

RETHINKING CONSISTENT MULTI-LABEL CLASSIFICATION UNDER INEXACT SUPERVISION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Partial multi-label learning and complementary multi-label learning are two popular
 012 weakly supervised multi-label classification paradigms that aim to alleviate
 013 the high annotation costs of collecting precisely annotated multi-label data. In
 014 partial multi-label learning, each instance is annotated with a candidate label set,
 015 among which only some labels are relevant; in complementary multi-label learn-
 016 ing, each instance is annotated with complementary labels indicating the classes
 017 to which the instance does not belong. Existing consistent approaches for the two
 018 paradigms either require accurate estimation of the generation process of candi-
 019 date or complementary labels or assume a uniform distribution to eliminate the
 020 estimation problem. However, both conditions are usually difficult to satisfy in
 021 real-world scenarios. In this paper, we propose consistent approaches that do
 022 not rely on the aforementioned conditions to handle both problems in a unified
 023 way. Specifically, we propose two risk estimators based on first- and second-order
 024 strategies. Theoretically, we prove consistency w.r.t. two widely used multi-label
 025 classification evaluation metrics and derive convergence rates for the estimation
 026 errors of the proposed risk estimators. Empirically, extensive experimental re-
 027 sults validate the effectiveness of our proposed approaches against state-of-the-art
 028 methods.

1 INTRODUCTION

031 In multi-label classification (MLC), each instance is associated with multiple relevant labels sim-
 032 ultaneously (Zhang & Zhou, 2014; Liu et al., 2022b). The goal of MLC is to induce a multi-label
 033 classifier that can assign multiple relevant labels to unseen instances. MLC is more practical and
 034 useful than single-label classification, as real-world objects often appear together in a single scene.
 035 The ability to handle complex semantic information has led to the widespread use of MLC in many
 036 real-world applications, including multimedia content annotation (Cabral et al., 2011), text clas-
 037 sification (Rubin et al., 2012; Liu et al., 2017), and music emotion analysis (Wu et al., 2014).
 038 However, annotating multi-label training data is more expensive and demanding than annotating
 039 single-label data. This is because each instance can be associated with an unknown number of rel-
 040 evant labels (Durand et al., 2019; Cole et al., 2021; Xie et al., 2023), making it difficult to collect a
 041 large-scale multi-label dataset with precise annotations.

042 To address this, learning from weak super-
 043 vision has become a prevailing way to mit-
 044 iate the bottleneck of annotation cost for
 045 MLC (Sugiyama et al., 2022). Among them,
 046 partial multi-label learning (PML) and comple-
 047 mentary multi-label learning (CML) have be-
 048 come two popular MLC paradigms. In PML,
 049 each instance is annotated with a *candidate*
 050 *label set*, among which only some labels are
 051 relevant but inaccessible to the learning algo-
 052 rithm (Xie & Huang, 2018; Sun et al., 2019;
 053 Gong et al., 2021). In CML, each instance is
 054 annotated with *complementary labels*, which indicate the classes to which the instance does not
 055 belong (Gao et al., 2023). Given that all relevant labels are included in the candidate label set, non-

Figure 1: A multi-label image with inexact annotations. Source: Paul Cézanne, Still Life, Jug and Fruit on a Table (1894), public domain.

054

055

Table 1: Comparison of COMES with existing consistent PML and CML approaches.

056

057

Approach	Uniform distribution assumption-free	Generation process estimation unnecessary	Label correlation-aware	Multiple complementary labels
CCMN (Xie & Huang, 2023)	✓	✗	✓	✓
CTL (Gao et al., 2023)	✗	✓	✗	✗
MLCL (Gao et al., 2024)	✓	✗	✓	✗
GDF (Gao et al., 2025)	✗	✓	✗	✓
COMES-HL (Ours)	✓	✓	✗	✓
COMES-RL (Ours)	✓	✓	✓	✓

063

064

065 candidate labels contain no relevant labels and can be considered complementary labels, and vice
 066 versa. This suggests that the two problems are mathematically equivalent. Therefore, in this paper,
 067 we treat them as *MLC under inexact supervision* in a unified way. Figure 1 shows an example image
 068 annotated with inexact annotations. The label space contains ten labels in total. The candidate label
 069 set consists of four relevant labels *{apple, plate, table, jug}* and two false-positive ones *{grapes, pear}*. By
 070 excluding the candidate labels from the label space, the remaining four labels are *{banana, cup, knife, flower}*, which
 071 can be considered complementary labels. PML and CML do not require precise determination of all relevant labels during annotation, which demonstrates their great
 072 potential for alleviating annotation challenges in MLC.

073
 074 In this paper, we investigate *consistent* approaches for MLC under inexact supervision. Here, consistency
 075 means that classifiers learned with inexact supervision are theoretically guaranteed to converge
 076 to the optimal classifiers when infinitely many training samples are provided (Wang et al., 2024).
 077 The remedy began with Xie & Huang (2023), which treated PML as a special case of MLC with
 078 class-conditional label noise (Li et al., 2022; Xia et al., 2023), where irrelevant labels could flip to
 079 relevant labels but not vice versa. However, the flipping rate for each class is unknown and must be
 080 estimated using anchor points, i.e., instances belonging to a specific class with probability one (Liu
 081 & Tao, 2015; Xie & Huang, 2023). Similar to PML, CML assumes that complementary labels are
 082 generated by a certain flipping process (Yu et al., 2018b). Gao et al. (2023) proposed the *uniform
 083 distribution assumption* that a label outside the relevant label set is sampled uniformly to be the CL.
 084 Then, Gao et al. (2024) generalized the data generation process with a transition matrix, but estimating
 085 the data generation process is still necessary. Recently, Gao et al. (2025) extended the uniform
 086 distribution assumption to handle multiple complementary labels.

087 In summary, all existing consistent PML and CML approaches either estimate the generation process
 088 of the candidate label set or complementary labels, or adopt the uniform distribution assumption to
 089 eliminate the estimation problem. However, both conditions are difficult to satisfy in real-world
 090 scenarios. On the one hand, estimating the flipping rate heavily relies on accurate estimation of
 091 noisy class posterior probabilities of anchor points (Xia et al., 2019; Yao et al., 2020; Lin et al.,
 092 2023). However, estimating noisy class posterior probabilities is more difficult because their entropy
 093 is usually higher than that of clean labels (Langford, 2005). This difficulty is further amplified when
 094 using deep neural networks, where the over-confidence phenomenon typically occurs (Zhang et al.,
 095 2021; Wei et al., 2022). The model outputs of deep neural networks are usually one-hot encoded,
 096 which means they cannot yield reliable probabilistic outputs (Guo et al., 2017). On the other hand,
 097 the uniform distribution assumption treats different candidate label sets indiscriminately, which is
 098 too simple to be truly in accordance with imbalanced classes in real-world scenarios (Wang et al.,
 099 2025). Additionally, many approaches model different labels independently and directly ignore label
 100 correlations existing in multi-label data (Gao et al., 2025). This prevents them from exploiting the
 rich semantic relationships of label correlations (Zhu et al., 2017; Mao et al., 2023).

101 To this end, we propose a novel framework named COMES, i.e., *COnsistent Multi-label classifica-
 102 tion under inExact Supervision*. Based on a data generation process that does not use transition
 103 matrices, we introduce two instantiations with risk estimators w.r.t. the Hamming loss and ranking loss,
 104 respectively. Table 1 compares our approach with existing consistent PML and CML approaches.
 105 Our contributions are summarized as follows:

106 • We propose a consistent framework for multi-label classification under inexact supervision that
 107 neither requires estimating the generation process of candidate or complementary labels nor relies
 on the uniform-distribution assumption.

- We introduce risk-correction approaches to improve the generalization performance of the proposed risk estimators. We further prove consistency w.r.t. two widely used metrics and derive convergence rates of estimation errors for the proposed risk estimators.
- Our proposed approaches outperform state-of-the-art baselines on both real-world and synthetic PML and CML datasets with different label generation processes.

2 PRELIMINARIES

In this section, we introduce the background of MLC and MLC under inexact supervision.

2.1 MULTI-LABEL CLASSIFICATION

Let $\mathcal{X} \subseteq \mathbb{R}^d$ denote the d -dimensional feature space and $\mathcal{Y} = \{1, 2, \dots, q\}$ the label space consisting of q class labels. A multi-label example is denoted as (\mathbf{x}, Y) , where $\mathbf{x} \in \mathcal{X}$ is a feature vector and $Y \subseteq \mathcal{Y}$ is the set of relevant labels associated with \mathbf{x} . For ease of notation, we introduce $\mathbf{y} = [y_1, y_2, \dots, y_q] \in \{0, 1\}^q$ to denote the vector representation of Y , where $y_j = 1$ if $j \in Y$ and $y_j = 0$ otherwise. Let $p(\mathbf{x}, Y)$ denote the joint density of \mathbf{x} and Y . Let $p(\mathbf{x})$ denote the marginal density, and $\pi_j = p(y_j = 1)$ the prior of the j -th class. The task of MLC is to learn a prediction function $\mathbf{f} : \mathcal{X} \mapsto 2^{\mathcal{Y}}$. We use f_j to denote the j -th entry of \mathbf{f} , where $f_j(\mathbf{x}) = 1$ indicates that the model predicts class j to be relevant to \mathbf{x} and $f_j(\mathbf{x}) = 0$ otherwise. Since learning \mathbf{f} directly is often difficult, we use a real-valued decision function $\mathbf{g} : \mathcal{X} \mapsto \mathbb{R}^q$ to represent the model output. The prediction function \mathbf{f} can be derived by thresholding \mathbf{g} . We use g_j to denote the j -th entry of \mathbf{g} , which indicates the model output for class j .

Many evaluation metrics have been developed to calculate the difference between model predictions and true labels to evaluate the performance of multi-label classifiers (Zhang & Zhou, 2014; Wu & Zhou, 2017). In this paper, we focus primarily on the Hamming loss and ranking loss, the two most common metrics in the literature.¹ Specifically, the Hamming loss calculates the fraction of misclassified instance-label pairs, and the risk of \mathbf{f} w.r.t. the Hamming loss is

$$R_H^{0-1}(\mathbf{f}) = \mathbb{E}_{p(\mathbf{x}, Y)} \left[\frac{1}{q} \sum_{j=1}^q \mathbb{I}(f_j(\mathbf{x}) \neq y_j) \right]. \quad (1)$$

Here, \mathbb{I} denotes the indicator function that returns 1 if the predicate holds; otherwise, \mathbb{I} returns 0. Since optimizing the 0-1 loss is difficult, a surrogate loss function ℓ is often adopted. The ℓ -risk w.r.t. the Hamming loss is

$$R_H^\ell(\mathbf{g}) = \mathbb{E}_{p(\mathbf{x}, Y)} \left[\frac{1}{q} \sum_{j=1}^q \ell(g_j(\mathbf{x}), y_j) \right], \quad (2)$$

where ℓ is a non-negative binary loss function, such as the binary cross-entropy loss. It is important to note that the Hamming loss only considers first-order model predictions and cannot account for label correlations. The ranking loss explicitly considers the ordering relationship between model outputs for a pair of labels. Specifically, the risk of \mathbf{f} w.r.t. the ranking loss is²

$$\begin{aligned} R_R^{0-1}(\mathbf{f}) = \mathbb{E}_{p(\mathbf{x}, Y)} & \left[\sum_{1 \leq j < k \leq q} \mathbb{I}(y_j < y_k) \left(\mathbb{I}(f_j(\mathbf{x}) > f_k(\mathbf{x})) + \frac{1}{2} \mathbb{I}(f_j(\mathbf{x}) = f_k(\mathbf{x})) \right) \right. \\ & \left. + \mathbb{I}(y_j > y_k) \left(\mathbb{I}(f_j(\mathbf{x}) < f_k(\mathbf{x})) + \frac{1}{2} \mathbb{I}(f_j(\mathbf{x}) = f_k(\mathbf{x})) \right) \right]. \end{aligned} \quad (3)$$

Similarly, when using a surrogate loss function ℓ to replace the 0-1 loss, the ℓ -risk w.r.t. the ranking loss is

$$R_R^\ell(\mathbf{g}) = \mathbb{E}_{p(\mathbf{x}, Y)} \left[\sum_{1 \leq j < k \leq q} \mathbb{I}(y_j \neq y_k) \ell \left(g_j(\mathbf{x}) - g_k(\mathbf{x}), \frac{y_j - y_k + 1}{2} \right) \right]. \quad (4)$$

Notably, minimizing the Hamming loss does not consider label correlations and can be considered a first-order strategy. In contrast, minimizing the ranking loss considers label-ranking relationships and can be considered a second-order strategy.

¹We will address the use of other metrics in future work.

²To facilitate the analysis in this paper, we consider the coefficients of the losses for different label pairs to be 1 (Gao & Zhou, 2013; Xie & Huang, 2021; 2023).

162
163

2.2 MULTI-LABEL CLASSIFICATION UNDER INEXACT SUPERVISION

164
165
166
167
168
169
170
171
172
173
174

In PML, each example is denoted as (\mathbf{x}, S) , where S is the candidate label set associated with \mathbf{x} . The basic assumption of PML is that all relevant labels are contained within the candidate label set, i.e., $Y \subseteq S$. Let $\bar{S} = \mathcal{Y} \setminus S$ denote the *absolute complement* of S . Since $\bar{S} \cap Y = \emptyset$, \bar{S} can be regarded as the set of complementary labels associated with \mathbf{x} . Therefore, PML and CML are mathematically equivalent, as partial multi-label data can equivalently be transformed into complementary multi-label data and vice versa. Without loss of generality, this paper mainly considers partial multi-label data. For ease of notation, we use $\mathbf{s} = [s_1, s_2, \dots, s_q]$ to denote the vector representation of S . Here, $s_j = 1$ indicates that the j -th class label is a candidate label of \mathbf{x} , and $s_j = 0$ otherwise. Let $p(\mathbf{x}, S)$ denote the joint density of \mathbf{x} and the candidate label set S . The goal of PML or CML is to learn a prediction function $f : \mathcal{X} \mapsto 2^{\mathcal{Y}}$ that can assign relevant labels to unseen instances based on a training set $\mathcal{D} = \{(\mathbf{x}_i, S_i)\}_{i=1}^n$ sampled i.i.d. from $p(\mathbf{x}, S)$.

175

3 METHODOLOGY

176
177
178
179

In this section, we first introduce our data generation process. Then, we present the first- and second-order strategies for handling the PML problem and their respective theoretical analyses.

180
181

3.1 DATA GENERATION PROCESS

182
183
184
185
186
187
188
189
190
191
192
193
194

In this paper, we assume that the candidate labels are generated by querying *whether each instance is irrelevant to a class* in turn. Specifically, if the j -th class is irrelevant to \mathbf{x} , we assume that the j -th class label is assigned as a non-candidate label to \mathbf{x} with a constant probability p_j , i.e., $p(j \notin S|\mathbf{x}, j \notin Y) = p_j$. Otherwise, if the j -th class is relevant to \mathbf{x} , we consider it as a candidate label. The candidate label set can then be obtained by excluding the non-candidate labels from the label space. Notably, all relevant labels are included in the candidate label set, as well as some irrelevant labels. This data generation process coincides well with the annotation process of candidate labels. For example, when asking annotators to provide candidate labels for an image dataset, we can show them an image and a class label and ask them to determine whether the image is irrelevant to that class. This is often an easier question to answer than directly asking all relevant labels, since it is less demanding to exclude some obviously irrelevant labels. If so, we assume that the image will be annotated with this label as a non-candidate label with a constant probability. Based on this data generation process, we have the following lemma.

195
196

Lemma 1. *Assume that $p(s_j = 0|\mathbf{x}, y_j = 0) = p_j$, where p_j is a constant. Then, we have $p(\mathbf{x}|s_j = 0) = p(\mathbf{x}|y_j = 0)$.*

197
198
199
200
201
202
203

The proof can be found in Appendix B.1. According to Lemma 1, the conditional density of instances where the j -th class is considered a non-candidate label is equivalent to the conditional density of instances where the j -th class is irrelevant. Notably, our data distribution assumption differs from both the uniform distribution assumption and the use of a transition matrix to flip the labels. Since the conditional probabilities of different candidate label sets can be different, our setting is more general than the uniform distribution assumption (Gao et al., 2023; 2025).

204
205

3.2 FIRST-ORDER STRATEGY

206
207
208
209

A common strategy used in MLC is to decompose the problem into a number of binary classification problems by ignoring label correlations. This goal can be achieved by minimizing the ℓ -risk w.r.t. the Hamming loss in Eq. (2). We show that the ℓ -risk w.r.t. the Hamming loss can be equivalently expressed with partial multi-label data.

