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ABSTRACT

Partial multi-label learning and complementary multi-label learning are two pop-
ular weakly supervised multi-label classification paradigms that aim to alleviate
the high annotation costs of collecting precisely annotated multi-label data. In
partial multi-label learning, each instance is annotated with a candidate label set,
among which only some labels are relevant; in complementary multi-label learn-
ing, each instance is annotated with complementary labels indicating the classes
to which the instance does not belong. Existing consistent approaches for the two
paradigms either require accurate estimation of the generation process of candi-
date or complementary labels or assume a uniform distribution to eliminate the
estimation problem. However, both conditions are usually difficult to satisfy in
real-world scenarios. In this paper, we propose consistent approaches that do
not rely on the aforementioned conditions to handle both problems in a unified
way. Specifically, we propose two risk estimators based on first- and second-order
strategies. Theoretically, we prove consistency w.r.t. two widely used multi-label
classification evaluation metrics and derive convergence rates for the estimation
errors of the proposed risk estimators. Empirically, extensive experimental re-
sults validate the effectiveness of our proposed approaches against state-of-the-art
methods.

1 INTRODUCTION

In multi-label classification (MLC), each instance is associated with multiple relevant labels simul-
taneously (Zhang & Zhou, 2014} [Liu et al., [2022b). The goal of MLC is to induce a multi-label
classifier that can assign multiple relevant labels to unseen instances. MLC is more practical and
useful than single-label classification, as real-world objects often appear together in a single scene.
The ability to handle complex semantic information has led to the widespread use of MLC in many
real-world applications, including multimedia content annotation (Cabral et al. 2011), text clas-
sification (Rubin et al) 2012; [Liu et al., 2017), and music emotion analysis (Wu et al., |2014)).
However, annotating multi-label training data is more expensive and demanding than annotating
single-label data. This is because each instance can be associated with an unknown number of rel-
evant labels (Durand et al., 2019; (Cole et al.l 2021} [Xie et al.| 2023)), making it difficult to collect a
large-scale multi-label dataset with precise annotations.

To address this, learning from weak super-
vision has become a prevailing way to mit-
igate the bottleneck of annotation cost for
MLC (Sugiyama et al.l 2022). Among them,
partial multi-label learning (PML) and comple-
mentary multi-label learning (CML) have be-
come two popular MLC paradigms. In PML,
each instance is annotated with a candidate

label set, among which only some labels are  Fjgyre 1: A multi-label image with inexact anno-
relevant but inaccessible to the learning algo- (ations. Source: Paul Cézanne, Still Life, Jug and
rithm (Xie & Huang, 2018; |Sun et al., 2019;  Fryit on a Table (1894), public domain.

Gong et al.l 2021). In CML, each instance is

annotated with complementary labels, which indicate the classes to which the instance does not
belong (Gao et al., [2023). Given that all relevant labels are included in the candidate label set, non-
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Table 1: Comparison of COMES with existing consistent PML and CML approaches.

Uniform distribution ~ Generation process Label Multiple
assumption-free  estimation unnecessary correlation-aware complementary labels

Approach

CCMN (Xie & Huang/[2023)
CTL (Gao et al..[2023)
MLCL (Gao et al.{|2024)
GDF (Gao et al.[[2025)

COMES-HL (Ours)
COMES-RL (Ours)

S xaxs
S axax
x> axs
SN[ a= xS

candidate labels contain no relevant labels and can be considered complementary labels, and vice
versa. This suggests that the two problems are mathematically equivalent. Therefore, in this paper,
we treat them as MLC under inexact supervision in a unified way. Figure[I|shows an example image
annotated with inexact annotations. The label space contains ten labels in total. The candidate label
set consists of four relevant labels {apple, plate, table, jug} and two false-positive ones {grapes,
pear}. By excluding the candidate labels from the label space, the remaining four labels are {ba-
nana, cup, knife, flower}, which can be considered complementary labels. PML and CML do not
require precise determination of all relevant labels during annotation, which demonstrates their great
potential for alleviating annotation challenges in MLC.

In this paper, we investigate consistent approaches for MLC under inexact supervision. Here, consis-
tency means that classifiers learned with inexact supervision are theoretically guaranteed to converge
to the optimal classifiers when infinitely many training samples are provided (Wang et al.l [2024).
The remedy began with Xie & Huang| (2023)), which treated PML as a special case of MLC with
class-conditional label noise (Li et al., [2022; [Xia et al. [2023)), where irrelevant labels could flip to
relevant labels but not vice versa. However, the flipping rate for each class is unknown and must be
estimated using anchor points, i.e., instances belonging to a specific class with probability one (Liu
& Taol 2015} Xie & Huang] [2023). Similar to PML, CML assumes that complementary labels are
generated by a certain flipping process (Yu et al., 2018b). |Gao et al.|(2023) proposed the uniform
distribution assumption that a label outside the relevant label set is sampled uniformly to be the CL.
Then, |Gao et al.| (2024)) generalized the data generation process with a transition matrix, but estimat-
ing the data generation process is still necessary. Recently, |Gao et al.|(2025) extended the uniform
distribution assumption to handle multiple complementary labels.

In summary, all existing consistent PML and CML approaches either estimate the generation process
of the candidate label set or complementary labels, or adopt the uniform distribution assumption to
eliminate the estimation problem. However, both conditions are difficult to satisfy in real-world
scenarios. On the one hand, estimating the flipping rate heavily relies on accurate estimation of
noisy class posterior probabilities of anchor points (Xia et al.l 2019; [Yao et al., [2020; [Lin et al.,
2023)). However, estimating noisy class posterior probabilities is more difficult because their entropy
is usually higher than that of clean labels (Langford, [2005). This difficulty is further amplified when
using deep neural networks, where the over-confidence phenomenon typically occurs (Zhang et al.,
20215 Wei et al., 2022). The model outputs of deep neural networks are usually one-hot encoded,
which means they cannot yield reliable probabilistic outputs (Guo et al.,|2017). On the other hand,
the uniform distribution assumption treats different candidate label sets indiscriminately, which is
too simple to be truly in accordance with imbalanced classes in real-world scenarios (Wang et al.,
2025)). Additionally, many approaches model different labels independently and directly ignore label
correlations existing in multi-label data (Gao et al. [2025)). This prevents them from exploiting the
rich semantic relationships of label correlations (Zhu et al.,|2017; Mao et al., 2023)).

