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Abstract

In this paper, we investigate source-free domain adaptation (SFDA) for visible-
infrared person re-identification (VI-RelD), aiming to adapt a pre-trained source
model to an unlabeled target domain without access to source data. To address this
challenging setting, we propose a novel learning paradigm, termed Source-Free
Visible-Infrared Person Re-Identification (SVIP), which fully exploits the prior
knowledge embedded in the source model to guide target domain adaptation. The
proposed framework comprises three key components specifically designed for the
source-free scenario: 1) a Source-Guided Contrastive Learning (SGCL) module,
which leverages the discriminative feature space of the frozen source model as
a reference to perform contrastive learning on the unlabeled target data, thereby
preserving discrimination without requiring source samples; 2) a Residual Transfer
Learning (RTL) module, which learns residual mappings to adapt the target model’s
representations while maintaining the knowledge from the source model; and 3) a
Structural Consistency-Guided Cross-modal Alignment (SCCA) module, which
enforces reciprocal structural constraints between visible and infrared modalities to
identify reliable cross-modal pairs and achieve robust modality alignment without
source supervision. Extensive experiments on benchmark datasets demonstrate that
SVIP substantially enhances target domain performance and outperforms existing
unsupervised VI-ReID methods under source-free settings. Code is available at
https://github.com/LY XRhythm/SVIP.

1 Introduction

Visible-Infrared Person Re-Identification (VI-ReID) aims to match pedestrian images captured under
visible and infrared modalities, achieving consistent cross-modality correspondence across varying
lighting conditions, which is particularly valuable in various applications such as nighttime security
and smart surveillance [[1, 12} 3] 14} 15,16, [7]. By leveraging complementary visual cues from multiple
sensors, VI-ReID systems can maintain consistent performance in both daytime and nighttime
environments. However, the majority of existing VI-ReID methods rely heavily on large-scale,
well-annotated datasets with aligned visible and infrared images. Constructing such datasets demands
extensive human annotation and careful sensor calibration, which is labor-intensive, time-consuming,
and increasingly constrained by privacy regulations. These limitations severely hinder the scalability
and real-world deployment of VI-RelD systems.

To reduce dependence on labeled data in the target domain, Unsupervised Domain Adaptation (UDA)
has emerged as a promising alternative. UDA methods aim to transfer knowledge from a labeled
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Figure 1: Our Observations. Despite recent advances, state-of-the-art unsupervised methods such as SDCL [11]]
and MMM [12] often suffer from performance limitations due to insufficient supervision in the target domain.
Incorporating source-domain knowledge through labeled data (for example, UAN [13]]) or pre-trained models
(such as our proposed SVIP) can significantly enhance target-domain representation and adaptation. For example,
we conduct experiments using SYSU-MMO1 [14] as the source domain and LLCM-W under (a) Fog, (b) Frost,
(¢) Rain, (d) Snow conditions as target domains (see Section@ to validate this observation.

source domain to an unlabeled target domain [8} 9} [10]], achieving notable improvements over purely
unsupervised methods, as illustrated in Figure [T} Despite their effectiveness, conventional UDA
approaches typically assume joint access to source and target data during training. This assumption is
often unrealistic in practical VI-ReID applications, where source data may contain sensitive personal
information that cannot be shared or retained due to legal and ethical constraints. Moreover, the
need to repeatedly load and process large-scale source datasets introduces significant computational
overhead, especially in edge computing scenarios or resource-constrained environments. These issues
collectively restrict the deployment of conventional UDA pipelines in real-world systems.

To address these practical constraints, Source-Free Domain Adaptation (SFDA) has recently garnered
attention [[15, 116 (17, [18]]. SFDA eliminates the need for source data during adaptation by leveraging
a pre-trained source model as the sole knowledge carrier. This setting naturally supports privacy-
preserving and lightweight model adaptation, aligning more closely with real-world requirements.
However, existing SFDA methods are predominantly designed for unimodal tasks and do not general-
ize well to VI-RelD, where domain shifts and modality gaps must be addressed simultaneously. In
the absence of paired visible-infrared samples or annotated target identities, cross-modal association
becomes highly uncertain, often leading to noisy feature learning and suboptimal adaptation. These
challenges necessitate a new SFDA framework tailored to the unique characteristics of VI-RelD,
capable of learning modality-invariant and identity-discriminative representations without relying on
source data or cross-modal supervision.