210
211

Theorem 1. *By the assumption in Lemma 1, the ℓ -risk w.r.t. the Hamming loss in Eq. (2) can be equivalently expressed as*

212
213
214
215

$$R_H^\ell(\mathbf{g}) = \mathbb{E}_{p(\mathbf{x})} \left[\frac{1}{q} \sum_{j=1}^q \ell(g_j(\mathbf{x}), 1) \right] + \sum_{j=1}^q \mathbb{E}_{p(\mathbf{x}|s_j=0)} \left[\frac{1 - \pi_j}{q} (\ell(g_j(\mathbf{x}), 0) - \ell(g_j(\mathbf{x}), 1)) \right]. \quad (5)$$

The proof can be found in Appendix B.2. Theorem 1 shows that the ℓ -risk w.r.t. the Hamming loss can be expressed as the expectation w.r.t. the marginal and conditional densities where the j -th class label is not considered as a candidate label. Since Eq. (5) cannot be calculated directly, we perform *empirical risk minimization (ERM)* by approximating Eq. (5) using datasets \mathcal{D}_U and $\mathcal{D}_j (j \in \mathcal{Y})$ sampled from densities $p(\mathbf{x})$ and $p(\mathbf{x}|s_j = 0)$, respectively. In this paper, we consider generating these datasets by *duplicating* instances from \mathcal{D} . Specifically, we first treat the duplicated instances of \mathcal{D} as unlabeled data sampled from $p(\mathbf{x})$ and add them to \mathcal{D}_U . Then, if an instance does not treat the j -th class label as a candidate label, we treat its duplicated instance as being sampled from $p(\mathbf{x}|s_j = 0)$ and add it to \mathcal{D}_j . These processes can be expressed as follows:

$$\mathcal{D}_U = \{\mathbf{x}_i^U\}_{i=1}^n = \{\mathbf{x}_i | (\mathbf{x}_i, S_i) \in \mathcal{D}\}, \quad \mathcal{D}_j = \{\mathbf{x}_i^j\}_{i=1}^{n_j} = \{\mathbf{x}_i | (\mathbf{x}_i, S_i) \in \mathcal{D}, j \notin S_i\}, j \in \mathcal{Y}. \quad (6)$$

Then, an unbiased risk estimator can be derived to approximate Eq. (5) using datasets \mathcal{D}_U and \mathcal{D}_j :

$$\begin{aligned} \hat{R}_H^\ell(\mathbf{g}) &= \frac{1}{nq} \sum_{i=1}^n \sum_{j=1}^q \ell(g_j(\mathbf{x}_i^U), 1) \\ &\quad + \sum_{j=1}^q \frac{1 - \pi_j}{qn_j} \sum_{i=1}^{n_j} (\ell(g_j(\mathbf{x}_i^j), 0) - \ell(g_j(\mathbf{x}_i^j), 1)). \end{aligned} \quad (7)$$

When deep neural networks are used, the negative terms in the loss function can often lead to overfitting issues (Kiryo et al., 2017; Sugiyama et al., 2022). Therefore, we use an absolute value function to wrap each potentially negative term Lu et al. (2020); Wang et al. (2023). The *corrected risk estimator* is defined as

$$\begin{aligned} \tilde{R}_H^\ell(\mathbf{g}) &= \frac{1}{q} \sum_{j=1}^q \left| \frac{1}{n} \sum_{i=1}^n \ell(g_j(\mathbf{x}_i^U), 1) - \frac{1 - \pi_j}{n_j} \sum_{i=1}^{n_j} \ell(g_j(\mathbf{x}_i^j), 1) \right| \\ &\quad + \sum_{j=1}^q \frac{1 - \pi_j}{qn_j} \sum_{i=1}^{n_j} \ell(g_j(\mathbf{x}_i^j), 0). \end{aligned} \quad (8)$$

Notably, our framework is very flexible so that the minimizer can be obtained using any network architecture and stochastic optimizer. The algorithmic details are summarized in Algorithm 1. The class prior π_j can be estimated by using off-the-shelf class prior estimation approaches only using candidate labels (see Appendix A.2).

We establish the consistency and estimation error bounds for the risk estimator proposed in Eq. (8). First, we demonstrate that the corrected risk estimator in Eq. (8) is biased yet consistent w.r.t. the ℓ -risk w.r.t. the Hamming loss in Eq. (2). The following theorem holds.

Theorem 2. *Assume that there exists a constant C_G such that $\sup_{g_j \in \mathcal{G}} \|\mathbf{g}_j\|_\infty \leq C_G$ and a constant C_ℓ such that $\sup_{|z| \leq C_G} \ell(z, y) \leq C_\ell$, where \mathcal{G} is the model class. We assume that there exists a positive constant α such that $\forall j \in \mathcal{Y}, \pi_j \mathbb{E}_{p(\mathbf{x}|y_j=1)} [\ell(g_j(\mathbf{x}), 1)] \geq \alpha$. Then, the bias of the expectation of the corrected risk estimator w.r.t. the ℓ -risk w.r.t. the Hamming loss has the following lower and upper bounds:*

$$0 \leq \mathbb{E} [\tilde{R}_H^\ell(\mathbf{g})] - R_H^\ell(\mathbf{g}) \leq \frac{1}{q} \sum_{j=1}^q (4 - 2\pi_j) C_\ell \Delta_j, \quad (9)$$

where $\Delta_j = \exp(-2\alpha^2 / (C_\ell^2/n + (1 - \pi_j)^2 C_\ell^2/n_j))$. Furthermore, for any $\delta > 0$, the following inequality holds with probability at least $1 - \delta$:

$$|\tilde{R}_H^\ell(\mathbf{g}) - R_H^\ell(\mathbf{g})| \leq \frac{1}{q} \sum_{j=1}^q \left((4 - 2\pi_j) C_\ell \Delta_j + \frac{(2 - 2\pi_j) C_\ell}{q} \sqrt{\frac{\ln(2/\delta)}{2n_j}} \right) + C_\ell \sqrt{\frac{\ln(2/\delta)}{2n}}. \quad (10)$$

The proof can be found in Appendix B.3. Notably, the bias of the corrected risk estimator from the original ℓ -risk exists since it is lower bounded by zero. However, as $n \rightarrow \infty$, we have that $\tilde{R}_H^\ell(\mathbf{g}) \rightarrow R_H^\ell(\mathbf{g})$, meaning that it is still consistent.

Let $\tilde{\mathbf{g}}_H = \arg \min_{\{g_j\} \subseteq \mathcal{G}} \tilde{R}_H^\ell(\mathbf{g})$ and $\mathbf{g}_H^* = \arg \min_{\{g_j\} \subseteq \mathcal{G}} R_H^\ell(\mathbf{g})$ denote the minimizer of the corrected risk estimator and the ℓ -risk w.r.t. the Hamming loss, respectively. Let $\mathfrak{R}_{n,p}(\mathcal{G})$ and $\mathfrak{R}_{n_j,p_j}(\mathcal{G})$ denote the Rademacher complexities defined in Appendix B.4.

270 **Theorem 3.** Assume that the loss function $\ell(z, y)$ is Lipschitz continuous in z with a Lipschitz
 271 constant L_ℓ . By the assumptions in Theorem 2, for any $\delta > 0$, the following inequality holds with
 272 probability at least $1 - \delta$:

$$273 \quad R_H^\ell(\tilde{\mathbf{g}}_H) - R_H^\ell(\mathbf{g}_H^*) \leq \frac{8L_\ell}{q} \sum_{j=1}^q \mathfrak{R}_{n,p}(\mathcal{G}) + \frac{16(1 - \pi_j)L_\ell}{q} \sum_{j=1}^q \mathfrak{R}_{n_j,p_j}(\mathcal{G}) \\ 274 \quad + \frac{2}{q} \sum_{j=1}^q (4 - 2\pi_j)C_\ell \Delta_j + 2C_\ell \sqrt{\frac{\ln(1/\delta)}{2n}} + \sum_{j=1}^q \frac{(4 - 4\pi_j)C_\ell}{q} \sqrt{\frac{\ln(1/\delta)}{2n_j}}. \quad (11) \\ 275 \\ 276 \\ 277 \\ 278$$

279 The proof can be found in Appendix B.4. Theorem 3 shows that, as $n \rightarrow \infty$, $R_H^\ell(\tilde{\mathbf{g}}_H) \rightarrow R_H^\ell(\mathbf{g}_H^*)$,
 280 since $\Delta_j \rightarrow 0$, $\mathfrak{R}_{n,p}(\mathcal{G}) \rightarrow 0$, and $\mathfrak{R}_{n_j,p_j}(\mathcal{G}) \rightarrow 0$ for all parametric models with a bounded
 281 norm (Mohri et al., 2012). This means that the minimizer of the corrected risk estimator will ap-
 282 proach the desired classifier that minimize the ℓ -risk w.r.t. the Hamming loss.

283 Let $R_H^{\ell*} = \inf_{\mathbf{g}} R_H^\ell(\mathbf{g})$ and $R_H^* = \inf_{\mathbf{f}} R_H^{0-1}(\mathbf{f})$ denote the minima of the ℓ -risk and the risk
 284 w.r.t. the Hamming loss, respectively. Then, the following corollary holds.

285 **Corollary 1.** If ℓ is a convex function such that $\forall y, \ell'(0, y) < 0$, then the ℓ -risk w.r.t. the Hamming
 286 loss in Eq. (5) is consistent with the risk w.r.t. the Hamming loss in Eq. (1). This means that, for any
 287 sequence of decision functions $\{\mathbf{g}_t\}$ with corresponding prediction functions $\{\mathbf{f}_t\}$, if $R_H^\ell(\mathbf{g}_t) \rightarrow R_H^{\ell*}$,
 288 then $R_H^{0-1}(\mathbf{f}_t) \rightarrow R_H^*$.

289 The proof can be found in Appendix B.5. If the model is flexible enough to include the optimal
 290 classifier, according to Theorem 3, we have $R_H^\ell(\tilde{\mathbf{g}}_H) \rightarrow R_H^{\ell*}$. Then, Corollary 1 demonstrates that
 291 $R_H^{0-1}(\tilde{\mathbf{f}}_H) \rightarrow R_H^*$ where $\tilde{\mathbf{f}}_H$ is the corresponding prediction function of $\tilde{\mathbf{g}}_H$. This indicates that
 292 the prediction function obtained by minimizing the corrected risk estimator in Eq. (8) achieves the
 293 Bayes risk.

295 3.3 SECOND-ORDER STRATEGY

297 The first-order strategy is straightforward but does not consider label correlations, which may be
 298 incompatible with multi-label data that exhibit semantic dependencies. Therefore, we explore the
 299 ranking loss to model the relationship between pairs of labels. The following theorem applies.

300 **Theorem 4.** When the binary loss function ℓ is symmetric, i.e., $\ell(z, \cdot) + \ell(-z, \cdot) = M$ where M is
 301 a non-negative constant, then under the assumption in Lemma 1, the ℓ -risk w.r.t. the ranking loss in
 302 Eq. (4) can be equivalently expressed as

$$303 \quad R_R^\ell(\mathbf{g}) = \sum_{1 \leq j < k \leq q} \left((1 - \pi_j) \mathbb{E}_{p(\mathbf{x}|s_j=0)} [\ell(g_j(\mathbf{x}) - g_k(\mathbf{x}), 0)] \right. \\ 304 \quad \left. + (1 - \pi_k) \mathbb{E}_{p(\mathbf{x}|s_k=0)} [\ell(g_j(\mathbf{x}) - g_k(\mathbf{x}), 1)] - Mp(y_j = 0, y_k = 0) \right). \quad (12) \\ 305 \\ 306$$

307 The proof can be found in Appendix B.6. Here, the symmetric-loss assumption is often used to
 308 ensure statistical consistency of the ranking loss for MLC (Gao & Zhou, 2013). According to The-
 309 orems 4, the ℓ -risk w.r.t. the ranking loss can be expressed as the expectation w.r.t. the conditional
 310 density where the j -th class label is not regarded as a candidate label. Notably, $Mp(y_j = 0, y_k = 0)$
 311 in Eq. (12) is a constant that does not affect training the classifier, so it can be neglected. Similar to
 312 the first-order strategy, an unbiased risk estimator can be obtained using \mathcal{D}_j :

$$313 \quad \hat{R}_R^\ell(\mathbf{g}) = \sum_{1 \leq j < k \leq q} \left(\frac{1 - \pi_j}{n_j} \sum_{i=1}^{n_j} \ell(g_j(\mathbf{x}_i^j) - g_k(\mathbf{x}_i^j), 0) \right. \\ 314 \quad \left. + \frac{1 - \pi_k}{n_k} \sum_{i=1}^{n_k} \ell(g_j(\mathbf{x}_i^k) - g_k(\mathbf{x}_i^k), 1) \right). \quad (13) \\ 315 \\ 316$$

317 To improve generalization performance, we use the flooding regularization technique (Ishida et al.,
 318 2020; Liu et al., 2022a; Bae et al., 2024) to mitigate overfitting issues:

$$319 \quad \tilde{R}_R^\ell(\mathbf{g}) = \left| \hat{R}_R^\ell(\mathbf{g}) - \beta \right| + \beta, \quad (14) \\ 320$$

321 where $\beta \geq 0$ is a hyper-parameter that controls the minimum of the loss value. Then, we can
 322 perform ERM by using Eq. (14). The algorithmic details are summarized in Algorithm 1. We also
 323 establish consistency and estimation error bounds for the proposed risk estimator in Eq. (14). The
 following theorem then holds.

324 **Theorem 5.** We assume that there exists a *positive* constant γ such that $R_R^\ell(\mathbf{g}) \geq \gamma$. We also assume
 325 that β is chosen such that $\beta \leq \sum_{1 \leq j < k \leq q} Mp(y_j = 0, y_k = 0)z$. By the assumptions in Theorem 2,
 326 the bias of the expectation of the corrected risk estimator w.r.t. the ranking loss has the following
 327 lower and upper bounds:
 328

$$329 \quad 0 \leq \mathbb{E} \left[\tilde{R}_R^\ell(\mathbf{g}) \right] - \sum_{j < k} Mp(y_j = 0, y_k = 0) - R_R^\ell(\mathbf{g}) \leq \left(2\beta + 2C_\ell(q-1) \sum_{j=1}^q (1 - \pi_j) \right) \Delta', \quad (15)$$

331 where $\Delta' = \exp \left(-2\gamma^2 / \sum_{j=1}^q (1 - \pi_j)^2 (q-1)^2 C_\ell^2 / n_j \right)$. Furthermore, for any $\delta > 0$, the follow-
 332 ing inequality holds with probability at least $1 - \delta$:
 333

$$334 \quad \left| \tilde{R}_R^\ell(\mathbf{g}) - \sum_{j < k} Mp(y_j = 0, y_k = 0) - R_R^\ell(\mathbf{g}) \right| \leq \sum_{j=1}^q (1 - \pi_j) (q-1) C_\ell \sqrt{\frac{\ln(2/\delta)}{2n_j}} \\ 335 \quad + \left(2\beta + 2C_\ell(q-1) \sum_{j=1}^q (1 - \pi_j) \right) \Delta'. \quad (16)$$

339 The proof can be found in Appendix B.7. According to Theorem 5, as $n \rightarrow \infty$, the bias between
 340 the corrected risk estimator in Eq. (14) and the ℓ -risk of ranking loss will become a constant. This
 341 implies that the minimizer of the corrected risk estimator is equivalent to the desired classifier that
 342 minimizes the ℓ -risk w.r.t. the Hamming loss.
 343

344 Let $\tilde{\mathbf{g}}_R = \arg \min_{\{\mathbf{g}_j\} \subseteq \mathcal{G}} \tilde{R}_R^\ell(\mathbf{g})$ and $\mathbf{g}_R^* = \arg \min_{\{\mathbf{g}_j\} \subseteq \mathcal{G}} R_R^\ell(\mathbf{g})$ denote the minimizers of the
 345 corrected risk estimator and the ℓ -risk w.r.t. the ranking loss, respectively.

346 **Theorem 6.** By the assumptions in Theorem 3 and 5, for any $\delta > 0$, the following inequality holds
 347 with probability at least $1 - \delta$:

$$348 \quad R_R^\ell(\tilde{\mathbf{g}}_R) - R_R^\ell(\mathbf{g}_R^*) \leq \left(2\beta + 2C_\ell(q-1) \sum_{j=1}^q (1 - \pi_j) \right) \Delta' \\ 349 \quad + \sum_{j=1}^q (1 - \pi_j) (q-1) C_\ell \sqrt{\frac{\ln(1/\delta)}{n_j}} + \sum_{j=1}^q 4L_\ell(q-1)(1 - \pi_j) \mathfrak{R}_{n_j, p_j}(\mathcal{G}). \quad (17)$$

354 The proof can be found in Appendix B.8. Theorem 6 shows that as $n \rightarrow \infty$, $R_R^\ell(\tilde{\mathbf{g}}_R) \rightarrow R_R^\ell(\mathbf{g}_R^*)$,
 355 since $\Delta' \rightarrow 0$ and $\mathfrak{R}_{n_j, p_j}(\mathcal{G}) \rightarrow 0$ for all parametric models with a bounded norm (Mohri et al.,
 356 2012). This means that the minimizers of Eq. (14) will approach the desired classifiers of the ℓ -
 357 risk w.r.t. the ranking loss when the number of training data increases. Let $R_R^{\ell*} = \inf_{\mathbf{g}} R_R^\ell(\mathbf{g})$ and
 358 $R_R^* = \inf_{\mathbf{f}} R_R^{0-1}(\mathbf{f})$ denote the minima of the ℓ -risk and the risk w.r.t. the ranking loss, respectively.
 359 Then we have the following corollary.

360 **Corollary 2.** If ℓ is a differentiable, symmetric, and non-increasing function such that $\forall y, \ell'(0, y) <$
 361 0 and $\ell(z, y) + \ell(-z, y) = M$, then the ℓ -risk w.r.t. the ranking loss in Eq. (12) is consistent with
 362 the risk w.r.t. the ranking loss in Eq. (3). This means that for any sequences of decision functions
 363 $\{\mathbf{g}_t\}$ with corresponding prediction functions $\{\mathbf{f}_t\}$, if $R_R^\ell(\mathbf{g}_t) \rightarrow R_R^{\ell*}$, then $R_R^{0-1}(\mathbf{f}_t) \rightarrow R_R^*$.