To this end, we propose a novel framework named COMES, i.e., COnsistent Multi-label classifica-
tion under inExact Supervision. Based on a data generation process that does not use transition ma-
trices, we introduce two instantiations with risk estimators w.r.t. the Hamming loss and ranking loss,
respectively. Table [I] compares our approach with existing consistent PML and CML approaches.
Our contributions are summarized as follows:

* We propose a consistent framework for multi-label classification under inexact supervision that
neither requires estimating the generation process of candidate or complementary labels nor relies
on the uniform-distribution assumption.
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* We introduce risk-correction approaches to improve the generalization performance of the pro-
posed risk estimators. We further prove consistency w.r.t. two widely used metrics and derive
convergence rates of estimation errors for the proposed risk estimators.

* Our proposed approaches outperform state-of-the-art baselines on both real-world and synthetic
PML and CML datasets with different label generation processes.

2 PRELIMINARIES
In this section, we introduce the background of MLC and MLC under inexact supervision.

2.1 MULTI-LABEL CLASSIFICATION

Let X < R? denote the d-dimensional feature space and Y = {1,2,.. ., ¢} the label space consisting
of ¢ class labels. A multi-label example is denoted as (x,Y’), where € X is a feature vector
and Y < ) is the set of relevant labels associated with x. For ease of notation, we introduce
Y = [y1,92,--.,Yq] € {0,1} to denote the vector representation of Y, where y; = 1if j € Y and
y; = 0 otherwise. Let p(x,Y") denote the joint density of « and Y. Let p(x) denote the marginal
density, and m; = p(y; = 1) the prior of the j-th class. The task of MLC is to learn a prediction
function f : X — 2Y. We use f; to denote the j-th entry of f, where f;(x) = 1 indicates that
the model predicts class j to be relevant to  and f;(x) = 0 otherwise. Since learning f directly is
often difficult, we use a real-valued decision function g : X — RY to represent the model output.
The prediction function f can be derived by thresholding g. We use g; to denote the j-th entry of g,
which indicates the model output for class j.

Many evaluation metrics have been developed to calculate the difference between model predictions
and true labels to evaluate the performance of multi-label classifiers (Zhang & Zhou, 2014} |Wu &
Zhou, 2017). In this paper, we focus primarily on the Hamming loss and ranking loss, the two
most common metrics in the literature|'| Specifically, the Hamming loss calculates the fraction of
misclassified instance-label pairs, and the risk of f w.r.t. the Hamming loss is

_ 1 a

B () = By | £ S0, 1050 % ). m
Here, I denotes the indicator function that returns 1 if the predicate holds; otherwise, I returns 0.
Since optimizing the 0-1 loss is difficult, a surrogate loss function ¢ is often adopted. The ¢-risk
w.r.t. the Hamming loss is

R4(g) = Eney) [; S 0 () ,yj>] , @)

where ¢ is a non-negative binary loss function, such as the binary cross-entropy loss. It is important
to note that the Hamming loss only considers first-order model predictions and cannot account for
label correlations. The ranking loss explicitly considers the ordering relationship between model
outputs for a pair of labels. Specifically, the risk of f w.r.t. the ranking loss isE]

B ) = Byteory | By 10 < 00 (1050 > Aio) + 5105(0) = fule))

q
j=1

+105 > ) (105(@) < @) + 1) = h@) | @

Similarly, when using a surrogate loss function ¢ to replace the 0-1 loss, the ¢-risk w.r.t. the ranking
loss is

- 1
Ri(9) = Epay) [Z1<j<k:<q I(y; # yr)l (gj(ac) — gk(), W)] . 4)

Notably, minimizing the Hamming loss does not consider label correlations and can be considered
a first-order strategy. In contrast, minimizing the ranking loss considers label-ranking relationships
and can be considered a second-order strategy.

"We will address the use of other metrics in future work.
>To facilitate the analysis in this paper, we consider the coefficients of the losses for different label pairs to
be 1 (Gao & Zhou, 2013 |Xie & Huang, 2021;2023)).
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2.2 MULTI-LABEL CLASSIFICATION UNDER INEXACT SUPERVISION

In PML, each example is denoted as (x, S), where S is the candidate label set associated with .
The basic assumption of PML is that all relevant labels are contained within the candidate label
set,i.e., Y = S. Let S = Y\S denote the absolute complement of S. Since S(Y = ¢, S can
be regarded as the set of complementary labels associated with . Therefore, PML and CML are
mathematically equivalent, as partial multi-label data can equivalently be transformed into comple-
mentary multi-label data and vice versa. Without loss of generality, this paper mainly considers
partial multi-label data. For ease of notation, we use s = [s1, Sa,. .., sq] to denote the vector repre-
sentation of S. Here, s; = 1 indicates that the j-th class label is a candidate label of &, and s; = 0
otherwise. Let p(x, S) denote the joint density of « and the candidate label set S. The goal of PML
or CML is to learn a prediction function f : X — 2Y that can assign relevant labels to unseen
instances based on a training set D = {(z;,5;)},_, sampled i.i.d. from p(x, S).

3 METHODOLOGY

In this section, we first introduce our data generation process. Then, we present the first- and second-
order strategies for handling the PML problem and their respective theoretical analyses.

3.1 DATA GENERATION PROCESS

In this paper, we assume that the candidate labels are generated by querying whether each instance
is irrelevant to a class in turn. Specifically, if the j-th class is irrelevant to o, we assume that
the j-th class label is assigned as a non-candidate label to & with a constant probability p;, i.e.,
p(j¢Slx,j¢Y) = p;. Otherwise, if the j-th class is relevant to &, we consider it as a candidate
label. The candidate label set can then be obtained by excluding the non-candidate labels from the
label space. Notably, all relevant labels are included in the candidate label set, as well as some irrel-
evant labels. This data generation process coincides well with the annotation process of candidate
labels. For example, when asking annotators to provide candidate labels for an image dataset, we
can show them an image and a class label and ask them to determine whether the image is irrelevant
to that class. This is often an easier question to answer than directly asking all relevant labels, since
it is less demanding to exclude some obviously irrelevant labels. If so, we assume that the image
will be annotated with this label as a non-candidate label with a constant probability. Based on this
data generation process, we have the following lemma.

Lemma 1. Assume that p(s; = O|z,y; = 0) = p;, where p; is a constant. Then, we have
p(x|s; = 0) = p(zly; = 0).

The proof can be found in Appendix [B.I] According to Lemma [I] the conditional density of in-
stances where the j-th class is considered a non-candidate label is equivalent to the conditional
density of instances where the j-th class is irrelevant. Notably, our data distribution assumption
differs from both the uniform distribution assumption and the use of a transition matrix to flip the la-
bels. Since the conditional probabilities of different candidate label sets can be different, our setting
is more general than the uniform distribution assumption (Gao et al., {2023} [2025)).

