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ABSTRACT

Partial multi-label learning and complementary multi-label learning are two pop-
ular weakly supervised multi-label classification paradigms that aim to alleviate
the high annotation costs of collecting precisely annotated multi-label data. In
partial multi-label learning, each instance is annotated with a candidate label set,
among which only some labels are relevant; in complementary multi-label learn-
ing, each instance is annotated with complementary labels indicating the classes
to which the instance does not belong. Existing consistent approaches for the two
paradigms either require accurate estimation of the generation process of candi-
date or complementary labels or assume a uniform distribution to eliminate the
estimation problem. However, both conditions are usually difficult to satisfy in
real-world scenarios. In this paper, we propose consistent approaches that do
not rely on the aforementioned conditions to handle both problems in a unified
way. Specifically, we propose two risk estimators based on first- and second-order
strategies. Theoretically, we prove consistency w.r.t. two widely used multi-label
classification evaluation metrics and derive convergence rates for the estimation
errors of the proposed risk estimators. Empirically, extensive experimental re-
sults validate the effectiveness of our proposed approaches against state-of-the-art
methods.

1 INTRODUCTION

In multi-label classification (MLC), each instance is associated with multiple relevant labels simul-
taneously (Zhang & Zhou, 2014; Liu et al., 2022b). The goal of MLC is to induce a multi-label
classifier that can assign multiple relevant labels to unseen instances. MLC is more practical and
useful than single-label classification, as real-world objects often appear together in a single scene.
The ability to handle complex semantic information has led to the widespread use of MLC in many
real-world applications, including multimedia content annotation (Cabral et al., 2011), text clas-
sification (Rubin et al., 2012; Liu et al., 2017), and music emotion analysis (Wu et al., 2014).
However, annotating multi-label training data is more expensive and demanding than annotating
single-label data. This is because each instance can be associated with an unknown number of rel-
evant labels (Durand et al., 2019; Cole et al., 2021; Xie et al., 2023), making it difficult to collect a
large-scale multi-label dataset with precise annotations.

Candidate Label Set:

Banana

Knife

Cup

Flower

Complementary Labels:

Apple

Table

Plate

Jug

Grapes

Pear

Figure 1: A multi-label image with inexact anno-
tations. Source: Paul Cézanne, Still Life, Jug and
Fruit on a Table (1894), public domain.

To address this, learning from weak super-
vision has become a prevailing way to mit-
igate the bottleneck of annotation cost for
MLC (Sugiyama et al., 2022). Among them,
partial multi-label learning (PML) and comple-
mentary multi-label learning (CML) have be-
come two popular MLC paradigms. In PML,
each instance is annotated with a candidate
label set, among which only some labels are
relevant but inaccessible to the learning algo-
rithm (Xie & Huang, 2018; Sun et al., 2019;
Gong et al., 2021). In CML, each instance is
annotated with complementary labels, which indicate the classes to which the instance does not
belong (Gao et al., 2023). Given that all relevant labels are included in the candidate label set, non-
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Table 1: Comparison of COMES with existing consistent PML and CML approaches.

Approach Uniform distribution
assumption-free

Generation process
estimation unnecessary

Label
correlation-aware

Multiple
complementary labels

CCMN (Xie & Huang, 2023) ✓ ✗ ✓ ✓
CTL (Gao et al., 2023) ✗ ✓ ✗ ✗
MLCL (Gao et al., 2024) ✓ ✗ ✓ ✗
GDF (Gao et al., 2025) ✗ ✓ ✗ ✓

COMES-HL (Ours) ✓ ✓ ✗ ✓
COMES-RL (Ours) ✓ ✓ ✓ ✓

candidate labels contain no relevant labels and can be considered complementary labels, and vice
versa. This suggests that the two problems are mathematically equivalent. Therefore, in this paper,
we treat them as MLC under inexact supervision in a unified way. Figure 1 shows an example image
annotated with inexact annotations. The label space contains ten labels in total. The candidate label
set consists of four relevant labels {apple, plate, table, jug} and two false-positive ones {grapes,
pear}. By excluding the candidate labels from the label space, the remaining four labels are {ba-
nana, cup, knife, flower}, which can be considered complementary labels. PML and CML do not
require precise determination of all relevant labels during annotation, which demonstrates their great
potential for alleviating annotation challenges in MLC.

In this paper, we investigate consistent approaches for MLC under inexact supervision. Here, consis-
tency means that classifiers learned with inexact supervision are theoretically guaranteed to converge
to the optimal classifiers when infinitely many training samples are provided (Wang et al., 2024).
The remedy began with Xie & Huang (2023), which treated PML as a special case of MLC with
class-conditional label noise (Li et al., 2022; Xia et al., 2023), where irrelevant labels could flip to
relevant labels but not vice versa. However, the flipping rate for each class is unknown and must be
estimated using anchor points, i.e., instances belonging to a specific class with probability one (Liu
& Tao, 2015; Xie & Huang, 2023). Similar to PML, CML assumes that complementary labels are
generated by a certain flipping process (Yu et al., 2018b). Gao et al. (2023) proposed the uniform
distribution assumption that a label outside the relevant label set is sampled uniformly to be the CL.
Then, Gao et al. (2024) generalized the data generation process with a transition matrix, but estimat-
ing the data generation process is still necessary. Recently, Gao et al. (2025) extended the uniform
distribution assumption to handle multiple complementary labels.

In summary, all existing consistent PML and CML approaches either estimate the generation process
of the candidate label set or complementary labels, or adopt the uniform distribution assumption to
eliminate the estimation problem. However, both conditions are difficult to satisfy in real-world
scenarios. On the one hand, estimating the flipping rate heavily relies on accurate estimation of
noisy class posterior probabilities of anchor points (Xia et al., 2019; Yao et al., 2020; Lin et al.,
2023). However, estimating noisy class posterior probabilities is more difficult because their entropy
is usually higher than that of clean labels (Langford, 2005). This difficulty is further amplified when
using deep neural networks, where the over-confidence phenomenon typically occurs (Zhang et al.,
2021; Wei et al., 2022). The model outputs of deep neural networks are usually one-hot encoded,
which means they cannot yield reliable probabilistic outputs (Guo et al., 2017). On the other hand,
the uniform distribution assumption treats different candidate label sets indiscriminately, which is
too simple to be truly in accordance with imbalanced classes in real-world scenarios (Wang et al.,
2025). Additionally, many approaches model different labels independently and directly ignore label
correlations existing in multi-label data (Gao et al., 2025). This prevents them from exploiting the
rich semantic relationships of label correlations (Zhu et al., 2017; Mao et al., 2023).

To this end, we propose a novel framework named COMES, i.e., COnsistent Multi-label classifica-
tion under inExact Supervision. Based on a data generation process that does not use transition ma-
trices, we introduce two instantiations with risk estimators w.r.t. the Hamming loss and ranking loss,
respectively. Table 1 compares our approach with existing consistent PML and CML approaches.
Our contributions are summarized as follows:

• We propose a consistent framework for multi-label classification under inexact supervision that
neither requires estimating the generation process of candidate or complementary labels nor relies
on the uniform-distribution assumption.
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• We introduce risk-correction approaches to improve the generalization performance of the pro-
posed risk estimators. We further prove consistency w.r.t. two widely used metrics and derive
convergence rates of estimation errors for the proposed risk estimators.

• Our proposed approaches outperform state-of-the-art baselines on both real-world and synthetic
PML and CML datasets with different label generation processes.

2 PRELIMINARIES

In this section, we introduce the background of MLC and MLC under inexact supervision.

2.1 MULTI-LABEL CLASSIFICATION

Let X Ď Rd denote the d-dimensional feature space and Y “ t1, 2, . . . , qu the label space consisting
of q class labels. A multi-label example is denoted as px, Y q, where x P X is a feature vector
and Y Ď Y is the set of relevant labels associated with x. For ease of notation, we introduce
y “ ry1, y2, . . . , yqs P t0, 1u

q to denote the vector representation of Y , where yj “ 1 if j P Y and
yj “ 0 otherwise. Let ppx, Y q denote the joint density of x and Y . Let ppxq denote the marginal
density, and πj “ ppyj “ 1q the prior of the j-th class. The task of MLC is to learn a prediction
function f : X ÞÑ 2Y . We use fj to denote the j-th entry of f , where fjpxq “ 1 indicates that
the model predicts class j to be relevant to x and fjpxq “ 0 otherwise. Since learning f directly is
often difficult, we use a real-valued decision function g : X ÞÑ Rq to represent the model output.
The prediction function f can be derived by thresholding g. We use gj to denote the j-th entry of g,
which indicates the model output for class j.

Many evaluation metrics have been developed to calculate the difference between model predictions
and true labels to evaluate the performance of multi-label classifiers (Zhang & Zhou, 2014; Wu &
Zhou, 2017). In this paper, we focus primarily on the Hamming loss and ranking loss, the two
most common metrics in the literature.1 Specifically, the Hamming loss calculates the fraction of
misclassified instance-label pairs, and the risk of f w.r.t. the Hamming loss is

R0´1
H pfq “ Eppx,Y q

„

1

q

ÿq

j“1
I pfjpxq ‰ yjq

ȷ

. (1)

Here, I denotes the indicator function that returns 1 if the predicate holds; otherwise, I returns 0.
Since optimizing the 0-1 loss is difficult, a surrogate loss function ℓ is often adopted. The ℓ-risk
w.r.t. the Hamming loss is

Rℓ
Hpgq “ Eppx,Y q

„

1

q

ÿq

j“1
ℓ pgj pxq , yjq

ȷ

, (2)

where ℓ is a non-negative binary loss function, such as the binary cross-entropy loss. It is important
to note that the Hamming loss only considers first-order model predictions and cannot account for
label correlations. The ranking loss explicitly considers the ordering relationship between model
outputs for a pair of labels. Specifically, the risk of f w.r.t. the ranking loss is2

R0´1
R pfq “ Eppx,Y q

„

ÿ

1ďjăkďq
Ipyj ă ykq

ˆ

I pfjpxq ą fkpxqq `
1

2
I pfjpxq “ fkpxqq

˙

`Ipyj ą ykq

ˆ

I pfjpxq ă fkpxqq `
1

2
I pfjpxq “ fkpxqq

˙ȷ

. (3)

Similarly, when using a surrogate loss function ℓ to replace the 0-1 loss, the ℓ-risk w.r.t. the ranking
loss is

Rℓ
Rpgq “ Eppx,Y q

„

ÿ

1ďjăkďq
Ipyj ‰ ykqℓ

ˆ

gjpxq ´ gkpxq,
yj ´ yk ` 1

2

˙ȷ

. (4)

Notably, minimizing the Hamming loss does not consider label correlations and can be considered
a first-order strategy. In contrast, minimizing the ranking loss considers label-ranking relationships
and can be considered a second-order strategy.

1We will address the use of other metrics in future work.
2To facilitate the analysis in this paper, we consider the coefficients of the losses for different label pairs to

be 1 (Gao & Zhou, 2013; Xie & Huang, 2021; 2023).
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2.2 MULTI-LABEL CLASSIFICATION UNDER INEXACT SUPERVISION

In PML, each example is denoted as px, Sq, where S is the candidate label set associated with x.
The basic assumption of PML is that all relevant labels are contained within the candidate label
set, i.e., Y Ď S. Let S̄ “ YzS denote the absolute complement of S. Since S̄

Ş

Y “ H, S̄ can
be regarded as the set of complementary labels associated with x. Therefore, PML and CML are
mathematically equivalent, as partial multi-label data can equivalently be transformed into comple-
mentary multi-label data and vice versa. Without loss of generality, this paper mainly considers
partial multi-label data. For ease of notation, we use s “ rs1, s2, . . . , sqs to denote the vector repre-
sentation of S. Here, sj “ 1 indicates that the j-th class label is a candidate label of x, and sj “ 0
otherwise. Let ppx, Sq denote the joint density of x and the candidate label set S. The goal of PML
or CML is to learn a prediction function f : X ÞÑ 2Y that can assign relevant labels to unseen
instances based on a training set D “ tpxi, Siqu

n
i“1 sampled i.i.d. from ppx, Sq.