364 The proof can be found in Appendix B.9. If the model is very flexible, we have $R_R^\ell(\tilde{\mathbf{g}}_R) \rightarrow R_R^{\ell*}$
 365 according to Theorem 6. Then, Corollary 2 demonstrates that $R_R^{0-1}(\tilde{\mathbf{f}}_R) \rightarrow R_R^*$ where $\tilde{\mathbf{f}}_R$ is the
 366 corresponding prediction function of $\tilde{\mathbf{g}}_R$. This indicates that the prediction function obtained by
 367 minimizing Eq. (14) achieves the Bayes risk.
 368

370 4 EXPERIMENTS

372 In this section, we validate the effectiveness of the proposed approaches with experimental results.
 373

374 4.1 EXPERIMENTAL SETUP

376 We conducted experiments on both real-world and synthetic PML benchmark datasets. For real-
 377 world datasets, we used mirflickr (Huiskes & Lew, 2008), music_emotion (Zhang & Fang, 2020),
 music_style, yeastBP (Yu et al., 2018a), yeastCC and yeastMF; for synthetic datasets, we used

Ranking Loss ↓						
Approach	mirflickr	music_emotion	music_style	yeastBP	yeastCC	yeastMF
BCE	0.106 ± 0.008•	0.244 ± 0.007•	0.137 ± 0.009	0.328 ± 0.013•	0.206 ± 0.011•	0.251 ± 0.010•
CCMN	0.106 ± 0.011•	0.224 ± 0.007•	0.155 ± 0.012•	0.328 ± 0.011•	0.210 ± 0.013•	0.245 ± 0.011•
GDF	0.159 ± 0.007•	0.278 ± 0.010•	0.160 ± 0.008•	0.501 ± 0.009•	0.504 ± 0.016•	0.495 ± 0.029•
CTL	0.130 ± 0.006•	0.266 ± 0.010•	0.179 ± 0.008•	0.498 ± 0.007•	0.467 ± 0.014•	0.471 ± 0.026•
MLCL	0.498 ± 0.035•	0.470 ± 0.046•	0.130 ± 0.010	0.453 ± 0.033•	0.222 ± 0.047•	0.231 ± 0.077•
COMES-HL	0.095 ± 0.009	0.214 ± 0.005	0.132 ± 0.010	0.154 ± 0.010	0.124 ± 0.011	0.173 ± 0.021•
COMES-RL	0.106 ± 0.006•	0.213 ± 0.003	0.147 ± 0.013•	0.166 ± 0.010•	0.117 ± 0.009	0.151 ± 0.014
One Error ↓						
Approach	mirflickr	music_emotion	music_style	yeastBP	yeastCC	yeastMF
BCE	0.275 ± 0.021•	0.462 ± 0.015•	0.345 ± 0.019	0.871 ± 0.008•	0.814 ± 0.019•	0.886 ± 0.020•
CCMN	0.282 ± 0.030•	0.385 ± 0.018	0.346 ± 0.017	0.878 ± 0.016•	0.823 ± 0.016•	0.882 ± 0.012•
GDF	0.409 ± 0.027•	0.531 ± 0.012•	0.367 ± 0.018•	0.976 ± 0.006•	0.971 ± 0.008•	0.972 ± 0.007•
CTL	0.366 ± 0.017•	0.469 ± 0.019•	0.394 ± 0.022•	0.970 ± 0.006•	0.964 ± 0.004•	0.963 ± 0.010•
MLCL	0.810 ± 0.066•	0.793 ± 0.041•	0.405 ± 0.068•	0.961 ± 0.038•	0.862 ± 0.066•	0.887 ± 0.066•
COMES-HL	0.171 ± 0.019	0.382 ± 0.015	0.333 ± 0.012	0.641 ± 0.030	0.744 ± 0.020	0.800 ± 0.023
COMES-RL	0.206 ± 0.036•	0.409 ± 0.015•	0.351 ± 0.021•	0.808 ± 0.016•	0.754 ± 0.022	0.805 ± 0.020
Hamming Loss ↓						
Approach	mirflickr	music_emotion	music_style	yeastBP	yeastCC	yeastMF
BCE	0.220 ± 0.007•	0.307 ± 0.007•	0.186 ± 0.005•	0.148 ± 0.007•	0.162 ± 0.007•	0.153 ± 0.006•
CCMN	0.220 ± 0.006•	0.284 ± 0.013•	0.239 ± 0.020•	0.151 ± 0.007•	0.163 ± 0.008•	0.150 ± 0.005•
GDF	0.277 ± 0.007•	0.374 ± 0.009•	0.251 ± 0.008•	0.499 ± 0.016•	0.489 ± 0.026•	0.497 ± 0.030•
CTL	0.237 ± 0.006•	0.349 ± 0.006•	0.298 ± 0.008•	0.493 ± 0.009•	0.499 ± 0.007•	0.496 ± 0.006•
MLCL	0.601 ± 0.020•	0.480 ± 0.025•	0.246 ± 0.019•	0.881 ± 0.096•	0.845 ± 0.051•	0.837 ± 0.024•
COMES-HL	0.164 ± 0.003	0.247 ± 0.005	0.120 ± 0.006	0.073 ± 0.008•	0.119 ± 0.015•	0.101 ± 0.005•
COMES-RL	0.186 ± 0.008•	0.278 ± 0.005•	0.210 ± 0.008•	0.051 ± 0.001	0.045 ± 0.004	0.048 ± 0.003
Coverage ↓						
Approach	mirflickr	music_emotion	music_style	yeastBP	yeastCC	yeastMF
BCE	0.212 ± 0.009	0.408 ± 0.010•	0.197 ± 0.011	0.437 ± 0.021•	0.123 ± 0.010•	0.125 ± 0.011•
CCMN	0.212 ± 0.012	0.392 ± 0.010•	0.216 ± 0.015•	0.436 ± 0.022•	0.125 ± 0.012•	0.123 ± 0.012•
GDF	0.254 ± 0.006•	0.440 ± 0.010•	0.220 ± 0.010•	0.569 ± 0.019•	0.273 ± 0.018•	0.242 ± 0.022•
CTL	0.229 ± 0.008•	0.441 ± 0.014•	0.240 ± 0.011•	0.567 ± 0.016•	0.259 ± 0.017•	0.231 ± 0.015•
MLCL	0.492 ± 0.036•	0.596 ± 0.047•	0.177 ± 0.013	0.530 ± 0.072•	0.137 ± 0.045•	0.099 ± 0.032•
COMES-HL	0.211 ± 0.008	0.379 ± 0.008	0.192 ± 0.012	0.229 ± 0.016	0.070 ± 0.008	0.085 ± 0.006•
COMES-RL	0.224 ± 0.008•	0.377 ± 0.006	0.208 ± 0.015•	0.219 ± 0.015	0.070 ± 0.006	0.073 ± 0.005
Average Precision ↑						
Approach	mirflickr	music_emotion	music_style	yeastBP	yeastCC	yeastMF
BCE	0.813 ± 0.011•	0.616 ± 0.009•	0.738 ± 0.013•	0.150 ± 0.013•	0.487 ± 0.016•	0.379 ± 0.019•
CCMN	0.811 ± 0.016•	0.660 ± 0.010	0.728 ± 0.013•	0.150 ± 0.012•	0.479 ± 0.016•	0.386 ± 0.021•
GDF	0.742 ± 0.013•	0.574 ± 0.008•	0.711 ± 0.011•	0.057 ± 0.002•	0.135 ± 0.010•	0.144 ± 0.016•
CTL	0.772 ± 0.009•	0.600 ± 0.011•	0.692 ± 0.012•	0.060 ± 0.002•	0.154 ± 0.004•	0.165 ± 0.013•
MLCL	0.446 ± 0.038•	0.381 ± 0.029•	0.719 ± 0.035•	0.082 ± 0.015•	0.402 ± 0.080•	0.375 ± 0.124•
COMES-HL	0.843 ± 0.013	0.665 ± 0.009	0.749 ± 0.010	0.458 ± 0.020	0.657 ± 0.020	0.552 ± 0.023
COMES-RL	0.818 ± 0.011•	0.665 ± 0.006	0.732 ± 0.013•	0.315 ± 0.015•	0.651 ± 0.023	0.549 ± 0.019

Table 2: Experimental results on real-world benchmark datasets. Lower is better for the *ranking loss*, *one error*, *Hamming loss*, *coverage*; higher is better for the *average precision*.

VOC2007 (Everingham et al., 2007), VOC2012 (Everingham et al., 2012), CUB (Wah et al., 2011) and COCO2014 (Lin et al., 2014), where candidate labels were generated by two different data generation processes. Full experimental details are given in Appendix C. Following standard practice (Liu et al., 2023), we evaluated with *ranking loss*, *one error*, *Hamming loss*, *coverage* and *average precision* on real-world sets, and with *mean average precision (mAP)* on synthetic datasets.

4.2 EXPERIMENTAL RESULTS

Tables 2 and 3 summarize results on real-world and synthetic datasets, respectively. Here • indicates that the best method is significantly better than its competitor (paired *t*-test at 0.05 significance level). We observe that both instantiations of COMES consistently outperform other baselines across various datasets, clearly validating the effectiveness of our proposed approaches. We attribute this to: (1) our data generation assumptions are more realistic and better match statistics of real-world

432	433	VOC2007				VOC2012				CUB				COCO2014			
		Approach	Case-a	Case-b	Case-a	Case-b	Case-a	Case-b	Case-a	Case-b	Case-a	Case-b	Case-a	Case-b	Case-a	Case-b	
434	BCE	40.26 \pm 2.79•	38.87 \pm 1.12•	37.59 \pm 1.29•	41.17 \pm 2.98•	16.30 \pm 0.48•	16.09 \pm 0.14•	26.73 \pm 1.12•	27.10 \pm 0.40•								
435	CCMN	40.02 \pm 4.98•	39.84 \pm 1.22•	39.16 \pm 2.34•	42.05 \pm 4.84•	16.51 \pm 0.25•	16.97 \pm 0.90•	25.24 \pm 1.81•	26.79 \pm 1.23•								
436	GDF	21.27 \pm 1.03•	20.19 \pm 0.43•	23.58 \pm 2.55•	22.96 \pm 2.87•	12.83 \pm 0.15•	12.77 \pm 0.10•	17.32 \pm 0.62•	15.86 \pm 0.35•								
437	CTL	17.05 \pm 0.90•	18.87 \pm 1.86•	19.38 \pm 0.81•	18.51 \pm 0.71•	11.94 \pm 0.23•	11.94 \pm 0.23•	06.31 \pm 0.30•	06.34 \pm 0.14•								
438	MLCL	23.42 \pm 1.66•	17.78 \pm 1.18•	15.02 \pm 4.68•	15.00 \pm 3.54•	16.80 \pm 0.04•	17.92 \pm 0.10•	10.59 \pm 0.63•	10.67 \pm 0.81•								
439	COMES-HL	42.33 \pm 1.74	42.43 \pm 4.17	48.72 \pm 1.08	47.93 \pm 1.05	18.94 \pm 0.30	18.95 \pm 0.39	33.62 \pm 0.57	32.76 \pm 1.45								
440	COMES-RL	51.46 \pm 3.09	49.42 \pm 4.27	53.26 \pm 0.74	52.29 \pm 4.15	17.50 \pm 0.33•	17.34 \pm 0.03•	27.98 \pm 0.30•	28.69 \pm 1.62•								

Table 3: Classification performance in terms of mAP on synthetic benchmark datasets.

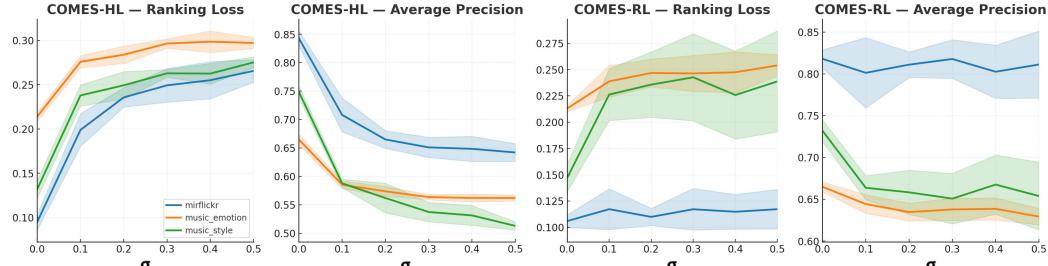
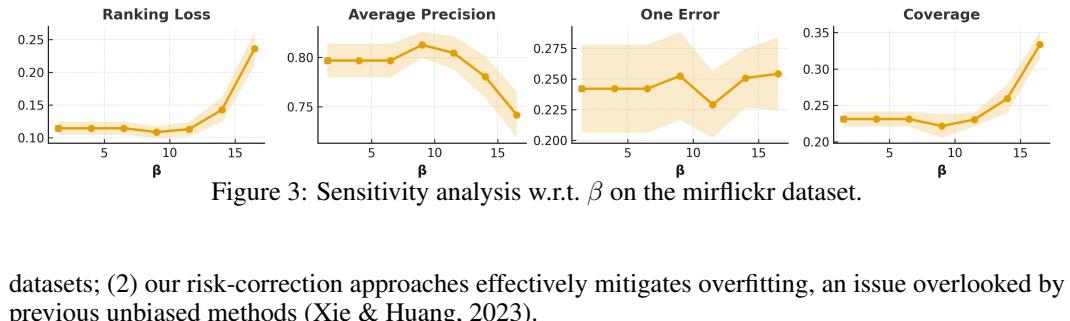


Figure 2: Classification performance with inaccurate class priors on different datasets.

Figure 3: Sensitivity analysis w.r.t. β on the mirflickr dataset.

datasets; (2) our risk-correction approaches effectively mitigates overfitting, an issue overlooked by previous unbiased methods (Xie & Huang, 2023).

4.3 SENSITIVITY ANALYSIS

Influence of Inaccurate Class Priors. To investigate the influence of inaccurate class priors, we added Gaussian noise $\epsilon \sim \mathcal{N}(0, \sigma^2)$ to each class prior π_j . The experimental results on **mirflickr**, **music_emotion**, and **music_style** are shown in Figure 2. We observe that COMES-HL is more sensitive to inaccurate class priors. Overall performance remains stable within a reasonable range of class priors, but may degrade when the priors become highly inaccurate.

Influence of β . We also investigated the influence of the hyperparameter β for the flooding regularization used in COMES-RL. From Figure 3, we observe that the performance of COMES-RL is rather stable when β is set within a reasonable range **on the mirflickr dataset**. During our experiments, we found that the performance was already competitive by setting $\beta = 0$ on many datasets. However, the performance may degrade when β is set to a large value. This also matches our theoretical results in Theorem 5, where consistency holds when β is not too large.

5 CONCLUSION

In this paper, we rethought MLC under inexact supervision by proposing a novel framework. We proposed two instantiations of risk estimators w.r.t. the Hamming loss and ranking loss, two widely used evaluation metrics for MLC, respectively. We also introduced risk-correction approaches to improve generalization performance with theoretical guarantees. Extensive experiments on ten real-world and synthetic benchmark datasets validated the effectiveness of the proposed approaches. A limitation of this work is that we consider the generation process to be independent of the instances. In the future, it is promising to extend our proposed methodologies to instance-dependent settings.

ETHICS STATEMENT

This paper does not raise any ethical concerns.

REPRODUCIBILITY STATEMENT

The code implementation of all compared approaches as well as COMES is available at <https://github.com/ICLR2026-10534/COMES>. The details of the experimental settings are presented in Appendix C.

REFERENCES

Wonho Bae, Yi Ren, Mohamed Osama Ahmed, Frederick Tung, Danica J. Sutherland, and Gabriel L. Oliveira. AdaFlood: Adaptive flood regularization. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856.

Ricardo Silveira Cabral, Fernando De la Torre, João Paulo Costeira, and Alexandre Bernardino. Matrix completion for multi-label image classification. In *Advances in Neural Information Processing Systems* 24, pp. 190–198, 2011.

Elijah Cole, Oisin Mac Aodha, Titouan Lorieul, Pietro Perona, Dan Morris, and Nebojsa Jojic. Multi-label learning from single positive labels. In *Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 933–942, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical image database. In *2009 IEEE Conference on Computer Vision and Pattern Recognition*, pp. 248–255, 2009.

Thibaut Durand, Nazanin Mehrasa, and Greg Mori. Learning a deep convnet for multi-label classification with partial labels. In *Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 647–657, 2019.

Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew Zisserman. The pascal visual object classes challenge 2007 (voc2007) results, 2007. URL <http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html>.

Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew Zisserman. The pascal visual object classes challenge 2012 (voc2012) results, 2012. URL <http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html>.

Wei Gao and Zhi-Hua Zhou. On the consistency of multi-label learning. *Artificial Intelligence*, 199(1):22–44, 2013.

Yi Gao, Miao Xu, and Min-Ling Zhang. Unbiased risk estimator to multi-labeled complementary label learning. In *Proceedings of the 32nd International Joint Conference on Artificial Intelligence*, pp. 3732–3740, 2023.

Yi Gao, Miao Xu, and Min-Ling Zhang. Complementary to multiple labels: A correlation-aware correction approach. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46(12):9179–9191, 2024.

Yi Gao, Jing-Yi Zhu, Miao Xu, and Min-Ling Zhang. Multi-label learning with multiple complementary labels. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, pp. to appear, 2025.

Saurabh Garg, Yifan Wu, Alexander J. Smola, Sivaraman Balakrishnan, and Zachary C. Lipton. Mixture proportion estimation and PU learning: A modern approach. In *Advances in Neural Information Processing Systems* 34, pp. 8532–8544, 2021.

Xiwen Gong, Dong Yuan, and Wei Bao. Understanding partial multi-label learning via mutual information. In *Advances in Neural Information Processing Systems* 34, pp. 4147–4156, 2021.

540 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
 541 networks. In *Proceedings of the 34th International Conference on Machine Learning*, pp. 1321–
 542 1330, 2017.

543

544 Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi
 545 Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels. In
 546 *Advances in Neural Information Processing Systems 31*, pp. 8536–8546, 2018.

547

548 Mark J. Huiskes and Michael S. Lew. The MIR Flickr retrieval evaluation. In *Proceedings of the 1st
 549 ACM International Conference on Multimedia Information Retrieval*, pp. 39–43, 2008.

550

551 Takashi Ishida, Ikko Yamane, Tomoya Sakai, Gang Niu, and Masashi Sugiyama. Do we need
 552 zero training loss after achieving zero training error? In *Proceedings of the 37th International
 553 Conference on Machine Learning*, pp. 4604–4614, 2020.

554

555 Ryuichi Kiryo, Gang Niu, Marthinus C. du Plessis, and Masashi Sugiyama. Positive-unlabeled
 556 learning with non-negative risk estimator. In *Advances in Neural Information Processing Systems
 557 30*, pp. 1674–1684, 2017.

558

559 John Langford. Tutorial on practical prediction theory for classification. *Journal of Machine Learn-
 560 ing Research*, 6(10):273–306, 2005.

561

562 Michel Ledoux and Michel Talagrand. *Probability in Banach Spaces: Isoperimetry and Processes*,
 563 volume 23. Springer Science & Business Media, 1991.

564

565 Shikun Li, Xiaobo Xia, Hansong Zhang, Yibing Zhan, Shiming Ge, and Tongliang Liu. Estimating
 566 noise transition matrix with label correlations for noisy multi-label learning. In *Advances in
 567 Neural Information Processing Systems 35*, pp. 24184–24198, 2022.

568

569 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 570 Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common objects in context. In *European
 571 Conference on Computer Vision (ECCV)*, pp. 740–755. Springer, 2014.

572

573 Yong Lin, Renjie Pi, Weizhong Zhang, Xiaobo Xia, Jiahui Gao, Xiao Zhou, Tongliang Liu, and
 574 Bo Han. A holistic view of label noise transition matrix in deep learning and beyond. In *Proceed-
 575 ings of the 11th International Conference on Learning Representations*, 2023.