3.2 FIRST-ORDER STRATEGY

A common strategy used in MLC is to decompose the problem into a number of binary classification
problems by ignoring label correlations. This goal can be achieved by minimizing the /-risk w.r.t. the
Hamming loss in Eq. (2). We show that the ¢-risk w.r.t. the Hamming loss can be equivalently
expressed with partial multi-label data.

Theorem 1. By the assumption in Lemmal |l| the (-risk w.r.t. the Hamming loss in Eq. can be
equivalently expressed as

Ri(g) =Epe) [1 S 0 (@), 1)]

q “i=1

j=1

+ Z’I Ep(a|s;=0) [1 _q”j (¢ (g; (z),0) — £ (g (), 1))] ) 5)
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The proof can be found in Appendix Theorem [I] shows that the ¢-risk w.r.t. the Hamming loss
can be expressed as the expectation w.r.t. the marginal and conditional densities where the j-th class
label is not considered as a candidate label. Since Eq. (5) cannot be calculated directly, we perform
empirical risk minimization (ERM) by approximating Eq. using datasets Dy and D;(j € V)
sampled from densities p(x) and p(x|s; = 0), respectively. In this paper, we consider generating
these datasets by duplicating instances from D. Specifically, we first treat the duplicated instances
of D as unlabeled data sampled from p(x) and add them to Dy. Then, if an instance does not
treat the j-th class label as a candidate label, we treat its duplicated instance as being sampled from
p(z|s; = 0) and add it to D;. These processes can be expressed as follows:

Dy = {al}, = {@il(@: S0 €D}, Dy ={al}” = (@il@:5) D¢ S} iy ©

Then, an unbiased risk estimator can be derived to approximate Eq. (5 using datasets Dy and D;:
N 1 n q
¢ _ (U
Ry(9) Y Zi=1 2j=1 (gj (=) .1)
¢ 1—m; ¢y j j

When deep neural networks are used, the negative terms in the loss function can often lead to overfit-
ting issues (Kiryo et al.;, 2017} [Sugiyama et al.,[2022). Therefore, we use an absolute value function
to wrap each potentially negative term |Lu et al| (2020); [Wang et al.| (2023). The corrected risk

estimator is defined as
Rite) =2 30 [ L3 el @) ) = 5 o (o2) 1)
1 —m ;
+ ijl qur] 21:1 1 (gj (wf) 70) : (8)

q ==t
Notably, our framework is very flexible so that the minimizer can be obtained using any network
architecture and stochastic optimizer. The algorithmic details are summarized in Algorithm[I] The
class prior 7; can be estimated by using off-the-shelf class prior estimation approaches only using
candidate labels (see Appendix[A.Z).

We establish the consistency and estimation error bounds for the risk estimator proposed in Eq. (8).
First, we demonstrate that the corrected risk estimator in Eq. (8) is biased yet consistent w.r.t. the
(-risk w.r.t. the Hamming loss in Eq. (Z)). The following theorem holds.

Theorem 2. Assume that there exists a constant Cg such that SUPy .eg lgillec < Cg and a constant
Cy such that sup|, <c, (z,y) < Cy, where G is the model class. We assume that there exists
a positive constant o such that ¥j € Y, mjEp gy, —1) [£(g; (x),1)] = . Then, the bias of the
expectation of the corrected risk estimator w.r.t. the {-risk w.r.t. the Hamming loss has the following
lower and upper bounds:

. 1
0<E [Rg(g)] — Rh(g) < 52521(4 —21))CeAA;, ©)

where A; = exp (—202/ (C?/n + (1 — 7;)2C?/n;)). Furthermore, for any 6 > 0, the following
inequality holds with probability at least 1 — §:

Rf&(g)—Rﬁ(g)k%Zq <(4—2wj)CgAj+(2_2q”j)Cf 111(2/5)>+Cz In(2/8)

j=1 2nj 2n
(10)

The proof can be found in Appendix [B.3] Notably, the bias of the corrected risk estimator from
tbe original /-risk exists since it is lower bounded by zero. However, as n — o0, we have that
RY(g) — RY(g), meaning that it is still consistent.

Let gy = argming jcg Rﬁ (g) and g} = argming, g RY(g) denote the minimizer of the
corrected risk estimator and the ¢-risk w.r.t. the Hamming loss, respectively. Let R, ,(G) and
R, p,; (G) denote the Rademacher complexities defined in Appendix [B.4}
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Theorem 3. Assume that the loss function {(z,y) is Lipschitz continuous in z with a Lipschitz
constant Ly. By the assumptions in Theorem |2 for any § > 0, the following inequality holds with
probability at least 1 — §:

Ri(a) - Fa(ah) < 2L Y1 %, <g>+u2”%w<9>

15 (4—4 1/
+= Z —21))CeA; +2C, / ZJ ) ”J 2(/). (11)

The proof can be found in Appendix Theorem shows that, as n — 0, Ri(gn) — R (g5,
since A; — 0, R, ,(G) — 0, and R, . (G) — 0 for all parametric models with a bounded
norm (Mohri et al.l [2012)). This means that the minimizer of the corrected risk estimator will ap-
proach the desired classifier that minimize the ¢-risk w.r.t. the Hamming loss.

Let RY = infy R(g) and Ry = infy Ry '(f) denote the minima of the (-risk and the risk
w.r.t. the Hamming loss, respectively. Then, the following corollary holds.

Corollary 1. If ¢ is a convex function such that Yy, ¢'(0,y) < 0, then the {-risk w.r.t. the Hamming
loss in Eq. (O) is consistent with the risk w.r.t. the Hamming loss in Eq. (I). This means that, for any
sequence of decision functions {g, } with corresponding prediction functions { f;}, if R (g:) — R&,

then R (fy) — R}

The proof can be found in Appendix [B.5] If the model is flexible enough to include the optimal
classifier, according to Theorem [3| we have R{;(gn) — Rf* Then, Corollary |1|demonstrates that

RO 1( fH) — Rj; where fH is the correspondlng prediction function of gy. This indicates that
the prediction function obtained by minimizing the corrected risk estimator in Eq. (8)) achieves the
Bayes risk.

3.3 SECOND-ORDER STRATEGY

The first-order strategy is straightforward but does not consider label correlations, which may be
incompatible with multi-label data that exhibit semantic dependencies. Therefore, we explore the
ranking loss to model the relationship between pairs of labels. The following theorem applies.