3 METHODOLOGY

In this section, we first introduce our data generation process. Then, we present the first- and second-
order strategies for handling the PML problem and their respective theoretical analyses.

3.1 DATA GENERATION PROCESS

In this paper, we assume that the candidate labels are generated by querying whether each instance
is irrelevant to a class in turn. Specifically, if the j-th class is irrelevant to x, we assume that
the j-th class label is assigned as a non-candidate label to x with a constant probability pj , i.e.,
p pj R S|x, j R Y q “ pj . Otherwise, if the j-th class is relevant to x, we consider it as a candidate
label. The candidate label set can then be obtained by excluding the non-candidate labels from the
label space. Notably, all relevant labels are included in the candidate label set, as well as some irrel-
evant labels. This data generation process coincides well with the annotation process of candidate
labels. For example, when asking annotators to provide candidate labels for an image dataset, we
can show them an image and a class label and ask them to determine whether the image is irrelevant
to that class. This is often an easier question to answer than directly asking all relevant labels, since
it is less demanding to exclude some obviously irrelevant labels. If so, we assume that the image
will be annotated with this label as a non-candidate label with a constant probability. Based on this
data generation process, we have the following lemma.

Lemma 1. Assume that ppsj “ 0|x, yj “ 0q “ pj , where pj is a constant. Then, we have
ppx|sj “ 0q “ ppx|yj “ 0q.

The proof can be found in Appendix B.1. According to Lemma 1, the conditional density of in-
stances where the j-th class is considered a non-candidate label is equivalent to the conditional
density of instances where the j-th class is irrelevant. Notably, our data distribution assumption
differs from both the uniform distribution assumption and the use of a transition matrix to flip the la-
bels. Since the conditional probabilities of different candidate label sets can be different, our setting
is more general than the uniform distribution assumption (Gao et al., 2023; 2025).

3.2 FIRST-ORDER STRATEGY

A common strategy used in MLC is to decompose the problem into a number of binary classification
problems by ignoring label correlations. This goal can be achieved by minimizing the ℓ-risk w.r.t. the
Hamming loss in Eq. (2). We show that the ℓ-risk w.r.t. the Hamming loss can be equivalently
expressed with partial multi-label data.

Theorem 1. By the assumption in Lemma 1, the ℓ-risk w.r.t. the Hamming loss in Eq. (2) can be
equivalently expressed as

Rℓ
Hpgq “Eppxq

„

1

q

ÿq

j“1
ℓ pgj pxq , 1q

ȷ

`
ÿq

j“1
Eppx|sj“0q

„

1 ´ πj

q
pℓ pgj pxq , 0q ´ ℓ pgj pxq , 1qq

ȷ

. (5)
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The proof can be found in Appendix B.2. Theorem 1 shows that the ℓ-risk w.r.t. the Hamming loss
can be expressed as the expectation w.r.t. the marginal and conditional densities where the j-th class
label is not considered as a candidate label. Since Eq. (5) cannot be calculated directly, we perform
empirical risk minimization (ERM) by approximating Eq. (5) using datasets DU and Djpj P Yq

sampled from densities ppxq and ppx|sj “ 0q, respectively. In this paper, we consider generating
these datasets by duplicating instances from D. Specifically, we first treat the duplicated instances
of D as unlabeled data sampled from ppxq and add them to DU. Then, if an instance does not
treat the j-th class label as a candidate label, we treat its duplicated instance as being sampled from
ppx|sj “ 0q and add it to Dj . These processes can be expressed as follows:

DU “
␣

xU
i

(n

i“1
“ txi|pxi, Siq P Du , Dj “

!

xj
i

)nj

i“1
“ txi|pxi, Siq P D, j R Siu , j P Y. (6)

Then, an unbiased risk estimator can be derived to approximate Eq. (5) using datasets DU and Dj :

R̂ℓ
Hpgq “

1

nq

ÿn

i“1

ÿq

j“1
ℓ
`

gj
`

xU
i

˘

, 1
˘

`
ÿq

j“1

1 ´ πj

qnj

ÿnj

i“1

´

ℓ
´

gj

´

xj
i

¯

, 0
¯

´ ℓ
´

gj

´

xj
i

¯

, 1
¯¯

. (7)

When deep neural networks are used, the negative terms in the loss function can often lead to overfit-
ting issues (Kiryo et al., 2017; Sugiyama et al., 2022). Therefore, we use an absolute value function
to wrap each potentially negative term Lu et al. (2020); Wang et al. (2023). The corrected risk
estimator is defined as

R̃ℓ
Hpgq “

1

q

ÿq

j“1

ˇ

ˇ

ˇ

ˇ

1

n

ÿn

i“1
ℓ
`

gj
`

xU
i

˘

, 1
˘

´
1 ´ πj

nj

ÿnj

i“1
ℓ
´

gj

´

xj
i

¯

, 1
¯

ˇ

ˇ

ˇ

ˇ

`
ÿq

j“1

1 ´ πj

qnj

ÿnj

i“1
ℓ
´

gj

´

xj
i

¯

, 0
¯

. (8)

Notably, our framework is very flexible so that the minimizer can be obtained using any network
architecture and stochastic optimizer. The algorithmic details are summarized in Algorithm 1. The
class prior πj can be estimated by using off-the-shelf class prior estimation approaches only using
candidate labels (see Appendix A.2).

We establish the consistency and estimation error bounds for the risk estimator proposed in Eq. (8).
First, we demonstrate that the corrected risk estimator in Eq. (8) is biased yet consistent w.r.t. the
ℓ-risk w.r.t. the Hamming loss in Eq. (2). The following theorem holds.
Theorem 2. Assume that there exists a constant CG such that supgjPG }gj}8 ď CG and a constant
Cℓ such that sup|z|ďCG

ℓpz, yq ď Cℓ, where G is the model class. We assume that there exists
a positive constant α such that @j P Y, πjEppx|yj“1q rℓ pgj pxq , 1qs ě α. Then, the bias of the
expectation of the corrected risk estimator w.r.t. the ℓ-risk w.r.t. the Hamming loss has the following
lower and upper bounds:

0 ď E
”

R̃ℓ
Hpgq

ı

´ Rℓ
Hpgq ď

1

q

ÿq

j“1
p4 ´ 2πjqCℓ∆j , (9)

where ∆j “ exp
`

´2α2{
`

C2
ℓ {n ` p1 ´ πjq2C2

ℓ {nj

˘˘

. Furthermore, for any δ ą 0, the following
inequality holds with probability at least 1 ´ δ:

ˇ

ˇ

ˇ
R̃ℓ

Hpgq ´ Rℓ
Hpgq

ˇ

ˇ

ˇ
ď

1

q

ÿq

j“1

˜

p4 ´ 2πjqCℓ∆j `
p2 ´ 2πjqCℓ

q

d

ln p2{δq

2nj

¸

` Cℓ

c

ln p2{δq

2n
.

(10)

The proof can be found in Appendix B.3. Notably, the bias of the corrected risk estimator from
the original ℓ-risk exists since it is lower bounded by zero. However, as n Ñ 8, we have that
R̃ℓ

Hpgq Ñ Rℓ
Hpgq, meaning that it is still consistent.

Let g̃H “ argmintgjuĎG R̃ℓ
Hpgq and g˚

H “ argmintgjuĎG Rℓ
Hpgq denote the minimizer of the

corrected risk estimator and the ℓ-risk w.r.t. the Hamming loss, respectively. Let Rn,ppGq and
Rnj ,pj

pGq denote the Rademacher complexities defined in Appendix B.4.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Theorem 3. Assume that the loss function ℓpz, yq is Lipschitz continuous in z with a Lipschitz
constant Lℓ. By the assumptions in Theorem 2, for any δ ą 0, the following inequality holds with
probability at least 1 ´ δ:

Rℓ
Hpg̃Hq ´ Rℓ

Hpg˚
Hq ď

8Lℓ

q

ÿq

j“1
Rn,ppGq `

16p1 ´ πjqLℓ

q

ÿq

j“1
Rnj ,pj

pGq

`
2

q

ÿq

j“1
p4 ´ 2πjqCℓ∆j ` 2Cℓ

c

ln p1{δq

2n
`
ÿq

j“1

p4 ´ 4πjqCℓ

q

d

ln p1{δq

2nj
. (11)

The proof can be found in Appendix B.4. Theorem 3 shows that, as n Ñ 8, Rℓ
Hpg̃Hq Ñ Rℓ

Hpg˚
Hq,

since ∆j Ñ 0, Rn,ppGq Ñ 0, and Rnj ,pj
pGq Ñ 0 for all parametric models with a bounded

norm (Mohri et al., 2012). This means that the minimizer of the corrected risk estimator will ap-
proach the desired classifier that minimize the ℓ-risk w.r.t. the Hamming loss.

Let Rℓ˚
H “ infg R

ℓ
Hpgq and R˚

H “ inff R0´1
H pfq denote the minima of the ℓ-risk and the risk

w.r.t. the Hamming loss, respectively. Then, the following corollary holds.
Corollary 1. If ℓ is a convex function such that @y, ℓ1p0, yq ă 0, then the ℓ-risk w.r.t. the Hamming
loss in Eq. (5) is consistent with the risk w.r.t. the Hamming loss in Eq. (1). This means that, for any
sequence of decision functions tgtu with corresponding prediction functions tftu, if Rℓ

Hpgtq Ñ Rℓ˚
H ,

then R0´1
H pftq Ñ R˚

H.

The proof can be found in Appendix B.5. If the model is flexible enough to include the optimal
classifier, according to Theorem 3, we have Rℓ

Hpg̃Hq Ñ Rℓ˚
H . Then, Corollary 1 demonstrates that

R0´1
H pf̃Hq Ñ R˚

H where f̃H is the corresponding prediction function of g̃H. This indicates that
the prediction function obtained by minimizing the corrected risk estimator in Eq. (8) achieves the
Bayes risk.

3.3 SECOND-ORDER STRATEGY

The first-order strategy is straightforward but does not consider label correlations, which may be
incompatible with multi-label data that exhibit semantic dependencies. Therefore, we explore the
ranking loss to model the relationship between pairs of labels. The following theorem applies.
Theorem 4. When the binary loss function ℓ is symmetric, i.e., ℓpz, ¨q ` ℓp´z, ¨q “ M where M is
a non-negative constant, then under the assumption in Lemma 1, the ℓ-risk w.r.t. the ranking loss in
Eq. (4) can be equivalently expressed as

Rℓ
Rpgq “

ÿ

1ďjăkďq

`

p1 ´ πjqEppx|sj“0q rℓ pgjpxq ´ gkpxq, 0qs

`p1 ´ πkqEppx|sk“0q rℓ pgjpxq ´ gkpxq, 1qs ´ Mppyj “ 0, yk “ 0q
˘

. (12)

The proof can be found in Appendix B.6. Here, the symmetric-loss assumption is often used to
ensure statistical consistency of the ranking loss for MLC (Gao & Zhou, 2013). According to The-
orem 4, the ℓ-risk w.r.t. the ranking loss can be expressed as the expectation w.r.t. the conditional
density where the j-th class label is not regarded as a candidate label. Notably, Mppyj “ 0, yk “ 0q

in Eq. (12) is a constant that does not affect training the classifier, so it can be neglected. Similar to
the first-order strategy, an unbiased risk estimator can be obtained using Dj :

R̂ℓ
Rpgq “

ÿ

1ďjăkďq

ˆ

1 ´ πj

nj

ÿnj

i“1
ℓ
´

gjpxj
i q ´ gkpxj

i q, 0
¯

`
1 ´ πk

nk

ÿnk

i“1
ℓ
`

gjpxk
i q ´ gkpxk

i q, 1
˘

˙

. (13)

To improve generalization performance, we use the flooding regularization technique (Ishida et al.,
2020; Liu et al., 2022a; Bae et al., 2024) to mitigate overfitting issues:

R̃ℓ
Rpgq “

ˇ

ˇ

ˇ
R̂ℓ

Rpgq ´ β
ˇ

ˇ

ˇ
` β, (14)

where β ě 0 is a hyper-parameter that controls the minimum of the loss value. Then, we can
perform ERM by using Eq. (14). The algorithmic details are summarized in Algorithm 1. We also
establish consistency and estimation error bounds for the proposed risk estimator in Eq. (14). The
following theorem then holds.