576

577 Biao Liu, Ning Xu, Jiaqi Lv, and Xin Geng. Revisiting pseudo-label for single-positive multi-label
 578 learning. In *Proceedings of the 40th International Conference on Machine Learning*, pp. 22249–
 579 22265, 2023.

580

581 Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, and Yiming Yang. Deep learning for extreme multi-
 582 label text classification. In *Proceedings of the 40th International ACM SIGIR Conference on
 583 Research and Development in Information Retrieval*, pp. 115–124, 2017.

584

585 Qin Liu, Rui Zheng, Bao Rong, Jingyi Liu, ZhiHua Liu, Zhanzhan Cheng, Liang Qiao, Tao Gui,
 586 Qi Zhang, and Xuan-Jing Huang. Flooding-X: Improving BERT’s resistance to adversarial attacks
 587 via loss-restricted fine-tuning. In *Proceedings of the 60th Annual Meeting of the Association for
 588 Computational Linguistics*, pp. 5634–5644, 2022a.

589

590 Tongliang Liu and Dacheng Tao. Classification with noisy labels by importance reweighting. *IEEE
 591 Transactions on Pattern Analysis and Machine Intelligence*, 38(3):447–461, 2015.

592

593 Weiwei Liu, Haobo Wang, Xiaobo Shen, and Ivor W. Tsang. The emerging trends of multi-label
 594 learning. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(11):7955–7974,
 2022b.

595

596 Nan Lu, Tianyi Zhang, Gang Niu, and Masashi Sugiyama. Mitigating overfitting in supervised
 597 classification from two unlabeled datasets: A consistent risk correction approach. In *Proceedings
 598 of the 23rd International Conference on Artificial Intelligence and Statistics*, pp. 1115–1125,
 599 2020.

594 Jun-Xiang Mao, Wei Wang, and Min-Ling Zhang. Label specific multi-semantics metric learning for
 595 multi-label classification: Global consideration helps. In *Proceedings of the 32nd International*
 596 *Joint Conference on Artificial Intelligence*, pp. 4055–4063, 2023.

597

598 Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. *Foundations of Machine Learning*.
 599 The MIT Press, 2012.

600 Harish G. Ramaswamy, Clayton Scott, and Ambuj Tewari. Mixture proportion estimation via kernel
 601 embeddings of distributions. In *Proceedings of the 33rd International Conference on Machine*
 602 *Learning*, pp. 2052–2060, 2016.

603 Timothy N. Rubin, America Chambers, Padhraic Smyth, and Mark Steyvers. Statistical topic models
 604 for multi-label document classification. *Maching Learning*, 88(1-2):157–208, 2012.

605

606 Masashi Sugiyama, Han Bao, Takashi Ishida, Nan Lu, Tomoya Sakai, and Gang Niu. *Machine*
 607 *learning from weak supervision: An empirical risk minimization approach*. MIT Press, 2022.

608 Lijuan Sun, Songhe Feng, Tao Wang, Congyan Lang, and Yi Jin. Partial multi-label learning by
 609 low-rank and sparse decomposition. In *Proceedings of the 33rd AAAI conference on artificial*
 610 *intelligence*, pp. 5016–5023, 2019.

611 Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
 612 birds-200-2011 dataset. Technical Report CNS-TR-2011-001, California Institute of Technology,
 613 2011.

614

615 Wei Wang, Lei Feng, Yuchen Jiang, Gang Niu, Min-Ling Zhang, and Masashi Sugiyama. Binary
 616 classification with confidence difference. In *Advances in Neural Information Processing Systems*
 617 36, pp. 5936–5960, 2023.

618 Wei Wang, Takashi Ishida, Yu-Jie Zhang, Gang Niu, and Masashi Sugiyama. Learning with com-
 619 plementary labels revisited: The selected-completely-at-random setting is more practical. In *Pro-*
 620 *ceedings of the 41st International Conference on Machine Learning*, pp. 50683–50710, 2024.

621

622 Wei Wang, Dong-Dong Wu, Jindong Wang, Gang Niu, Min-Ling Zhang, and Masashi Sugiyama.
 623 Realistic evaluation of deep partial-label learning algorithms. In *Proceedings of the 13th Interna-*
 624 *tional Conference on Learning Representations*, 2025.

625 Hongxin Wei, RENCHUNZI Xie, Hao Cheng, Lei Feng, Bo An, and Yixuan Li. Mitigating neural
 626 network overconfidence with logit normalization. In *Proceedings of the 39th International Con-*
 627 *ference on Machine Learning*, pp. 23631–23644, 2022.

628

629 Bin Wu, Erheng Zhong, Andrew Horner, and Qiang Yang. Music emotion recognition by multi-label
 630 multi-layer multi-instance multi-view learning. In *Proceedings of the 22nd ACM International*
 631 *Conference on Multimedia*, pp. 117–126, 2014.

632

633 Xi-Zhu Wu and Zhi-Hua Zhou. A unified view of multi-label performance measures. In *Proceedings*
 634 *of the 34th International Conference on Machine Learning*, pp. 3780–3788, 2017.

635

636 Xiaobo Xia, Tongliang Liu, Nannan Wang, Bo Han, Chen Gong, Gang Niu, and Masashi Sugiyama.
 637 Are anchor points really indispensable in label-noise learning? In *Advances in Neural Information*
 638 *Processing Systems* 32, pp. 6835–6846, 2019.

639

640 Xiaobo Xia, Jiankang Deng, Wei Bao, Yuxuan Du, Bo Han, Shiguang Shan, and Tongliang
 641 Liu. Holistic label correction for noisy multi-label classification. In *Proceedings of the 2023*
 642 *IEEE/CVF International Conference on Computer Vision*, pp. 1483–1493, 2023.

643

644 Ming-Kun Xie and Sheng-Jun Huang. Partial multi-label learning. In *Proceedings of the 32nd AAAI*
 645 *Conference on Artificial Intelligence*, pp. 4302–4309, 2018.

646

647 Ming-Kun Xie and Sheng-Jun Huang. Multi-label learning with pairwise relevance ordering. In
 648 *Advances in Neural Information Processing Systems* 34, pp. 23545–23556, 2021.

649

650 Ming-Kun Xie and Sheng-Jun Huang. CCMN: A general framework for learning with class-
 651 conditional multi-label noise. *IEEE Transactions on Pattern Analysis and Machine Intelligence*,
 652 45(1):154–166, 2023.

648 Ming-Kun Xie, Jiahao Xiao, Hao-Zhe Liu, Gang Niu, Masashi Sugiyama, and Sheng-Jun Huang.
 649 Class-distribution-aware pseudo-labeling for semi-supervised multi-label learning. In *Advances*
 650 *in Neural Information Processing Systems 36*, pp. 25731–25747, 2023.

651
 652 Yu Yao, Tongliang Liu, Bo Han, Mingming Gong, Jiankang Deng, Gang Niu, and Masashi
 653 Sugiyama. Dual T: Reducing estimation error for transition matrix in label-noise learning. In
 654 *Advances in Neural Information Processing Systems 33*, pp. 7260–7271, 2020.

655 Yu Yao, Tongliang Liu, Bo Han, Mingming Gong, Gang Niu, Masashi Sugiyama, and Dacheng
 656 Tao. Rethinking class-prior estimation for positive-unlabeled learning. In *Proceedings of the 10th*
 657 *International Conference on Learning Representations*, 2022.

658 Guoxian Yu, Xia Chen, Carlotta Domeniconi, Jun Wang, Zhao Li, Zili Zhang, and Xindong Wu.
 659 Feature-induced partial multi-label learning. In *Proceedings of the 2018 IEEE international con-*
 660 *ference on data mining*, pp. 1398–1403, 2018a.

662 Xiyu Yu, Tongliang Liu, Mingming Gong, and Dacheng Tao. Learning with biased complementary
 663 labels. In *Proceedings of the 15th European Conference on Computer Vision*, pp. 68–83, 2018b.

664 Min-Ling Zhang and Jun-Peng Fang. Partial multi-label learning via credible label elicitation. *IEEE*
 665 *Transactions on Pattern Analysis and Machine Intelligence*, 43(10):3587–3599, 2020.

667 Min-Ling Zhang and Zhi-Hua Zhou. A review on multi-label learning algorithms. *IEEE Transac-*
 668 *tions on Knowledge and Data Engineering*, 26(8):1819–1837, 2014.

669 Yivan Zhang, Gang Niu, and Masashi Sugiyama. Learning noise transition matrix from only noisy
 670 labels via total variation regularization. In *Proceedings of the 38th International Conference on*
 671 *Machine Learning*, pp. 12501–12512, 2021.

673 Yilun Zhu, Aaron Fjeldsted, Darren Holland, George Landon, Azaree Lintereur, and Clayton Scott.
 674 Mixture proportion estimation beyond irreducibility. In *Proceedings of the 40th International*
 675 *Conference on Machine Learning*, pp. 42962–42982, 2023.

676 Yue Zhu, James T Kwok, and Zhi-Hua Zhou. Multi-label learning with global and local label
 677 correlation. *IEEE Transactions on Knowledge and Data Engineering*, 30(6):1081–1094, 2017.

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 THE USE OF LARGE LANGUAGE MODELS (LLMs)
703704 We used LLMs to check the manuscript for typos and grammatical errors.
705706 A MORE DETAILS ABOUT THE ALGORITHM
707708 A.1 ALGORITHMIC PSEUDO-CODE
709710 **Algorithm 1** COMES-HL and COMES-RL

711 **Input:** Multi-label classifiers g , PML dataset \mathcal{D} , epoch number T_{\max} , iteration number I_{\max} .

```

712 1: for  $t = 1, 2, \dots, T_{\max}$  do
713 2:   Shuffle  $\mathcal{D}$ ;
714 3:   for  $j = 1, \dots, I_{\max}$  do
715 4:     Fetch mini-batch  $\mathcal{D}_j$  from  $\mathcal{D}$ ;
716 5:     Forward  $\mathcal{D}$  and get the outputs of  $g$ ;
717 6:     if using the COMES-HL algorithm then
718 7:       Calculating the loss based on Eq. (8);
719 8:     else if using the COMES-RL algorithm then
720 9:       Calculating the loss based on Eq. (14);
721 10:    end if
722 11:    Update  $g$  using a stochastic optimizer to minimize the loss;
723 12:   end for
724 13: end for
725 Output:  $g$ .
```

726
727 A.2 CLASS PRIOR ESTIMATION
728

729 We can use any off-the-shelf mixture proportion estimation algorithm to estimate the class priors (Ramaswamy et al., 2016; Garg et al., 2021; Yao et al., 2022; Zhu et al., 2023), which are 730 mainly designed to estimate the class prior with positive and unlabeled data for binary classification. 731 Specifically, we generate negative and unlabeled datasets according to Eq. (6) and then apply the 732 mixture proportion estimation algorithm. The algorithmic details are summarized in Algorithm 2. 733

734 **Algorithm 2** Class-prior Estimation

735 **Input:** Mixture proportion estimation algorithm \mathcal{A} , PML dataset \mathcal{D} .

```

736 1: for  $k \in \mathcal{Y}$  do
737 2:   Generate unlabeled and negative datasets according to Eq. (6);
738 3:   Estimate the value of  $(1 - \pi_k)$  by using  $\mathcal{A}$  and interchanging the positive and negative
739   classes;
740 4: end for
741 Output: Class priors  $\pi_k$  ( $k \in \mathcal{Y}$ ).
```

742 B PROOFS
743744 B.1 PROOF OF LEMMA 1
745

746 According to the definition of PML, when $s_j = 0$, the j -th class is impossible to be a relevant label, 747 and we have $p(j \notin Y | \mathbf{x}, s_j = 0) = p(j \notin Y | s_j = 0) = 1$. Therefore, on one hand, we have 748

$$749 p(\mathbf{x} | s_j = 0, j \notin Y) = \frac{p(\mathbf{x} | s_j = 0) p(j \notin Y | \mathbf{x}, s_j = 0)}{p(j \notin Y | s_j = 0)} = p(\mathbf{x} | s_j = 0).$$

750 On the other hand, we have
751

$$752 p(\mathbf{x} | s_j = 0, j \notin Y) = \frac{p(\mathbf{x} | j \notin Y) p(s_j = 0 | \mathbf{x}, j \notin Y)}{p(s_j = 0 | j \notin Y)} = p(\mathbf{x} | j \notin Y),$$

756 where the second equation is due to $p(s_j = 0|\mathbf{x}, j \notin Y) = p(s_j = 0|j \notin Y) = p_j$. The proof is
 757 completed. \square
 758

759 **B.2 PROOF OF THEOREM 1**
 760
 761

$$\begin{aligned}
 R_H^\ell(\mathbf{g}) &= \mathbb{E}_{p(\mathbf{x}, Y)} \left[\frac{1}{q} \sum_{j=1}^q \ell(g_j(\mathbf{x}), y_j) \right] \\
 &= \int \sum_Y \frac{1}{q} \sum_{j=1}^q \ell(g_j(\mathbf{x}), y_j) p(\mathbf{x}, Y) d\mathbf{x} \\
 &= \int \frac{1}{q} \sum_{j=1}^q \sum_{y_j=0}^1 \sum_{Y'=Y \setminus j} \ell(g_j(\mathbf{x}), y_j) p(\mathbf{x}, y_j) p(Y'|\mathbf{x}, y_j) d\mathbf{x} \\
 &= \int \frac{1}{q} \sum_{j=1}^q \sum_{y_j=0}^1 \ell(g_j(\mathbf{x}), y_j) p(\mathbf{x}, y_j) \sum_{Y'=Y \setminus j} p(Y'|\mathbf{x}, y_j) d\mathbf{x} \\
 &= \int \frac{1}{q} \sum_{j=1}^q \sum_{y_j=0}^1 \ell(g_j(\mathbf{x}), y_j) p(\mathbf{x}, y_j) d\mathbf{x} \\
 &= \int \frac{1}{q} \sum_{j=1}^q \ell(g_j(\mathbf{x}), 1) p(\mathbf{x}, y_j = 1) d\mathbf{x} + \int \frac{1}{q} \sum_{j=1}^q \ell(g_j(\mathbf{x}), 0) p(\mathbf{x}, y_j = 0) d\mathbf{x} \\
 &= \int \frac{1}{q} \sum_{j=1}^q \ell(g_j(\mathbf{x}), 1) p(\mathbf{x}) d\mathbf{x} - \int \frac{1}{q} \sum_{j=1}^q \ell(g_j(\mathbf{x}), 1) p(\mathbf{x}, y_j = 0) d\mathbf{x} \\
 &\quad + \int \frac{1}{q} \sum_{j=1}^q \ell(g_j(\mathbf{x}), 0) p(\mathbf{x}, y_j = 0) d\mathbf{x} \\
 &= \int \frac{1}{q} \sum_{j=1}^q \ell(g_j(\mathbf{x}), 1) p(\mathbf{x}) d\mathbf{x} + \int \frac{1}{q} \sum_{j=1}^q (\ell(g_j(\mathbf{x}), 0) - \ell(g_j(\mathbf{x}), 1)) (1 - \pi_j) p(\mathbf{x}|y_j = 0) d\mathbf{x} \\
 &= \mathbb{E}_{p(\mathbf{x})} \left[\frac{1}{q} \sum_{j=1}^q \ell(g_j(\mathbf{x}), 1) \right] + \mathbb{E}_{p(\mathbf{x}|y_j=0)} \left[\frac{1}{q} \sum_{j=1}^q (1 - \pi_j) (\ell(g_j(\mathbf{x}), 0) - \ell(g_j(\mathbf{x}), 1)) \right] \\
 &= \mathbb{E}_{p(\mathbf{x})} \left[\frac{1}{q} \sum_{j=1}^q \ell(g_j(\mathbf{x}), 1) \right] + \mathbb{E}_{p(\mathbf{x}|s_j=0)} \left[\frac{1}{q} \sum_{j=1}^q (1 - \pi_j) (\ell(g_j(\mathbf{x}), 0) - \ell(g_j(\mathbf{x}), 1)) \right],
 \end{aligned}$$

787 where the last equation is by Lemma 1. The proof is completed. \square
 788

789 **B.3 PROOF OF THEOREM 2**
 790
 791

Let

$$\mathfrak{D}_j^+(\mathbf{g}_j) = \left\{ (\mathcal{D}_U, \mathcal{D}_j) \mid \frac{1}{n} \sum_{i=1}^n \ell(g_j(\mathbf{x}_i^U), 1) - \frac{1 - \pi_j}{n_j} \sum_{i=1}^{n_j} \ell(g_j(\mathbf{x}_i^j), 1) > 0 \right\}$$

794 and

$$\mathfrak{D}_j^-(\mathbf{g}_j) = \left\{ (\mathcal{D}_U, \mathcal{D}_j) \mid \frac{1}{n} \sum_{i=1}^n \ell(g_j(\mathbf{x}_i^U), 1) - \frac{1 - \pi_j}{n_j} \sum_{i=1}^{n_j} \ell(g_j(\mathbf{x}_i^j), 1) \leq 0 \right\}$$

795 denote the set of data pairs with positive and negative empirical losses, respectively. Then, we have
 796 the following lemma.
 797

800 **Lemma 2.** *The probability measure of $\mathfrak{D}_j^-(\mathbf{g}_j)$ can be bounded as follows:*

$$\mathbb{P}(\mathfrak{D}_j^-(\mathbf{g}_j)) \leq \exp \left(\frac{-2\alpha^2}{C_\ell^2/n + (1 - \pi_j)^2 C_\ell^2/n_j} \right). \quad (18)$$

805 *Proof.* Let

$$p(\mathcal{D}_U) = p(\mathbf{x}_1^U) p(\mathbf{x}_2^U) \cdots p(\mathbf{x}_n^U) \quad \text{and} \quad p(\mathcal{D}_j) = p(\mathbf{x}_1^j) p(\mathbf{x}_2^j) \cdots p(\mathbf{x}_{n_j}^j)$$