Theorem 4. When the binary loss function € is symmetric, i.e., {(z,-) + €(—z,-) = M where M is
a non-negative constant, then under the assumption in Lemmall| the (-risk w.r.t. the ranking loss in
Eq. {@) can be equivalently expressed as

Ri(9) =D (1T B oo [ (05 @) — 3 (), 0)]
+(1 - 7Tl’c)I['Ep(m|sk:0) [ﬁ (gj(il?) - gk(w)’ 1)] - Mp(yj =0,yx = O)) . (12)

The proof can be found in Appendix [B.6] Here, the symmetric-loss assumption is often used to
ensure statistical consistency of the ranking loss for MLC (Gao & Zhou| |2013)). According to The-
orem [4] the /-risk w.r.t. the ranking loss can be expressed as the expectation w.r.t. the conditional
density where the j-th class label is not regarded as a candidate label. Notably, Mp(y; = 0,y = 0)
in Eq. (I2) is a constant that does not affect training the classifier, so it can be neglected. Similar to
the first-order strategy, an unbiased risk estimator can be obtained using D;:

? L —m5 o 4 .
R(9) zzlgj<k<q ( njﬂ-J Zi':lﬁ (gy(wi) — gk(acg),o)
1— e
+ Tk Zi:1 0 (gj(wf) — gr(zh), 1)) . (13)

ng

To improve generalization performance, we use the flooding regularization technique (Ishida et al.,
2020; Liu et al.} 2022a; Bae et al., [2024) to mitigate overfitting issues:

R (g ’Rf 5’ + B, (14)

where 8 > 0 is a hyper-parameter that controls the minimum of the loss value. Then, we can
perform ERM by using Eq. (I4). The algorithmic details are summarized in Algorithm[I] We also
establish consistency and estimation error bounds for the proposed risk estimator in Eq. (I4). The
following theorem then holds.



Under review as a conference paper at ICLR 2026

Theorem 5. We assume that there exists a positive constant -y such that Rﬁ (g) = 7. Wealso assume
that B is chosen such that 8 < 33y ; _j.<, Mp(y; = 0,yx = 0)z. By the assumptions in Theorem
the bias of the expectation of the corrected risk estimator w.r.t. the ranking loss has the following
lower and upper bounds:

~ q
0<E|[Rh(9)| - _, Mp(y; = 0.y = 0) — Bi(g) < (28 +2Cu(q = 1) Y] (1 —7,)) A,
(15)
where A' = exp (—2'72/231-:1(1 —m)%(q — 1)203/711»). Furthermore, for any 6 > 0, the follow-
ing inequality holds with probability at least 1 — §:
In (2/0)

27lj

q

Rilg) =, Mp(y; = 0.y = 0) = Rh(9)| < |

(1—m)(qg—1)Ce
+ (2/3+20g(q7 DI fwj)) A (16)

The proof can be found in Appendix [B.7] According to Theorem 5] as n — o0, the bias between
the corrected risk estimator in Eq. (I4)) and the ¢-risk of ranking loss will become a constant. This
implies that the minimizer of the corrected risk estimator is equivalent to the desired classifier that
minimizes the /-risk w.r.t. the Hamming loss.

Let gr = argmingg,,cg R§(g) and gf = argming, g Rk (g) denote the minimizers of the
corrected risk estimator and the /-risk w.r.t. the ranking loss, respectively.

Theorem 6. By the assumptions in Theorem[3|and[3] for any 6 > 0, the following inequality holds
with probability at least 1 — 0:

Riy(@r) — Rhlgh) < (284 2C(a - 1) Y] (1= 7)) &

In (1/4)

n;j

+2 A =m)a-1)C, 2 Aelg = DA = 7)%Ry, (9). (D)

The proof can be found in Appendix Theorem 0] shows that as n — o0, R (gr) — R& (g3h),
since A" — 0 and R,,; ;. (G) — 0 for all parametric models with a bounded norm (Mohri et al.,
2012). This means that the minimizers of Eq. will approach the desired classifiers of the /-
risk w.r.t. the ranking loss when the number of training data increases. Let Rf{“ = inf, R%(g) and
Rf, = infy R%_l (f) denote the minima of the ¢-risk and the risk w.r.t. the ranking loss, respectively.
Then we have the following corollary.

Corollary 2. If ¢ is a differentiable, symmetric, and non-increasing function such that Vy, ¢ (0,y) <
0 and €(z,y) + L(—z,y) = M, then the (-risk w.r.t. the ranking loss in Eq. is consistent with
the risk w.r.t. the ranking loss in Eq. (B). This means that for any sequences of decision functions
{g:} with corresponding prediction functions { f,}, if R&(g:) — R&, then R% ' (f) — Rj;.

The proof can be found in Appendix If the model is very flexible, we have R (gr) — R&

according to Theorem @ Then, Corollary [2| demonstrates that R *( fr) — R}, where fr is the
corresponding prediction function of gr. This indicates that the prediction function obtained by
minimizing Eq. achieves the Bayes risk.

4 EXPERIMENTS
In this section, we validate the effectiveness of the proposed approaches with experimental results.

4.1 EXPERIMENTAL SETUP

We conducted experiments on both real-world and synthetic PML benchmark datasets. For real-
world datasets, we used mirflickr (Huiskes & Lewl [2008), music_emotion (Zhang & Fang| |2020),
music_style, yeastBP (Yu et al., 2018a), yeastCC and yeastMF; for synthetic datasets, we used
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Ranking Loss |

