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ABSTRACT

Model-based evaluation is at the heart of successful model development – as a re-
ward model for training, and as a replacement for human evaluation. To train such
evaluators, the standard approach is to collect a large amount of human preference
judgments over model responses, which is costly and the data becomes stale as
models improve. In this work, we present an approach that aims to improve evalu-
ators without human annotations, using synthetic training data only. Starting from
unlabeled instructions, our iterative self-improvement scheme generates contrast-
ing model outputs and trains an LLM-as-a-Judge to produce reasoning traces and
final judgments, repeating this training at each new iteration using the improved
predictions. Without any labeled preference data, our Self-Taught Evaluator can
improve a strong LLM (Llama3-70B-Instruct) from 75.4 to 88.3 (88.7 with major-
ity vote) on RewardBench. This outperforms commonly used LLM judges such as
GPT-4 and matches the performance of the top-performing reward models trained
with labeled examples.

1 INTRODUCTION

Large language models (LLMs) rely on strong evaluators at every stage of the development lifecycle.
They are used at training time as reward models to align with human preferences (Bai et al., 2022;
Ouyang et al., 2022) or for iterative self-improvement (Yuan et al., 2024), and at inference time as
an alternative to human evaluation (Li et al., 2023; Chiang & Lee, 2023; Wang et al., 2023a; Liu
et al., 2023). Improvements in evaluation capabilities will thus clearly benefit this entire workflow
– including empowering the scientific research process itself as we aim to develop better overall
techniques.

Building such strong evaluator models usually relies on large amounts of high-quality preference
data from human annotation over model responses, which can be costly and time-consuming to
collect, as it requires expert annotation for challenging tasks (e.g., coding and mathematics). This
dependency on human-generated data poses significant challenges for scaling to new tasks or eval-
uation criteria. Furthermore, as new models inevitably improve over older ones, these existing
annotations will typically become outdated, as the judgments are based on annotations of older, less
performant, model responses.

In this work, we instead explore an iterative self-training approach (Figure 1) which uses no human
annotated preferences in the training loop, relying purely on synthetically generated data. Given a
seed model, our method first uses prompting to generate contrasting synthetic preference pairs for
a given input, such that one response is designed to be inferior to the other. Next, using the model
as an LLM-as-a-Judge, we generate reasoning traces and judgments for these pairs, which we can
label as correct or not given our synthetic preference pair design. After training on this labeled data
we obtain a superior LLM-as-a-Judge, from which we can then iterate the whole process in order
for it to self-improve.

In our experiments, starting from Llama-3-70B-Instruct, the proposed method improves the accuracy
on RewardBench (Lambert et al., 2024) from 75.4 to 88.7 (with majority vote, or 88.3 without).
This matches or outperforms the performance of reward models derived from the same Llama-3-
70B-Instruct model that uses human annotations, for example using the HelpSteer2 dataset (Wang
et al., 2024c) of 10k annotations achieves 85.6 using the same LLM-as-a-Judge setup.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Generate good
 response

Judge data

Prompt

Synthetic LLM-as-a-Judge Data Creation Optimization

Next iteration model

Judge
LLM

 Sample
judgments

SFT 
training

 Select 
correct
verdicts

LLM
Generate

similar   
instruction Generate bad

  response to 

Figure 1: Self-Taught Evaluator iterative training scheme.

2 RELATED WORK

LLM-based Evaluators While traditional evaluation benchmarks employ automated metrics that
require a reference answer (Wang et al., 2019; Rajpurkar et al., 2016), these types of benchmarks can
pose severe limitations when evaluating open-ended or complex instructions where multiple valid
answers are possible (e.g., creative writing and coding). Because human evaluation per response can
be costly, many recent works have proposed LLMs as effective evaluators. These come in several
flavors: as classifiers that output scores directly (Zhu et al., 2023; Wang et al., 2024a) or via LLM-
as-a-Judge prompting that can first generate a chain-of-thought in natural language, which helps
provide explanations for judgments (Zheng et al., 2023). Responses can also be scored alone (Kim
et al., 2023) or pairwise relative to each other (Dubois et al., 2023; Li et al., 2023; Bai et al., 2023;
Saha et al., 2024). LLM evaluation shows great promise as a scalable proxy for human raters, and
in the case of LLM-as-a-Judge as an explainable proxy as well (Ye et al., 2024; Zheng et al., 2023).
However, many of these “off-the-shelf” evaluators demonstrate high variance across many tasks
(Bavaresco et al., 2024), indicating the need for improved methods.

Synthetic Data Synthetic data has emerged as a promising solution for efficiently acquiring train-
ing examples and can be particularly valuable in settings where real-world data can be hard to access
(e.g., weather data covering all conditions (Lam et al., 2023)) or where correct annotations can be
challenging to acquire (e.g., coding tasks (Liu et al., 2024)). Additionally, synthetic data has the
benefit of being easily customizable to specific requirements, such as different evaluation criteria or
safety constraints (Kim et al., 2023; El Emam et al., 2020; Howe et al., 2017). The use of synthetic
data has been beneficial in model alignment (Lee et al., 2023), improving the original model’s capa-
bilities (Yuan et al., 2024; Li et al., 2024a; Yu et al., 2024; Li et al., 2024b), and teaching the model
new skills (Schick et al., 2023; Lanchantin et al., 2023). In the context of evaluation, synthetic data
has been used to measure tasks such as factuality (Wei et al., 2024; Feng et al., 2023), safety (Perez
et al., 2023; Hubinger et al., 2024), coding (Gu et al., 2024), and general instruction following (Zeng
et al., 2024), showing strong correlation with real human judgments. The West-of-n approach (Pace
et al., 2024) has been used to improve reward models by constructing preference pairs using the best
and worst scoring pairs from an initial model. For LLM-as-a-Judge models specifically, synthetic
responses have been generated by prompting the LLM to produce a given quality response (Kim
et al., 2023).