6
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Theorem 5. We assume that there exists a positive constant γ such that Rℓ
Rpgq ě γ. We also assume

that β is chosen such that β ď
ř

1ďjăkďq Mppyj “ 0, yk “ 0qz. By the assumptions in Theorem 2,
the bias of the expectation of the corrected risk estimator w.r.t. the ranking loss has the following
lower and upper bounds:

0 ď E
”

R̃ℓ
Rpgq

ı

´
ÿ

jăk
Mppyj “ 0, yk “ 0q ´ Rℓ

Rpgq ď

´

2β ` 2Cℓpq ´ 1q
ÿq

j“1
p1 ´ πjq

¯

∆1,

(15)
where ∆1 “ exp

´

´2γ2{
řq

j“1p1 ´ πjq2pq ´ 1q2C2
ℓ {nj

¯

. Furthermore, for any δ ą 0, the follow-
ing inequality holds with probability at least 1 ´ δ:

ˇ

ˇ

ˇ
R̃ℓ

Rpgq ´
ÿ

jăk
Mppyj “ 0, yk “ 0q ´ Rℓ

Rpgq

ˇ

ˇ

ˇ
ď
ÿq

j“1
p1 ´ πjqpq ´ 1qCℓ

d

ln p2{δq

2nj

`

´

2β ` 2Cℓpq ´ 1q
ÿq

j“1
p1 ´ πjq

¯

∆1. (16)

The proof can be found in Appendix B.7. According to Theorem 5, as n Ñ 8, the bias between
the corrected risk estimator in Eq. (14) and the ℓ-risk of ranking loss will become a constant. This
implies that the minimizer of the corrected risk estimator is equivalent to the desired classifier that
minimizes the ℓ-risk w.r.t. the Hamming loss.

Let g̃R “ argmintgjuĎG R̃ℓ
Rpgq and g˚

R “ argmintgjuĎG Rℓ
Rpgq denote the minimizers of the

corrected risk estimator and the ℓ-risk w.r.t. the ranking loss, respectively.

Theorem 6. By the assumptions in Theorem 3 and 5, for any δ ą 0, the following inequality holds
with probability at least 1 ´ δ:

Rℓ
Rpg̃Rq ´ Rℓ

Rpg˚
Rq ď

´

2β ` 2Cℓpq ´ 1q
ÿq

j“1
p1 ´ πjq

¯

∆1

`
ÿq

j“1
p1 ´ πjqpq ´ 1qCℓ

d

ln p1{δq

nj
`
ÿq

j“1
4Lℓpq ´ 1qp1 ´ πjqRnj ,pj

pGq . (17)

The proof can be found in Appendix B.8. Theorem 6 shows that as n Ñ 8, Rℓ
Rpg̃Rq Ñ Rℓ

Rpg˚
Rq,

since ∆1 Ñ 0 and Rnj ,pj pGq Ñ 0 for all parametric models with a bounded norm (Mohri et al.,
2012). This means that the minimizers of Eq. (14) will approach the desired classifiers of the ℓ-
risk w.r.t. the ranking loss when the number of training data increases. Let Rℓ˚

R “ infg R
ℓ
Rpgq and

R˚
R “ inff R0´1

R pfq denote the minima of the ℓ-risk and the risk w.r.t. the ranking loss, respectively.
Then we have the following corollary.

Corollary 2. If ℓ is a differentiable, symmetric, and non-increasing function such that @y, ℓ1p0, yq ă

0 and ℓpz, yq ` ℓp´z, yq “ M , then the ℓ-risk w.r.t. the ranking loss in Eq. (12) is consistent with
the risk w.r.t. the ranking loss in Eq. (3). This means that for any sequences of decision functions
tgtu with corresponding prediction functions tftu, if Rℓ

Rpgtq Ñ Rℓ˚
R , then R0´1

R pftq Ñ R˚
R.

The proof can be found in Appendix B.9. If the model is very flexible, we have Rℓ
Rpg̃Rq Ñ Rℓ˚

R

according to Theorem 6. Then, Corollary 2 demonstrates that R0´1
R pf̃Rq Ñ R˚

R where f̃R is the
corresponding prediction function of g̃R. This indicates that the prediction function obtained by
minimizing Eq. (14) achieves the Bayes risk.

4 EXPERIMENTS

In this section, we validate the effectiveness of the proposed approaches with experimental results.

4.1 EXPERIMENTAL SETUP

We conducted experiments on both real-world and synthetic PML benchmark datasets. For real-
world datasets, we used mirflickr (Huiskes & Lew, 2008), music_emotion (Zhang & Fang, 2020),
music_style, yeastBP (Yu et al., 2018a), yeastCC and yeastMF; for synthetic datasets, we used
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Ranking Loss Ó

Approach mirflickr music_emotion music_style yeastBP yeastCC yeastMF

BCE 0.106 ˘ 0.008‚ 0.244 ˘ 0.007‚ 0.137 ˘ 0.009 0.328 ˘ 0.013‚ 0.206 ˘ 0.011‚ 0.251 ˘ 0.010‚

CCMN 0.106 ˘ 0.011‚ 0.224 ˘ 0.007‚ 0.155 ˘ 0.012‚ 0.328 ˘ 0.011‚ 0.210 ˘ 0.013‚ 0.245 ˘ 0.011‚

GDF 0.159 ˘ 0.007‚ 0.278 ˘ 0.010‚ 0.160 ˘ 0.008‚ 0.501 ˘ 0.009‚ 0.504 ˘ 0.016‚ 0.495 ˘ 0.029‚

CTL 0.130 ˘ 0.006‚ 0.266 ˘ 0.010‚ 0.179 ˘ 0.008‚ 0.498 ˘ 0.007‚ 0.467 ˘ 0.014‚ 0.471 ˘ 0.026‚

MLCL 0.498 ˘ 0.035‚ 0.470 ˘ 0.046‚ 0.130 ˘ 0.010 0.453 ˘ 0.033‚ 0.222 ˘ 0.047‚ 0.231 ˘ 0.077‚

COMES-HL 0.095 ˘ 0.009 0.214 ˘ 0.005 0.132 ˘ 0.010 0.154 ˘ 0.010 0.124 ˘ 0.011 0.173 ˘ 0.021‚

COMES-RL 0.106 ˘ 0.006‚ 0.213 ˘ 0.003 0.147 ˘ 0.013‚ 0.166 ˘ 0.010‚ 0.117 ˘ 0.009 0.151 ˘ 0.014
One Error Ó

Approach mirflickr music_emotion music_style yeastBP yeastCC yeastMF

BCE 0.275 ˘ 0.021‚ 0.462 ˘ 0.015‚ 0.345 ˘ 0.019 0.871 ˘ 0.008‚ 0.814 ˘ 0.019‚ 0.886 ˘ 0.020‚

CCMN 0.282 ˘ 0.030‚ 0.385 ˘ 0.018 0.346 ˘ 0.017 0.878 ˘ 0.016‚ 0.823 ˘ 0.016‚ 0.882 ˘ 0.012‚

GDF 0.409 ˘ 0.027‚ 0.531 ˘ 0.012‚ 0.367 ˘ 0.018‚ 0.976 ˘ 0.006‚ 0.971 ˘ 0.008‚ 0.972 ˘ 0.007‚

CTL 0.366 ˘ 0.017‚ 0.469 ˘ 0.019‚ 0.394 ˘ 0.022‚ 0.970 ˘ 0.006‚ 0.964 ˘ 0.004‚ 0.963 ˘ 0.010‚

MLCL 0.810 ˘ 0.066‚ 0.793 ˘ 0.041‚ 0.405 ˘ 0.068‚ 0.961 ˘ 0.038‚ 0.862 ˘ 0.066‚ 0.887 ˘ 0.066‚

COMES-HL 0.171 ˘ 0.019 0.382 ˘ 0.015 0.333 ˘ 0.012 0.641 ˘ 0.030 0.744 ˘ 0.020 0.800 ˘ 0.023
COMES-RL 0.206 ˘ 0.036‚ 0.409 ˘ 0.015‚ 0.351 ˘ 0.021‚ 0.808 ˘ 0.016‚ 0.754 ˘ 0.022 0.805 ˘ 0.020

Hamming Loss Ó

Approach mirflickr music_emotion music_style yeastBP yeastCC yeastMF

BCE 0.220 ˘ 0.007‚ 0.307 ˘ 0.007‚ 0.186 ˘ 0.005‚ 0.148 ˘ 0.007‚ 0.162 ˘ 0.007‚ 0.153 ˘ 0.006‚

CCMN 0.220 ˘ 0.006‚ 0.284 ˘ 0.013‚ 0.239 ˘ 0.020‚ 0.151 ˘ 0.007‚ 0.163 ˘ 0.008‚ 0.150 ˘ 0.005‚

GDF 0.277 ˘ 0.007‚ 0.374 ˘ 0.009‚ 0.251 ˘ 0.008‚ 0.499 ˘ 0.016‚ 0.489 ˘ 0.026‚ 0.497 ˘ 0.030‚

CTL 0.237 ˘ 0.006‚ 0.349 ˘ 0.006‚ 0.298 ˘ 0.008‚ 0.493 ˘ 0.009‚ 0.499 ˘ 0.007‚ 0.496 ˘ 0.006‚

MLCL 0.601 ˘ 0.020‚ 0.480 ˘ 0.025‚ 0.246 ˘ 0.019‚ 0.881 ˘ 0.096‚ 0.845 ˘ 0.051‚ 0.837 ˘ 0.024‚

COMES-HL 0.164 ˘ 0.003 0.247 ˘ 0.005 0.120 ˘ 0.006 0.073 ˘ 0.008‚ 0.119 ˘ 0.015‚ 0.101 ˘ 0.005‚

COMES-RL 0.186 ˘ 0.008‚ 0.278 ˘ 0.005 ‚ 0.210 ˘ 0.008‚ 0.051 ˘ 0.001 0.045 ˘ 0.004 0.048 ˘ 0.003
Coverage Ó

Approach mirflickr music_emotion music_style yeastBP yeastCC yeastMF

BCE 0.212 ˘ 0.009 0.408 ˘ 0.010‚ 0.197 ˘ 0.011 0.437 ˘ 0.021‚ 0.123 ˘ 0.010‚ 0.125 ˘ 0.011‚

CCMN 0.212 ˘ 0.012 0.392 ˘ 0.010‚ 0.216 ˘ 0.015‚ 0.436 ˘ 0.022‚ 0.125 ˘ 0.012‚ 0.123 ˘ 0.012‚

GDF 0.254 ˘ 0.006‚ 0.440 ˘ 0.010‚ 0.220 ˘ 0.010‚ 0.569 ˘ 0.019‚ 0.273 ˘ 0.018‚ 0.242 ˘ 0.022‚

CTL 0.229 ˘ 0.008‚ 0.441 ˘ 0.014‚ 0.240 ˘ 0.011‚ 0.567 ˘ 0.016‚ 0.259 ˘ 0.017‚ 0.231 ˘ 0.015‚

MLCL 0.492 ˘ 0.036‚ 0.596 ˘ 0.047‚ 0.177 ˘ 0.013 0.530 ˘ 0.072‚ 0.137 ˘ 0.045‚ 0.099 ˘ 0.032‚

COMES-HL 0.211 ˘ 0.008 0.379 ˘ 0.008 0.192 ˘ 0.012 0.229 ˘ 0.016 0.070 ˘ 0.008 0.085 ˘ 0.006‚

COMES-RL 0.224 ˘ 0.008‚ 0.377 ˘ 0.006 0.208 ˘ 0.015‚ 0.219 ˘ 0.015 0.070 ˘ 0.006 0.073 ˘ 0.005
Average Precision Ò