Motivated by these observations, we propose a novel learning paradigm, termed Source-Free Domain
Adaptation for Visible-Infrared Person Re-Identification (SVIP). Specifically, our contributions
include: 1) the Source Guided Contrastive Learning (SGCL) mechanism, which improves supervision
reliability by integrating dual clustering results from both source and target models on target domain
samples. It adaptively fuses supervisory signals weighted by confidence scores to mitigate category
inconsistency and label noise across modalities, enhancing the discriminative power of the target
model; 2) the Residual Transfer Learning (RTL) mechanism, which introduces a feature residual
distillation loss to explicitly align intermediate feature representations of source and target models
under identical inputs, preserving the core discriminative structure from the source domain, thus
improving structural stability and generalization; 3) the Structural Consistency Guided Cross-modal
Alignment (SCCA) mechanism, which exploits the source model’s structural semantic knowledge
derived from paired visible-infrared images to guide the target model in mining potential cross-
modal similar samples within the unpaired target domain, thereby achieving stable and reliable
cross-modal feature alignment and further enhancing consistency and robustness of cross-modal
representations. Collectively, SVIP effectively transfers discriminative and structural knowledge from
the source model to overcome key challenges in the unsupervised target domain, including knowledge
transfer difficulty, and insufficient cross-modal alignment, significantly boosting the adaptability and
performance of the target model in cross-modal person re-identification.

The main contributions of this work could be summarized as follows:



* We propose a novel SFDA framework, SVIP, for VI-ReID that adapts a pre-trained source
model to an unlabeled target domain without requiring access to any source data. To the best
of our knowledge, this is among the first works exploring SFDA specifically for VI-RelD.

* SVIP incorporates three key mechanisms: Source Guided Contrastive Learning (SGCL) to
enhance supervision reliability via confidence-weighted dual clustering; Residual Transfer
Learning (RTL) to align intermediate features and preserve source discriminative structures;
and Structural Consistency Guided Cross-modal Alignment (SCCA) to exploit source
structural knowledge for robust cross-modal feature alignment in the unpaired target domain.

* Extensive experiments under diverse domain adaptation settings demonstrate that SVIP
consistently outperforms nine state-of-the-art baselines, validating its effectiveness and
superiority.

2 Related Works

2.1 Source-free Domain Adaptation

Source-free domain adaptation (SFDA) has emerged as a crucial paradigm that addresses the limi-
tations of conventional unsupervised domain adaptation (UDA) by eliminating the requirement to
access source domain data during the adaptation process [[19, |16} [15 [17,[13]]. This characteristic
makes SFDA particularly well-suited to practical scenarios that impose strict privacy constraints,
involve decentralized data storage, or demand efficient model deployment in distributed computing
environments. Existing SFDA methods can generally be divided into two broad categories. 1)
Generation-based methods aim to learn domain-invariant representations by synthesizing or trans-
forming target domain samples to approximate the distribution of source domain data. This enables
the application of conventional UDA frameworks to reduce domain shifts [20, [18} 21} [17, 22]]. 2)
Self-training methods adopt an iterative learning strategy in which pseudo-labels generated from
model predictions on unlabeled target data serve as supervision signals to progressively refine the
model in a fully unsupervised manner [[23} 24} 2526} 27]]. While these approaches have demonstrated
effectiveness in unimodal settings, their extension to scenarios involving cross-modal or multi-modal
data remains limited. Moreover, they often fall short in fully capturing the rich semantic correlations
and intrinsic structure present in heterogeneous target domains, which is a significant challenge in
complex tasks such as re-identification.