808 denote the densities of \mathcal{D}_U and \mathcal{D}_j , respectively. Then, the joint density of $(\mathcal{D}_U, \mathcal{D}_j)$ is
 809

$$p(\mathcal{D}_U, \mathcal{D}_j) = p(\mathcal{D}_U) p(\mathcal{D}_j).$$

810 Then, the probability measure of $\mathfrak{D}_j^-(g_j)$ can be expressed as
 811

$$\begin{aligned} 813 \quad \mathbb{P}(\mathfrak{D}_j^-(g_j)) &= \int_{(\mathcal{D}_U, \mathcal{D}_j) \in \mathfrak{D}_j^-(g_j)} p(\mathcal{D}_U, \mathcal{D}_j) d(\mathcal{D}_U, \mathcal{D}_j) \\ 814 \\ 815 \quad &= \int_{(\mathcal{D}_U, \mathcal{D}_j) \in \mathfrak{D}_j^-(g_j)} p(\mathcal{D}_U, \mathcal{D}_j) dx_1^U dx_2^U \cdots dx_n^U dx_1^j dx_2^j \cdots dx_{n_j}^j \\ 816 \\ 817 \end{aligned}$$

818 When an instance in \mathcal{D}_U is replaced by another instance, the value of $\sum_{i=1}^n \ell(g_j(\mathbf{x}_i^U), 1) / n - (1 - \pi_j) \sum_{i=1}^{n_j} \ell(g_j(\mathbf{x}_i^j), 1) / n_j$ changes no more than C_ℓ / n . When an instance in \mathcal{D}_j is replaced by
 819 another instance, the value of $\sum_{i=1}^n \ell(g_j(\mathbf{x}_i^U), 1) / n - (1 - \pi_j) \sum_{i=1}^{n_j} \ell(g_j(\mathbf{x}_i^j), 1) / n_j$ changes
 820 no more than $(1 - \pi_j) C_\ell / n_j$. Therefore, by applying the McDiarmid's inequality, we can obtain the
 821 following inequality:
 822

$$\begin{aligned} 823 \quad p\left(\pi_j \mathbb{E}_{p(\mathbf{x}|y_j=1)} [\ell(g_j(\mathbf{x}), 1)] - \left(\frac{1}{n} \sum_{i=1}^n \ell(g_j(\mathbf{x}_i^U), 1) - \frac{1 - \pi_j}{n_j} \sum_{i=1}^{n_j} \ell(g_j(\mathbf{x}_i^j), 1)\right) \geq \alpha\right) \\ 824 \\ 825 \quad \leq \exp\left(\frac{-2\alpha^2}{C_\ell^2/n + (1 - \pi_j)^2 C_\ell^2/n_j}\right). \\ 826 \\ 827 \end{aligned}$$

828 Then we have
 829

$$\begin{aligned} 830 \quad \mathbb{P}(\mathfrak{D}_j^-(g_j)) &= p\left(\frac{1}{n} \sum_{i=1}^n \ell(g_j(\mathbf{x}_i^U), 1) - \frac{1 - \pi_j}{n_j} \sum_{i=1}^{n_j} \ell(g_j(\mathbf{x}_i^j), 1) \leq 0\right) \\ 831 \\ 832 \quad \leq p\left(\frac{1}{n} \sum_{i=1}^n \ell(g_j(\mathbf{x}_i^U), 1) - \frac{1 - \pi_j}{n_j} \sum_{i=1}^{n_j} \ell(g_j(\mathbf{x}_i^j), 1) \leq \pi_j \mathbb{E}_{p(\mathbf{x}|y_j=1)} [\ell(g_j(\mathbf{x}), 1)] - \alpha\right) \\ 833 \\ 834 \quad \leq \exp\left(\frac{-2\alpha^2}{C_\ell^2/n + (1 - \pi_j)^2 C_\ell^2/n_j}\right), \\ 835 \\ 836 \end{aligned}$$

837 which concludes the proof. □
 838

839 Then, we provide the proof of Theorem 2.
 840

841 *Proof of Theorem 2.* To begin with, we have
 842

$$843 \quad \mathbb{E}[\tilde{R}_H^\ell(\mathbf{g})] - R_H^\ell(\mathbf{g}) = \mathbb{E}[\tilde{R}_H^\ell(\mathbf{g}) - \hat{R}_H^\ell(\mathbf{g})] \geq 0. \\ 844 \\ 845$$

846 Besides, we have
 847

$$\begin{aligned} 848 \quad &\left| \frac{1}{n} \sum_{i=1}^n \ell(g_j(\mathbf{x}_i^U), 1) - \frac{1 - \pi_j}{n_j} \sum_{i=1}^{n_j} \ell(g_j(\mathbf{x}_i^j), 1) \right| \\ 849 \\ 850 \quad &\leq \left| \frac{1}{n} \sum_{i=1}^n \ell(g_j(\mathbf{x}_i^U), 1) \right| + \left| \frac{1 - \pi_j}{n_j} \sum_{i=1}^{n_j} \ell(g_j(\mathbf{x}_i^j), 1) \right| \\ 851 \\ 852 \quad &\leq (2 - \pi_j) C_\ell. \\ 853 \\ 854 \end{aligned}$$

864 Then,

865

$$\mathbb{E} \left[\tilde{R}_H^\ell(\mathbf{g}) \right] - R_H^\ell(\mathbf{g})$$

866

$$= \mathbb{E} \left[\tilde{R}_H^\ell(\mathbf{g}) - \hat{R}_H^\ell(\mathbf{g}) \right]$$

867

$$= \frac{1}{q} \sum_{j=1}^q \int_{(\mathcal{D}_U, \mathcal{D}_j) \in \mathfrak{D}_j^-(g_j)} \left(\left| \frac{1}{n} \sum_{i=1}^n \ell(g_j(\mathbf{x}_i^U), 1) - \frac{1-\pi_j}{n_j} \sum_{i=1}^{n_j} \ell(g_j(\mathbf{x}_i^j), 1) \right| \right.$$

870

$$- \left. \left(\frac{1}{n} \sum_{i=1}^n \ell(g_j(\mathbf{x}_i^U), 1) - \frac{1-\pi_j}{n_j} \sum_{i=1}^{n_j} \ell(g_j(\mathbf{x}_i^j), 1) \right) \right) p(\mathcal{D}_U, \mathcal{D}_j) d(\mathcal{D}_U, \mathcal{D}_j)$$

872

$$\leq \frac{1}{q} \sum_{j=1}^q \sup_{(\mathcal{D}_U, \mathcal{D}_j) \in \mathfrak{D}_j^-(g_j)} \left(\left| \frac{1}{n} \sum_{i=1}^n \ell(g_j(\mathbf{x}_i^U), 1) - \frac{1-\pi_j}{n_j} \sum_{i=1}^{n_j} \ell(g_j(\mathbf{x}_i^j), 1) \right| \right.$$

874

$$- \left. \left(\frac{1}{n} \sum_{i=1}^n \ell(g_j(\mathbf{x}_i^U), 1) - \frac{1-\pi_j}{n_j} \sum_{i=1}^{n_j} \ell(g_j(\mathbf{x}_i^j), 1) \right) \right) \int_{(\mathcal{D}_U, \mathcal{D}_j) \in \mathfrak{D}_j^-(g_j)} p(\mathcal{D}_U, \mathcal{D}_j) d(\mathcal{D}_U, \mathcal{D}_j)$$

876

$$\leq \frac{1}{q} \sum_{j=1}^q (4 - 2\pi_j) C_\ell \mathbb{P}(\mathfrak{D}_j^-(g_j))$$

878

$$\leq \frac{1}{q} \sum_{j=1}^q (4 - 2\pi_j) C_\ell \exp \left(\frac{-2\alpha^2}{C_\ell^2/n + (1 - \pi_j)^2 C_\ell^2/n_j} \right)$$

880

$$= \frac{1}{q} \sum_{j=1}^q (4 - 2\pi_j) C_\ell \Delta_j,$$

882

886 which concludes the proof of the first part of the theorem. Then, we provide an upper bound for
887 $|\mathbb{E} \left[\tilde{R}_H^\ell(\mathbf{g}) \right] - \tilde{R}_H^\ell(\mathbf{g})|$. When an instance in \mathcal{D}_U is replaced by another instance, the value of $\tilde{R}_H^\ell(\mathbf{g})$
888 changes at most C_ℓ/n ; when an instance in \mathcal{D}_j is replaced by another instance, the value of $\tilde{R}_H^\ell(\mathbf{g})$
889 changes at most $(2 - 2\pi_j)C_\ell/(qn_j)$. By applying McDiarmid's inequality, we have the following
890 inequalities with probability at least $1 - \delta/2$:

891

$$\mathbb{E} \left[\tilde{R}_H^\ell(\mathbf{g}) \right] - \tilde{R}_H^\ell(\mathbf{g}) \leq C_\ell \sqrt{\frac{\ln(2/\delta)}{2n}} + \sum_{j=1}^q \frac{(2 - 2\pi_j)C_\ell}{q} \sqrt{\frac{\ln(2/\delta)}{2n_j}},$$

893

$$\tilde{R}_H^\ell(\mathbf{g}) - \mathbb{E} \left[\tilde{R}_H^\ell(\mathbf{g}) \right] \leq C_\ell \sqrt{\frac{\ln(2/\delta)}{2n}} + \sum_{j=1}^q \frac{(2 - 2\pi_j)C_\ell}{q} \sqrt{\frac{\ln(2/\delta)}{2n_j}},$$

895

897 where we use the inequality that $\sqrt{a+b} \leq \sqrt{a} + \sqrt{b}$. Therefore, the following inequality holds
898 with probability at least $1 - \delta$:

900

$$|\mathbb{E} \left[\tilde{R}_H^\ell(\mathbf{g}) \right] - \tilde{R}_H^\ell(\mathbf{g})| \leq C_\ell \sqrt{\frac{\ln(2/\delta)}{2n}} + \sum_{j=1}^q \frac{(2 - 2\pi_j)C_\ell}{q} \sqrt{\frac{\ln(2/\delta)}{2n_j}}.$$

902

903 Finally, we have

904

$$\left| \tilde{R}_H^\ell(\mathbf{g}) - R_H^\ell(\mathbf{g}) \right|$$

905

$$= \left| \tilde{R}_H^\ell(\mathbf{g}) - \mathbb{E} \left[\tilde{R}_H^\ell(\mathbf{g}) \right] + \mathbb{E} \left[\tilde{R}_H^\ell(\mathbf{g}) \right] - R_H^\ell(\mathbf{g}) \right|$$

906

$$\leq \left| \tilde{R}_H^\ell(\mathbf{g}) - \mathbb{E} \left[\tilde{R}_H^\ell(\mathbf{g}) \right] \right| + \left| \mathbb{E} \left[\tilde{R}_H^\ell(\mathbf{g}) \right] - R_H^\ell(\mathbf{g}) \right|$$

908

$$= \left| \tilde{R}_H^\ell(\mathbf{g}) - \mathbb{E} \left[\tilde{R}_H^\ell(\mathbf{g}) \right] \right| + \mathbb{E} \left[\tilde{R}_H^\ell(\mathbf{g}) \right] - R_H^\ell(\mathbf{g})$$

909

$$\leq \frac{1}{q} \sum_{j=1}^q \left((4 - 2\pi_j) C_\ell \exp \left(\frac{-2\alpha^2}{C_\ell^2/n + (1 - \pi_j)^2 C_\ell^2/n_j} \right) + \frac{(2 - 2\pi_j)C_\ell}{q} \sqrt{\frac{\ln(2/\delta)}{2n_j}} \right) + C_\ell \sqrt{\frac{\ln(2/\delta)}{2n}}$$

910

$$= \frac{1}{q} \sum_{j=1}^q \left((4 - 2\pi_j) C_\ell \Delta_j + \frac{(2 - 2\pi_j)C_\ell}{q} \sqrt{\frac{\ln(2/\delta)}{2n_j}} \right) + C_\ell \sqrt{\frac{\ln(2/\delta)}{2n}},$$

911

912 which concludes the proof. □

918 B.4 PROOF OF THEOREM 3
919

920 **Definition 1** (Rademacher complexity). Let $\mathcal{X}_n = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ denote n i.i.d. random variables
921 drawn from a probability distribution with density $p(\mathbf{x})$, $\mathcal{G} = \{g_k : \mathcal{X} \mapsto \mathbb{R}\}$ denote a class of mea-
922 surable functions of model outputs for the k -th class, and $\boldsymbol{\sigma} = (\sigma_1, \sigma_2, \dots, \sigma_n)$ denote Rademacher
923 variables taking values from $\{+1, -1\}$ uniformly. Then, the (expected) Rademacher complexity of
924 \mathcal{G} is defined as

$$925 \quad \mathfrak{R}_{n,p}(\mathcal{G}) = \mathbb{E}_{\mathcal{X}_n} \mathbb{E}_{\boldsymbol{\sigma}} \left[\sup_{g_j \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^n \sigma_i g_j(\mathbf{x}_i) \right]. \quad (19)$$

927 We also introduce an alternative definition of Rademacher complexity:

$$929 \quad \mathfrak{R}'_{n,p}(\mathcal{G}) = \mathbb{E}_{\mathcal{X}_n} \mathbb{E}_{\boldsymbol{\sigma}} \left[\sup_{g_j \in \mathcal{G}} \left| \frac{1}{n} \sum_{i=1}^n \sigma_i g_j(\mathbf{x}_i) \right| \right]. \quad (20)$$

932 Then, we introduce the following lemmas.

933 **Lemma 3.** *Without any composition, for any \mathcal{G} , we have $\mathfrak{R}'_{n,p}(\mathcal{G}) \geq \mathfrak{R}_{n,p}(\mathcal{G})$. If \mathcal{G} is closed under
934 negation, we have $\mathfrak{R}'_{n,p}(\mathcal{G}) = \mathfrak{R}_{n,p}(\mathcal{G})$.*

935 **Lemma 4** (Theorem 4.12 in (Ledoux & Talagrand, 1991)). *If $\ell : \mathbb{R} \times \{0, 1\} \rightarrow \mathbb{R}$ is a Lipschitz
936 continuous function with a Lipschitz constant L_ℓ and satisfies $\forall y, \ell(0, y) = 0$, we have*

$$938 \quad \mathfrak{R}'_{n,p}(\ell \circ \mathcal{G}) \leq 2L_\ell \mathfrak{R}'_{n,p}(\mathcal{G}),$$

939 where $\ell \circ \mathcal{G} = \{\ell \circ g_j | g_j \in \mathcal{G}\}$.

941 Then, we provide the following lemma.

942 **Lemma 5.** *Based on the above assumptions, for any $\delta > 0$, the following inequality holds with
943 probability at least $1 - \delta$:*

$$945 \quad \sup_{g_1, g_2, \dots, g_q \in \mathcal{G}} \left| R_H^\ell(\mathbf{g}) - \tilde{R}_H^\ell(\mathbf{g}) \right| \leq \frac{4L_\ell}{q} \sum_{j=1}^q \mathfrak{R}'_{n,p}(\mathcal{G}) + \frac{8(1 - \pi_j)L_\ell}{q} \sum_{j=1}^q \mathfrak{R}'_{n_j, p_j}(\mathcal{G}) \\ 946 \\ 947 \quad + \frac{1}{q} \sum_{j=1}^q (4 - 2\pi_j)C_\ell \Delta_j + C_\ell \sqrt{\frac{\ln(1/\delta)}{2n}} + \sum_{j=1}^q \frac{(2 - 2\pi_j)C_\ell}{q} \sqrt{\frac{\ln(1/\delta)}{2n_j}}.$$

950 *Proof.* When an instance in \mathcal{D}_U is replaced by another instance, the value of
951 $\sup_{g_1, g_2, \dots, g_q \in \mathcal{G}} \left| \mathbb{E} \left[\tilde{R}_H^\ell(\mathbf{g}) \right] - \tilde{R}_H^\ell(\mathbf{g}) \right|$ changes at most C_ℓ/n ; when an instance in \mathcal{D}_j is re-
952 placed by another instance, the value of $\sup_{g_1, g_2, \dots, g_q \in \mathcal{G}} \left| \mathbb{E} \left[\tilde{R}_H^\ell(\mathbf{g}) \right] - \tilde{R}_H^\ell(\mathbf{g}) \right|$ changes at most
953 $(2 - 2\pi_j)C_\ell/(qn_j)$. By applying McDiarmid's inequality, we have the following inequality with
954 probability at least $1 - \delta$:

$$957 \quad \sup_{g_1, g_2, \dots, g_q \in \mathcal{G}} \left| \mathbb{E} \left[\tilde{R}_H^\ell(\mathbf{g}) \right] - \tilde{R}_H^\ell(\mathbf{g}) \right| - \mathbb{E} \left[\sup_{g_1, g_2, \dots, g_q \in \mathcal{G}} \left| \mathbb{E} \left[\tilde{R}_H^\ell(\mathbf{g}) \right] - \tilde{R}_H^\ell(\mathbf{g}) \right| \right] \\ 958 \\ 959 \quad \leq C_\ell \sqrt{\frac{\ln(1/\delta)}{2n}} + \sum_{j=1}^q \frac{(2 - 2\pi_j)C_\ell}{q} \sqrt{\frac{\ln(1/\delta)}{2n_j}}. \quad (21)$$

962 For ease of notations, let $\bar{\mathcal{D}} = \mathcal{D}_U \bigcup \mathcal{D}_1 \bigcup \mathcal{D}_2 \dots \bigcup \mathcal{D}_q$ denote set of all the data. We have

$$964 \quad \mathbb{E} \left[\sup_{g_1, g_2, \dots, g_q \in \mathcal{G}} \left| \mathbb{E} \left[\tilde{R}_H^\ell(\mathbf{g}) \right] - \tilde{R}_H^\ell(\mathbf{g}) \right| \right] \\ 965 \\ 966 \quad = \mathbb{E}_{\bar{\mathcal{D}}} \left[\sup_{g_1, g_2, \dots, g_q \in \mathcal{G}} \left| \mathbb{E}_{\bar{\mathcal{D}}'} \left[\tilde{R}_H^\ell(\mathbf{g}) \right] - \tilde{R}_H^\ell(\mathbf{g}) \right| \right] \\ 967 \\ 968 \quad \leq \mathbb{E}_{\bar{\mathcal{D}}, \bar{\mathcal{D}}'} \left[\sup_{g_1, g_2, \dots, g_q \in \mathcal{G}} \left| \tilde{R}_H^\ell(\mathbf{g}; \bar{\mathcal{D}}) - \tilde{R}_H^\ell(\mathbf{g}'; \bar{\mathcal{D}}') \right| \right], \quad (22)$$