3 METHOD

We consider the setting of pairwise evaluation using the LLM-as-a-Judge approach (Zheng et al.,
2023) that takes:

• an input (user instruction) x; and

• two possible assistant responses y(A) and y(B) to the user instruction x; and
• the evaluation prompt containing the rubric and asking to evaluate and choose the winning

answer, see e.g., Figure 8.

The goal of the LLM-as-a-Judge model is to output a preference of which response y is better: A
or B. In order to do this it is common to output, prior to the final judgment, a chain-of-thought (or

2
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Prompt Template for Generating Response Pairs with Synthetic Preference

Below is a conversation between an user and an AI Assistant.

{Instruction}

The start of Assistant’s Answer
{Baseline Response}
The end of Assistant’s Answer

Please first generate a modified instruction that is highly relevant but not semanti-
cally identical to the instruction above from the user. Then write a high-quality answer
which is a good response to the modified instruction but not a good response to the original
user question. IMPORTANT: Please strictly follow the following format:

User Question Modified
<provide a modified instruction here>

The start of Assistant’s answer to the modified instruction
<provide a high-quality response to the modified instruction>
The end of Assistant’s answer to the modified instruction

Figure 2: Generating Synthetic Response Pairs. We use the following prompt template which is
used to generate a “worse response” yl. Given an instruction x and baseline response yw generated
by an instruction-following LLM as usual, this prompt is used to first generate a “noisy” version x′

of the original instruction x, and then a best-attempt yl at responding to x′. yl is then treated as a
poor response to x, giving a preference pair ywi ≻ yli.

“reasoning chain”), which is a set of steps generated in natural language that helps the model decide
its final judgment.

Such models can be used as pairwise reward models to build training data for preference optimiza-
tion, e.g., for training methods like DPO (Rafailov et al., 2023), Iterative DPO (Xu et al., 2023)
and Self-Rewarding methods (Yuan et al., 2024). They can also be used for evaluation; e.g., many
popular benchmark leaderboards are built by using a fixed LLM-as-a-Judge evaluation model (Li
et al., 2023) such as GPT4 (Achiam et al., 2023).

We propose a novel recipe for training such an evaluator. Our overall method is an iterative train-
ing scheme that bootstraps improvements by annotating the current model’s judgments using con-
structed synthetic data – so that the Self-Taught Evaluator is more performant on the next iteration.

Our overall pipeline is thus as follows:

• Initialization: We assume access to a large set of human-written user instructions, e.g., of
the type that is commonly collected in production systems, and an initial seed LLM.

• Instruction Selection: We next select a challenging, balanced distribution of user instruc-
tions from the uncurated set by categorizing them via LLM.

• Response Pair Construction: For each user instruction (example) we create a preference
pair of two model responses (chosen & rejected), generating them via prompting such that
the rejected response is likely of lower quality than the chosen response.

• Iterative Training: We then iterate the following two steps:

(i) Judgment Annotation: For each example, we sample from the current model up to N
times LLM-as-a-Judge generated reasoning traces and judgments. If we find a correct
judgment we add that example to our training set, otherwise we discard it.

(ii) Model Fine-tuning: We fine-tune the model on the newly constructed training set
which yields an updated model for the next iteration.

Note that in each iteration of training the size of the training set depends on the quality of the current
model. We expect that as the model improves, the size of the training set will increase as well, as the
model will be able to find more correct judgments, giving the model a kind of automatic curriculum.

3
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3.1 INITIALIZATION

We assume we have access to a pool of user instructions {xi}. Each sample xi can either be one
single text instruction or a multi-turn dialog history of turns between the user and the assistant, with
the last turn being an instruction or question from the user. Instructions typically involve different
skills such as general knowledge and reasoning, coding, safety, and mathematical reasoning.

3.2 INSTRUCTION SELECTION

Given a pool of human-written user instructions, there may be a large degree of noise, as well as an
imbalance in terms of topic, variety, difficulty, and ability of the model to answer. We therefore aim
to select a subset of instructions to generate high-quality synthetic responses and judgments that can
be further used for training.

We classify each input using an LLM into a given category, for example coding, reasoning, brain-
storming, etc. The precise prompt we use is given in Figure 7. We are then free to select data from
within those categories, and to discard certain categories not deemed to be useful for training.

3.3 RESPONSE PAIR CONSTRUCTION

For each input xi in our curated training pool, we next generate preference data involving two
responses y(w)

i and y
(l)
i where w is expected to be preferable (winning) over l (losing). We achieve

this by generating the data in a synthetic manner without using human annotation.

Given the instruction xi, we first prompt an instruction-following LLM to generate a baseline re-
sponse ywi as usual. We then prompt the LLM to generate a “noisy” version of the original instruction
x′
i = ϕ(xi). We do this using the prompt template given in Figure 2, where we ask to “generate

a modified instruction that is highly relevant but not semantically identical to the instruction above
from the user.” We then prompt the LLM for a high-quality response yli to x′

i, which would not be a
good response for xi. This yields a synthetic preference ywi ≻ yli for the original input xi.

This paired data is then used to construct training examples:

(xi, y
(A)
i , y

(B)
i )

where we randomize the order of whether the winner is w = A or w = B, which is important to
deal with position bias for LLM-as-a-Judge inference.

3.4 JUDGMENT ANNOTATION

Our LLM-as-a-Judge model is used to generate evaluation judgments (reasoning chains and verdicts)
{ji} for each training example ei := (xi, y

(A)
i , y

(B)
i ) in the following manner: for a given input ei,

we collect N diverse evaluations J := {j1i , . . . , jNi } by sampling from the model. We then apply
rejection sampling to filter J by removing jni when the final verdict disagrees with the ground truth
labeling, derived from Subsection 3.3. We then select a single correct reasoning chain and verdict at
random from the pool of correct solutions. If no such judgment exists (J is empty) then we discard
the example.

This now allows us to construct our final training examples of synthetic preferences for fine-tuning:

((xi, y
(A)
i , y

(B)
i ), ji).