2.2 Domain Adaptation for Person RelD

Person Re-Identification (ReID) faces significant challenges due to large domain shifts caused
by variations in environment, camera styles, and modalities [28} 29, 30]]. Unsupervised Domain
Adaptation (UDA) has attracted much attention for its ability to adapt models to unlabeled target
domains without manual annotation [31} |32} 33]. However, UDA methods typically require access
to labeled source data during adaptation, which incurs high computational costs and raises privacy
concerns, especially in RelD scenarios subject to strict data regulations. These limitations hinder
the practical deployment of UDA models. SFDA addresses these issues by adapting pretrained
source models to target domains without accessing source data [34, |35, 36]]. SFDA aligns well with
privacy preservation and deployment constraints. Nonetheless, existing SFDA methods for RelID are
primarily designed for unimodal settings and often fail to exploit the intrinsic structure and semantic
relationships of the target domain [36,|34], limiting their adaptation effectiveness. In addition, the
absence of identity overlap between source and target domains further complicates feature transfer
and undermines pseudo-label reliability. These limitations pose significant challenges in mitigating
label noise, narrowing modality discrepancies, and achieving effective cross-modal alignment, all of
which are crucial for advancing SFDA in RelD.

3 Methodology

3.1 Problem Statement and Notations

For clarity, we define the key notations and terminology used in this paper. Let ®g denote the
source model trained on a labeled visible-infrared person re-identification (VI-RelD) dataset Dg.
Additionally, let the unlabeled and unpaired VI-RelD dataset in the target domain be denoted as
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Figure 2: Overview of the proposed SVIP framework. SVIP integrates three core mechanisms: 1) Source
Guided Contrastive Learning (SGCL) improves supervision reliability by combining dual clustering from
source and target models with confidence-weighted supervision; 2) Residual Transfer Learning (RTL) aligns
intermediate features between source and target models via residual distillation to preserve discriminative
structures and enhance generalization; 3) Structural Consistency Guided Cross-modal Alignment (SCCA)
leverages source domain structural knowledge to guide stable cross-modal feature alignment in the unpaired
target domain. Together, these components enable eftective source-free domain adaptation for VI-RelD.

T = {{azl Ny =T }, where NV and N7 are the numbers of visible images ) and infrared

. . . P
images :I:jI , respectlvely. For convenience, we denote D7 more generally as Dy = {{w?}fil },

where P € {V,Z}. Due to the domain shift between the source and target domains, the performance
of ®5 can degrade significantly in practical scenarios, such as those involving environmental changes
(e.g., variations in weather conditions). Our objective is to adapt ®¢ to the target domain D7 and
obtain a target-specific model @, without accessing any source domain samples or ground-truth
labels in the target domain. An overview of the SFDA framework for VI-RelD is illustrated in Figure[2]
The main motivation of our method lies in the observation that the source model ® ¢ contains rich
discriminative knowledge and cross-modal alignment capabilities. Selectively transferring this
knowledge to the target domain can enhance the target model @1 in terms of both discrimination and
cross-modal semantic understanding, thereby overcoming the limitations of existing unsupervised
methods.

3.2 Source Guided Contrastive Learning

Existing unsupervised methods typically rely on clustering to generate pseudo-labels, which provide
pseudo-supervision signals for training samples. However, due to the absence of prior knowledge,
the clustering results are often susceptible to modality gaps, leading to a degradation in pseudo-
label quality and resulting in label noise issues [[7} [38], 39, 41]. To alleviate this problem,
we propose a Source Guided Contrastive Learning (SGCL) mechanism that leverages the prior
knowledge embedded in the source model ® g to guide the target model & towards more reliable
supervision signals.

Specifically, SGCL adaptively integrates the dual predictions of target domain samples from both
the source model and the target model based on their confidence scores. This produces a more
trustworthy supervisory signal, enhancing the understanding and adaptability of the target model
to the target domain Dr. First, we extract features of target domain samples using the source model
®g and the target model @7, and apply DBSCAN clustering to obtain two sets of cluster centers,
denoted as C's and Cr:

Cs = DBSCAN(®g(z!)), Cr = DBSCAN(®r(z])). (1)

To enhance the stability of clustering representations, we introduce two memory banks: Mg =

{m3}5s, and My = {m]}}*,, which store the cluster center features obtained by the source
and target models, respectively, in the current training cycle. Here, K g and K7 denote the number



of clusters for the source and target models, respectively. The memory banks are updated in each
training cycle using the exponential moving average (EMA) strategy:

S
mf g + (1 - ‘Cs| > ®s @)
ieCy
m < nm{ +(1-n)- Z Or(x 3)
ZGCT

where 7) € [0, 1) is the momentum coefficient, and C,f and C} represent the sample index sets of the
k-th cluster for the source and target models, respectively.