972 where the last inequality is deduced by applying Jensen's inequality twice. Here, $\tilde{R}_H^\ell(\mathbf{g}; \hat{\mathcal{D}})$ denotes
 973 the value of $\tilde{R}_H^\ell(\mathbf{g})$ on $\hat{\mathcal{D}}$. We introduce $\bar{\ell}(z) = \ell(z) - \ell(0)$ and we have $\bar{\ell}(z_1) - \bar{\ell}(z_2) = \ell(z_1) - \ell(z_2)$.
 974 It is obvious that $\bar{\ell}(z)$ is a Lipschitz continuous function with a Lipschitz constant L_ℓ . Then, we have
 975

$$\begin{aligned}
 & \left| \tilde{R}_H^\ell(\mathbf{g}; \hat{\mathcal{D}}) - \tilde{R}_H^\ell(\mathbf{g}; \hat{\mathcal{D}}') \right| \\
 & \leq \frac{1}{q} \sum_{j=1}^q \left| \left| \frac{1}{n} \sum_{i=1}^n \bar{\ell}(g_j(\mathbf{x}_i^U), 1) - \frac{1 - \pi_j}{n_j} \sum_{i=1}^{n_j} \bar{\ell}(g_j(\mathbf{x}_i^j), 1) \right| - \right. \\
 & \quad \left. \left| \frac{1}{n} \sum_{i=1}^n \bar{\ell}(g_j(\mathbf{x}_i^{U'}), 1) - \frac{1 - \pi_j}{n_j} \sum_{i=1}^{n_j} \bar{\ell}(g_j(\mathbf{x}_i^{j'}), 1) \right| \right| \\
 & \quad + \sum_{j=1}^q \left| \frac{1 - \pi_j}{qn_j} \sum_{i=1}^{n_j} \bar{\ell}(g_j(\mathbf{x}_i^j), 0) - \frac{1 - \pi_j}{qn_j} \sum_{i=1}^{n_j} \bar{\ell}(g_j(\mathbf{x}_i^{j'}), 0) \right| \\
 & \leq \frac{1}{q} \sum_{j=1}^q \left| \frac{1}{n} \sum_{i=1}^n \bar{\ell}(g_j(\mathbf{x}_i^U), 1) - \frac{1 - \pi_j}{n_j} \sum_{i=1}^{n_j} \bar{\ell}(g_j(\mathbf{x}_i^j), 1) \right. \\
 & \quad \left. - \frac{1}{n} \sum_{i=1}^n \bar{\ell}(g_j(\mathbf{x}_i^{U'}), 1) + \frac{1 - \pi_j}{n_j} \sum_{i=1}^{n_j} \bar{\ell}(g_j(\mathbf{x}_i^{j'}), 1) \right| \\
 & \quad + \sum_{j=1}^q \left| \frac{1 - \pi_j}{qn_j} \sum_{i=1}^{n_j} \bar{\ell}(g_j(\mathbf{x}_i^j), 0) - \frac{1 - \pi_j}{qn_j} \sum_{i=1}^{n_j} \bar{\ell}(g_j(\mathbf{x}_i^{j'}), 0) \right| \\
 & \leq \frac{1}{q} \sum_{j=1}^q \left| \frac{1}{n} \sum_{i=1}^n \bar{\ell}(g_j(\mathbf{x}_i^U), 1) - \frac{1}{n} \sum_{i=1}^n \bar{\ell}(g_j(\mathbf{x}_i^{U'}), 1) \right. \\
 & \quad \left. + \frac{1}{q} \sum_{j=1}^q \left| \frac{1 - \pi_j}{n_j} \sum_{i=1}^{n_j} \bar{\ell}(g_j(\mathbf{x}_i^{j'}), 1) - \frac{1 - \pi_j}{n_j} \sum_{i=1}^{n_j} \bar{\ell}(g_j(\mathbf{x}_i^j), 1) \right| \right. \\
 & \quad \left. + \sum_{j=1}^q \left| \frac{1 - \pi_j}{qn_j} \sum_{i=1}^{n_j} \bar{\ell}(g_j(\mathbf{x}_i^j), 0) - \frac{1 - \pi_j}{qn_j} \sum_{i=1}^{n_j} \bar{\ell}(g_j(\mathbf{x}_i^{j'}), 0) \right| \right|, \quad (23)
 \end{aligned}$$

1001 where the inequalities are due to the triangle inequality. Then, by combining Inequalities (22)
 1002 and (23), it is a routine work (Mohri et al., 2012) to show that
 1003

$$\begin{aligned}
 & \mathbb{E}_{\overline{\mathcal{D}}, \overline{\mathcal{D}'}} \left[\sup_{g_1, g_2, \dots, g_q \in \mathcal{G}} \left| \tilde{R}_H^\ell(\mathbf{g}; \overline{\mathcal{D}}) - \tilde{R}_H^\ell(\mathbf{g}'; \overline{\mathcal{D}'}) \right| \right] \\
 & \leq \frac{2}{q} \sum_{j=1}^q \mathfrak{R}'_{n,p}(\bar{\ell} \circ \mathcal{G}) + \frac{4(1 - \pi_j)}{q} \sum_{j=1}^q \mathfrak{R}'_{n_j, p_j}(\bar{\ell} \circ \mathcal{G}) \\
 & \leq \frac{4L_\ell}{q} \sum_{j=1}^q \mathfrak{R}'_{n,p}(\mathcal{G}) + \frac{8(1 - \pi_j)L_\ell}{q} \sum_{j=1}^q \mathfrak{R}'_{n_j, p_j}(\mathcal{G}) \\
 & = \frac{4L_\ell}{q} \sum_{j=1}^q \mathfrak{R}_{n,p}(\mathcal{G}) + \frac{8(1 - \pi_j)L_\ell}{q} \sum_{j=1}^q \mathfrak{R}_{n_j, p_j}(\mathcal{G}),
 \end{aligned} \quad (24)$$

1016 where the second inequality is due to Lemma 4, p_j denotes $p(\mathbf{x}|s_j = 0)$, and the last equality is
 1017 due to Lemma 3. By combining Inequalities (21) and (24), we have the following inequality with
 1018 probability at least $1 - \delta$:
 1019

$$\begin{aligned}
 & \sup_{g_1, g_2, \dots, g_q \in \mathcal{G}} \left| \mathbb{E} \left[\tilde{R}_H^\ell(\mathbf{g}) \right] - \tilde{R}_H^\ell(\mathbf{g}) \right| \leq \frac{4L_\ell}{q} \sum_{j=1}^q \mathfrak{R}_{n,p}(\mathcal{G}) + \frac{8(1 - \pi_j)L_\ell}{q} \sum_{j=1}^q \mathfrak{R}_{n_j, p_j}(\mathcal{G}) \\
 & + C_\ell \sqrt{\frac{\ln(1/\delta)}{2n}} + \sum_{j=1}^q \frac{(2 - 2\pi_j)C_\ell}{q} \sqrt{\frac{\ln(1/\delta)}{2n_j}}.
 \end{aligned} \quad (25)$$

1026 Then, we have the following inequality with probability at least $1 - \delta$:
 1027

$$\begin{aligned}
 1029 & \sup_{g_1, g_2, \dots, g_q \in \mathcal{G}} |R_H^\ell(\mathbf{g}) - \tilde{R}_H^\ell(\mathbf{g})| \\
 1030 &= \sup_{g_1, g_2, \dots, g_q \in \mathcal{G}} |R_H^\ell(\mathbf{g}) - \mathbb{E}[\tilde{R}_H^\ell(\mathbf{g})] + \mathbb{E}[\tilde{R}_H^\ell(\mathbf{g})] - \tilde{R}_H^\ell(\mathbf{g})| \\
 1031 &\leq \sup_{g_1, g_2, \dots, g_q \in \mathcal{G}} |R_H^\ell(\mathbf{g}) - \mathbb{E}[\tilde{R}_H^\ell(\mathbf{g})]| + \sup_{g_1, g_2, \dots, g_q \in \mathcal{G}} |\mathbb{E}[\tilde{R}_H^\ell(\mathbf{g})] - \tilde{R}_H^\ell(\mathbf{g})| \\
 1032 &\leq \frac{1}{q} \sum_{j=1}^q (4 - 2\pi_j) C_\ell \Delta_j + C_\ell \sqrt{\frac{\ln(1/\delta)}{2n}} + \sum_{j=1}^q \frac{(2 - 2\pi_j) C_\ell}{q} \sqrt{\frac{\ln(1/\delta)}{2n_j}} \\
 1033 &\quad + \frac{4L_\ell}{q} \sum_{j=1}^q \mathfrak{R}_{n,p}(\mathcal{G}) + \frac{8(1 - \pi_j)L_\ell}{q} \sum_{j=1}^q \mathfrak{R}_{n_j,p_j}(\mathcal{G}),
 \end{aligned}$$

1041 where the second inequality is due to Inequalities 25 and 9. The proof is complete. \square
 1042

1043
 1044
 1045
 1046
 1047 Then, we provide the proof of Theorem 3.
 1048

1049
 1050
 1051
 1052 *Proof of Theorem 3.*
 1053

$$\begin{aligned}
 1055 R_H^\ell(\tilde{\mathbf{g}}_H) - R_H^\ell(\mathbf{g}_H^*) &= R_H^\ell(\tilde{\mathbf{g}}_H) - \tilde{R}_H^\ell(\tilde{\mathbf{g}}_H) + \tilde{R}_H^\ell(\tilde{\mathbf{g}}_H) - \tilde{R}_H^\ell(\mathbf{g}_H^*) + \tilde{R}_H^\ell(\mathbf{g}_H^*) - R_H^\ell(\mathbf{g}_H^*) \\
 1056 &\leq R_H^\ell(\tilde{\mathbf{g}}_H) - \tilde{R}_H^\ell(\tilde{\mathbf{g}}_H) + \tilde{R}_H^\ell(\mathbf{g}_H^*) - R_H^\ell(\mathbf{g}_H^*) \\
 1057 &\leq 2 \sup_{g_1, g_2, \dots, g_q \in \mathcal{G}} |R_H^\ell(\mathbf{g}) - \tilde{R}_H^\ell(\mathbf{g})|.
 \end{aligned}$$

1060
 1061 By Lemma 5, the proof is complete. \square
 1062

1064 B.5 PROOF OF COROLLARY 1

1066
 1067 **Lemma 6** (Theorem 4 in Gao & Zhou (2013)). *The surrogate loss R^ℓ is multi-label consistent*
 1068 *w.r.t. the Hamming or ranking loss R^{0-1} if and only if it holds for any sequence $\{\mathbf{g}_t\}$ that if $R^\ell(\mathbf{g}) \rightarrow$*
 1069 *$R^{\ell*}$, then $R^{0-1}(\mathbf{g}) \rightarrow R^*$. Here, $R^{\ell*} = \inf_{\mathbf{g}} R^\ell(\mathbf{g})$ and $R^* = \inf_{\mathbf{g}} R^{0-1}(\mathbf{g})$.*

1070
 1071 **Lemma 7** (Theorem 32 in Gao & Zhou (2013)). *If ℓ is a convex function with $\ell'(0, y) < 0$, then*
 1072 *Eq. (2) is consistent w.r.t. the Hamming loss.*

1073
 1074 Then, we provide the proof of Corollary 1.

1075
 1076
 1077
 1078
 1079 *Proof of Corollary 1.* Since the proposed risk in Eq. (5) is equivalent to the risk in Eq. (2), it is
 sufficient to prove that for any sequence $\{\mathbf{g}_t\}$ that if $R_H^\ell(\mathbf{g}_t) \rightarrow R_H^{\ell*}$, then $R_H^{0-1}(\mathbf{f}_t) \rightarrow R_H^*$. \square

1080

B.6 PROOF OF THEOREM 4

1081

1082

1083

$$\begin{aligned}
R_R^\ell(\mathbf{g}) &= \mathbb{E}_{p(\mathbf{x}, Y)} \left[\sum_{1 \leq j < k \leq q} \mathbb{I}(y_j \neq y_k) \ell \left(g_j(\mathbf{x}) - g_k(\mathbf{x}), \frac{y_j - y_k + 1}{2} \right) \right] \\
&= \int \sum_Y \sum_{1 \leq j < k \leq q} \mathbb{I}(y_j \neq y_k) \ell \left(g_j(\mathbf{x}) - g_k(\mathbf{x}), \frac{y_j - y_k + 1}{2} \right) p(\mathbf{x}, Y) d\mathbf{x} \\
&= \int \sum_{1 \leq j < k \leq q} \sum_{y_j=0}^1 \sum_{y_k=0}^1 \sum_{Y' = Y \setminus \{y_j, y_k\}} \mathbb{I}(y_j \neq y_k) \ell \left(g_j(\mathbf{x}) - g_k(\mathbf{x}), \frac{y_j - y_k + 1}{2} \right) \\
&\quad p(\mathbf{x}, y_j, y_k) p(Y' | \mathbf{x}, y_j, y_k) d\mathbf{x} \\
&= \int \sum_{1 \leq j < k \leq q} \sum_{y_j=0}^1 \sum_{y_k=0}^1 \mathbb{I}(y_j \neq y_k) \ell \left(g_j(\mathbf{x}) - g_k(\mathbf{x}), \frac{y_j - y_k + 1}{2} \right) \\
&\quad p(\mathbf{x}, y_j, y_k) \sum_{Y' = Y \setminus \{y_j, y_k\}} p(Y' | \mathbf{x}, y_j, y_k) d\mathbf{x} \\
&= \int \sum_{1 \leq j < k \leq q} \sum_{y_j=0}^1 \sum_{y_k=0}^1 \mathbb{I}(y_j \neq y_k) \ell \left(g_j(\mathbf{x}) - g_k(\mathbf{x}), \frac{y_j - y_k + 1}{2} \right) p(\mathbf{x}, y_j, y_k) d\mathbf{x} \\
&= \sum_{1 \leq j < k \leq q} \left(\int \ell(g_j(\mathbf{x}) - g_k(\mathbf{x}), 0) p(\mathbf{x}, y_j = 0, y_k = 1) d\mathbf{x} \right. \\
&\quad \left. + \int \ell(g_j(\mathbf{x}) - g_k(\mathbf{x}), 1) p(\mathbf{x}, y_j = 1, y_k = 0) d\mathbf{x} \right) \\
&= \sum_{1 \leq j < k \leq q} \left(\int \ell(g_j(\mathbf{x}) - g_k(\mathbf{x}), 0) (p(\mathbf{x}, y_j = 0) - p(\mathbf{x}, y_j = 0, y_k = 0)) d\mathbf{x} \right. \\
&\quad \left. + \int \ell(g_j(\mathbf{x}) - g_k(\mathbf{x}), 1) (p(\mathbf{x}, y_k = 0) - p(\mathbf{x}, y_j = 0, y_k = 0)) d\mathbf{x} \right) \\
&= \sum_{1 \leq j < k \leq q} \left(\int \ell(g_j(\mathbf{x}) - g_k(\mathbf{x}), 0) (1 - \pi_j) p(\mathbf{x} | y_j = 0) d\mathbf{x} \right. \\
&\quad \left. + \int \ell(g_j(\mathbf{x}) - g_k(\mathbf{x}), 1) (1 - \pi_k) p(\mathbf{x} | y_k = 0) d\mathbf{x} \right. \\
&\quad \left. - \int (\ell(g_j(\mathbf{x}) - g_k(\mathbf{x}), 1) + \ell(g_j(\mathbf{x}) - g_k(\mathbf{x}), 0)) p(\mathbf{x}, y_j = 0, y_k = 0) d\mathbf{x} \right) \\
&= \sum_{1 \leq j < k \leq q} ((1 - \pi_j) \mathbb{E}_{p(\mathbf{x} | y_j = 0)} [\ell(g_j(\mathbf{x}) - g_k(\mathbf{x}), 0)] \\
&\quad + (1 - \pi_k) \mathbb{E}_{p(\mathbf{x} | y_k = 0)} [\ell(g_j(\mathbf{x}) - g_k(\mathbf{x}), 1)] - C p(y_j = 0, y_k = 0)) \\
&= \sum_{1 \leq j < k \leq q} ((1 - \pi_j) \mathbb{E}_{p(\mathbf{x} | s_j = 0)} [\ell(g_j(\mathbf{x}) - g_k(\mathbf{x}), 0)] \\
&\quad + (1 - \pi_k) \mathbb{E}_{p(\mathbf{x} | s_k = 0)} [\ell(g_j(\mathbf{x}) - g_k(\mathbf{x}), 1)] - C p(y_j = 0, y_k = 0)),
\end{aligned}$$

1121

where the last equation is by Lemma 1. The proof is completed. \square

1122

1123

B.7 PROOF OF THEOREM 5

1124

1125

Let $\hat{\mathcal{D}} = \mathcal{D}_1 \cup \mathcal{D}_2 \cup \dots \cup \mathcal{D}_q$ denote the set of all the data used in Eq. (14). We introduce

1126

1127

1128

$$\mathfrak{D}^+(\mathbf{g}) = \left\{ \hat{\mathcal{D}} \mid \hat{R}_R^\ell(\mathbf{g}) > \beta \right\}, \quad \text{and} \quad \mathfrak{D}^-(\mathbf{g}) = \left\{ \hat{\mathcal{D}} \mid \hat{R}_R^\ell(\mathbf{g}) \leq \beta \right\}.$$

1129

Then, we have the following lemma.