3.5 MODEL FINE-TUNING (ITERATIVE TRAINING)

Our Self-Taught Evaluator (LLM-as-a-Judge model) is first initialized with the seed LLM. The
model is then trained in an iterative manner. At each iteration, we annotate the training examples
with judgments as described in Subsection 3.4 using the current model, giving training examples
{(xi, y

(A)
i , y

(B)
i , ji)}. These are used to train the next iteration’s model by fine-tuning. Note that we

initialize from the seed model at each iteration.

4
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training. Our initial model M0 is initialized from Llama3-70B-Instruct. In each iteration i =
1, . . . T , we use model Mi−1 from the previous iteration to generate synthetic preferences followed
by judgments on the training data, and then fine-tune Llama3-70B-Instruct again. We use fairseq2
library (Balioglu, 2023) for instruction finetuning and vLLM (Kwon et al., 2023) for inference.
During training the negative log-likelihood loss is only applied to the evaluation part, i.e., ji of the
training example. Training hyperparameters are provided in Table 7. Model selection is done using
a combination of pairwise judgment accuracy and position bias computed over the held out set.
Sampling parameters used for generations are provided in Table 8.

Instructions and Responses. We start with a large pool of human-written instructions {xi} from
the WildChat dataset (Zhao et al., 2024). To perform prompt selection, we annotate the category of
each instruction with the Mixtral 22Bx8 Instruct model, using the template in Figure 7 and select
20,582 examples in the reasoning category, as we expect these to be challenging inputs. For the
selected inputs we generate synthetic responses ywi and yli using Mixtral 22Bx8 Instruct following
Subsection 3.3 and Figure 2.

Judge Annotation. For each training example, we sample N = 15 judgments from the model
Mi−1 and retain one positive sample ji per example. Then over the entire dataset we sample the
same amount of examples from different labels (“A is better”, “B is better”) to ensure balanced
training. Judgements for training M0 were sampled from Mixtral 22Bx8 Instruct, and from the
Llama model being trained in all subsequent iterations.

The training data is constructed as (<system prompt>, {(xi, y
(A)
i , y

(B)
i , ji)}). We generate 10k

synthetic examples for the first iteration of training. We use the standard system prompt from MT-
Bench and RewardBench as shown in Figure 8.

Majority Vote Inference. As LLM-as-a-Judge uses chain-of-though reasoning chains generated
by the LLM followed by a verdict, it is known that majority vote inference can yield improvements
in these cases (Wang et al., 2023b). At inference time when evaluating final performance we sample
generations N times, and take the final judgment to be the most common verdict.

4.2 OTHER DATA SOURCES

To understand the effectiveness of the proposed method, we generate synthetic judgments using the
same approach but based on the following data sources:

• HelpSteer2 (Wang et al., 2024c). We generate evaluations conditioned on the scores of
helpfulness, correctness, coherence, complexity and verbosity provided the dataset. We
use the aggregated score to derive the ground truth preference for each example using the
recommended weighting [0.65, 0.8, 0.45, 0.55,−0.4]1.

• GSM8K (Cobbe et al., 2021). We sample from an instruction-following model multiple
times to get yw when the final solution agrees with the ground truth and yl vise versa.

• Coding instructions from WildChat. Similar to the “reasoning” prompts we selected from
WildChat used in the main experiment, we also experimented with prompts annotated with
the “Coding” category.

• hh rlhf (Bai et al., 2022). We generate evaluations on the prompts and responses provided
in the “harmless base” training split. Then we take human preferences provided by the
dataset as ground truth to perform rejection sampling to construct judgments.

4.3 EVALUATION

We evaluate the accuracy of our Self-Taught Evaluator model on the following benchmarks:
1Recommended weighting was taken from https://huggingface.co/nvidia/Llama3-70B-SteerLM-RM.
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• RewardBench (Lambert et al., 2024). We use the standard evaluation protocol provided by
the leaderboard.

• MT-Bench (Zheng et al., 2023). We report agreement rate with human judgments when
examples with ties are excluded.

• HelpSteer2 (Wang et al., 2024c). We evaluate on the validation split.

5 RESULTS

5.1 REWARDBENCH

Results on RewardBench are given in Table 1. We find that our Self-Taught Evaluator which is
trained iteratively on synthetic data without any annotated preference labels significantly improves
over the seed Llama3-70B-Instruct model, matching top-performing reward models trained with
labeled data. Our approach improves its results across training iterations, and achieves an overall
score of 88.3 on iteration 5, while the seed model it starts from obtains 75.4. Training an LLM-as-
a-Judge in a similar manner starting from the same seed using the labeled HelpSteer2 data we only
obtain 85.6, hence we obtain superior performance without using human labeled data. Compared to
the seed model, we observe improvements using our approach in evaluating instructions in the Chat
Hard, Safety and Reasoning categories, while being worse on the easier Chat category – perhaps
because our unlabeled training data focused the model on harder examples.

Improving results further with majority voting As also shown in Table 1, with 32-sample ma-
jority voting, our third iteration of Self-Taught Evaluator model reaches an overall performance of
88.7 on RewardBench, outperforming many other existing reward models.

5.2 MT-BENCH

We report results on MT-Bench in Table 2. Unlike RewardBench, the MT-Bench dataset contains tie
votes (A and B are considered equally good). Since our models are trained to give binary decisions,
we only report the agreement on non-tie examples. For each pair of responses A and B, we test two
orders: where response A appears first and response B appears first, and average the results. We
find that our Self-Taught Evaluator again outperforms the Llama3-70B-Instruct seed model, and is
on par or slightly outperforms GPT4-0125.

5.3 HELPSTEER2

Results on the HelpSteer2 validation set are given in Table 3. We report the average accuracy of
two orders and three seeds by swapping the response order in a similar manner, as well as reporting
both orders separately (right answer first or second) to test for position bias. We further compute the
position-consistent accuracy, treating a judgment as incorrect when a model has different predictions
on the two orderings. We use the human labels from the Helpsteer2 dataset and treat the response
with higher summed scores as the better response. We find that our Self-Taught Evaluator method
improves both average accuracy and position-consistent accuracy compared to the seed Llama-3-
70B-Instruct model.