Approach mirflickr music_emotion music_style yeastBP yeastCC yeastMF
BCE 0.106 + 0.008e  0.244 + 0.007¢  0.137 £ 0.009 0.328 £ 0.013e  0.206 £ 0.011e  0.251 £ 0.010e
CCMN 0.106 + 0.011e  0.224 + 0.007¢  0.155 + 0.012¢  0.328 +£ 0.011e  0.210 + 0.013e¢  0.245 + 0.011e
GDF 0.159 + 0.007¢  0.278 +£ 0.010e  0.160 + 0.008e¢  0.501 £+ 0.009¢  0.504 + 0.016e  0.495 + 0.029e
CTL 0.130 + 0.006e  0.266 + 0.010e  0.179 + 0.008e¢  0.498 + 0.007e¢  0.467 + 0.014e  0.471 + 0.026¢
MLCL 0.498 + 0.035¢  0.470 £ 0.046e  0.130 + 0.010 0.453 £ 0.033e¢  0.222 £ 0.047¢  0.231 £+ 0.077e
COMES-HL  0.095 + 0.009 0.214 + 0.005 0.132 £ 0.010 0.154 + 0.010 0.124 + 0.011 0.173 £ 0.021e
COMES-RL  0.106 + 0.006e  0.213 + 0.003 0.147 £ 0.013e¢  0.166 + 0.010e  0.117 + 0.009 0.151 + 0.014
One Error |
Approach mirflickr music_emotion music_style yeastBP yeastCC yeastMF
BCE 0.275 £ 0.021e  0.462 £+ 0.015¢  0.345 £ 0.019 0.871 £ 0.008¢  0.814 £ 0.019¢  0.886 £ 0.020e
CCMN 0.282 + 0.030e  0.385 + 0.018 0.346 + 0.017 0.878 +£ 0.016e  0.823 + 0.016e  0.882 + 0.012e
GDF 0.409 + 0.027¢  0.531 £ 0.012¢  0.367 £ 0.018¢  0.976 + 0.006e  0.971 £+ 0.008¢  0.972 + 0.007e
CTL 0.366 + 0.017¢  0.469 + 0.019¢  0.394 + 0.022¢  0.970 + 0.006e  0.964 + 0.004e  0.963 + 0.010e
MLCL 0.810 + 0.066e  0.793 + 0.041e  0.405 + 0.068e¢  0.961 + 0.038e¢  0.862 + 0.066e  0.887 + 0.066e
COMES-HL  0.171 + 0.019 0.382 + 0.015 0.333 + 0.012 0.641 + 0.030 0.744 + 0.020 0.800 + 0.023
COMES-RL  0.206 + 0.036e  0.409 + 0.015¢  0.351 + 0.021e¢  0.808 + 0.016e  0.754 + 0.022 0.805 + 0.020
Hamming Loss |
Approach mirflickr music_emotion music_style yeastBP yeastCC yeastMF
BCE 0.220 + 0.007e  0.307 + 0.007¢  0.186 + 0.005¢  0.148 & 0.007¢  0.162 + 0.007¢  0.153 + 0.006e
CCMN 0.220 + 0.006e  0.284 + 0.013¢  0.239 4+ 0.020e  0.151 £ 0.007¢  0.163 + 0.008¢  0.150 + 0.005e
GDF 0.277 + 0.007e¢  0.374 4+ 0.009¢  0.251 + 0.008¢  0.499 + 0.016e¢  0.489 + 0.026e  0.497 + 0.030e
CTL 0.237 + 0.006e  0.349 + 0.006e  0.298 + 0.008¢  0.493 + 0.009¢  0.499 + 0.007¢  0.496 + 0.006e
MLCL 0.601 + 0.020e  0.480 & 0.025¢  0.246 + 0.019¢  0.881 + 0.096e¢  0.845 + 0.051e  0.837 & 0.024e
COMES-HL  0.164 + 0.003 0.247 + 0.005 0.120 + 0.006 0.073 £+ 0.008¢  0.119 4 0.015¢  0.101 £ 0.005e
COMES-RL  0.186 + 0.008¢  0.278 £+ 0.005 ¢ 0.210 & 0.008e  0.051 + 0.001 0.045 + 0.004 0.048 + 0.003
Coverage |
Approach mirflickr music_emotion music_style yeastBP yeastCC yeastMF
BCE 0.212 + 0.009 0.408 + 0.010e  0.197 £+ 0.011 0.437 £ 0.021e  0.123 £ 0.010e  0.125 £ 0.011e
CCMN 0.212 + 0.012 0.392 +£ 0.010e  0.216 + 0.015¢  0.436 + 0.022¢  0.125 + 0.012¢  0.123 + 0.012e
GDF 0.254 + 0.006e  0.440 + 0.010e  0.220 + 0.010e  0.569 £+ 0.019¢  0.273 £ 0.018¢  0.242 + 0.022e
CTL 0.229 + 0.008e¢  0.441 +0.014e¢ 0240 + 0.011e  0.567 £ 0.016e  0.259 + 0.017¢  0.231 + 0.015¢
MLCL 0.492 + 0.036e  0.596 £ 0.047¢  0.177 + 0.013 0.530 £ 0.072e¢  0.137 £ 0.045e¢  0.099 + 0.032e
COMES-HL  0.211 + 0.008 0.379 + 0.008 0.192 + 0.012 0.229 + 0.016 0.070 + 0.008 0.085 + 0.006e
COMES-RL  0.224 + 0.008¢  0.377 + 0.006 0.208 + 0.015¢  0.219 + 0.015 0.070 £ 0.006 0.073 + 0.005
Average Precision 1

Approach mirflickr music_emotion music_style yeastBP yeastCC yeastMF
BCE 0.813 £ 0.011e  0.616 + 0.009¢  0.738 + 0.013e¢  0.150 + 0.013e¢  0.487 + 0.016e  0.379 £ 0.019e
CCMN 0.811 +0.016e  0.660 + 0.010 0.728 + 0.013e¢  0.150 + 0.012¢  0.479 + 0.016e  0.386 + 0.021e
GDF 0.742 + 0.013¢  0.574 +£ 0.008¢  0.711 £ 0.011e  0.057 £ 0.002¢  0.135 + 0.010e  0.144 + 0.016e
CTL 0.772 £ 0.009¢  0.600 + 0.011e  0.692 + 0.012¢  0.060 + 0.002e¢  0.154 + 0.004e  0.165 + 0.013e
MLCL 0.446 + 0.038e¢  0.381 +0.029¢  0.719 + 0.035¢  0.082 + 0.015¢  0.402 + 0.080e  0.375 + 0.124e
COMES-HL  0.843 + 0.013 0.665 + 0.009 0.749 + 0.010 0.458 + 0.020 0.657 + 0.020 0.552 + 0.023
COMES-RL  0.818 +0.011e  0.665 + 0.006 0.732 £ 0.013¢  0.315 £ 0.015¢  0.651 + 0.023 0.549 + 0.019

Table 2: Experimental results on real-world benchmark datasets. Lower is better for the ranking
loss, one error, Hamming loss, coverage; higher is better for the average precision.

VOC2007 (Everingham et al., 2007), VOC2012 (Everingham et al.,|2012)), CUB (Wah et al., [2011)
and COCO2014 (Lin et al., |2014), where candidate labels were generated by two different data
generation processes. Full experimental details are given in Appendix [C} Following standard prac-
tice (Liu et al., 2023), we evaluated with ranking loss, one error, Hamming loss, coverage and
average precision on real-world sets, and with mean average precision (mAP) on synthetic datasets.