Given a sample =, we compute its similarity to all cluster centers from both models and obtain a
probability distribution over clusters using the Softmax function:
exp((®s(xf), mi)/7)

Zj 5 exp((® (xf)7m]5>/7-)’ 4)

el m)/r)
Pr) = S e (@ @P), mT) /) ©)

where 7 is a temperature parameter that controls the smoothness of the distribution. Then, the
prediction confidence is estimated based on the entropy of the distributions, and a fusion weight is

computed accordingly:
exp(—H (ps))

exp(—H(ps)) + exp(—H(pr))’ (©)

where ps = [ps(1), -+ ,ps(k), - ,ps(Ks)] and pr = [pr(1),--- ,pr(k), -, pr(Kr)]. H(,)
denotes the Shannon entropy.

ps(k) =

’y:

Considering the possible inconsistency in the number of clusters between the source and target models
(i.e., Kg # Kr), directly fusing the full Softmax distributions would lead to dimensional mismatch
issues. Therefore, instead of fusing the distributions themselves, we fuse the features based on the
respective assigned cluster centers of the sample in each model. This design avoids dimensional
inconsistency and enhances fusion accuracy. In other words, for a given sample x?, the optimization
objective is defined as:

»Cdis: Z Z v ) )+(1—7)-I((I>T(wf),m5c), @)

’PE{V T} i=1

where mi and mi denote the assigned cluster centers for the sample in the source and target domains,
respectively. I(-, -) represents the InfoNCE loss [42]], and N, is the batch size.

This fusion strategy fully exploits the multi-view clustering structures of the same sample from both
the source and target models. By adaptively balancing their supervision signals based on prediction
confidence, it enables the target model to benefit from the prior knowledge embedded in the source
model. This, in turn, mitigates the clustering noise caused by modality discrepancies and enhances
the generalization and adaptability of the target model in the target domain.

3.3 Residual Transfer Learning

Although the source-guided contrastive mechanism introduced in the previous section provides stable
supervision for the target model to adapt to the target domain, it remains limited in maintaining
the consistency of discriminative behavior. To address this issue, we propose a Residual Transfer
Learning (RTL) mechanism to explicitly align source and target domains. Inspired by the principle
of preserving core discriminative knowledge in domain adaptation, this mechanism formalizes the
discrepancy in discriminative behavior between the source model and the target model under the
same input as a form of feature distillation constraint. This constraint encourages the target model
to continuously align its intermediate feature representations with those of the source model during
the adaptation process, thereby preserving structural knowledge and maintaining consistency in
prediction behavior.



Specifically, given a target-domain sample !, the residual distillation loss is defined as:
Eres = H(Ds(mz)) — @T(:BZD)HQ . (8)

Les guides the target model to retain the structural knowledge of the source model in the discriminative
feature space. Compared to probability distribution alignment approaches, this method does not
rely on consistency in the output space of the two models, making it more suitable for the scenarios
with label space shifts or mismatched output dimensions. Therefore, it offers greater flexibility and
stability. Beyond the SGCL, the RTL mechanism further strengthens the continuous guidance from
the source model to the target model, thus achieving a more effective balance between generalization
and adaptation capabilities.

3.4 Structural Consistency Guided Cross-modal Alignment

In an unlabeled and unpaired target domain, the absence of explicit cross-modal correspondences
poses significant challenges to robust alignment. To alleviate this issue, we propose a Structural
Consistency Guided Cross-modal Alignment (SCCA) mechanism, which leverages stable and reliable
structural semantic knowledge from the source model to assist the target model in discovering poten-
tial semantically consistent image pairs, thereby facilitating consistent cross-modal representation
learning.