6 ABLATIONS AND ANALYSIS

6.1 SYNTHETIC DATA FROM OTHER SOURCES

In Table 4, we compare Self-Taught Evaluator models trained on synthetic preferences constructed
from different sources. We found data sources focusing on different skills, such as coding, mathe-
matical reasoning, etc. are all effective in turning a strong instruction-following LLM into a strong
LLM-as-a-Judge. Intuitively, we find that data sources generally improve the categories in Reward-
Bench that are related to their distribution.
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Model Overall Chat Chat Hard Safety Reasoning
Llama-3-70B-Instruct (seed) 75.4 97.6 58.9 69.2 78.5
Self-Taught Evaluator, trained on synthetic data only
Iteration 1 83.9 98.3 69.0 85.7 82.6
Iteration 2 86.0 97.5 75.4 89.5 81.7
Iteration 3 87.5 97.2 79.1 89.7 83.9
Iteration 4 87.7 98.0 80.3 90.5 82.2
Iteration 5 88.3 96.6 84.2 91.5 81.0

w/ majority voting using 32 samples 88.7 96.9 84.0 91.5 82.5
Baselines with Labeled Data
Llama-3-70B-Instruct w/ HelpSteer2, LLM-as-a-Judge 85.6 96.9 70.0 88.8 86.7
nvidia/Llama3 70B RM with HelpSteer2, classifier * 88.8 91.3 80.3 92.8 90.7
Other SoTA LLM-as-a-Judge baseline models
GPT4 0125 * 84.3 95.3 74.3 87.2 86.9
Gemini 1.5 Pro 0514 * 88.1 92.3 80.6 87.5 92.0
Llama3.1-405B-Instruct 83.7 98.0 75.1 74.7 86.8
Llama3.1-70B-Instruct 82.2 97.8 69.7 76.3 85.2

Table 1: RewardBench Results. Our Self-Taught Evaluator trained on synthetic data without
any human annotated preference labels matches top-performing reward models trained with labeled
data. Models marked with (*) are taken from the RewardBench leaderboard.

Model Agreement with Human
Llama-3-70B-Instruct (seed) 77.8
Self-Taught Evaluator, trained on synthetic data only

Iteration 1 79.0
Iteration 2 78.7
Iteration 3 78.9
Iteration 4 77.5
Iteration 5 78.9

w/ majority voting using 32 samples 79.5
Other SoTA LLM-as-a-Judge baseline models
GPT4-0125 79.1

Table 2: MT-Bench Results. Our Self-Taught Evaluator trained on synthetic data without any
human annotated preference labels performs on par with GPT-4 judgments.

Model 0-1 Acc 1-0 Acc Avg Acc Position-consistent Acc
Llama-3-70B-Instruct (seed) 65.2 65.8 65.5 56.5
Self-Taught Evaluator, trained on synthetic data only
Iteration 1 68.1 68.7 68.4 59.4
Iteration 2 69.6 69.4 69.5 58.8
Iteration 3 70.3 71.2 70.8 61.1
Iteration 4 71.0 71.7 71.4 61.9
Iteration 5 71.6 70.3 71.0 60.6

Table 3: HelpSteer2 results. Iterative training on synthetic preferences improves position-
consistent accuracy compared to Llama3-70B-Instruct, measured on the HelpSteer2 (Wang et al.,
2024c) validation split.

Source for
Model synthetic preferences Overall Chat Chat Hard Safety Reasoning
Llama-3-70B-Instruct 75.4 97.6 58.9 69.2 78.5

safety (hh rlhf) 79.6 97.2 55.4 87.0 78.8
math (GSM8K) 79.3 96.1 58.8 79.4 83.0
coding (WildChat) 79.4 96.6 55.9 85.3 79.7
reasoning (WildChat) 83.5 97.5 70.6 84.2 81.6

Table 4: Supervised fine-tuning with synthetic preferences from different sources improves Llama-
3-70B-Instruct on various categories, as measured on RewardBench. Largest improvement in each
category is highlighted in bold.
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Figure 3: Distribution of curated training set of selected instructions compared to the full WildChat
dataset.

Figure 4: Distribution of inferred complexities of curated training data versus all instructions in
WildChat.

Figure 5: Distribution of estimated output lengths of curated training data versus all instructions in
WildChat.

6.2 SYNTHETIC BAD RESPONSE GENERATION

In our experiments we generate synthetic data by first generating a modified instruction, and then
a good response for the modified instruction – with the aim that this will be a bad response for
the original instruction. An alternative is to just prompt an LLM to generate a bad response to
the original instruction directly. We use the prompt template given in Figure 10 and otherwise
conduct training as before on the same set of reasoning-based instructions. This approach obtains
a RewardBench overall score of 80.7, which still works – but is worse than using our proposed
approach, which achieves 83.8.

6.3 COMPARISON OF SYNTHETIC DATA WITH HUMAN ANNOTATED DATA

We conducted the same iterative training using labeled preference data from HelpSteer2 (Wang
et al., 2024c), rather than synthetic data. On RewardBench, as is shown in Table 5, the improvement
from each iteration is smaller and the final model did not outperform iterative training on synthetic
preferences. We note that these experiments use data to train an LLM-as-a-Judge. Other results in
the literature have used the HelpSteer2 to train classifier-based reward models with slightly better
results on RewardBench, e.g., obtaining 88.8 using Llama-3-70B, see Table 1.
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Figure 6: Distribution of inferred categories of curated training data versus all instructions in Wild-
Chat.