4.2 EXPERIMENTAL RESULTS

Tables 2]and 3] summarize results on real-world and synthetic datasets, respectively. Here e indicates
that the best method is significantly better than its competitor (paired ¢-test at 0.05 significance
level). We observe that both instantiations of COMES consistently outperform other baselines across
various datasets, clearly validating the effectiveness of our proposed approaches. We attribute this
to: (1) our data generation assumptions are more realistic and better match statistics of real-world
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VOC2007 VOC2012 CUB COC02014

Approach Case-a Case-b Case-a Case-b Case-a Case-b Case-a Case-b
BCE 40.26 +2.79¢ 38.87 + 1.12e 37.59 + 1.29e¢ 41.17 +2.98¢ 16.30 + 0.48¢ 16.09 & 0.14e 26.73 + 1.12¢ 27.10 & 0.40e
CCMN 40.02 +4.98¢ 39.84 + 1.22¢ 39.16 + 2.34e 42.05 + 4.84e 16.51 + 0.25¢ 16.97 + 0.90e 2524 + 1.81e 26.79 + 1.23e
GDF 21.27 + 1.03e 20.19 £+ 0.43e 23.58 + 2.55¢ 22.96 + 2.87¢ 12.83 £ 0.15¢ 12.77 + 0.10e 17.32 + 0.62e 15.86 + 0.35e
CTL 17.05 + 0.90e 18.87 + 1.86e 19.38 + 0.81e 18.51 + 0.71e¢ 11.94 + 0.23e 11.94 £+ 0.23¢ 06.31 + 0.30e 06.34 + 0.14e
MLCL 2342+ 1.66e 17.78 + 1.18e¢ 15.02 + 4.68e 15.00 + 3.54e 16.80 + 0.04e¢ 17.92 + 0.10e 10.59 + 0.63e 10.67 + 0.81e
COMES-HL 4233 +1.74 4243 +4.17 4872+ 1.08 4793+ 105 1894 +0.30 1895+ 0.39 33.62+0.57 32.76 + 145
COMES-RL 51.46 +3.09 49.42 +4.27 53.26+0.74 5229+ 4.15 17.50 £ 0.33¢ 17.34 + 0.03e¢ 27.98 + 0.30e 28.69 £ 1.62e

Table 3: Classification performance in terms of mAP on synthetic benchmark datasets.

COMES-HL — Ranking Loss COMES-HL — Average Precision COMES-RL — Ranking Loss COMES-RL — Average Precision
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Figure 2: Classification performance with inaccurate class priors on different datasets.
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Figure 3: Sensitivity analysis w.r.t. § on the mirflickr dataset.

datasets; (2) our risk-correction approaches effectively mitigates overfitting, an issue overlooked by
previous unbiased methods (Xie & Huang| 2023)).

4.3  SENSITIVITY ANALYSIS

Influence of Inaccurate Class Priors. To investigate the influence of inaccurate class priors, we
added Gaussian noise ¢ ~ N(0,0?) to each class prior 7;. The experimental results on mirflickr,
music_emotion, and music_style are shown in Figure @ We observe that COMES-HL is more
sensitive to inaccurate class priors. Overall performance remains stable within a reasonable range
of class priors, but may degrade when the priors become highly inaccurate.

Influence of 5. We also investigated the influence of the hyperparameter (3 for the flooding regu-
larization used in COMES-RL. From Figure 3] we observe that the performance of COMES-RL is
rather stable when [ is set within a reasonable range on the mirflickr dataset. During our experi-
ments, we found that the performance was already competitive by setting 5 = 0 on many datasets.
However, the performance may degrade when S is set to a large value. This also matches our theo-
retical results in Theorem 3] where consistency holds when £ is not too large.

5 CONCLUSION

In this paper, we rethought MLC under inexact supervision by proposing a novel framework. We
proposed two instantiations of risk estimators w.r.t. the Hamming loss and ranking loss, two widely
used evaluation metrics for MLC, respectively. We also introduced risk-correction approaches to
improve generalization performance with theoretical guarantees. Extensive experiments on ten real-
world and synthetic benchmark datasets validated the effectiveness of the proposed approaches. A
limitation of this work is that we consider the generation process to be independent of the instances.
In the future, it is promising to extend our proposed methodologies to instance-dependent settings.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs to check the manuscript for typos and grammatical errors.

A  MORE DETAILS ABOUT THE ALGORITHM

A.1 ALGORITHMIC PSEUDO-CODE

Algorithm 1 COMES-HL and COMES-RL

Input: Multi-label classifiers g, PML dataset D, epoch number T,,,x, iteration number .
1: fort=1,2,... T do
2: Shuffle D;

3: for j =1,..., [ do

4 Fetch mini-batch D; from D;

5: Forward D and get the outputs of g;

6: if using the COMES-HL algorithm then

7: Calculating the loss based on Eq. (8);

8: else if using the COMES-RL algorithm then
9: Calculating the loss based on Eq. (14);
10: end if
11: Update g using a stochastic optimizer to minimize the loss;
12: end for
13: end for

Output: g.

A.2 CLASS PRIOR ESTIMATION

We can use any off-the-shelf mixture proportion estimation algorithm to estimate the class pri-
ors (Ramaswamy et al.| 2016} (Garg et al., 2021} [Yao et al.l 2022} Zhu et al.| |2023), which are
mainly designed to estimate the class prior with positive and unlabeled data for binary classification.
Specifically, we generate negative and unlabeled datasets according to Eq. (6)) and then apply the
mixture proportion estimation algorithm. The algorithmic details are summarized in Algorithm 2}

Algorithm 2 Class-prior Estimation
Input: Mixture proportion estimation algorithm .4, PML dataset D.

1: for ke Y do

2: Generate unlabeled and negative datasets according to Eq. (6));

3: Estimate the value of (1 — 7) by using A and interchanging the positive and negative
classes;

4: end for

Output: Class priors 7 (k € V).