The source model ®g, trained with supervision on paired visible-infrared images, has acquired strong
capabilities in modeling cross-modal structural consistency. To transfer this capability to the unpaired
target domain, we jointly exploit the feature modeling of both the source model and the current target
model to estimate potential cross-modal similarities. Given the unpaired target-domain samples
{w})}f\;vl and {:c ] 1» the structural similarity between a visible image x! and an infrared image

sc]I is defined as:

Sy = 5 (®s(a)). @s(@h)) + (@r(ad), or(2])) ©

where ®g provides structural prior guidance, and ®1 reflects the adaptation status of the target
model. The similarity score S;; integrates source-domain knowledge and target-domain modeling
capacity, and is used to construct cross-modal similarity vectors SY 7% = [S;;|Si1, - - - , S;yz] and
SV = [S;ilSj1, -+, Sjnv], which are employed to estimate pseudo matching pairs.

To enhance the accuracy and robustness of the pseudo matches, two structural constraints are
imposed: 1) Reciprocity Constraint (C1): Each image pair must be the most similar to each other, i.e.,
, Equation (I0). 2) Lower-bound Similarity Constraint (C2): The structural similarity between the
image pair must exceed a predefined threshold 7, i.e., , Equation (TT).

These constraints are formally defined as:
arg max S argmax  S;;i — 1
Ci = ie{1,---,NV} je{1, ,NT} (10)

argmax S agmax S5, =J
J€{l,-,NT} ie{1,-- NV}

CQZ(SUET)/\(SJ‘Z‘ZT). (1])

An image pair (z), CBI ) is regarded as a reliable pseudo match if both C; and C, are satisfied. Such

pairs are marked using a binary indicator A;; = 1[( ) = C1 A Cs]. Under the guidance of the
structural prlors from the source model, this strategy 51gn1ﬁicantly mitigates the uncertainty caused by
the lack of pairing.

On this basis, to further improve the compactness of cross-modal pseudo matches in the feature space,
we introduce a Cross-modal Reciprocal Consistency Loss:

exp(®r(aF), Dr(22)/7)
Ler Ej E:Aljl E , st.Q#P, 12)
N o ST SN ep(@r(@l), Br(D))/7) (



where 7 denotes a temperature parameter. This loss employs reliable pseudo matches as supervisory
signals and utilizes contrastive learning to enhance semantic consistency between cross-modal images,
thereby improving the alignment and discriminative power of cross-modal features.

3.5 Overall Training Procedure

Given that source data is unavailable, the proposed method optimizes the target model @7 in each
iteration using only the unlabeled data from the target domain. The entire training process is
performed without access to any source domain samples, relying solely on the prior knowledge
embedded in the source model ® g to guide cross-modal semantic transfer. The optimization objective
for the target model integrates three key components and is defined as follows:

['all = Acdis + )‘1‘67'65 + )‘2‘607‘05 (13)

where \; and )\ are weighting coefficients.

4 Experiments

4.1 Experiment Settings

Datasets: To systematically investigate domain adaptation in VI-RelD, we conduct experiments on
three widely used datasets: SYSU-MMOLI [14], RegDB [43]], and LLCM [44]. These datasets provide
a comprehensive foundation for exploring the challenges and opportunities in cross-modal person
re-identification across varying domains.

Domain Adaptation Settings: To comprehensively evaluate the adaptation performance across
diverse domains, we define two domain adaptation settings: 1) Basic Setting: This setting is designed
to evaluate the model’s ability to handle common domain shifts, including variations in illumination,
camera viewpoints, and background complexity. Four adaptation scenarios are considered: (i)
SYSU-MMO1 — RegDB, (ii) SYSU-MMO1 — LLCM, (iii) LLCM — RegDB, and (iv) LLCM —
SYSU-MMOI1. SYSU-MMOI and LLCM are used as source domains, while RegDB, LLCM, and
SYSU-MMOL serve as target domains accordingly. Due to its relatively small scale, RegDB is not
used as a source domain. 2) Weather Setting: To further evaluate model robustness under realistic
environmental variations, we introduce five weather conditions to both RegDB and LLCM, including
Sunny, Fog, Frost, Rain, and Snow. Each condition is simulated at three severity levels, resulting in
corrupted versions of the datasets, denoted as RegDB-W and LLCM-W. In this setting, the model
trained on SYSU-MMO1 is adopted as the source model, and domain adaptation is performed on
each corrupted target domain. The experiment follows the standard evaluations in VI-RelD [45] 46],
including Cumulative Matching Characteristic (CMC), and mean Average Precision (mAP).