1130

1131

Lemma 8. *The probability measure of $\mathfrak{D}^-(\mathbf{g})$ can be bounded as follows:*

1132

1133

$$\mathbb{P}(\mathfrak{D}^-(\mathbf{g})) \leq \exp \left(\frac{-2\gamma^2}{\sum_{j=1}^q (1 - \pi_j)^2 (q-1)^2 C_\ell^2 / n_j} \right). \quad (26)$$

1134 *Proof.* When an instance from \mathcal{D}_j is replaced by another instance, the value of $\hat{R}_R^\ell(\mathbf{g})$ changes at
 1135 most $(1 - \pi_j)(q - 1)C_\ell/n_j$. Therefore, by applying the McDiarmid's inequality, we can obtain the
 1136 following inequality:
 1137

$$1138 p \left(R_R^\ell(\mathbf{g}) - \hat{R}_R^\ell(\mathbf{g}) + \sum_{1 \leq j < k \leq q} Mp(y_j = 0, y_k = 0) \geq \gamma \right) \leq \exp \left(\frac{-2\gamma^2}{\sum_{j=1}^q (1 - \pi_j)^2 (q - 1)^2 C_\ell^2 / n_j} \right).$$

1140 Then, we have

$$\begin{aligned} 1142 \mathbb{P}(\mathfrak{D}^-(\mathbf{g})) &= p \left(\hat{R}_R^\ell(\mathbf{g}) \leq \beta \right) \\ 1143 &\leq p \left(\hat{R}_R^\ell(\mathbf{g}) \leq \sum_{1 \leq j < k \leq q} Mp(y_j = 0, y_k = 0) \right) \\ 1144 &\leq p \left(\hat{R}_R^\ell(\mathbf{g}) \leq \sum_{1 \leq j < k \leq q} Mp(y_j = 0, y_k = 0) + R_R^\ell(\mathbf{g}) - \gamma \right) \\ 1145 &\leq \exp \left(\frac{-2\gamma^2}{\sum_{j=1}^q (1 - \pi_j)^2 (q - 1)^2 C_\ell^2 / n_j} \right), \\ 1146 \\ 1147 \\ 1148 \\ 1149 \\ 1150 \end{aligned}$$

1151 which concludes the proof. \square

1152
 1153 Then, we give the proof of Theorem 5.
 1154

1155 *Proof of Theorem 5.* To begin with, we have
 1156

$$1157 \mathbb{E} \left[\tilde{R}_R^\ell(\mathbf{g}) \right] - \sum_{1 \leq j < k \leq q} Mp(y_j = 0, y_k = 0) - R_R^\ell(\mathbf{g}) = \mathbb{E} \left[\tilde{R}_R^\ell(\mathbf{g}) - \hat{R}_R^\ell(\mathbf{g}) \right] \geq 0.$$

1158 Besides, we have

$$1159 \hat{R}_R^\ell(\mathbf{g}) \leq C_\ell(q - 1) \sum_{j=1}^q (1 - \pi_j).$$

1160 Then,

$$\begin{aligned} 1161 \mathbb{E} \left[\tilde{R}_R^\ell(\mathbf{g}) \right] - \sum_{1 \leq j < k \leq q} Mp(y_j = 0, y_k = 0) - R_R^\ell(\mathbf{g}) \\ 1162 &= \mathbb{E} \left[\tilde{R}_R^\ell(\mathbf{g}) - \hat{R}_R^\ell(\mathbf{g}) \right] \\ 1163 &= \int_{\hat{\mathcal{D}} \in \mathfrak{D}^-(\mathbf{g})} \left(|\hat{R}_R^\ell(\mathbf{g}) - \beta| + \beta - \hat{R}_R^\ell(\mathbf{g}) \right) p(\hat{\mathcal{D}}) d\hat{\mathcal{D}} \\ 1164 &\leq \sup_{\hat{\mathcal{D}} \in \mathfrak{D}^-(\mathbf{g})} \left(2\beta + 2\hat{R}_R^\ell(\mathbf{g}) \right) \int_{\hat{\mathcal{D}} \in \mathfrak{D}^-(\mathbf{g})} p(\hat{\mathcal{D}}) d\hat{\mathcal{D}} \\ 1165 &= \sup_{\hat{\mathcal{D}} \in \mathfrak{D}^-(\mathbf{g})} \left(2\beta + 2\hat{R}_R^\ell(\mathbf{g}) \right) \mathbb{P}(\mathfrak{D}^-(\mathbf{g})) \\ 1166 &\leq \left(2\beta + 2C_\ell(q - 1) \sum_{j=1}^q (1 - \pi_j) \right) \exp \left(\frac{-2\gamma^2}{\sum_{j=1}^q (1 - \pi_j)^2 (q - 1)^2 C_\ell^2 / n_j} \right), \\ 1167 \\ 1168 \\ 1169 \\ 1170 \\ 1171 \\ 1172 \\ 1173 \\ 1174 \\ 1175 \\ 1176 \\ 1177 \end{aligned}$$

1178 which concludes the first part of the proof. Then we provide an upper bound for
 1179 $|\tilde{R}_R^\ell(\mathbf{g}) - \mathbb{E} \left[\tilde{R}_R^\ell(\mathbf{g}) \right]|$. When an instance from \mathcal{D}_j is replaced by another instance, the value of
 1180 $\tilde{R}_R^\ell(\mathbf{g})$ changes at most $(1 - \pi_j)(q - 1)C_\ell/n_j$. Therefore, by applying the McDiarmid's inequality,
 1181 we have the following inequalities with probability at least $1 - \delta/2$:
 1182

$$\begin{aligned} 1183 \tilde{R}_R^\ell(\mathbf{g}) - \mathbb{E} \left[\tilde{R}_R^\ell(\mathbf{g}) \right] &\leq \sum_{j=1}^q (1 - \pi_j)(q - 1)C_\ell \sqrt{\frac{\ln(2/\delta)}{2n_j}}, \\ 1184 \\ 1185 \\ 1186 \\ 1187 \mathbb{E} \left[\tilde{R}_R^\ell(\mathbf{g}) \right] - \tilde{R}_R^\ell(\mathbf{g}) &\leq \sum_{j=1}^q (1 - \pi_j)(q - 1)C_\ell \sqrt{\frac{\ln(2/\delta)}{2n_j}}. \end{aligned}$$

1188 Therefore, we have the following inequalities with probability at least $1 - \delta$:
1189

$$1190 \quad \left| \tilde{R}_R^\ell(\mathbf{g}) - \mathbb{E} \left[\tilde{R}_R^\ell(\mathbf{g}) \right] \right| \leq \sum_{j=1}^q (1 - \pi_j)(q - 1) C_\ell \sqrt{\frac{\ln(2/\delta)}{2n_j}}.$$
1191
1192

1193 Finally,

1194

$$1195 \quad \left| \tilde{R}_R^\ell(\mathbf{g}) - \sum_{1 \leq j < k \leq q} Mp(y_j = 0, y_k = 0) - R_R^\ell(\mathbf{g}) \right| \\ 1196 \quad = \left| \tilde{R}_R^\ell(\mathbf{g}) - \mathbb{E} \left[\tilde{R}_R^\ell(\mathbf{g}) \right] + \mathbb{E} \left[\tilde{R}_R^\ell(\mathbf{g}) \right] - \sum_{1 \leq j < k \leq q} Mp(y_j = 0, y_k = 0) - R_R^\ell(\mathbf{g}) \right| \\ 1197 \quad \leq \left| \tilde{R}_R^\ell(\mathbf{g}) - \mathbb{E} \left[\tilde{R}_R^\ell(\mathbf{g}) \right] \right| + \left| \mathbb{E} \left[\tilde{R}_R^\ell(\mathbf{g}) \right] - \sum_{1 \leq j < k \leq q} Mp(y_j = 0, y_k = 0) - R_R^\ell(\mathbf{g}) \right| \\ 1198 \quad \leq \sum_{j=1}^q (1 - \pi_j)(q - 1) C_\ell \sqrt{\frac{\ln(2/\delta)}{2n_j}} \\ 1199 \quad + \left(2\beta + 2C_\ell(q - 1) \sum_{j=1}^q (1 - \pi_j) \right) \exp \left(\frac{-2\gamma^2}{\sum_{j=1}^q (1 - \pi_j)^2 (q - 1)^2 C_\ell^2 / n_j} \right), \quad (27)$$
1200
1201
1202
1203
1204
1205

1206 which concludes the proof. \square
1207

1208 B.8 PROOF OF THEOREM 6

1209 **Lemma 9.** *Based on the above assumptions, for any $\delta > 0$, the following inequality holds with
1210 probability at least $1 - \delta$:*

$$1211 \quad \sup_{g_1, g_2, \dots, g_q \in \mathcal{G}} \left| R_R^\ell(\mathbf{g}) + \sum_{j < k} Mp(y_j = 0, y_k = 0) - \tilde{R}_R^\ell(\mathbf{g}) \right| \leq \left(2\beta + 2C_\ell(q - 1) \sum_{j=1}^q (1 - \pi_j) \right) \Delta' \\ 1212 \quad + \sum_{j=1}^q (1 - \pi_j)(q - 1) C_\ell \sqrt{\frac{\ln(1/\delta)}{n_j}} + \sum_{j=1}^q 4L_\ell(q - 1)(1 - \pi_j) \mathfrak{R}_{n_j, p_j}(\mathcal{G}). \quad (28)$$
1213
1214
1215
1216
1217
1218

1219 *Proof.* When an instance in \mathcal{D}_j is replaced by another instance, the value of
1220 $\sup_{g_1, g_2, \dots, g_q \in \mathcal{G}} \left| \mathbb{E} \left[\tilde{R}_R^\ell(\mathbf{g}) \right] - \tilde{R}_R^\ell(\mathbf{g}) \right|$ changes at most $(1 - \pi_j)(q - 1)C_\ell/n_j$. Therefore,
1221 by applying the McDiarmid's inequality, we have the following inequalities with probability at least
1222 $1 - \delta$:

$$1223 \quad \sup_{g_1, g_2, \dots, g_q \in \mathcal{G}} \left| \mathbb{E} \left[\tilde{R}_R^\ell(\mathbf{g}) \right] - \tilde{R}_R^\ell(\mathbf{g}) \right| - \mathbb{E} \left[\sup_{g_1, g_2, \dots, g_q \in \mathcal{G}} \left| \mathbb{E} \left[\tilde{R}_R^\ell(\mathbf{g}) \right] - \tilde{R}_R^\ell(\mathbf{g}) \right| \right] \\ 1224 \quad \leq \sum_{j=1}^q (1 - \pi_j)(q - 1) C_\ell \sqrt{\frac{\ln(1/\delta)}{n_j}}. \quad (29)$$
1225
1226
1227
1228
1229

1230 Then,

1231

$$1232 \quad \mathbb{E} \left[\sup_{g_1, g_2, \dots, g_q \in \mathcal{G}} \left| \mathbb{E} \left[\tilde{R}_R^\ell(\mathbf{g}) \right] - \tilde{R}_R^\ell(\mathbf{g}) \right| \right] \\ 1233 \quad = \mathbb{E}_{\hat{\mathcal{D}}} \left[\sup_{g_1, g_2, \dots, g_q \in \mathcal{G}} \left| \mathbb{E}_{\hat{\mathcal{D}}} \left[\tilde{R}_R^\ell(\mathbf{g}) \right] - \tilde{R}_R^\ell(\mathbf{g}) \right| \right] \\ 1234 \quad \leq \mathbb{E}_{\hat{\mathcal{D}}, \hat{\mathcal{D}}'} \left[\sup_{g_1, g_2, \dots, g_q \in \mathcal{G}} \left| \tilde{R}_R^\ell(\mathbf{g}; \hat{\mathcal{D}}) - \tilde{R}_R^\ell(\mathbf{g}'; \hat{\mathcal{D}}') \right| \right], \quad (30)$$
1235
1236
1237
1238
1239

1240 where the last inequality is deduced by applying Jensen's inequality twice. Here, $\tilde{R}_R^\ell(\mathbf{g}; \hat{\mathcal{D}})$ denotes
1241 the value of $\tilde{R}_R^\ell(\mathbf{g})$ on $\hat{\mathcal{D}}$. Then, we introduce the following lemma.

1242 **Lemma 10.** *If $\ell : \mathbb{R} \times \{0, 1\} \rightarrow \mathbb{R}$ is a Lipschitz continuous function with a Lipschitz constant L_ℓ
1243 and satisfies $\forall y, \ell(0, y) = 0$, we have*

$$1244 \quad \mathfrak{R}'_{n,p}(\ell \circ (\mathcal{G} - \mathcal{G})) \leq 4L_\ell \mathfrak{R}'_{n,p}(\mathcal{G}),$$

1245 where $\ell \circ ((\mathcal{G} - \mathcal{G})) = \{\ell \circ (g_j - g_k) \mid g_j \in \mathcal{G}, g_k \in \mathcal{G}\}.$

1246 *Proof.*

$$1247 \quad \begin{aligned} \mathfrak{R}'_{n,p}(\ell \circ (\mathcal{G} - \mathcal{G})) \\ = 2\mathfrak{R}'_{n,p}(\ell \circ (\mathcal{G})) \\ \leq 4L_\ell \mathfrak{R}'_{n,p}(\mathcal{G}), \end{aligned}$$

1248 where the first inequality is by symmetrization (Mohri et al., 2012) and the second inequality is by
1249 Lemma 4. The proof is complete. \square

1250 Therefore, we have

$$1251 \quad \begin{aligned} & \left| \tilde{R}_R^\ell(\mathbf{g}; \hat{\mathcal{D}}) - \tilde{R}_R^\ell(\mathbf{g}; \hat{\mathcal{D}}') \right| \\ &= \left| \hat{R}_R^\ell(\mathbf{g}; \hat{\mathcal{D}}) - \beta \right| - \left| \hat{R}_R^\ell(\mathbf{g}; \hat{\mathcal{D}}') - \beta \right| \\ &\leq \left| \hat{R}_R^\ell(\mathbf{g}; \hat{\mathcal{D}}) - \hat{R}_R^\ell(\mathbf{g}; \hat{\mathcal{D}}') \right| \\ &= \left| \sum_{1 \leq j < k \leq q} \frac{1 - \pi_j}{n_j} \sum_{i=1}^{n_j} \left(\ell(g_j(\mathbf{x}_i^j) - g_k(\mathbf{x}_i^j), 0) - \ell(g_j(\mathbf{x}_i^{j'}) - g_k(\mathbf{x}_i^{j'}), 0) \right) \right. \\ &\quad \left. + \frac{1 - \pi_k}{n_k} \sum_{i=1}^{n_k} \left(\ell(g_j(\mathbf{x}_i^k) - g_k(\mathbf{x}_i^k), 1) - \ell(g_j(\mathbf{x}_i^{k'}) - g_k(\mathbf{x}_i^{k'}), 1) \right) \right| \\ &\leq \sum_{1 \leq j < k \leq q} \left| \frac{1 - \pi_j}{n_j} \sum_{i=1}^{n_j} \left(\ell(g_j(\mathbf{x}_i^j) - g_k(\mathbf{x}_i^j), 0) - \ell(g_j(\mathbf{x}_i^{j'}) - g_k(\mathbf{x}_i^{j'}), 0) \right) \right| \\ &\quad + \sum_{1 \leq j < k \leq q} \left| \frac{1 - \pi_k}{n_k} \sum_{i=1}^{n_k} \left(\ell(g_j(\mathbf{x}_i^k) - g_k(\mathbf{x}_i^k), 1) - \ell(g_j(\mathbf{x}_i^{k'}) - g_k(\mathbf{x}_i^{k'}), 1) \right) \right| \\ &= \sum_{1 \leq j < k \leq q} \left| \frac{1 - \pi_j}{n_j} \sum_{i=1}^{n_j} \left(\bar{\ell}(g_j(\mathbf{x}_i^j) - g_k(\mathbf{x}_i^j), 0) - \bar{\ell}(g_j(\mathbf{x}_i^{j'}) - g_k(\mathbf{x}_i^{j'}), 0) \right) \right| \\ &\quad + \sum_{1 \leq j < k \leq q} \left| \frac{1 - \pi_k}{n_k} \sum_{i=1}^{n_k} \left(\bar{\ell}(g_j(\mathbf{x}_i^k) - g_k(\mathbf{x}_i^k), 1) - \bar{\ell}(g_j(\mathbf{x}_i^{k'}) - g_k(\mathbf{x}_i^{k'}), 1) \right) \right|, \quad (31) \end{aligned}$$

1252 where the inequalities are due to the triangle inequality. Then, by combining Inequalities 30 and 31,
1253 it is a routine work (Mohri et al., 2012) to show that

$$1254 \quad \begin{aligned} & \mathbb{E} \left[\sup_{g_1, g_2, \dots, g_q \in \mathcal{G}} \left| \mathbb{E} \left[\tilde{R}_R^\ell(\mathbf{g}) \right] - \tilde{R}_R^\ell(\mathbf{g}) \right| \right] \\ &\leq \sum_{j=1}^q (q-1)(1-\pi_j) \mathfrak{R}'_{n_j, p_j}(\bar{\ell} \circ (\mathcal{G} - \mathcal{G})) \\ &\leq \sum_{j=1}^q 4L_\ell(q-1)(1-\pi_j) \mathfrak{R}'_{n_j, p_j}(\mathcal{G}) \\ &= \sum_{j=1}^q 4L_\ell(q-1)(1-\pi_j) \mathfrak{R}_{n_j, p_j}(\mathcal{G}), \quad (32) \end{aligned}$$

1255 where the second inequality is by Lemma 10 and the last equality is by Lemma 3. By combining
1256 Inequalities 29 and 32, we have the following inequalities with probability at least $1 - \delta$:

$$1257 \quad \begin{aligned} & \sup_{g_1, g_2, \dots, g_q \in \mathcal{G}} \left| \mathbb{E} \left[\tilde{R}_R^\ell(\mathbf{g}) \right] - \tilde{R}_R^\ell(\mathbf{g}) \right| \\ &\leq \sum_{j=1}^q (1-\pi_j)(q-1) C_\ell \sqrt{\frac{\ln(1/\delta)}{n_j}} + \sum_{j=1}^q 4L_\ell(q-1)(1-\pi_j) \mathfrak{R}_{n_j, p_j}(\mathcal{G}). \quad (33) \end{aligned}$$