Model Overall Chat Chat Hard Safety Reasoning
Llama-3-70B-Instruct (seed) 75.4 97.6 58.9 69.2 78.5
Self-Taught Evaluator, trained on labeled HelpSteer2 preferences
Iteration 1 85.6 96.9 70.0 88.8 86.7
Iteration 2 86.3 96.1 72.4 91.1 85.7
Iteration 3 87.0 95.0 74.2 91.2 87.8
Iteration 4 87.0 94.1 77.2 91.6 85.1

Table 5: Iterative training with labeled data also shows improvement on RewardBench. However,
it does not outperform iterative training with synthetic preferences .

synthetic:HelpSteer2 ratio Overall Chat Chat Hard Safety Reasoning
1 : 0 0.835 0.975 0.706 0.842 0.816
0 : 1 0.856 0.969 0.700 0.888 0.867
1 : 1 0.842 0.972 0.681 0.881 0.836
1 : 2 0.858 0.972 0.711 0.891 0.857
1 : 5 0.847 0.975 0.681 0.889 0.844
2 : 1 0.833 0.972 0.689 0.847 0.823
5 : 1 0.858 0.972 0.726 0.880 0.853

Table 6: Mixing data sources in different proportions can improve performance of the fine-tuned
model. Synthetic preference data is generated with the Llama3-70B-Instruct model.

6.4 ITERATIVE TRAINING BY INITIALIZING FROM LABELED DATA

We further explore how to utilize labeled data in our pipeline. We first finetune a model on Help-
steer2 Wang et al. (2024c) and use this model to generate judgements. In this way, we obtain
synthetic data by utilizing a model finetuned on labeled data. We conducted iterative training and
present results in Table 12. We observed good performance compared to the seed model (Llama-3-
70B-Instruct), however it does not clearly outperform conducting iterative training with unlabeled
data alone.

6.5 COMBINING SYNTHETIC AND HUMAN LABELED PREFERENCE DATA

We compare how combining synthetic preference data with human labelled preference data affects
model performance. In particular, we combine synthetic preferences generated from reasoning Wild-
Chat prompts with the human labeled HelpSteer2 dataset (train split) and report performance in
Table 6. We compare to first-iteration models trained on single data source, and select the best
checkpoint for joint training using the validation split of HelpSteer2 and holdout set of synthetic
preferences (in-distribution), as well as safety and code synthetic preferences (out-of-distribution).
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We then report evaluation results on RewardBench. The results show that overall the models re-
tain strong performance across different data mixing weights, with slight improvements on overall
accuracy.

6.6 INSTRUCTION COMPLEXITY

We analyze the length distribution of the curated training set of selected instructions in Figure 3. The
dataset has a long-tail distribution of input length, with most of the examples less than 500 tokens.
In contrast, the full dataset (i.e., the full data before the instruction selection step of Subsection 3.2)
has a cluster of very long instructions, containing content such as long-form coding instructions or
transcripts.

We further instruct Llama-3-70B-Instruct to infer the complexity (using a score of 1–5) and category
of each input instruction, as well as the length of the expected output, following the procedure in
Yuan et al. (2024). From Figure 4 and Figure 6, we see that the curated dataset has more complex
instructions involving logical reasoning/science whereas the full dataset has a greater proportion
focused on relationships and entertainment. Finally, in Figure 5 we see that the anticipated length
of the response is higher for the full dataset than the curated one, perhaps because of the greater
frequency of lengthy, and sometimes repetitive instructions.

7 CONCLUSION

We present a scalable approach to build a strong generalist evaluator to perform model-based evalu-
ation of LLM outputs. Our method constructs synthetic preferences over pairs of responses without
using any human annotation. Our Self-Taught evaluator with iterative training over these synthetic
preferences greatly boosts the accuracy of a strong seed LLM (Llama3-70B-Instruct) as an evaluator,
from 75.4 to 88.7 on RewardBench, a new state-of-the-art for generative LLM-as-a-Judge methods.

8 LIMITATIONS

Generative LLM-as-a-Judge models usually have longer outputs and thus higher inference cost than
reward models that simply output a score, as LLM-as-a-Judge typically first generates a reasoning
chain. On the other hand, models that generate long reasoning chains are more susceptible to pro-
ducing hallucinated content. This highlights a trade-off between encouraging deeper reasoning and
mitigating the risk of generating inaccurate or fabricated information. Further, we have used rela-
tively large LLMs in this work (70B parameters) and made no study of whether our approach works
on smaller models. Since we use a seed model to generate first synthetic preferences during our iter-
ative training scheme, one of the assumptions is that the model is capable of generating reasonable
evaluations. Thus, our approach is limited by having a capable instruction fine-tuned model which
is already reasonably aligned to human (or legal/policy) preferences. Furthermore, we only investi-
gated and reported metrics involving evaluation accuracy improvements, rather than computational
requirement concerns. While LLM-as-a-judge models can also be utilized to provide reward signals
for optimizing LLM performance, our evaluation did not explore this application. Future work could
investigate the potential benefits of using our model in this context. We also only investigated pair-
wise evaluation, i.e., comparing two responses, whereas it is also possible to use LLM-as-a-Judge
models (or any other model) to evaluate the quality of single responses, e.g., giving them a score out
of 5 or 10, rather than a pairwise A vs B judgment. We leave evaluating single responses to future
work.
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A APPENDIX

A.1 PROMPT TEMPLATES

We provide the prompt templates used for annotating and selecting instructions (Figure 7), annotat-
ing judgments with synthetic preferences (Figure 8), and generating ablation synthetic preference
data with bad responses (Figure 10). Figure 9 illustrates an training example based on synthetic
preference data.

A.2 MORE TRAINING AND EVALUATION DETAILS

We include training hyper-parameters in Table 7 and sampling parameters in Table 8.

Name Value
max seq len 4096
max num tokens 8192
model llama3 70b instruct
dtype bfloat16
data parallelism fsdp
tensor parallel size 8
activation checkpointing true
lr 1.0e-06
betas 0.9, 0.95
final lr ratio 0.2
weight decay 0.1
num lr warmup steps 100
gradient accumulation 1
max num data epochs 2
checkpoint every n steps 100
seed 2

Table 7: Training hyper-parameters used during fine-tuning.
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Prompt Template for Selecting Instructions

I have an instruction below that I would like you to perform three steps of analysis about
the instruction:

<instruction> {instruction} </instruction>

Firstly, categorize the instruction above into one of the following categories:

Coding
Mathematical reasoning
Asking for Advice
Brainstorming
Classification
Closed Question Answering
Creative Writing
Extraction
Inhabiting a Character/Persona
Open Question Answering
Rewriting
Summarization
Knowledge and Reasoning
Humanity, History or Social Studies
Other

Secondly, score the instruction in terms of complexity: how complex you think it is
to answer from 1-10 (where 10 is a complex question whereby first reasoning or break-
ing down the question into multiple subquestions for example might help improve the answer).