Approach mirflickr music_emotion music_style yeastBP yeastCC yeastMF

BCE 0.813 ˘ 0.011‚ 0.616 ˘ 0.009‚ 0.738 ˘ 0.013‚ 0.150 ˘ 0.013‚ 0.487 ˘ 0.016‚ 0.379 ˘ 0.019‚

CCMN 0.811 ˘ 0.016‚ 0.660 ˘ 0.010 0.728 ˘ 0.013‚ 0.150 ˘ 0.012‚ 0.479 ˘ 0.016‚ 0.386 ˘ 0.021‚

GDF 0.742 ˘ 0.013‚ 0.574 ˘ 0.008‚ 0.711 ˘ 0.011‚ 0.057 ˘ 0.002‚ 0.135 ˘ 0.010‚ 0.144 ˘ 0.016‚

CTL 0.772 ˘ 0.009‚ 0.600 ˘ 0.011‚ 0.692 ˘ 0.012‚ 0.060 ˘ 0.002‚ 0.154 ˘ 0.004‚ 0.165 ˘ 0.013‚

MLCL 0.446 ˘ 0.038‚ 0.381 ˘ 0.029‚ 0.719 ˘ 0.035‚ 0.082 ˘ 0.015‚ 0.402 ˘ 0.080‚ 0.375 ˘ 0.124‚

COMES-HL 0.843 ˘ 0.013 0.665 ˘ 0.009 0.749 ˘ 0.010 0.458 ˘ 0.020 0.657 ˘ 0.020 0.552 ˘ 0.023
COMES-RL 0.818 ˘ 0.011‚ 0.665 ˘ 0.006 0.732 ˘ 0.013‚ 0.315 ˘ 0.015‚ 0.651 ˘ 0.023 0.549 ˘ 0.019

Table 2: Experimental results on real-world benchmark datasets. Lower is better for the ranking
loss, one error, Hamming loss, coverage; higher is better for the average precision.

VOC2007 (Everingham et al., 2007), VOC2012 (Everingham et al., 2012), CUB (Wah et al., 2011)
and COCO2014 (Lin et al., 2014), where candidate labels were generated by two different data
generation processes. Full experimental details are given in Appendix C. Following standard prac-
tice (Liu et al., 2023), we evaluated with ranking loss, one error, Hamming loss, coverage and
average precision on real-world sets, and with mean average precision (mAP) on synthetic datasets.

4.2 EXPERIMENTAL RESULTS

Tables 2 and 3 summarize results on real-world and synthetic datasets, respectively. Here ‚ indicates
that the best method is significantly better than its competitor (paired t-test at 0.05 significance
level). We observe that both instantiations of COMES consistently outperform other baselines across
various datasets, clearly validating the effectiveness of our proposed approaches. We attribute this
to: (1) our data generation assumptions are more realistic and better match statistics of real-world
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VOC2007 VOC2012 CUB COCO2014

Approach Case-a Case-b Case-a Case-b Case-a Case-b Case-a Case-b

BCE 40.26 ˘ 2.79‚ 38.87 ˘ 1.12‚ 37.59 ˘ 1.29‚ 41.17 ˘ 2.98‚ 16.30 ˘ 0.48‚ 16.09 ˘ 0.14‚ 26.73 ˘ 1.12‚ 27.10 ˘ 0.40‚
CCMN 40.02 ˘ 4.98‚ 39.84 ˘ 1.22‚ 39.16 ˘ 2.34‚ 42.05 ˘ 4.84‚ 16.51 ˘ 0.25‚ 16.97 ˘ 0.90‚ 25.24 ˘ 1.81‚ 26.79 ˘ 1.23‚
GDF 21.27 ˘ 1.03‚ 20.19 ˘ 0.43‚ 23.58 ˘ 2.55‚ 22.96 ˘ 2.87‚ 12.83 ˘ 0.15‚ 12.77 ˘ 0.10‚ 17.32 ˘ 0.62‚ 15.86 ˘ 0.35‚
CTL 17.05 ˘ 0.90‚ 18.87 ˘ 1.86‚ 19.38 ˘ 0.81‚ 18.51 ˘ 0.71‚ 11.94 ˘ 0.23‚ 11.94 ˘ 0.23‚ 06.31 ˘ 0.30‚ 06.34 ˘ 0.14‚
MLCL 23.42 ˘ 1.66‚ 17.78 ˘ 1.18‚ 15.02 ˘ 4.68‚ 15.00 ˘ 3.54‚ 16.80 ˘ 0.04‚ 17.92 ˘ 0.10‚ 10.59 ˘ 0.63‚ 10.67 ˘ 0.81‚

COMES-HL 42.33 ˘ 1.74 42.43 ˘ 4.17 48.72 ˘ 1.08 47.93 ˘ 1.05 18.94 ˘ 0.30 18.95 ˘ 0.39 33.62 ˘ 0.57 32.76 ˘ 1.45
COMES-RL 51.46 ˘ 3.09 49.42 ˘ 4.27 53.26 ˘ 0.74 52.29 ˘ 4.15 17.50 ˘ 0.33‚ 17.34 ˘ 0.03‚ 27.98 ˘ 0.30‚ 28.69 ˘ 1.62‚

Table 3: Classification performance in terms of mAP on synthetic benchmark datasets.

Figure 2: Classification performance with inaccurate class priors on different datasets.

Figure 3: Sensitivity analysis w.r.t. β on the mirflickr dataset.

datasets; (2) our risk-correction approaches effectively mitigates overfitting, an issue overlooked by
previous unbiased methods (Xie & Huang, 2023).

4.3 SENSITIVITY ANALYSIS

Influence of Inaccurate Class Priors. To investigate the influence of inaccurate class priors, we
added Gaussian noise ϵ „ N p0, σ2q to each class prior πj . The experimental results on mirflickr,
music_emotion, and music_style are shown in Figure 2. We observe that COMES-HL is more
sensitive to inaccurate class priors. Overall performance remains stable within a reasonable range
of class priors, but may degrade when the priors become highly inaccurate.

Influence of β. We also investigated the influence of the hyperparameter β for the flooding regu-
larization used in COMES-RL. From Figure 3, we observe that the performance of COMES-RL is
rather stable when β is set within a reasonable range on the mirflickr dataset. During our experi-
ments, we found that the performance was already competitive by setting β “ 0 on many datasets.
However, the performance may degrade when β is set to a large value. This also matches our theo-
retical results in Theorem 5, where consistency holds when β is not too large.

5 CONCLUSION

In this paper, we rethought MLC under inexact supervision by proposing a novel framework. We
proposed two instantiations of risk estimators w.r.t. the Hamming loss and ranking loss, two widely
used evaluation metrics for MLC, respectively. We also introduced risk-correction approaches to
improve generalization performance with theoretical guarantees. Extensive experiments on ten real-
world and synthetic benchmark datasets validated the effectiveness of the proposed approaches. A
limitation of this work is that we consider the generation process to be independent of the instances.
In the future, it is promising to extend our proposed methodologies to instance-dependent settings.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs to check the manuscript for typos and grammatical errors.

A MORE DETAILS ABOUT THE ALGORITHM

A.1 ALGORITHMIC PSEUDO-CODE

Algorithm 1 COMES-HL and COMES-RL
Input: Multi-label classifiers g, PML dataset D, epoch number Tmax, iteration number Imax.

1: for t = 1, 2, . . . , Tmax do
2: Shuffle D;
3: for j “ 1, . . . , Imax do
4: Fetch mini-batch Dj from D;
5: Forward D and get the outputs of g;
6: if using the COMES-HL algorithm then
7: Calculating the loss based on Eq. (8);
8: else if using the COMES-RL algorithm then
9: Calculating the loss based on Eq. (14);

10: end if
11: Update g using a stochastic optimizer to minimize the loss;
12: end for
13: end for
Output: g.

A.2 CLASS PRIOR ESTIMATION

We can use any off-the-shelf mixture proportion estimation algorithm to estimate the class pri-
ors (Ramaswamy et al., 2016; Garg et al., 2021; Yao et al., 2022; Zhu et al., 2023), which are
mainly designed to estimate the class prior with positive and unlabeled data for binary classification.
Specifically, we generate negative and unlabeled datasets according to Eq. (6) and then apply the
mixture proportion estimation algorithm. The algorithmic details are summarized in Algorithm 2.

Algorithm 2 Class-prior Estimation
Input: Mixture proportion estimation algorithm A, PML dataset D.

1: for k P Y do
2: Generate unlabeled and negative datasets according to Eq. (6);
3: Estimate the value of p1 ´ πkq by using A and interchanging the positive and negative

classes;
4: end for
Output: Class priors πk (k P Y).

B PROOFS

B.1 PROOF OF LEMMA 1

According to the definition of PML, when sj “ 0, the j-th class is impossible to be a relavant label,
and we have ppj R Y |x, sj “ 0q “ ppj R Y |sj “ 0q “ 1. Therefore, on one hand, we have

ppx|sj “ 0, j R Y q “
p px|sj “ 0q ppj R Y |x, sj “ 0q

ppj R Y |sj “ 0q
“ p px|sj “ 0q .

On the other hand, we have

ppx|sj “ 0, j R Y q “
ppx|j R Y qppsj “ 0|x, j R Y q

ppsj “ 0|j R Y q
“ ppx|j R Y q,
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where the second equation is due to ppsj “ 0|x, j R Y q “ ppsj “ 0|j R Y q “ pj . The proof is
completed.

B.2 PROOF OF THEOREM 1

Rℓ
Hpgq “Eppx,Y q

„

1

q

ÿq

j“1
ℓ pgj pxq , yjq

ȷ

“

ż

ÿ

Y

1

q

ÿq

j“1
ℓ pgj pxq , yjq p px, Y qdx

“

ż

1

q

ÿq

j“1

ÿ1

yj“0

ÿ

Y 1“Y zj
ℓ pgj pxq , yjq ppx, yjqp

`

Y 1|x, yj
˘

dx

“

ż

1

q

ÿq

j“1

ÿ1

yj“0
ℓ pgj pxq , yjq ppx, yjq

ÿ

Y 1“Y zj
p
`

Y 1|x, yj
˘

dx

“

ż

1

q

ÿq

j“1

ÿ1

yj“0
ℓ pgj pxq , yjq ppx, yjqdx

“

ż

1

q

ÿq

j“1
ℓ pgj pxq , 1q ppx, yj “ 1qdx `

ż

1

q

ÿq

j“1
ℓ pgj pxq , 0q p px, yj “ 0qdx

“

ż

1

q
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ℓ pgj pxq , 1q ppxqdx ´

ż

1

q
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`
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“
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q
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ż

1

q
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pℓ pgj pxq , 0q ´ ℓ pgj pxq , 1qq p1 ´ πjq p px|yj “ 0qdx
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„

1

q
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ℓ pgj pxq , 1q

ȷ

` Eppx|yj“0q

„
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,

where the last equation is by Lemma 1. The proof is completed.