Implementation Details: During training, pedestrian images are resized to 288 x 144 pixels. The
AGW [477] network is employed as the feature extractor. The parameters of the source model remain
fixed throughout training. The target model is optimized using the Adam optimizer with a weight
decay of 8 x10~*. The initial learning rate is set to 5x 10~* and is reduced by a factor of 10 every 20
epochs. The batch size N, is 128, and training proceeds for 50 epochs. The momentum parameter
7 is fixed at 0.1, while the temperature hyperparameter 7 is set to 0.05. The clustering algorithm
DBSCAN is applied with an epsilon value of 0.6 and a minimum sample size of 4. The threshold T’
is maintained at 0.5. The trade-off parameters \; and A5 are further analyzed in the Supplementary
Material. All experiments are performed on an Ubuntu 20.04 system equipped with four NVIDIA
RTX 3090 GPUs.

Training of the Source Model: For the source model, our method could use the model trained by any
VI-RelD method. Without loss of generality, we follow [23]] and present a simple yet representative
approach with the triplet loss function [45] 48] to train a source model for our experiments:

Ny
L= > > max (| @s(a?) - Bs(@l)F - | @s(@f) - Ds(@])} +7i0),  (14)
Pe{V,I} i=1

where & € Dg represents anchor in source training set. ¢} € Dg and ) € Dg are positive (same
identity) and negative (different identity) samples of . 74, is the margin, which is set to 0.3.



Table 1: Comparisons with the state-of-the-art methods under Basic Setting. R-1 (%), mAP (%) and mINP (%)
are reported. The best results are marked in bold, and the second-best results are underlined.

SYSU-MMO01 — LLCM SYSU-MMO1 — RegDB LLCM — SYSU-MMO1 LLCM — RegDB

Methods V2I 2V V2T T2V All Search | Indoor Search T2V T2V
R-1 mAP| R-1 mAP| R-1 mAP| R-1 mAP| R-1 mAP| R-1 mAP | R-1 mAP| R-1 mAP
\SourceOnly \12.47 1291 \ 12.21 13.13\31.26 25.71\28.95 25.92\ 17.89 20.35\20.91 20.56 \24.51 23.29\25.48 21.14
OTAL [49] 17.88 20.46 | 14.97 18.66 | 32.90 29.70 | 32.10 28.60 | 29.90 27.10|29.80 38.80 |32.90 29.70|32.10 28.60
A | CCLNet [30] | 30.33 27.12 [ 30.11 26.67 | 69.94 65.53|70.17 66.66 | 54.03 50.19 | 56.68 65.12 | 69.94 65.53 | 70.17 66.66
~ | PGM [51] 30.95 33.68 | 37.82 43.52|69.48 65.41|69.85 65.17|57.27 51.78|56.23 62.74 | 69.48 65.41 |69.85 65.17
; GUR [52] 31.47 34.77|29.68 33.38|73.91 70.23|75.00 69.94|60.95 56.99|64.22 69.49 |73.91 70.23 | 75.00 69.94
2 | SDCL [L1] |38.86 45.19|46.34 43.35|86.91 78.92|85.76 77.25|64.49 63.24|71.37 76.90 | 86.91 7892 |85.76 77.25
MMM [12] |35.39 42.57 |45.05 46.26 | 89.70 80.50 | 85.80 77.00 | 65.90 61.80 | 70.30 74.90 | 89.70 80.50 | 85.80 77.00
CMT [53] 31.22 33.53|37.37 40.77|72.06 65.01|72.12 62.98|42.15 38.20|45.33 41.87 |50.62 44.35|53.21 47.89
é LEAD [15] |29.37 32.73|36.16 38.02|75.99 66.38 7091 62.90|40.88 36.54|43.17 40.12 |48.95 42.76 | 51.03 45.67
7 | DRU [54] 28.48 33.80 | 36.55 38.85|76.26 68.54|71.68 64.43|41.72 37.89|44.65 41.03 |49.81 43.52|52.14 46.35
SVIP (Ours) | 40.50 46.20 | 47.85 47.30 | 90.10 81.20 | 86.50 77.80 | 66.80 63.50 | 71.60 77.40 | 90.20 81.60 | 86.10 78.50