Thirdly, indicate how long you think the response to the instruction should be, ei-
ther (a) 1 sentence, (b) 1-3 sentences, (c) 1 paragraph, (d) 2 paragraphs, or (e) 3 or more
paragraphs.

Provide your final response in the following format:
Category: <one of the categories above>
Complexity: <score out of 10>
Length: <choose from (a) to (e)>. DO NOT provide the actual response.

Figure 7: Prompt template for Selecting Instructions. We prompt an instruction following model
to annotate the category of each instruction in order to curate our training data instructions.

Stage Generation for Temperature Top p
Train Judgment 0.7 0.9
Eval MT-Bench 0.0 1.0
Eval Reward Bench (RB) 0.0 1.0
Eval RB w/ maj voting 0.7 0.9
Eval Helpsteer 2 valid 0.7 0.9

Table 8: Sampling parameters (temperature and top p) used during generations at each stage of
training and evaluation.

A.3 POSITION ORDER EVALUATION ON REWARDBENCH

We notice that when we evaluate generative models on RewardBench, the order of two responses in
each example is not fixed. More specifically, for each example, the winning response (yw) can be
randomly placed before or after the losing response (yl). Generative models may output different
judgements when the order of responses changes. Thus, we analyze how the performance varies
when different seeds are used to decide response order. In Table 9, we test our model from the
5th iteration of training on RewardBench with the response order randomly shuffled, as well as two
extreme cases where the winning answer always appear first or last. We recommend to report the
average performance (88.3 for our 5th iteration) of “yw always first” and “yl always first” as it fairly
considers both orders.
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Prompt Template for Judgment Annotation

Please act as an impartial judge and evaluate the quality of the responses provided by
two AI assistants to the user question displayed below. You should choose the assistant
that follows the user’s instructions and answers the user’s question better. Your evaluation
should consider factors such as the helpfulness, relevance, accuracy, depth, creativity, and
level of detail of their responses. Begin your evaluation by comparing the two responses and
provide a short explanation. Avoid any position biases and ensure that the order in which
the responses were presented does not influence your decision. Do not allow the length of
the responses to influence your evaluation. Do not favor certain names of the assistants.
Be as objective as possible. After providing your explanation, output your final verdict
by strictly following this format: “[[A]]” if assistant A is better, “[[B]]” if assistant B is better.

Please act as an impartial judge and evaluate the quality of the responses provided by
two AI assistants to the user question displayed below. You should choose the assistant
that follows the user’s instructions and answers the user’s question better. Begin your
evaluation by first verifying whether each response contains any obvious or subtle errors.
Then propose an appropriate evaluaiton rubric, e.g. 1-5 criteria that are important for
evaluating responses to this specific user question. Continue your evaluation by checking
each response carefully along those criteria. Based on the analysis in previous steps, choose
which response is better overall. Avoid any position biases and ensure that the order in
which the responses were presented does not influence your decision. Do not allow the length
of the responses to influence your evaluation. Do not favor certain names of the assistants.
Be as objective as possible. After providing your evaluation, output your final verdict
by strictly following this format: “[[A]]” if assistant A is better, “[[B]]” if assistant B is better.

[[User Question]]
{instruction}

[The Start of Assistant A’s Answer]
{response A}
[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]
{response B}
[The End of Assistant B’s Answer]

Figure 8: Prompt template for Judgment Annotation. This is the same prompt as used in MT-
Bench and RewardBench.

Seed Average Accuracy
1 88.9
11 88.4
111 88.6
1111 88.7
11111 88.3
yw always first 85.5
yl always first 91.1

Table 9: Average accuracy on RewardBench when order of responses changes.

A.4 USING DIFFERENT MODELS FOR TRAINING DATA GENERATION

In Table 10 we present evaluation on RewardBench of models finetuned on different training data.
Note in our Self-Taught Evaluator approach we can use different LLMs to generate responses and
judgements. Specifically, we try using Mixtral 22Bx8 Instruct or Llama-3-70B-Instruct in various
combinations. We then finetune the Llama-3-70B-Instruct model and test on RewardBench. As
shown in Table 10, the model finetuned on data generated by using the Mixtral 22Bx8 Instruct
model to judge Mixtral 22Bx8 Instruct model generated responses achieves the best performance.
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Model Overall Chat Chat Hard Safety Reasoning
Llama-3-70B-Instruct (seed) 75.4 97.6 58.9 69.2 78.5
Self-Taught Evaluator, trained on synthetic data only
Mixtral judge Mixtral 83.9 98.3 69.0 85.7 82.6
Llama3.0 judge Llama3.0 81.4 97.2 66.0 85.0 77.5
Llama3.0 judge Mixtral 80.0 97.5 70.0 72.8 79.4

Table 10: Performance on RewardBench of models finetuned on different training data.

Model Overall writing stem coding math humanities reasoning roleplay extraction
Llama-3-70B-Instruct (seed) 77.8 70 76.9 73.8 80 79.85 78.8 78.8 85.1
Self-Taught Evaluator, trained on synthetic data only
Iteration 1 78.95 71.15 78.95 76.6 81.65 80.25 82.3 80.7 80.25
Iteration 2 78.65 69.6 77.9 82.55 79.15 82.2 80.8 77.6 79.8
Iteration 3 78.9 70.4 78.6 79.35 79.55 82.9 82.3 77.9 80.7
Iteration 4 77.45 71.15 77.25 75.8 73.3 82.6 81.3 78.85 79.35
Iteration 5 78.9 68.45 78.2 81.75 82.5 82.25 81.35 75.15 83.75

w/ majority voting @ 32 79.45 68.45 78.55 82.95 83.75 82.9 82.8 76.35 81.6
Other SoTA LLM-as-a-Judge baseline models
GPT4-0125 79.15 70.4 79.9 82.9 82.1 80.55 80.8 77 80.7

Table 11: MT-Bench Per-category Results. Our Self-Taught Evaluator trained on synthetic data
without any human annotated preference labels performs on par with GPT-4 judgments.