B.3 PROOF OF THEOREM 2

Let

D`
j pgjq “

"

pDU,Djq |
1

n

ÿn

i“1
ℓ
`

gj
`

xU
i

˘

, 1
˘

´
1 ´ πj

nj

ÿnj

i“1
ℓ
´

gj

´

xj
i

¯

, 1
¯

ą 0

*

and

D´
j pgjq “

"

pDU,Djq |
1

n

ÿn

i“1
ℓ
`

gj
`

xU
i

˘

, 1
˘

´
1 ´ πj

nj

ÿnj

i“1
ℓ
´

gj

´

xj
i

¯

, 1
¯

ď 0

*

denote the set of data pairs with positive and negative empirical losses, respectively. Then, we have
the following lemma.
Lemma 2. The probability measure of D´

j pgjq can be bounded as follows:

P
`

D´
j pgjq

˘

ď exp

ˆ

´2α2

C2
ℓ {n ` p1 ´ πjq2C2

ℓ {nj

˙

. (18)

Proof. Let

p pDUq “ ppxU
1 qppxU

2 q ¨ ¨ ¨ ppxU
n q and p pDjq “ ppxj

1qppxj
2q ¨ ¨ ¨ ppxj

nj
q

denote the densities of DU and Dj , respectively. Then, the joint density of pDU,Djq is

p pDU,Djq “ p pDUq p pDjq .
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Then, the probability measure of D´
j pgjq can be expressed as

P
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j pgjq
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p pDU,Djqd pDU,Djq

“

ż

pDU,DjqPD´
j pgjq

p pDU,DjqdxU
1 dxU

2 ¨ ¨ ¨ dxU
n dxj

1 dx
j
2 ¨ ¨ ¨ dxj

nj

When an instance in DU is replaced by another instance, the value of
řn

i“1 ℓ
`

gj
`

xU
i

˘

, 1
˘

{n´p1´

πjq
řnj

i“1 ℓ
´

gj

´

xj
i

¯

, 1
¯

{nj changes no more than Cℓ{n. When an instance in Dj is replaced by

another instance, the value of
řn

i“1 ℓ
`

gj
`

xU
i

˘

, 1
˘

{n´ p1´πjq
řnj

i“1 ℓ
´

gj

´

xj
i

¯

, 1
¯
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no more than p1´πjqCℓ{nj . Therefore, by applying the McDiarmid’s inequality, we can obtain the
following inequality:

p

ˆ

πjEppx|yj“1q rℓ pgj pxq , 1qs ´

ˆ

1

n

ÿn

i“1
ℓ
`

gj
`

xU
i

˘

, 1
˘

´
1 ´ πj

nj

ÿnj

i“1
ℓ
´

gj

´

xj
i

¯

, 1
¯

˙

ě α

˙

ď exp

ˆ

´2α2

C2
ℓ {n ` p1 ´ πjq2C2

ℓ {nj

˙

.

Then we have
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which concludes the proof.

Then, we provide the proof of Theorem 2.

Proof of Theorem 2. To begin with, we have

E
”
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Then,
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which concludes the proof of the first part of the theorem. Then, we provide an upper bound for
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changes at most p2 ´ 2πjqCℓ{pqnjq. By applying McDiarmid’s inequality, we have the following
inequalities with probability at least 1 ´ δ{2:
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where we use the inequality that
?
a ` b ď

?
a `

?
b. Therefore, the following inequality holds

with probability at least 1 ´ δ:
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which concludes the proof.
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B.4 PROOF OF THEOREM 3

Definition 1 (Rademacher complexity). Let Xn “ tx1, . . .xnu denote n i.i.d. random variables
drawn from a probability distribution with density ppxq, G “ tgk : X ÞÑ Ru denote a class of mea-
surable functions of model outputs for the k,-th class, and σ “ pσ1, σ2, . . . , σnq denote Rademacher
variables taking values from t`1,´1u uniformly. Then, the (expected) Rademacher complexity of
G is defined as

Rn,ppGq “ EXnEσ

«

sup
gjPG

1

n

ÿn

i“1
σigjpxiq

ff

. (19)

We also introduce an alternative definition of Rademacher complexity:

R1
n,ppGq “ EXnEσ

«

sup
gjPG

ˇ

ˇ

ˇ

ˇ

1

n

ÿn

i“1
σigjpxiq

ˇ

ˇ

ˇ

ˇ

ff

. (20)

Then, we introduce the following lemmas.
Lemma 3. Without any composition, for any G, we have R1

n,ppGq ě Rn,ppGq. If G is closed under
negation, we have R1

n,ppGq “ Rn,ppGq.

Lemma 4 (Theorem 4.12 in (Ledoux & Talagrand, 1991)). If ℓ : R ˆ t0, 1u Ñ R is a Lipschitz
continuous function with a Lipschitz constant Lℓ and satisfies @y, ℓp0, yq “ 0, we have

R1
n,ppℓ ˝ Gq ď 2LℓR

1
n,ppGq,

where ℓ ˝ G “ tℓ ˝ gj |gj P Gu.

Then, we provide the following lemma.
Lemma 5. Based on the above assumptions, for any δ ą 0, the following inequality holds with
probability at least 1 ´ δ:

sup
g1,g2,...,gqPG

ˇ

ˇ

ˇ
Rℓ

Hpgq ´ R̃ℓ
Hpgq

ˇ

ˇ

ˇ
ď

4Lℓ

q

ÿq

j“1
R1

n,ppGq `
8p1 ´ πjqLℓ

q

ÿq

j“1
R1

nj ,pj
pGq

`
1

q

ÿq

j“1
p4 ´ 2πjqCℓ∆j ` Cℓ

c

ln p1{δq

2n
`
ÿq

j“1

p2 ´ 2πjqCℓ

q

d

ln p1{δq

2nj
.

Proof. When an instance in DU is replaced by another instance, the value of
supg1,g2,...,gqPG

ˇ

ˇ

ˇ
E
”

R̃ℓ
Hpgq

ı

´ R̃ℓ
Hpgq

ˇ

ˇ

ˇ
changes at most Cℓ{n; when an instance in Dj is re-

placed by another instance, the value of supg1,g2,...,gqPG

ˇ

ˇ

ˇ
E
”

R̃ℓ
Hpgq

ı

´ R̃ℓ
Hpgq

ˇ

ˇ

ˇ
changes at most

p2 ´ 2πjqCℓ{pqnjq. By applying McDiarmid’s inequality, we have the following inequality with
probability at least 1 ´ δ:

sup
g1,g2,...,gqPG

ˇ

ˇ

ˇ
E
”

R̃ℓ
Hpgq

ı

´ R̃ℓ
Hpgq

ˇ

ˇ

ˇ
´ E

«

sup
g1,g2,...,gqPG

ˇ

ˇ

ˇ
E
”

R̃ℓ
Hpgq

ı

´ R̃ℓ
Hpgq

ˇ

ˇ

ˇ

ff

ďCℓ

c

ln p1{δq

2n
`
ÿq

j“1

p2 ´ 2πjqCℓ

q

d

ln p1{δq

2nj
. (21)

For ease of notations, let D “ DU

Ť

D1

Ť

D2 . . .
Ť

Dq denote set of all the data. We have

E

«

sup
g1,g2,...,gqPG

ˇ

ˇ

ˇ
E
”

R̃ℓ
Hpgq

ı

´ R̃ℓ
Hpgq

ˇ

ˇ

ˇ

ff

“ED

«

sup
g1,g2,...,gqPG

ˇ

ˇ

ˇ
ED1

”

R̃ℓ
Hpgq

ı

´ R̃ℓ
Hpgq

ˇ

ˇ

ˇ

ff

ďED,D1

«

sup
g1,g2,...,gqPG

ˇ

ˇ

ˇ
R̃ℓ

Hpg;Dq ´ R̃ℓ
Hpg1;D1

q

ˇ

ˇ

ˇ

ff

, (22)
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where the last inequality is deduced by applying Jensen’s inequality twice. Here, R̃ℓ
Hpg; pDq denotes

the value of R̃ℓ
Hpgq on pD. We introduce ℓ̄pzq “ ℓpzq´ℓp0q and we have ℓ̄pz1q´ℓ̄pz2q “ ℓpz1q´ℓpz2q.

It is obvious that ℓ̄pzq is a Lipschitz continuous function with a Lipschitz constant Lℓ. Then, we have

ˇ

ˇ

ˇ
R̃ℓ

Hpg; pDq ´ R̃ℓ
Hpg; pD1q

ˇ

ˇ

ˇ

ď
1

q

ÿq

j“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

ÿn

i“1
ℓ̄
`

gj
`

xU
i

˘

, 1
˘

´
1 ´ πj

nj

ÿnj

i“1
ℓ̄
´

gj

´

xj
i

¯

, 1
¯

ˇ

ˇ

ˇ

ˇ

´

ˇ

ˇ

ˇ

ˇ

1

n

ÿn

i“1
ℓ̄
´

gj

´

xU1

i

¯

, 1
¯

´
1 ´ πj

nj

ÿnj

i“1
ℓ̄
´

gj

´

xj1

i

¯

, 1
¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`
ÿq

j“1

ˇ

ˇ

ˇ

ˇ

1 ´ πj

qnj

ÿnj

i“1
ℓ̄
´

gj

´

xj
i

¯

, 0
¯

´
1 ´ πj

qnj

ÿnj

i“1
ℓ̄
´

gj

´

xj1

i

¯

, 0
¯

ˇ

ˇ

ˇ

ˇ

ď
1

q

ÿq

j“1

ˇ

ˇ

ˇ

ˇ

1

n

ÿn

i“1
ℓ̄
`

gj
`

xU
i

˘

, 1
˘

´
1 ´ πj

nj

ÿnj

i“1
ℓ̄
´

gj

´

xj
i

¯

, 1
¯

´
1

n

ÿn

i“1
ℓ̄
´

gj

´

xU1

i

¯

, 1
¯

`
1 ´ πj

nj

ÿnj

i“1
ℓ̄
´

gj

´

xj1

i

¯

, 1
¯

ˇ

ˇ

ˇ

ˇ

`
ÿq

j“1

ˇ

ˇ

ˇ

ˇ

1 ´ πj

qnj

ÿnj

i“1
ℓ̄
´

gj

´

xj
i

¯

, 0
¯

´
1 ´ πj

qnj

ÿnj

i“1
ℓ̄
´

gj

´

xj1

i

¯

, 0
¯

ˇ

ˇ

ˇ

ˇ

ď
1

q

ÿq

j“1

ˇ

ˇ

ˇ

ˇ

1

n

ÿn

i“1
ℓ̄
`

gj
`

xU
i

˘

, 1
˘

´
1

n

ÿn

i“1
ℓ̄
´

gj

´

xU1

i

¯

, 1
¯

ˇ

ˇ

ˇ

ˇ

`
1

q

ÿq

j“1

ˇ

ˇ

ˇ

ˇ

1 ´ πj

nj

ÿnj

i“1
ℓ̄
´

gj

´

xj1

i

¯

, 1
¯

´
1 ´ πj

nj

ÿnj

i“1
ℓ̄
´

gj

´

xj
i

¯

, 1
¯

ˇ

ˇ

ˇ

ˇ

`
ÿq

j“1

ˇ

ˇ

ˇ

ˇ

1 ´ πj

qnj

ÿnj

i“1
ℓ̄
´

gj

´

xj
i

¯

, 0
¯

´
1 ´ πj

qnj

ÿnj

i“1
ℓ̄
´

gj

´

xj1

i

¯

, 0
¯

ˇ

ˇ

ˇ

ˇ

, (23)

where the inequalities are due to the triangle inequality. Then, by combining Inequalities (22)
and (23), it is a routine work (Mohri et al., 2012) to show that

ED,D1

«

sup
g1,g2,...,gqPG

ˇ

ˇ

ˇ
R̃ℓ

Hpg;Dq ´ R̃ℓ
Hpg1;D1

q

ˇ

ˇ

ˇ

ff

ď
2

q

ÿq

j“1
R1

n,ppℓ̄ ˝ Gq `
4p1 ´ πjq

q

ÿq

j“1
R1

nj ,pj
pℓ̄ ˝ Gq

ď
4Lℓ

q

ÿq

j“1
R1

n,ppGq `
8p1 ´ πjqLℓ

q

ÿq

j“1
R1

nj ,pj
pGq

“
4Lℓ

q

ÿq

j“1
Rn,ppGq `

8p1 ´ πjqLℓ

q

ÿq

j“1
Rnj ,pj

pGq, (24)

where the second inequality is due to Lemma 4, pj denotes ppx|sj “ 0q, and the last equality is
due to Lemma 3. By combining Inequalities (21) and (24), we have the following inequality with
probability at least 1 ´ δ:

sup
g1,g2,...,gqPG

ˇ

ˇ

ˇ
E
”

