
responses are accurate and clear, Assistant A demonstrates a slightly better understanding of
the context and uses the more specific term “percentage difference”, which is more applicable
to this scenario.

Figure 9: An illustrative example of judgment generation given an instruction and two responses.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Prompt Template for Generating a Bad Response for an Instruction

Below is a conversation between an user and an AI Assistant.

[User Question]
{Instruction}

[The start of Assistant’s Answer]
{Baseline Response}
[The end of Assistant’s Answer]

Please rewrite the Assistant’s Answer to make it worse. Specifically, the rewritten
worse answer should closely resemble the original answer but is worse in terms of one or
multiple of the following aspects: helpfulness, correctness, coherence, verbosity.
IMPORTANT: Please strictly follow the following format:
First, choose one or multiple aspects to generate a worse answer, such as rewrite the original
answer to be unhelpful, incorrect, lack of coherence, more verbose, etc.
[The start of a rewritten worse answer]
<provide a worse answer here>
[The end of a rewritten worse answer]

Figure 10: Generating a Bad Response for an Instruction. This approach is an ablation compared
to our proposed approach described in the main paper.

20

	Introduction
	Related Work
	Method
	Initialization
	Instruction Selection
	Response Pair Construction
	Judgment Annotation
	Model Fine-tuning (Iterative Training)

	Experiments
	Experimental Setup
	Other Data Sources
	Evaluation

	Results
	RewardBench
	MT-Bench
	HelpSteer2

	Ablations and Analysis
	Synthetic Data from Other Sources
	Synthetic Bad Response Generation
	Comparison of Synthetic Data with Human Annotated Data
	Iterative Training by Initializing from Labeled Data
	Combining Synthetic and Human Labeled Preference Data
	Instruction complexity

	Conclusion
	Limitations
	Appendix
	Prompt Templates
	More Training and Evaluation Details
	Position Order Evaluation on RewardBench
	Using Different Models for Training Data Generation