Model Overall Chat Chat Hard Safety Reasoning
Llama-3-70B-Instruct (seed) 75.4 97.6 58.9 69.2 78.5
Self-Taught Evaluator, trained on synthetic data generated by a finetuned model (Helpsteer2)
Iteration 1 87.0 95.8 75.8 90.7 85.8
Iteration 2 86.6 92.2 77.4 91.2 85.8

Table 12: Iterative training on synthetic data generated by a model that is first fine-tuned on labeled
data (Helpsteer2).

Model Overall Chat Chat Hard Safety Reasoning
Llama-2-70B-Instruct 60.7 87.8 42.0 60.6 52.5
Llama-2-70B-Instruct SFT iter1 74.4 96.6 53.9 76.7 70.4
Llama-3-8B-Instruct 64.4 85.5 41.6 67.5 64.8
Llama-3-8B-Instruct SFT iter1 71.5 92.7 44.5 78.6 70.1
Llama-3-70B-Instruct 75.4 97.6 58.9 69.2 78.5
Llama-3-70B-Instruct SFT iter1 83.9 98.3 69.0 85.7 82.6
Llama-3.1-70B-Instruct 82.8 97.5 71.3 76.9 85.4
Llama-3.1-70B-Instruct SFT iter1 86.2 96.1 76.1 86.8 85.7

Table 13: We applied our Self-taught evaluator approach to the LLaMA2, LLaMA3, and LLaMA3.1
models. We present results after the first iteration of supervised fine-tuning. Our approach consis-
tently demonstrates performance improvement across different models, even with just one iteration.

Model Overall Chat Chat Hard Safety Reasoning
Skywork-Critic-Llama-3.1-70B (Shiwen et al., 2024) 93.3 96.6 87.9 93.1 95.5
SFR-LLaMa-3.1-70B-Judge-r (Wang et al., 2024b) 92.7 96.9 84.8 91.6 97.6
Self-Taught Evaluator 88.3 96.6 84.2 91.5 81.0
flame-1.0-24B-july-2024 (Vu et al., 2024) 87.8 92.2 75.7 89.6 93.8
CompassJudger-1-32B-Instruct (Cao et al., 2024) 85.2 98.0 65.1 85.3 92.4
prometheus-8x7b-v2.0 (Kim et al., 2024) 74.5 93.0 47.1 80.5 77.4
prometheus-7b-v2.0 (Kim et al., 2024) 72.0 85.5 49.1 77.1 76.5

Table 14: We present a comparison between our Self-taught evaluator and several other LLM-as-a-
judge models. The state-of-the-art (SOTA) performance is achieved by Shiwen et al. (2024), where
they fine-tune the Llama-3.1-70B instruct model on a pool of various human-labeled preference
datasets, totaling 80K pairs. The remaining models (except for our Self-taught evaluator) are built
on top of different base models but all rely on human-labeled preference datasets. In contrast, our
Self-taught evaluator is based on the Llama-3.0-70B instruct model and only 10K synthetic pairs.
Despite this, it still achieves good performance, demonstrating its effectiveness as an evaluator.
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Original Question and Response Modified Question and Response

Question (x): if detroit is the center of automotive industry of USA,
then why it is so poor?
Response (yw): Detroit, once known as the M̈otor City,ẅas the
heart of the American automotive industry for many years. How-
ever, several factors have contributed to its diminished role in this
sector:
1. Globalization and competition: The rise of foreign automakers
and the globalization of the automotive industry have posed signif-
icant challenges to Detroit’s automakers. Companies like Toyota,
Honda, and Volkswagen have gained market share, forcing Detroit’s
Big Three (General Motors, Ford, and Chrysler) to adapt and com-
pete in a more global market.
2. Technological advancements: The advent of new technologies,
such as electric and autonomous vehicles, has disrupted the tradi-
tional automotive industry. Detroit’s automakers have had to invest
heavily in research and development to stay competitive, which has
put pressure on their financial performance.
3. Labor issues: The United Auto Workers (UAW) union has a
strong presence in Detroit, and labor disputes and strikes have oc-
casionally disrupted production for the Big Three. This has led
to increased labor costs and reduced competitiveness compared to
non-unionized foreign automakers.
4. Environmental regulations: As environmental concerns have
grown, regulatory pressures on the automotive industry have in-
creased. Detroit’s automakers have had to invest in cleaner tech-
nologies and comply with stricter emissions standards, which has
added to their financial burden.
5. Industry consolidation: Over the years, there has been consolida-
tion within the automotive industry, with mergers and acquisitions
reshaping the competitive landscape. This has affected Detroit’s au-
tomakers, as they have had to adapt to new ownership structures and
strategic priorities.
These factors have collectively contributed to the decline of De-
troit’s prominence in the automotive industry. However, the city’s
automakers are working to adapt and innovate in response to these
challenges.

Question(x′): What factors contribute
to the economic disparity in Detroit, de-
spite its historical significance as a hub
for the US automotive industry?
Response (yl): The economic dispar-
ity in Detroit can be attributed to several
factors, including:
1.Decline of the automotive industry**:
Mass layoffs and plant closures led to a
significant loss of jobs and tax revenue.
2.Suburbanization and white flight**:
Middle-class residents moved out of the
city, taking their tax base with them,
and leaving behind a concentrated pop-
ulation of low-income residents.
3.Lack of diversification**: Detroit’s
economy was heavily reliant on the au-
tomotive industry, making it vulnerable
to fluctuations in the market.
4.Racial and socioeconomic dispari-
ties**: Historical discriminatory prac-
tices, such as redlining and segregation,
have contributed to persistent racial and
socioeconomic disparities in the city.
5.Government policies and corrup-
tion**: Poor governance, corruption,
and inefficient use of resources have
hindered the city’s ability to address its
economic challenges.
These factors have cumulatively con-
tributed to the economic disparity in
Detroit, despite its historical signifi-
cance as a hub for the US automotive
industry.