R̃ℓ
Hpgq

ı

´ R̃ℓ
Hpgq

ˇ

ˇ

ˇ
ď

4Lℓ

q

ÿq

j“1
Rn,ppGq `

8p1 ´ πjqLℓ

q

ÿq

j“1
Rnj ,pj

pGq

` Cℓ

c

ln p1{δq

2n
`
ÿq

j“1

p2 ´ 2πjqCℓ

q

d

ln p1{δq

2nj
. (25)
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Then, we have the following inequality with probability at least 1 ´ δ:

sup
g1,g2,...,gqPG

ˇ

ˇ

ˇ
Rℓ

Hpgq ´ R̃ℓ
Hpgq

ˇ

ˇ

ˇ

“ sup
g1,g2,...,gqPG

ˇ

ˇ

ˇ
Rℓ

Hpgq ´ E
”

R̃ℓ
Hpgq

ı

` E
”

R̃ℓ
Hpgq

ı

´ R̃ℓ
Hpgq

ˇ

ˇ

ˇ

ď sup
g1,g2,...,gqPG

ˇ

ˇ

ˇ
Rℓ

Hpgq ´ E
”

R̃ℓ
Hpgq

ı
ˇ

ˇ

ˇ
` sup

g1,g2,...,gqPG

ˇ

ˇ

ˇ
E
”

R̃ℓ
Hpgq

ı

´ R̃ℓ
Hpgq

ˇ

ˇ

ˇ

ď
1

q

ÿq

j“1
p4 ´ 2πjqCℓ∆j ` Cℓ

c

ln p1{δq

2n
`
ÿq

j“1

p2 ´ 2πjqCℓ

q

d

ln p1{δq

2nj

`
4Lℓ

q

ÿq

j“1
Rn,ppGq `

8p1 ´ πjqLℓ

q

ÿq

j“1
Rnj ,pj pGq,

where the second inequality is due to Inequalities 25 and 9. The proof is complete.

Then, we provide the proof of Theorem 3.

Proof of Theorem 3.

Rℓ
Hpg̃Hq ´ Rℓ

Hpg˚
Hq “ Rℓ

Hpg̃Hq ´ R̃ℓ
Hpg̃Hq ` R̃ℓ

Hpg̃Hq ´ R̃ℓ
Hpg˚

Hq ` R̃ℓ
Hpg˚

Hq ´ Rℓ
Hpg˚

Hq

ď Rℓ
Hpg̃Hq ´ R̃ℓ

Hpg̃Hq ` R̃ℓ
Hpg˚

Hq ´ Rℓ
Hpg˚

Hq

ď 2 sup
g1,g2,...,gqPG

ˇ

ˇ

ˇ
Rℓ

Hpgq ´ R̃ℓ
Hpgq

ˇ

ˇ

ˇ
.

By Lemma 5, the proof is complete.

B.5 PROOF OF COROLLARY 1

Lemma 6 (Theorem 4 in Gao & Zhou (2013)). The surrogate loss Rℓ is multi-label consistent
w.r.t. the Hamming or ranking loss R0´1 if and only if it holds for any sequence tgtu that if Rℓpgq Ñ

Rℓ˚, then R0´1pgq Ñ R˚. Here, Rℓ˚ “ infg R
ℓpgq and R˚ “ infg R

0´1pgq.

Lemma 7 (Theorem 32 in Gao & Zhou (2013)). If ℓ is a convex function with ℓ1p0, yq ă 0, then
Eq. (2) is consistent w.r.t. the Hamming loss.

Then, we provide the proof of Corollary 1.

Proof of Corollary 1. Since the proposed risk in Eq. (5) is equivalent to the risk in Eq. (2), it is
sufficient to prove that for any sequence tgtu that if Rℓ

Hpgtq Ñ Rℓ˚
H , then R0´1

H pftq Ñ R˚
H.
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B.6 PROOF OF THEOREM 4

Rℓ
Rpgq “Eppx,Y q

„

ÿ

1ďjăkďq
Ipyj ‰ ykqℓ

ˆ

gjpxq ´ gkpxq,
yj ´ yk ` 1

2

˙ȷ

“

ż

ÿ

Y

ÿ

1ďjăkďq
Ipyj ‰ ykqℓ

ˆ

gjpxq ´ gkpxq,
yj ´ yk ` 1

2

˙

p px, Y qdx

“

ż

ÿ

1ďjăkďq

ÿ1

yj“0

ÿ1

yk“0

ÿ

Y 1“Y ztyj ,yku
Ipyj ‰ ykqℓ

ˆ

gjpxq ´ gkpxq,
yj ´ yk ` 1

2

˙

p px, yj , ykq p
`

Y 1|x, yj , yk
˘

dx

“

ż

ÿ

1ďjăkďq

ÿ1

yj“0

ÿ1

yk“0
Ipyj ‰ ykqℓ

ˆ

gjpxq ´ gkpxq,
yj ´ yk ` 1

2

˙

p px, yj , ykq
ÿ

Y 1“Y ztyj ,yku
p
`

Y 1|x, yj , yk
˘

dx

“

ż

ÿ

1ďjăkďq

ÿ1

yj“0

ÿ1

yk“0
Ipyj ‰ ykqℓ

ˆ

gjpxq ´ gkpxq,
yj ´ yk ` 1

2

˙

p px, yj , ykqdx

“
ÿ

1ďjăkďq

ˆ
ż

ℓ pgjpxq ´ gkpxq, 0q p px, yj “ 0, yk “ 1qdx

`

ż

ℓ pgjpxq ´ gkpxq, 1q p px, yj “ 1, yk “ 0qdx

˙

“
ÿ

1ďjăkďq

ˆ
ż

ℓ pgjpxq ´ gkpxq, 0q pp px, yj “ 0q ´ p px, yj “ 0, yk “ 0qqdx

`

ż

ℓ pgjpxq ´ gkpxq, 1q pp px, yk “ 0q ´ p px, yj “ 0, yk “ 0qqdx

˙

“
ÿ

1ďjăkďq

ˆ
ż

ℓ pgjpxq ´ gkpxq, 0q p1 ´ πjqp px|yj “ 0qdx

`

ż

ℓ pgjpxq ´ gkpxq, 1q p1 ´ πkqp px|yk “ 0qdx

´

ż

pℓ pgjpxq ´ gkpxq, 1q ` ℓ pgjpxq ´ gkpxq, 1qq p px, yj “ 0, yk “ 0qdx

˙

“
ÿ

1ďjăkďq

`

p1 ´ πjqEppx|yj“0q rℓ pgjpxq ´ gkpxq, 0qs

`p1 ´ πkqEppx|yk“0q rℓ pgjpxq ´ gkpxq, 1qs ´ Cppyj “ 0, yk “ 0q
˘

.

“
ÿ

1ďjăkďq

`

p1 ´ πjqEppx|sj“0q rℓ pgjpxq ´ gkpxq, 0qs

`p1 ´ πkqEppx|sk“0q rℓ pgjpxq ´ gkpxq, 1qs ´ Cppyj “ 0, yk “ 0q
˘

,

where the last equation is by Lemma 1. The proof is completed.

B.7 PROOF OF THEOREM 5

Let pD “ D1

Ť

D2

Ť

. . .Dq denote the set of all the data used in Eq. (14). We introduce

D`pgq “

!

pD|R̂ℓ
Rpgq ą β

)

, and D´pgq “

!

pD|R̂ℓ
Rpgq ď β

)

.

Then, we have the following lemma.

Lemma 8. The probability measure of D´pgq can be bounded as follows:

P
`

D´pgq
˘

ď exp

˜

´2γ2

řq
j“1p1 ´ πjq2pq ´ 1q2C2

ℓ {nj

¸

. (26)
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Proof. When an instance from Dj is replaced by another instance, the value of R̂ℓ
Rpgq changes at

most p1 ´ πjqpq ´ 1qCℓ{nj . Therefore, by applying the McDiarmid’s inequality, we can obtain the
following inequality:

p
´

Rℓ
Rpgq ´ R̂ℓ

Rpgq `
ÿ

1ďjăkďq
Mppyj “ 0, yk “ 0q ě γ

¯

ď exp

˜

´2γ2

řq
j“1p1 ´ πjq2pq ´ 1q2C2

ℓ {nj

¸

.

Then, we have

P
`

D´pgq
˘

“p
´

R̂ℓ
Rpgq ď β

¯

ďp
´

R̂ℓ
Rpgq ď

ÿ

1ďjăkďq
Mppyj “ 0, yk “ 0q

¯

ďp
´

R̂ℓ
Rpgq ď

ÿ

1ďjăkďq
Mppyj “ 0, yk “ 0q ` Rℓ

Rpgq ´ γ
¯

ď exp

˜

´2γ2

řq
j“1p1 ´ πjq2pq ´ 1q2C2

ℓ {nj

¸

,

which concludes the proof.

Then, we give the proof of Theorem 5.

Proof of Theorem 5. To begin with, we have

E
”

R̃ℓ
Rpgq

ı

´
ÿ

1ďjăkďq
Mppyj “ 0, yk “ 0q ´ Rℓ

Rpgq “ E
”

R̃ℓ
Rpgq ´ R̂ℓ

Rpgq

ı

ě 0.

Besides, we have
R̂ℓ

Rpgq ď Cℓpq ´ 1q
ÿq

j“1
p1 ´ πjq.

Then,

E
”

R̃ℓ
Rpgq

ı

´
ÿ

1ďjăkďq
Mppyj “ 0, yk “ 0q ´ Rℓ

Rpgq

“E
”

R̃ℓ
Rpgq ´ R̂ℓ

Rpgq

ı

“

ż

pDPD´pgq

´
ˇ

ˇ

ˇ
R̂ℓ

Rpgq ´ β
ˇ

ˇ

ˇ
` β ´ R̂ℓ

Rpgq

¯

p
´

pD
¯

d pD

ď sup
pDPD´pgq

´

2β ` 2R̂ℓ
Rpgq

¯

ż

pDPD´pgq

p
´

pD
¯

d pD

“ sup
pDPD´pgq

´

2β ` 2R̂ℓ
Rpgq

¯

P
`

D´pgq
˘

ď

´

2β ` 2Cℓpq ´ 1q
ÿq

j“1
p1 ´ πjq

¯

exp

˜

´2γ2

řq
j“1p1 ´ πjq2pq ´ 1q2C2

ℓ {nj

¸

,

which concludes the first part of the proof. Then we provide an upper bound for
ˇ

ˇ

ˇ
R̃ℓ

Rpgq ´ E
”

R̃ℓ
Rpgq

ıˇ

ˇ

ˇ
. When an instance from Dj is replaced by another instance, the value of

R̃ℓ
Rpgq changes at most p1 ´ πjqpq ´ 1qCℓ{nj . Therefore, by applying the McDiarmid’s inequality,

we have the following inequalities with probability at least 1 ´ δ{2:

R̃ℓ
Rpgq ´ E

”

R̃ℓ
Rpgq

ı

ď
ÿq

j“1
p1 ´ πjqpq ´ 1qCℓ

d

ln p2{δq

2nj
,

E
”

R̃ℓ
Rpgq

ı

´ R̃ℓ
Rpgq ď

ÿq

j“1
p1 ´ πjqpq ´ 1qCℓ

d

ln p2{δq

2nj
.
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Therefore, we have the following inequalities with probability at least 1 ´ δ:

ˇ

ˇ

ˇ
R̃ℓ

Rpgq ´ E
”

R̃ℓ
Rpgq

ı
ˇ

ˇ

ˇ
ď
ÿq

j“1
p1 ´ πjqpq ´ 1qCℓ

d

ln p2{δq

2nj
.