Table 2: Comparisons with state-of-the-art methods under the Weather Setting (Severity Level 3), reporting R-1
(%) accuracy. The best results are marked in bold, and the second-best results are underlined.

LLCM-W (Visible to Infrared)

RegDB-W (Visible to Thermal)

Methods [ Sunny — Fog  Frost Rain Snow | Avg. | Sunny Fog Frost Rain Snow [ Avg.

‘ Source Only ‘ 8.07 820 982 819 870 ‘ 8.60 ‘ 16.06 20.86 16.33 20.18 11.55 ‘ 16.06
OTAL [49] 12.17 13.56 10.01 9.72 1290 | 11.67 | 28.14 30.96 2444 30.84 1798 | 2647

A | CCLNet [50] | 23.05 25.86 21.88 27.04 19.82 | 23.53 | 42.27 46.84 36.95 45.15 27.26 | 39.69
& | PGM [31] 25.16 2629 2530 2252 18.00 | 23.45 | 49.77 54.63 43.39 5355 32.09 | 46.69
= GUR [52] 26.39 29.61 22.89 21.76 17.68 | 23.67 | 42.12 57.87 4241 54.09 33.13 | 4593
= | SDCL [L1] 2693 31.17 27.11 27.58 23.07 | 27.17 | 50.87 61.08 49.21 6426 39.01 | 52.89
MMM [12] 25.63 3232 2487 25.88 2276 | 26.29 | 49.17 64.28 47.57 64.04 39.68 | 52.95
CMT [53] 2324 29.74 2049 21.16 1597 | 22.12 | 48.03 60.36 43.63 62.01 32.78 | 49.36

E LEAD [15] 2234 30.16 19.79 19.75 17.51 | 2191 | 45.89 63.23 42.06 60.81 33.73 | 49.15
% | DRU [54] 20.57 3148 23.33 2280 18.16 | 23.27 | 4646 64.74 43.30 61.34 39.82 | 51.13
SVIP (Ours) | 28.02 36.13 32.10 32.19 27.48 | 30.87 | 54.32 6592 49.54 67.46 46.05 | 57.81

4.2 Comparison with the State-of-the-Arts

We compare our SVIP method with nine state-of-the-art approaches, categorized into two groups.
The first group comprises six Unsupervised Visible-Infrared Person Re-Identification (UVI-RelD)
methods: OTAL [49], CCLNet [50]], PGM [51], GUR [52], SDCL [11]], and MMM [12], which are
trained exclusively on the target domain. The second group consists of three Source-Free Domain
Adaptation (SFDA) methods: CMT [53]], LEAD [135]], and DRU [54]], which involve training a source
model and performing domain adaptation following the authors’ recommended procedures. Based on
the results shown in Tables[T]and [2] several important observations can be made:

* SVIP consistently achieves superior performance across all benchmarks under both the
Basic Setting and Weather Setting, highlighting its strong generalization capability. In some
scenarios, the R-1 accuracy exceeds that of the second-best method by over 7%, reflecting
its robustness in handling challenging conditions.

Effective exploitation of source domain knowledge plays a crucial role in enhancing the

understanding of the target domain, which largely contributes to SVIP’s superiority over
existing UVI-RelD methods that rely solely on target domain data.

SFDA baseline methods are generally constrained by the assumption of shared classes

between the source and target domains, which hinders their ability to address the challenge
of non-overlapping classes (identities) in VI-ReID. This limitation often results in suboptimal
performance, and in certain cases, even inferior outcomes compared to UVI-RelD.