B PROOFS

B.1 PROOF OF LEMMA[I]

According to the definition of PML, when s; = 0, the j-th class is impossible to be a relavant label,
and we have p(j ¢ Y|x,s; = 0) = p(j ¢ Y|s; = 0) = 1. Therefore, on one hand, we have

(x]s; =0)p(j ¢ Yz, s; = 0)

. p
p$$'=0,]¢y = - =p xls; =0).
On the other hand, we have
, plx|j ¢ Y)p(s; =0z, j¢Y .
plxls; =0,j¢Y) = (= Jp(s; = 0) )=p(w|J¢Y),

p(s; =0l ¢Y)
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where the second equation is due to p(s; = Olx,j ¢ Y) = p(s; = 0|j ¢ Y) = p;. The proof is
completed. O

B.2 PROOF OF THEOREM/[I]

q

Rila) B |+ X, 05 ).5)|
ZJZY éijlf(gj (x),y;)p(2,Y)de
S N S, @) 3) ) (V) da
2132;1 Z;ZOE(% (x),y;) p(x, y;) dz
=[Gt @) Dpta = ek [ 13T 000, @).0p @0y =0)da

q

:ﬁZj:lz(gj (x),1)p(x) dmfﬁz;e(gj (z),1) p(a,y; = 0)da

+JéZj:1€(gj (w)VO)p(wayj = O)dw

X e @ a3 (€ (@).0) g (@),1) (1 ) p (el -

q
oyt | 300005 ). 1)+ ey | £ 30 (1) (005 (@).0) = € g 2 1)

q =1
oy | X, 0005 @) )|+ Engatmo |3 20, (1) (05 (@),0) = €105 (). 1)

where the last equation is by Lemmal(I] The proof is completed. O

B.3 PROOF OF THEOREM[Z]

Let
D (95) = {(DU»DJ') |%2j:1€ (9j (x),1) — 1;;”2215 (gj (ﬂ) 71) > 0}
and
1

D5 (95) = {(DUij) - 2:;15 (g5 (z) 1) — TZK@ (gj (:vf) ,1) < 0}

denote the set of data pairs with positive and negative empirical losses, respectively. Then, we have
the following lemma.

Lemma 2. The probability measure of ©; (g;) can be bounded as follows:

P (Qj (gj)) < exp <Cl?/n + (1 —O;rj)QCg/nj> ' o

Proof. Let

p(Du) = p(a})p(@y) - p(@y) and p(D;) = p(ai)p(xd) - p(a),)
denote the densities of Dy and Dj, respectively. Then, the joint density of (Dy, D;) is

p(Du,Dj) = p(Du)p(Dy)-

15
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Then, the probability measure of D (g;) can be expressed as

P (D; (95)) =J p(Dy,D;)d (Dy,D;)
(Du,D;)eD7 (95)

p(Dy,D;)dzy dzy - - - dal de] da), - - - dae?

nj

- J(DUxDj)EQj(Qj)

When an instance in Dy is replaced by another instance, the value of 3., ¢ (g; (2}') ,1) /n—(1—

) Dty l (gj (mf) , 1) /n; changes no more than Cy/n. When an instance in D; is replaced by
another instance, the value of 3./, ¢ (g; (2Y),1) /n— (1 —m;) 217, ¢ (gj (w{) ) 1) /n; changes
no more than (1 — 7;)C;/n;. Therefore, by applying the McDiarmid’s inequality, we can obtain the
following inequality:

p (ijp(myj_l) [¢(g; (2),1)] — (i o (g (=),1) - -7 > (95 () 1)) > a>

U

<e —2¢/2
SO\ G+ 0 —m)2C2n; )

Then we have

P (D; () =p (7112“5 (9j (&) ,1) - . ;jﬁj Dt (gj (58]) ,1) < 0>
< (227, tloy (@)1 = R (o (o) 1) < w10y (@), 1] -

n U

- —2a2
s €exX 9
P\C2n+ (1= ,)°C2/n;

which concludes the proof. O
Then, we provide the proof of Theorem [2]

Proof of Theorem 2] To begin with, we have
E|Ri(9)] - Rixl9) = E| Rie) - Ri9)] > 0.

Besides, we have

Y ) ) - S (o (a2) )

J

<[ ) 0| S (o (+1) 1)

<(2 — Wj)Cg.

16
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Then,

E|Rii(g)| - Rig)
—E|Ri(9) - Rilo)]
S NN (> WIS R RS Wt AT D]

N (Tll Z;é (g, (sc?) 1) - 1 ;;Tj Y (gj (acj> 1))) »(Dy,D;)d(Dy, D;)

SO Sup<.><i2?1e<ga<U B () 1)

(Du,D;)eD;

_Clzjlf(gg( vy 1) - 77]2 ( ( i)71)))J.(DUVDJ)E,DJ.(gj)p(DU,Dj)d('DU,'Dj)

1 —a
<52j:1(4—2m)0ﬂ”( 7 (97))
1 —a
<7 2o (7 2m)Ceexp <02/n+ 1 —wj)zq,/nj)

1 —a
:a 2]‘:1 (4 — QWj)C[Aj,
which concludes the proof of the first part of the theorem. Then, we provide an upper bound for
‘E [Rﬁ (g)] — RY(g) ‘ When an instance in Dy is replaced by another instance, the value of R (g)

changes at most C;/n; when an instance in D; is replaced by another instance, the value of Rfl (9)
changes at most (2 — 27,)C¢/(¢qn;). By applying McDiarmid’s inequality, we have the following
inequalities with probability at least 1 — §/2:

E[Rf;<g>] <on/RE8 e A [
Rly(g) ~E \/m Ly B 1“2(255),

where we use the 1nequa11ty that Va+b < y/a + V/b. Therefore, the following inequality holds
with probability at least 1 —

’E [Eﬁ ] Rb(g ‘\ [In Z] 1 2_279 IDQ(Z(S).

Finally, we have

1 e —2a? (2—2m;)Cp |In(2/9) In (2/6)
ga j=1 <(4 — 2m;)Crexp (Cf/n + (1 —m;)2C7 /nj> + q 2n; +Ce 2n

,Z] ) < —2m))CA + (2 — 2q7rj)Cz 1n(2/6)> Lo In (2/6)

2n; on '

which concludes the proof. O

17
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B.4 PROOF OF THEOREM[3]

Definition 1 (Rademacher complexity). Let X,, = {x1,...x,} denote n i.i.d. random variables
drawn from a probability distribution with density p(x), G = {gx : X — R} denote a class of mea-
surable functions of model outputs for the k,-th class, and o = (01, 09, . .., 05, ) denote Rademacher
variables taking values from {+1, —1} uniformly. Then, the (expected) Rademacher complexity of
G is defined as

Rip(G) = Ex, Eo lsup > oig; (xz)] : (19)
gJeQ n
1 . (20)

We also introduce an alternative definition of Rademacher complexity:
1 n
R, ,(G) =Ex, Es lsup = Zi:l 0igj(x;)
Lemma 3. Without any composition, for any G, we have R}, ,(G) = R, ,(G). If G is closed under
negation, we have Ry, (G) = Ry, ,(G).

g;€G | T
Lemma 4 (Theorem 4.12 in (Ledoux & Talagrand, [1991)). If ¢ : R x {0,1} — R is a Lipschitz
continuous function with a Lipschitz constant Ly and satisfies Vy, £(0,y) = 0, we have

R, p(loG) < 2LiR;, (G),

Then, we introduce the following lemmas.

where L o G = {£ o g|g; € G}.