Finally,
ˇ

ˇ

ˇ
R̃ℓ

Rpgq ´
ÿ

1ďjăkďq
Mppyj “ 0, yk “ 0q ´ Rℓ

Rpgq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
R̃ℓ

Rpgq ´ E
”

R̃ℓ
Rpgq

ı

` E
”

R̃ℓ
Rpgq

ı

´
ÿ

1ďjăkďq
Mppyj “ 0, yk “ 0q ´ Rℓ

Rpgq

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
R̃ℓ

Rpgq ´ E
”

R̃ℓ
Rpgq

ı
ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
E
”

R̃ℓ
Rpgq

ı

´
ÿ

1ďjăkďq
Mppyj “ 0, yk “ 0q ´ Rℓ

Rpgq

ˇ

ˇ

ˇ

ď
ÿq

j“1
p1 ´ πjqpq ´ 1qCℓ

d

ln p2{δq

2nj

`

´

2β ` 2Cℓpq ´ 1q
ÿq

j“1
p1 ´ πjq

¯

exp

˜

´2γ2

řq
j“1p1 ´ πjq2pq ´ 1q2C2

ℓ {nj

¸

, (27)

which concludes the proof.

B.8 PROOF OF THEOREM 6

Lemma 9. Based on the above assumptions, for any δ ą 0, the following inequality holds with
probability at least 1 ´ δ:

sup
g1,g2,...,gqPG

ˇ

ˇ

ˇ
Rℓ

Rpgq `
ÿ

jăk
Mppyj “ 0, yk “ 0q ´ R̃ℓ

Rpgq

ˇ

ˇ

ˇ
ď

´

2β ` 2Cℓpq ´ 1q
ÿq

j“1
p1 ´ πjq

¯

∆1

`
ÿq

j“1
p1 ´ πjqpq ´ 1qCℓ

d

ln p1{δq

nj
`
ÿq

j“1
4Lℓpq ´ 1qp1 ´ πjqRnj ,pj

pGq . (28)

Proof. When an instance in Dj is replaced by another instance, the value of

supg1,g2,...,gqPG

ˇ

ˇ

ˇ
E
”

R̃ℓ
Rpgq

ı

´ R̃ℓ
Rpgq

ˇ

ˇ

ˇ
changes at most p1 ´ πjqpq ´ 1qCℓ{nj . Therefore,

by applying the McDiarmid’s inequality, we have the following inequalities with probability at least
1 ´ δ:

sup
g1,g2,...,gqPG

ˇ

ˇ

ˇ
E
”

R̃ℓ
Rpgq

ı

´ R̃ℓ
Rpgq

ˇ

ˇ

ˇ
´ E

«

sup
g1,g2,...,gqPG

ˇ

ˇ

ˇ
E
”

R̃ℓ
Rpgq

ı

´ R̃ℓ
Rpgq

ˇ

ˇ

ˇ

ff

ď
ÿq

j“1
p1 ´ πjqpq ´ 1qCℓ

d

ln p1{δq

nj
. (29)

Then,

E

«

sup
g1,g2,...,gqPG

ˇ

ˇ

ˇ
E
”

R̃ℓ
Rpgq

ı

´ R̃ℓ
Rpgq

ˇ

ˇ

ˇ

ff

“E
pD

«

sup
g1,g2,...,gqPG

ˇ

ˇ

ˇ
E

pD1

”

R̃ℓ
Rpgq

ı

´ R̃ℓ
Rpgq

ˇ

ˇ

ˇ

ff

ďE
pD, pD1

«

sup
g1,g2,...,gqPG

ˇ

ˇ

ˇ
R̃ℓ

Rpg; pDq ´ R̃ℓ
Rpg1; pD1q

ˇ

ˇ

ˇ

ff

, (30)

where the last inequality is deduced by applying Jensen’s inequality twice. Here, R̃ℓ
Rpg; pDq denotes

the value of R̃ℓ
Rpgq on pD. Then, we introduce the following lemma.
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Lemma 10. If ℓ : R ˆ t0, 1u Ñ R is a Lipschitz continuous function with a Lipschitz constant Lℓ

and satisfies @y, ℓp0, yq “ 0, we have

R1
n,p pℓ ˝ pG ´ Gqq ď 4LℓR

1
n,ppGq,

where ℓ ˝ ppG ´ Gqq “ tℓ ˝ pgj ´ gkq |gj P G, gk P Gu.

Proof.

R1
n,p pℓ ˝ pG ´ Gqq

“2R1
n,p pℓ ˝ pGqq

ď4LℓR
1
n,ppGq,

where the first inequality is by symmetrization (Mohri et al., 2012) and the second inequality is by
Lemma 4. The proof is complete.

Therefore, we have
ˇ

ˇ

ˇ
R̃ℓ

Rpg; pDq ´ R̃ℓ
Rpg; pD1q

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
R̂ℓ

Rpg; pDq ´ β
ˇ

ˇ

ˇ
´

ˇ

ˇ

ˇ
R̂ℓ

Rpg; pD1q ´ β
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
R̂ℓ

Rpg; pDq ´ R̂ℓ
Rpg; pD1q

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ÿ

1ďjăkďq

1 ´ πj

nj

ÿnj

i“1

´

ℓ
´

gjpxj
i q ´ gkpxj

i q, 0
¯

´ ℓ
´

gjpxj1

i q ´ gkpxj1

i q, 0
¯¯

`
1 ´ πk

nk

ÿnk

i“1

´

ℓ
`

gjpxk
i q ´ gkpxk

i q, 1
˘

´ ℓ
´

gjpxk1

i q ´ gkpxk1

i q, 1
¯¯

ˇ

ˇ

ˇ

ˇ

ď
ÿ

1ďjăkďq

ˇ

ˇ

ˇ

ˇ

1 ´ πj

nj

ÿnj

i“1

´

ℓ
´

gjpxj
i q ´ gkpxj

i q, 0
¯

´ ℓ
´

gjpxj1

i q ´ gkpxj1

i q, 0
¯¯

ˇ

ˇ

ˇ

ˇ

`
ÿ

1ďjăkďq

ˇ

ˇ

ˇ

ˇ

1 ´ πk

nk

ÿnk

i“1

´

ℓ
`

gjpxk
i q ´ gkpxk

i q, 1
˘

´ ℓ
´

gjpxk1

i q ´ gkpxk1

i q, 1
¯¯

ˇ

ˇ

ˇ

ˇ

“
ÿ

1ďjăkďq

ˇ

ˇ

ˇ

ˇ

1 ´ πj

nj

ÿnj

i“1

´

ℓ̄
´

gjpxj
i q ´ gkpxj

i q, 0
¯

´ ℓ̄
´

gjpxj1

i q ´ gkpxj1

i q, 0
¯¯

ˇ

ˇ

ˇ

ˇ

`
ÿ

1ďjăkďq

ˇ

ˇ

ˇ

ˇ

1 ´ πk

nk

ÿnk

i“1

´

ℓ̄
`

gjpxk
i q ´ gkpxk

i q, 1
˘

´ ℓ̄
´

gjpxk1

i q ´ gkpxk1

i q, 1
¯¯

ˇ

ˇ

ˇ

ˇ

, (31)

where the inequalities are due to the triangle inequality. Then, by combining Inequalities 30 and 31,
it is a routine work (Mohri et al., 2012) to show that

E

«

sup
g1,g2,...,gqPG

ˇ

ˇ

ˇ
E
”

R̃ℓ
Rpgq

ı

´ R̃ℓ
Rpgq

ˇ

ˇ

ˇ

ff

ď
ÿq

j“1
pq ´ 1qp1 ´ πjqR1

nj ,pj

`

ℓ̄ ˝ pG ´ Gq
˘

ď
ÿq

j“1
4Lℓpq ´ 1qp1 ´ πjqR1

nj ,pj
pGq

“
ÿq

j“1
4Lℓpq ´ 1qp1 ´ πjqRnj ,pj

pGq , (32)

where the second inequality is by Lemma 10 and the last equality is by Lemma 3. By combining
Inequalities 29 and 32, we have the following inequalities with probability at least 1 ´ δ:

sup
g1,g2,...,gqPG

ˇ

ˇ

ˇ
E
”

R̃ℓ
Rpgq

ı

´ R̃ℓ
Rpgq

ˇ

ˇ

ˇ

ď
ÿq

j“1
p1 ´ πjqpq ´ 1qCℓ

d

ln p1{δq

nj
`
ÿq

j“1
4Lℓpq ´ 1qp1 ´ πjqRnj ,pj

pGq . (33)
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Finally, we have the following inequality with probability at least 1 ´ δ:

sup
g1,g2,...,gqPG

ˇ

ˇ

ˇ
Rℓ

Rpgq `
ÿ

jăk
Mppyj “ 0, yk “ 0q ´ R̃ℓ

Rpgq

ˇ

ˇ

ˇ

“ sup
g1,g2,...,gqPG

ˇ

ˇ

ˇ
Rℓ

Rpgq `
ÿ

jăk
Mppyj “ 0, yk “ 0q ´ E

”

R̃ℓ
Rpgq

ı

` E
”

R̃ℓ
Rpgq

ı

´ R̃ℓ
Rpgq

ˇ

ˇ

ˇ

ď sup
g1,g2,...,gqPG

ˇ

ˇ

ˇ
Rℓ

Rpgq `
ÿ

jăk
Mppyj “ 0, yk “ 0q ´ E

”

R̃ℓ
Rpgq

ı
ˇ

ˇ

ˇ
` sup

g1,g2,...,gqPG

ˇ

ˇ

ˇ
E
”

R̃ℓ
Rpgq

ı

´ R̃ℓ
Rpgq

ˇ

ˇ

ˇ

ď

´

2β ` 2Cℓpq ´ 1q
ÿq

j“1
p1 ´ πjq

¯

∆1 `
ÿq

j“1
p1 ´ πjqpq ´ 1qCℓ

d

ln p1{δq

nj

`
ÿq

j“1
4Lℓpq ´ 1qp1 ´ πjqRnj ,pj

pGq ,

where the last inequality is by Inequalities 33 and 15. The proof is complete.

Then, we provide the proof of Theorem 6.

Proof of Theorem 6.

Rℓ
Rpg̃Rq ´ Rℓ

Rpg˚
Rq

“Rℓ
Rpg̃Rq `

ÿ

jăk
Mppyj “ 0, yk “ 0q ´ R̃ℓ

Rpg̃Rq ` R̃ℓ
Rpg̃Rq ´ R̃ℓ

Rpg˚
Rq ` R̃ℓ

Rpg˚
Rq

´
ÿ

jăk
Mppyj “ 0, yk “ 0q ´ Rℓ

Rpg˚
Rq

ďRℓ
Rpg̃Rq `

ÿ

jăk
Mppyj “ 0, yk “ 0q ´ R̃ℓ

Rpg̃Rq ` R̃ℓ
Rpg˚

Rq ´
ÿ

jăk
Mppyj “ 0, yk “ 0q ´ Rℓ

Rpg˚
Rq

ď2 sup
g1,g2,...,gqPG

ˇ

ˇ

ˇ
Rℓ

Rpgq `
ÿ

jăk
Mppyj “ 0, yk “ 0q ´ R̃ℓ

Rpgq

ˇ

ˇ

ˇ
.

Then, based on Lemma 9, the proof is complete.

B.9 PROOF OF COROLLARY 2

Lemma 11 (Theorem 10 in Gao & Zhou (2013)). If ℓ is a differentiable and non-increasing function
such that @y, ℓ1p0, yq ă 0 and ℓpz, yq ` ℓp´z, yq “ M , then Eq. (4) is consistent w.r.t. the ranking
loss.

Then we provide the proof of Corollary 2.

Proof of Corollary 2. Since the proposed risk in Eq. (5) is equivalent to the risk in Eq. (4), it is
sufficient to prove that for any sequence tgtu that if Rℓ

Rpgtq Ñ Rℓ˚
R , then R0´1

R pftq Ñ R˚
R.