1296 Finally, we have the following inequality with probability at least $1 - \delta$:

$$\begin{aligned}
 & \sup_{g_1, g_2, \dots, g_q \in \mathcal{G}} \left| R_{\mathcal{R}}^{\ell}(\mathbf{g}) + \sum_{j < k} Mp(y_j = 0, y_k = 0) - \tilde{R}_{\mathcal{R}}^{\ell}(\mathbf{g}) \right| \\
 &= \sup_{g_1, g_2, \dots, g_q \in \mathcal{G}} \left| R_{\mathcal{R}}^{\ell}(\mathbf{g}) + \sum_{j < k} Mp(y_j = 0, y_k = 0) - \mathbb{E} \left[\tilde{R}_{\mathcal{R}}^{\ell}(\mathbf{g}) \right] + \mathbb{E} \left[\tilde{R}_{\mathcal{R}}^{\ell}(\mathbf{g}) \right] - \tilde{R}_{\mathcal{R}}^{\ell}(\mathbf{g}) \right| \\
 &\leq \sup_{g_1, g_2, \dots, g_q \in \mathcal{G}} \left| R_{\mathcal{R}}^{\ell}(\mathbf{g}) + \sum_{j < k} Mp(y_j = 0, y_k = 0) - \mathbb{E} \left[\tilde{R}_{\mathcal{R}}^{\ell}(\mathbf{g}) \right] \right| + \sup_{g_1, g_2, \dots, g_q \in \mathcal{G}} \left| \mathbb{E} \left[\tilde{R}_{\mathcal{R}}^{\ell}(\mathbf{g}) \right] - \tilde{R}_{\mathcal{R}}^{\ell}(\mathbf{g}) \right| \\
 &\leq \left(2\beta + 2C_{\ell}(q-1) \sum_{j=1}^q (1 - \pi_j) \right) \Delta' + \sum_{j=1}^q (1 - \pi_j)(q-1) C_{\ell} \sqrt{\frac{\ln(1/\delta)}{n_j}} \\
 &\quad + \sum_{j=1}^q 4L_{\ell}(q-1)(1 - \pi_j) \mathfrak{R}_{n_j, p_j}(\mathcal{G}),
 \end{aligned}$$

1309 where the last inequality is by Inequalities 33 and 15. The proof is complete. \square

1311 Then, we provide the proof of Theorem 6.

1313 *Proof of Theorem 6.*

$$\begin{aligned}
 & R_{\mathcal{R}}^{\ell}(\tilde{\mathbf{g}}_{\mathcal{R}}) - R_{\mathcal{R}}^{\ell}(\mathbf{g}_{\mathcal{R}}^*) \\
 &= R_{\mathcal{R}}^{\ell}(\tilde{\mathbf{g}}_{\mathcal{R}}) + \sum_{j < k} Mp(y_j = 0, y_k = 0) - \tilde{R}_{\mathcal{R}}^{\ell}(\tilde{\mathbf{g}}_{\mathcal{R}}) + \tilde{R}_{\mathcal{R}}^{\ell}(\tilde{\mathbf{g}}_{\mathcal{R}}) - \tilde{R}_{\mathcal{R}}^{\ell}(\mathbf{g}_{\mathcal{R}}^*) + \tilde{R}_{\mathcal{R}}^{\ell}(\mathbf{g}_{\mathcal{R}}^*) \\
 &\quad - \sum_{j < k} Mp(y_j = 0, y_k = 0) - R_{\mathcal{R}}^{\ell}(\mathbf{g}_{\mathcal{R}}^*) \\
 &\leq R_{\mathcal{R}}^{\ell}(\tilde{\mathbf{g}}_{\mathcal{R}}) + \sum_{j < k} Mp(y_j = 0, y_k = 0) - \tilde{R}_{\mathcal{R}}^{\ell}(\tilde{\mathbf{g}}_{\mathcal{R}}) + \tilde{R}_{\mathcal{R}}^{\ell}(\mathbf{g}_{\mathcal{R}}^*) - \sum_{j < k} Mp(y_j = 0, y_k = 0) - R_{\mathcal{R}}^{\ell}(\mathbf{g}_{\mathcal{R}}^*) \\
 &\leq 2 \sup_{g_1, g_2, \dots, g_q \in \mathcal{G}} \left| R_{\mathcal{R}}^{\ell}(\mathbf{g}) + \sum_{j < k} Mp(y_j = 0, y_k = 0) - \tilde{R}_{\mathcal{R}}^{\ell}(\mathbf{g}) \right|.
 \end{aligned}$$

1324 Then, based on Lemma 9, the proof is complete. \square

1326 B.9 PROOF OF COROLLARY 2

1327 **Lemma 11** (Theorem 10 in Gao & Zhou (2013)). *If ℓ is a differentiable and non-increasing function such that $\forall y, \ell'(0, y) < 0$ and $\ell(z, y) + \ell(-z, y) = M$, then Eq. (4) is consistent w.r.t. the ranking loss.*

1331 Then we provide the proof of Corollary 2.

1333 *Proof of Corollary 2.* Since the proposed risk in Eq. (5) is equivalent to the risk in Eq. (4), it is sufficient to prove that for any sequence $\{\mathbf{g}_t\}$ that if $R_{\mathcal{R}}^{\ell}(\mathbf{g}_t) \rightarrow R_{\mathcal{R}}^{\ell*}$, then $R_{\mathcal{R}}^{0-1}(\mathbf{f}_t) \rightarrow R_{\mathcal{R}}^*$. \square

1336 C DETAILS OF EXPERIMENTS

1341 C.1 MORE DETAILS OF DATASETS

1342 For synthetic datasets, we consider two data generation processes. In case-a, irrelevant labels are 1343 flipped to candidate labels independently, which is the assumption used in Xie & Huang (2023). 1344 This strategy is common in learning with noisy labels (Han et al., 2018), where PML is a special 1345 case of MLC with noisy labels (Xie & Huang, 2023). In case-b, we assign non-candidate labels in 1346 a class-wise manner. For each class, we randomly sample a fraction of the training data and assign 1347 that class as a non-candidate label. This data generation process corresponds to the assumption 1348 proposed in this paper. We use this process to confirm the effectiveness of our proposed method 1349 under this assumption. Additionally, we selected high flipping rates to evaluate the effectiveness of 1350 our proposed methods on challenging datasets with high noise rates since real-world datasets have

1350 low noise rates. We added more descriptions in the revised version. In this paper, we consider the
 1351 flipping rate in Case-a and the sampling rate in Case-b to be 0.9.
 1352

1353 We performed ten-fold cross-validation on real-world datasets. This means we used nine folds for
 1354 training and one fold for testing. Then, we recorded the mean accuracy and standard deviation. For
 1355 the synthetic datasets, we generated synthetic labels three times and recorded the mean accuracy and
 1356 standard deviation. Finally, we conducted paired t-tests at a 0.05 significance level.
 1357

1358 C.2 BASELINE

1359 We evaluate against five classical baselines commonly used in PML/CML learning. (A) BCE: uses
 1360 the given *candidate* label as the cross-entropy target. (B) CCMN (Xie & Huang, 2023): treats
 1361 PML as multi-label classification with class-conditional noise, relying on a noise transition matrix.
 1362 (C) GDF (Gao et al., 2023): proposes an unbiased risk estimator for multi-labeled single
 1363 complementary label learning. (D) CTL (Gao et al., 2025): introduces a risk-consistent approach by
 1364 rewriting the loss function. (E) MLCL (Gao et al., 2024): estimates an initial transition matrix via
 1365 binary decompositions, then refines it with label correlations.
 1366

1367 C.3 IMPLEMENTATION DETAILS

1368 For real-world datasets, we used an MLP encoder for all baselines, trained for 200 epochs with a
 1369 learning rate of 5e-3, weight decay of 1e-4, and the SGD optimizer with cosine decay. For synthetic
 1370 image datasets, we adopted a ResNet-50 backbone pretrained on ImageNet (Deng et al., 2009),
 1371 trained for 30 epochs with a learning rate of 1e-4 using the Adam optimizer. For fair comparisons,
 1372 we used the same setup across all baselines. We assumed that the class priors were accessible to
 1373 the learning algorithm. **We instantiated ℓ with the binary cross-entropy loss for COMES-HL and the**
 1374 **sigmoid loss for COMES-RL.**
 1375

1376 C.4 DEFINITIONS OF EVALUATION METRICS

1377 Given a test dataset $\mathcal{D}' = \{(\mathbf{x}'_i, Y'_i)\}_{i=1}^{n'}$, the evaluation metrics used in the paper can be defined as
 1378 follows (Zhang & Zhou, 2014; Wu & Zhou, 2017):
 1379

- 1380 • Ranking loss:

$$1381 \frac{1}{n'} \sum_{i=1}^{n'} \frac{|Z_i|}{|Y'_i| |\mathcal{Y} \setminus Y'_i|}, \quad (34)$$

1382 where $Z_i = \{(u, v) | g_u(\mathbf{x}'_i) \leq g_v(\mathbf{x}'_i), (u, v) \in Y'_i \times (\mathcal{Y} \setminus Y'_i)\}$.
 1383

- 1384 • One error:

$$1385 \frac{1}{n'} \sum_{i=1}^{n'} \mathbb{I}(\arg \max_{j \in \mathcal{Y}} g_j(\mathbf{x}'_i) \notin Y'_i). \quad (35)$$

- 1386 • Hamming loss:

$$1387 \frac{1}{n'q} \sum_{i=1}^{n'} \sum_{j=1}^q \mathbb{I}(f_j(\mathbf{x}'_i) \neq y'_j). \quad (36)$$

- 1388 • Coverage:

$$1389 \frac{1}{n'q} \sum_{i=1}^{n'} \left(\max_{j \in Y'_i} \text{Rank}(\mathbf{x}'_i, j) - 1 \right), \quad (37)$$

1390 where $\text{Rank}(\mathbf{x}'_i, j) = \sum_{k=1}^q \mathbb{I}(g_k(\mathbf{x}'_i) \geq g_j(\mathbf{x}'_i))$.
 1391

- 1392 • Average Precision:

$$1393 \frac{1}{n'} \sum_{i=1}^{n'} \frac{1}{|Y'_i|} \sum_{j \in Y'_i} \frac{|\mathbf{R}(\mathbf{x}'_i, j)|}{\text{Rank}(\mathbf{x}'_i, j)}, \quad (38)$$

1394 where $\mathbf{R}(\mathbf{x}'_i, j) = \{k | g_k(\mathbf{x}'_i) \geq g_j(\mathbf{x}'_i), k \in Y'_i\}$.
 1395

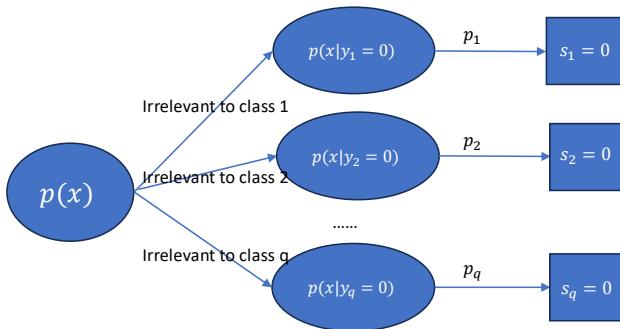


Figure 4: The diagram of the proposed data generation process.

D MORE DISCUSSIONS

D.1 DATA GENERATION PROCESS

Lemma 1 indicates a class-wise data generation process of PML. Based on the PML problem definition, the candidate label set for each instance can be regarded as being generated by excluding obviously irrelevant labels. Based on this, we propose the following data generation assumption: We ask annotators to determine whether a label is obviously irrelevant. However, it is difficult to accurately determine all irrelevant labels for a given image, so only some irrelevant labels can be identified. If they are uncertain, we ask the annotators to skip this question. We formulate this process as the sampling scheme $p(s_j = 0|x, y_j = 0) = p_j$ in Lemma 1; that is, only some irrelevant labels are considered non-candidate labels. Based on this data generation process, we prove that $p(\mathbf{x}|s_j = 0) = p(\mathbf{x}|y_j = 0)$ in Lemma 1. This is the basis for further theoretical derivations. Figure 4 shows the diagram of the proposed data generation process.

D.2 INSTANCE-DEPENDENT CASES

The current literature on partial multi-label learning (PML) and complementary multi-label learning (CML) assumes that label generation is independent of instances (see Table 1). Following previous work, we also consider the instance-independent case. It is very challenging to design consistent methods for instance-dependent cases due to the difficulty of estimating instance-dependent generation processes, as far as we know from the literature on weakly supervised learning. In future work, we will consider developing instance-dependent methods with strong theoretical guarantees.

E MORE EXPERIMENTAL ANALYSIS

Based on Table 3, we can draw the following conclusions: (1) The proposed COMES-HL and COMES-RL approaches outperform the compared methods in different cases of synthetic datasets, thus validating the effectiveness of our approaches in handling various data generation assumptions. (2) CCMN and MLCL are both based on the uniform distribution assumption, which differs from case-a and case-b, representing two more realistic data generation processes. Therefore, they fail to achieve superior performance. (3) Although GDF and CTL use transition matrices to model generation processes, which seems a more practical assumption, estimation of generation processes is inaccurate, as discussed in the Introduction section. (4) Our proposed approaches do not rely on these assumptions, and their strong classification performance also results from the effectiveness of the proposed risk-correction techniques.

F FURTHER DISCUSSION ABOUT THE ASSUMPTIONS IN THEOREMS 2 AND 5

Theorem 2 only hold when $\alpha > 0$. This means that, for each class-wise classification risk $\mathbb{E}_{p(\mathbf{x}|y_j = 1)} [\ell(g_j(\mathbf{x}), 1)]$, the risk value should be greater than zero. This assumption can hold for many loss functions. For example, in COMES-HL, the cross-entropy loss used in the paper cannot become zero due to the assumption about the boundness of the logits: $\sup_{g_j \in \mathcal{G}} \|g_j\|_\infty \leq C_G$.

1458 Theorem 5 only holds when $\gamma > 0$. We assume that the classification risk $R_R^\ell(g)$ is always positive.
 1459 This assumption holds for many symmetric loss functions, such as the sigmoid loss function used in
 1460 our paper. The value of the sigmoid loss function cannot become zero due to the assumption about
 1461 the boundness of the logits: $\sup_{g_j \in \mathcal{G}} \|g_j\|_\infty \leq C_{\mathcal{G}}$. We will consider the corner cases of $\alpha = 0$ and
 1462 $\gamma = 0$ as our future work.
 1463

1464 G EXPERIMENTS ON THE ROBUSTNESS OF INACCURATELY ESTIMATED 1465 CLASS PRIORS 1466

1467 Tables 4 and 5 show experimental results with inaccurately estimated class priors. Here, “-E” means
 1468 that our methods use inaccurately estimated class priors. We can observe that the proposed methods
 1469 can achieve satisfactory performance with inaccurate class priors.
 1470

1471
 1472 **Table 4:** Experimental results with inaccurately estimated class priors on mirflickr. Here, “-E” means
 1473 that our methods use inaccurately estimated class priors.

1474 Approach	1475 Ranking Loss↓	1476 One Error↓	1477 Hamming Loss↓	1478 Average Precision↑
BCE	0.106 ± 0.008	0.275 ± 0.021	0.220 ± 0.007	0.813 ± 0.011
CCMN	0.106 ± 0.011	0.282 ± 0.030	0.220 ± 0.006	0.811 ± 0.016
GDF	0.159 ± 0.007	0.409 ± 0.027	0.277 ± 0.007	0.742 ± 0.013
CTL	0.130 ± 0.006	0.366 ± 0.017	0.237 ± 0.006	0.772 ± 0.009
MLCL	0.498 ± 0.035	0.810 ± 0.066	0.601 ± 0.020	0.446 ± 0.038
COMES-HL	0.095 ± 0.009	0.171 ± 0.019	0.164 ± 0.003	0.843 ± 0.013
COMES-RL	0.106 ± 0.006	0.206 ± 0.036	0.186 ± 0.008	0.818 ± 0.011
COMES-HL-E	0.107 ± 0.008	0.133 ± 0.010	0.158 ± 0.002	0.858 ± 0.007
COMES-RL-E	0.104 ± 0.010	0.189 ± 0.010	0.183 ± 0.006	0.824 ± 0.012

1484
 1485
 1486 **Table 5:** Experimental results with inaccurately estimated class priors on yeastBP, yeastCC, and
 1487 yeastMF. Here, “-E” means that our methods use inaccurately estimated class priors.

1488 Approach	1489 One Error↓			1490 Hamming Loss↓			1491 Average Precision↑		
	1492 yeastBP	1493 yeastCC	1494 yeastMF	1495 yeastBP	1496 yeastCC	1497 yeastMF	1498 yeastBP	1499 yeastCC	1500 yeastMF
BCE	0.871 ± 0.008	0.814 ± 0.019	0.886 ± 0.020	0.148 ± 0.007	0.162 ± 0.007	0.153 ± 0.006	0.150 ± 0.013	0.487 ± 0.016	0.379 ± 0.019
CCMN	0.878 ± 0.016	0.823 ± 0.016	0.882 ± 0.012	0.151 ± 0.007	0.163 ± 0.008	0.150 ± 0.005	0.150 ± 0.012	0.479 ± 0.016	0.386 ± 0.021
GDF	0.976 ± 0.006	0.971 ± 0.008	0.972 ± 0.007	0.499 ± 0.016	0.489 ± 0.026	0.497 ± 0.030	0.057 ± 0.002	0.135 ± 0.010	0.144 ± 0.016
CTL	0.970 ± 0.006	0.964 ± 0.004	0.963 ± 0.010	0.493 ± 0.009	0.499 ± 0.007	0.496 ± 0.006	0.060 ± 0.002	0.154 ± 0.004	0.165 ± 0.013
MLCL	0.961 ± 0.038	0.862 ± 0.066	0.887 ± 0.066	0.881 ± 0.096	0.845 ± 0.051	0.837 ± 0.024	0.082 ± 0.015	0.402 ± 0.080	0.375 ± 0.124
COMES-HL	0.641 ± 0.030	0.744 ± 0.020	0.800 ± 0.023	0.073 ± 0.008	0.119 ± 0.015	0.101 ± 0.005	0.458 ± 0.020	0.657 ± 0.020	0.552 ± 0.023
COMES-RL	0.808 ± 0.016	0.754 ± 0.022	0.805 ± 0.020	0.051 ± 0.001	0.045 ± 0.004	0.048 ± 0.003	0.315 ± 0.015	0.651 ± 0.023	0.549 ± 0.019
COMES-HL-E	0.747 ± 0.026	0.803 ± 0.013	0.850 ± 0.008	0.042 ± 0.003	0.082 ± 0.003	0.108 ± 0.004	0.303 ± 0.008	0.475 ± 0.023	0.432 ± 0.020
COMES-RL-E	0.957 ± 0.009	0.850 ± 0.014	0.889 ± 0.006	0.051 ± 0.001	0.045 ± 0.001	0.049 ± 0.001	0.106 ± 0.008	0.400 ± 0.031	0.347 ± 0.009

1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511