Question (x): There are 3 objects arranged in a line. Someone
says ”the table is to the right of the bag, the table is to the left of
the box and the bag is to the right of the box.” Is the situation just
described possible or impossible? Before answering, take a deep
breath. Think step by step before giving a final answer. My survival
depends on your answer being correct, so concentrate hard.
Response (yw): Let’s break down the statements:
”The table is to the right of the bag.”
”The table is to the left of the box.”
”The bag is to the right of the box.”
From statement 3, we know the order is: box − > bag
From statement 1, we know the order is: bag − > table
Combining these two, we get: box − > bag − > table
Now, let’s look at statement 2: ”The table is to the left of the box.”
This statement contradicts our previous conclusion.
If the table is to the left of the box, then the correct order should be:
table − > box − > bag
However, this contradicts statement 1, which says the table is to the
right of the bag.
Therefore, I conclude that the situation described is IMPOSSIBLE.
The statements are mutually contradictory, and it’s not possible for
all three statements to be true at the same time. There are 3 objects
arranged in a line. Someone says ”the table is to the right of the
bag, the box is to the left of the table and the bag is to the left of the
box.” Please analyze this new situation and determine whether it is
possible or impossible.

Question (x′): There are 3 objects ar-
ranged in a line. Someone says ”the ta-
ble is to the right of the bag, the box is
to the left of the table and the bag is to
the left of the box.” Please analyze this
new situation and determine whether it
is possible or impossible.
Response (yl): Let’s break down the
given statements:
The table is to the right of the bag.
The box is to the left of the table.
The bag is to the left of the box.
From statement 3, we know the order is:
bag − > box
From statement 2, we know the order is:
box − > table
Now, let’s combine these orders:
bag − > box − > table (from state-
ments 2 and 3)
Statement 1 says the table is to the right
of the bag, which is consistent with this
order.
Based on the analysis, it is POSSIBLE
for all three statements to be true at the
same time. The correct order is: bag
− > box − > table.

Table 15: Examples of original question (x) and response (yw) pair, as well as the modified question
(x′) and the corresponding response (yl). 18
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Example Judgment Generation

Instruction:
difference in percentage between 16200 and 12000
Response A:
The percentage difference between 16200 and 12000 is approximately 35%.
To calculate the percentage difference, you can use the following formula:
Percentage Difference = [(New Value - Original Value) / Original Value] x 100
In this case, the original value is 12000 and the new value is 16200. So the
calculation would look like this:
Percentage Difference = [(16200 - 12000) / 12000] x 100
Percentage Difference = [4200 / 12000] x 100
Percentage Difference = 0.35 x 100
Percentage Difference = 35%
So the percentage difference between 16200 and 12000 is 35%.
Response B:
The percentage increase from 12000 to 16200 is approximately 35%.
To calculate the percentage change, you can use the following formula:
Percentage Calculation = [(New Value - Original Value) / Original Value] x 100
In this case, the original value is 12000 and the new value is 16200. So the
calculation would look like this:
Percentage Calculation = [(16200 - 12000) / 12000] x 100
Percentage Calculation = [4200 / 12000] x 100
Percentage Calculation = 0.35 x 100
Percentage Calculation = 35%
So the percentage increase from 12000 to 16200 is 35%.
Judgment Generation:
After carefully evaluating the responses from both Assistant A and Assistant B, I will provide
my impartial judgment.
**Error Check:**
Both responses appear to be error-free in terms of calculation and mathematical operations.
**Evaluation Rubric:**
To evaluate the responses, I will consider the following 5 criteria:
1. **Accuracy**: Is the calculation correct, and is the answer accurate?
2. **Relevance** : Does the response directly address the user’s question?
3. **Clarity**: Is the explanation clear, concise, and easy to understand?
4. **Formula Application**: Is the formula correctly applied, and are the steps clearly
explained?
5. **Contextual Understanding**: Does the response demonstrate an understanding of the
context and the user’s intent?
**Evaluation:**
**Assistant A:**
* Accuracy: 5/5 (correct calculation)
* Relevance: 5/5 (directly addresses the user’s question)
* Clarity: 5/5 (clear and concise explanation)
* Formula Application: 5/5 (correctly applied formula with clear steps)
* Contextual Understanding: 4/5 (uses “percentage difference” which is correct, but could
be more explicit)
**Assistant B:**
* Accuracy: 5/5 (correct calculation)
* Relevance: 5/5 (directly addresses the user’s question)
* Clarity: 5/5 (clear and concise explanation)
* Formula Application: 5/5 (correctly applied formula with clear steps)
* Contextual Understanding: 3/5 (uses “percentage calculation” which is correct in this case,
but is less precise)
**Final Verdict:**
Based on the evaluation, I conclude that **[[A]]** is the better response. Although both
responses are accurate and clear, Assistant A demonstrates a slightly better understanding of
the context and uses the more specific term “percentage difference”, which is more applicable
to this scenario.

Figure 9: An illustrative example of judgment generation given an instruction and two responses.
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Prompt Template for Generating a Bad Response for an Instruction

Below is a conversation between an user and an AI Assistant.

[User Question]
{Instruction}

[The start of Assistant’s Answer]
{Baseline Response}
[The end of Assistant’s Answer]

Please rewrite the Assistant’s Answer to make it worse. Specifically, the rewritten
worse answer should closely resemble the original answer but is worse in terms of one or
multiple of the following aspects: helpfulness, correctness, coherence, verbosity.
IMPORTANT: Please strictly follow the following format:
First, choose one or multiple aspects to generate a worse answer, such as rewrite the original
answer to be unhelpful, incorrect, lack of coherence, more verbose, etc.
[The start of a rewritten worse answer]
<provide a worse answer here>
[The end of a rewritten worse answer]

Figure 10: Generating a Bad Response for an Instruction. This approach is an ablation compared
to our proposed approach described in the main paper.
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