C DETAILS OF EXPERIMENTS

C.1 MORE DETAILS OF DATASETS

For synthetic datasets, we consider two data generation processes. In case-a, irrelevant labels are
flipped to candidate labels independently, which is the assumption used in Xie & Huang (2023).
This strategy is common in learning with noisy labels (Han et al., 2018), where PML is a special
case of MLC with noisy labels (Xie & Huang, 2023). In case-b, we assign non-candidate labels in
a class-wise manner. For each class, we randomly sample a fraction of the training data and assign
that class as a non-candidate label. This data generation process corresponds to the assumption
proposed in this paper. We use this process to confirm the effectiveness of our proposed method
under this assumption. Additionally, we selected high flipping rates to evaluate the effectiveness of
our proposed methods on challenging datasets with high noise rates since real-world datasets have
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low noise rates. We added more descriptions in the revised version. In this paper, we consider the
flipping rate in Case-a and the sampling rate in Case-b to be 0.9.

We performed ten-fold cross-validation on real-world datasets. This means we used nine folds for
training and one fold for testing. Then, we recorded the mean accuracy and standard deviation. For
the synthetic datasets, we generated synthetic labels three times and recorded the mean accuracy and
standard deviation. Finally, we conducted paired t-tests at a 0.05 significance level.

C.2 BASELINE

We evaluate against five classical baselines commonly used in PML/CML learning. (A) BCE: uses
the given candidate label as the cross-entropy target. (B) CCMN (Xie & Huang, 2023): treats
PML as multi-label classification with class-conditional noise, relying on a noise transition matrix.
(C) GDF (Gao et al., 2023): proposes an unbiased risk estimator for multi-labeled single com-
plementary label learning. (D) CTL (Gao et al., 2025): introduces a risk-consistent approach by
rewriting the loss function. (E) MLCL (Gao et al., 2024): estimates an initial transition matrix via
binary decompositions, then refines it with label correlations.

C.3 IMPLEMENTATION DETAILS

For real-world datasets, we used an MLP encoder for all baselines, trained for 200 epochs with a
learning rate of 5e-3, weight decay of 1e-4, and the SGD optimizer with cosine decay. For synthetic
image datasets, we adopted a ResNet-50 backbone pretrained on ImageNet (Deng et al., 2009),
trained for 30 epochs with a learning rate of 1e-4 using the Adam optimizer. For fair comparisons,
we used the same setup across all baselines. We assumed that the class priors were accessible to
the learning algorithm. We instantiated ℓ with the binary cross-entropy loss for COMES-HL and the
sigmoid loss for COMES-RL.

C.4 DEFINITIONS OF EVALUATION METRICS

Given a test dataset D1 “ tpx1
i, Y

1
i qu

n1

i“1, the evaluation metrics used in the paper can be defined as
follows (Zhang & Zhou, 2014; Wu & Zhou, 2017):

• Ranking loss:
1

n1

ÿn1

i“1

|Zi|

|Y 1
i | |YzY 1

i |
, (34)

where Zi “ tpu, vq|gupx1
iq ď gvpx1

iq, pu, vq P Y 1
i ˆ pYzY 1

i qu.

• One error:
1

n1

ÿn1

i“1
I
`

argmaxjPY gjpx1
iq R Y 1

i

˘

. (35)

• Hamming loss:
1

n1q

ÿn1

i“1

ÿq

j“1
I
`

fjpx1
iq ‰ y1

j

˘

. (36)

• Coverage:
1

n1q

ÿn1

i“1

`

maxjPY 1
i

Rankpx1
i, jq ´ 1

˘

, (37)

where Rankpx1
i, jq “

řq
k“1 I pgkpx1

iq ě gjpx1
iqq.

• Average Precision:
1

n1

ÿn1

i“1

1

|Y 1
i |

ÿ

jPY 1
i

|Rpx1
i, jq|

Rankpx1
i, jq

, (38)

where Rpx1
i, jq “ tk|gkpx1

iq ě gjpx1
iq, k P Y 1

i u.
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Irrelevant to class 1

𝑝(𝑥|𝑦1 = 0)

𝑝(𝑥)

𝑝1

𝑝(𝑥|𝑦2 = 0)
𝑝2

……

𝑝(𝑥|𝑦𝑞 = 0)
𝑝𝑞

Irrelevant to class 2

Irrelevant to class q

𝑠1 = 0

𝑠2 = 0

𝑠𝑞 = 0

Figure 4: The diagram of the proposed data generation process.

D MORE DISCUSSIONS

D.1 DATA GENERATION PROCESS

Lemma 1 indicates a class-wise data generation process of PML. Based on the PML problem def-
inition, the candidate label set for each instance can be regarded as being generated by excluding
obviously irrelevant labels. Based on this, we propose the following data generation assumption:
We ask annotators to determine whether a label is obviously irrelevant. However, it is difficult to
accurately determine all irrelevant labels for a given image, so only some irrelevant labels can be
identified. If they are uncertain, we ask the annotators to skip this question. We formulate this
process as the sampling scheme ppsj “ 0|x, yj “ 0q “ pj in Lemma 1; that is, only some irrel-
evant labels are considered non-candidate labels. Based on this data generation process, we prove
that ppx|sj “ 0q “ ppx|yj “ 0q in Lemma 1. This is the basis for further theoretical derivations.
Figure 4 shows the diagram of the proposed data generation process.

D.2 INSTANCE-DEPENDENT CASES

The current literature on partial multi-label learning (PML) and complementary multi-label learning
(CML) assumes that label generation is independent of instances (see Table 1). Following previous
work, we also consider the instance-independent case. It is very challenging to design consistent
methods for instance-dependent cases due to the difficulty of estimating instance-dependent genera-
tion processes, as far as we know from the literature on weakly supervised learning. In future work,
we will consider developing instance-dependent methods with strong theoretical guarantees.

E MORE EXPERIMENTAL ANALYSIS

Based on Table 3, we can draw the following conclusions: (1) The proposed COMES-HL and
COMES-RL approaches outperform the compared methods in different cases of synthetic datasets,
thus validating the effectiveness of our approaches in handling various data generation assumptions.
(2) CCMN and MLCL are both based on the uniform distribution assumption, which differs from
case-a and case-b, representing two more realistic data generation processes. Therefore, they fail
to achieve superior performance. (3) Although GDF and CTL use transition matrices to model
generation processes, which seems a more practical assumption, estimation of generation processes
is inaccurate, as discussed in the Introduction section. (4) Our proposed approaches do not rely on
these assumptions, and their strong classification performance also results from the effectiveness of
the proposed risk-correction techniques.

F FURTHER DISCUSSION ABOUT THE ASSUMPTIONS IN THEOREMS 2 AND 5

Theorem 2 only hold when α ą 0. This means that, for each class-wise classification risk
Eppx|yj“1q rℓ pgj pxq , 1qs, the risk value should be greater than zero. This assumption can hold
for many loss functions. For example, in COMES-HL, the cross-entropy loss used in the paper
cannot become zero due to the assumption about the boundness of the logits: supgjPG }gj}8 ď CG .
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Theorem 5 only holds when γ ą 0. We assume that the classification risk Rℓ
Rpgq is always positive.

This assumption holds for many symmetric loss functions, such as the sigmoid loss function used in
our paper. The value of the sigmoid loss function cannot become zero due to the assumption about
the boundness of the logits: supgjPG }gj}8 ď CG . We will consider the corner cases of α “ 0 and
γ “ 0 as our future work.

G EXPERIMENTS ON THE ROBUSTNESS OF INACCURATELY ESTIMATED
CLASS PRIORS

Tables 4 and 5 show experimental results with inaccurately estimated class priors. Here, “-E” means
that our methods use inaccurately estimated class priors. We can observe that the proposed methods
can achieve satisfactory performance with inaccurate class priors.

Table 4: Experimental results with inaccurately estimated class priors on mirflickr. Here, “-E” means
that our methods use inaccurately estimated class priors.

Approach Ranking LossÓ One ErrorÓ Hamming LossÓ Average PrecisionÒ

BCE 0.106 ˘ 0.008 0.275 ˘ 0.021 0.220 ˘ 0.007 0.813 ˘ 0.011
CCMN 0.106 ˘ 0.011 0.282 ˘ 0.030 0.220 ˘ 0.006 0.811 ˘ 0.016
GDF 0.159 ˘ 0.007 0.409 ˘ 0.027 0.277 ˘ 0.007 0.742 ˘ 0.013
CTL 0.130 ˘ 0.006 0.366 ˘ 0.017 0.237 ˘ 0.006 0.772 ˘ 0.009
MLCL 0.498 ˘ 0.035 0.810 ˘ 0.066 0.601 ˘ 0.020 0.446 ˘ 0.038
COMES-HL 0.095 ˘ 0.009 0.171 ˘ 0.019 0.164 ˘ 0.003 0.843 ˘ 0.013
COMES-RL 0.106 ˘ 0.006 0.206 ˘ 0.036 0.186 ˘ 0.008 0.818 ˘ 0.011
COMES-HL-E 0.107 ˘ 0.008 0.133 ˘ 0.010 0.158 ˘ 0.002 0.858 ˘ 0.007
COMES-RL-E 0.104 ˘ 0.010 0.189 ˘ 0.010 0.183 ˘ 0.006 0.824 ˘ 0.012

Table 5: Experimental results with inaccurately estimated class priors on yeastBP, yeastCC, and
yeastMF. Here, “-E” means that our methods use inaccurately estimated class priors.

Approach One ErrorÓ Hamming LossÓ Average PrecisionÒ

yeastBP yeastCC yeastMF yeastBP yeastCC yeastMF yeastBP yeastCC yeastMF

BCE 0.871 ˘ 0.008 0.814 ˘ 0.019 0.886 ˘ 0.020 0.148 ˘ 0.007 0.162 ˘ 0.007 0.153 ˘ 0.006 0.150 ˘ 0.013 0.487 ˘ 0.016 0.379 ˘ 0.019
CCMN 0.878 ˘ 0.016 0.823 ˘ 0.016 0.882 ˘ 0.012 0.151 ˘ 0.007 0.163 ˘ 0.008 0.150 ˘ 0.005 0.150 ˘ 0.012 0.479 ˘ 0.016 0.386 ˘ 0.021
GDF 0.976 ˘ 0.006 0.971 ˘ 0.008 0.972 ˘ 0.007 0.499 ˘ 0.016 0.489 ˘ 0.026 0.497 ˘ 0.030 0.057 ˘ 0.002 0.135 ˘ 0.010 0.144 ˘ 0.016
CTL 0.970 ˘ 0.006 0.964 ˘ 0.004 0.963 ˘ 0.010 0.493 ˘ 0.009 0.499 ˘ 0.007 0.496 ˘ 0.006 0.060 ˘ 0.002 0.154 ˘ 0.004 0.165 ˘ 0.013
MLCL 0.961 ˘ 0.038 0.862 ˘ 0.066 0.887 ˘ 0.066 0.881 ˘ 0.096 0.845 ˘ 0.051 0.837 ˘ 0.024 0.082 ˘ 0.015 0.402 ˘ 0.080 0.375 ˘ 0.124
COMES-HL 0.641 ˘ 0.030 0.744 ˘ 0.020 0.800 ˘ 0.023 0.073 ˘ 0.008 0.119 ˘ 0.015 0.101 ˘ 0.005 0.458 ˘ 0.020 0.657 ˘ 0.020 0.552 ˘ 0.023
COMES-RL 0.808 ˘ 0.016 0.754 ˘ 0.022 0.805 ˘ 0.020 0.051 ˘ 0.001 0.045 ˘ 0.004 0.048 ˘ 0.003 0.315 ˘ 0.015 0.651 ˘ 0.023 0.549 ˘ 0.019
COMES-HL-E 0.747 ˘ 0.020 0.803 ˘ 0.013 0.850 ˘ 0.008 0.042 ˘ 0.003 0.082 ˘ 0.003 0.103 ˘ 0.004 0.303 ˘ 0.008 0.475 ˘ 0.023 0.432 ˘ 0.020
COMES-RL-E 0.957 ˘ 0.009 0.850 ˘ 0.014 0.889 ˘ 0.006 0.051 ˘ 0.001 0.045 ˘ 0.001 0.049 ˘ 0.001 0.106 ˘ 0.008 0.400 ˘ 0.031 0.347 ˘ 0.009
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