4.3 Ablation Study

We conduct comprehensive ablation studies to assess the individual contributions of the key compo-
nents in SVIP, namely SGCL, RTL, and SCCA, to the overall adaptation performance. Specifically,
we progressively remove each component and evaluate the resulting performance degradation on



the target domain. As reported in Table[3] the exclusion of any single component leads to a notable
drop in re-identification accuracy, which clearly demonstrates the importance of each mechanism in
enhancing domain adaptation.

Table 3: Ablation studies on Basic Setting, where RegDB dataset as target domain.

SYSU-MMO1 — RegDB LLCM — RegDB

SGCL RTL SCCA V2T T2V V2T T2V
R-1 mAP | R-1 mAP| R-1 mAP| R-1 mAP
v 85.26 75.64 |82.13 72.45|84.32 76.68 | 81.05 71.32

83.71 73.82|80.59 70.28|82.47 74.13|79.24 69.85
81.95 71.36|78.43 68.17|80.63 71.89|77.52 67.41
87.39 77.25|84.16 74.83|86.21 78.04|83.17 73.62
88.17 78.06|85.04 75.91|87.35 78.97|84.26 76.13
86.82 76.43|83.27 73.85|85.74 77.32|82.39 72.68
90.13 81.26 | 86.92 77.89 | 90.20 81.64 | 86.54 78.51
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4.4 Visualization on the Domain Adaptation

To systematically evaluate our method’s capability in mitigating domain shift, we conduct t-SNE
visualization under the Basic Setting with RegDB as target domain. As shown in Figure[3] we analyze
feature distributions across four configurations using five identities (20 images each) from source
and target domains. Based on the experimental results, we can make the following observations: 1)
Source Only exhibits severe domain gap with separated source (red) and target (blue) clusters; 2)
SGCL partially reduces domain discrepancy through confidence-weighted dual clustering but retains
scattered distributions due to insufficient cross-modal alignment; 3) SGCL+RTL enhances structural
stability by aligning feature residuals, though noise persists from imperfect sample filtering; 4) The
full framework (SGCL+RTL+SCCA) achieves tight cross-domain clustering through SCCA-guided
structural consistency constraints and confidence-aware filtering. This is clearly shown in the t-SNE
visualization, where corresponding blue circles and triangles are closely clustered, reflecting accurate
alignment between matched samples. The progressive improvements across different stages further
validate the effectiveness of our method in establishing stable cross-modal correspondences and
effectively mitigating domain shift.
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(a) Source Only. (b) SGCL. (c) SGCL+RTL. (d) SGCL+RTL4+SCCA.

Figure 3: The Red and Blue denote source and target domains, respectively, while @ and A denote visible and
infrared images (best viewed in color).

5 Conclusion

This paper introduces a novel framework for source-free domain adaptation in visible-infrared person
re-identification (VI-RelD), termed SVIP. Without access to source data, SVIP effectively leverages
the pretrained source model through three tailored components: 1) a Source Guided Contrastive
Learning (SGCL) mechanism that improves supervision quality via dual-model clustering and
confidence-weighted supervision; 2) a Residual Transfer Learning (RTL) mechanism that distills
transferable knowledge through intermediate feature alignment; and 3) a Structural Consistency
Guided Cross-modal Alignment (SCCA) mechanism that exploits semantic structure from the source
model to guide cross-modal association in the unpaired target domain. These designs collectively
enhance target model adaptation under the SFDA setting. Future extensions include generalizing
SVIP to other multi-modal retrieval tasks (e.g., video-text ReID), and exploring continual adaptation
in streaming settings with evolving target domains.
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Justification: The code will be released publicly after in-peer review.
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public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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material.
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Error bars are not reported because it would be too computationally expensive
for experiments involving LLMs.
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* The answer NA means that the paper does not include experiments.
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
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groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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13.

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: All datasets and models used in this paper are publicly available.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Proper citations are provided throughout the document and the licenses will be
included with the code when it is released.

Guidelines:

» The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: The document will release.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not research with human subjects.
Guidelines:

» The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
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Justification: We have fully disclosed the details of the use of the adopted LLMs in our
supplementary material.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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