Then, we provide the following lemma.

Lemma 5. Based on the above assumptions, for any § > 0, the following inequality holds with
probability at least 1 — §:

Rig) - o) < 0 3 o0, 0) + RSN o ()

su
p =1

91,92,---,94€G

/1n 1/5 (2 - 27'('] )Cp |In(1/5)
+ - Z]_ —27TJ CgA + Cy Z] L QTL]' .

Proof. When an instance in Dy is replaced by another instance, the value of

946G ‘IE [Rﬁ(g)] - Rﬁ(g)) changes at most Cy/n; when an instance in D; is re-

_____ 946G E [R%(g)] - Rﬁ(g)‘ changes at most

(2 — 2m;)C¢/(gn;). By applying McDiarmid’s inequality, we have the following inequality with
probability at least 1 — §:

.....

placed by another instance, the value of supy, .,

sup
91,92,---:94€9

91,925-+,99€G

]E[Rg(g)]fzﬁ(g)‘El w [s[io)] ~ o)

In ( 1/5 2—27‘('] )Cp |In(1/5)
an ’

21

For ease of notations, let D = Dy | D: U D, ...|JD, denote set of all the data. We have

| o [E[hio)] - i)

91,92,---:94€9

Ep | Ri9)| - Rlg)|

=L sup
91,925---:94€G

/

i (9:D) — Ria(g's D)

o) l ], (22)
’ 91,92, 79{169

18
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where the last mequahty is deduced by applying Jensen’s inequality twice. Here, RH (g; ) denotes

the value of R ( g) on D. We introduce £(z) = £(z)—£(0) and we have £(z1)—£(22) = £(21)—{(z2).
It is obvious that £(z) is a Lipschitz continuous function with a Lipschitz constant L,. Then, we have

Ris(g:D) — R (g: D)
A e - T () )]
Lo (o)1) N s (=) )|
Tt i o (=) 0) = T
SONNCMICICURIEECS WA CTCHRY
IS o () ) Y () )|

X S s (o) 0) - N 7 (a (+2) 0)
<yl Z (o ). 1) - L |
A (a0 ) - S (o) 1)
w3 “”Z (o (1) 0) = T X 7 (o (=) 0)

(23)

)

where the inequalities are due to the triangle inequality. Then, by combining Inequalities (22)
and (23)), it is a routine work (Mohri et al., 2012) to show that

Es Ll S Riy(¢;D) - Riy(g’; D) ]
Y R eq)+ BT W (Eeg)
<% S G+ W 3,0
=% ijl %, (G) + L= m)Le Z R, ( (24)

where the second inequality is due to Lemma 4| p; denotes p(x|s; = 0), and the last equality is
due to Lemma [3] By combining Inequalities (21)) and (24), we have the following inequality with
probability at least 1 — §:

- - 4Ly —a 8(1 — ;) L¢ —a
V] _pt < 4 J
s (B[ R9)] - Bile)| < < X0, Rup(@)+ S PN ()
In (1/6) ¢ (2—-2m,)Cr [In(1/5)
—_— . 2
+C 2n +Z:J’ 1 q 2n,; 25

19
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Then, we have the following inequality with probability at least 1 — 4:

91,92, gqgg ‘RZ Rfl(g)‘
:ghgf:“pq o[ ite) — 5| R ]HE[R‘ |- Ao
< [Biilg) —E|Rixlo)|| + E[Rg(g)] Ri(o)

91,92, ngQ 91,925+ gqeg

1 e 1/(5 —2m;)Cy [In(1/9)
<q2j21(4 271, )CeAA, Lop /2 ; o

4L, 8(1 —7;) L a
+ g L=t Rnp(9) + 7 Zj:1 Ron; 0, (),
where the second inequality is due to Inequalities 25]and[9] The proof is complete. [

Then, we provide the proof of Theorem [3]

Proof of Theorem
Riy(gn) — Rix(gf) = Riy(gn) — Ria(gn) + Ris(gn) — Ri(gh) + Ru(gfh) — Ru(gi)
< Rii(gn) — Ri(gn) + Ri(gh) — Rulgh)
<2  sup |Ru(g) — Rulg)|.
91,925--,9¢€9
By Lemma 3] the proof is complete. O

B.5 PROOF OF COROLLARYII]

Lemma 6 (Theorem 4 in |Gao & Zhou| (2013)). The surrogate loss RY is multi-label consistent
w.r.t. the Hamming or ranking loss RO~V if and only if it holds for any sequence {g,} that if R*(g) —
R%, then R°~1(g) — R*. Here, R** = infy R*(g) and R* = infg R°~!(g).

Lemma 7 (Theorem 32 in Gao & Zhou|(2013)). If £ is a convex function with ¢'(0,y) < 0, then
Eq. [2)) is consistent w.r.t. the Hamming loss.

Then, we provide the proof of Corollary [T}

Proof of Corollary[l] Since the proposed risk in Eq. (5) is equlvalent to the risk in Eq @) it is
sufficient to prove that for any sequence {g;} that if RY;(g;) — Ry, then RY(f;) — O

20
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B.6 PROOF OF THEOREM [4]

Y — Y+ 1
R(9) o) | D,y 105 7 10 (050) — an(a), By )|
Yi—Yp+1
3 By M0 # 000 () ante), 22 ) . o
1 1 Y —yr + 1
- J21<J’<k<q Zyyzo z]yk:O ZY’:Y\{yj7yk} H(yj # yr)l (gj (@) = gx(@), 2 >

p(®,y5,u0) p (Y|, y;, yx) dz
Y —ye +1
_[21<J<k<q Zy,fOE yJ # Yi)! <gj(33) - gr(x), 32)
P55 9) sy P

J21<1<k<q Zyﬂ)Z Ty; # i)t (93'(“3) - gr(@), yj_gm) p (@, y;,yx) dz
221<j<k<q (Jé(gj(a:) —gr(x),0)p(x,y; =0,y = 1) da

Y’ |.’13, ijyk) dx

+ [ £0,(@) - @) Dp (@ = 1 = 0) o )
=D ciekes (ff g1(),0) (p (x, 55 = 0) = p (a,; = 0,y = 0)) d
+ [t @ - @) 0@ yk—o>—p<w,yj—o,yk—o>>dw)
3y ([ £ 0@) @00 (1= alyy = 00
+ [ L@@ - 9@). 1) (1= mp al = 0)de

*J(f (9i () — gr(®), 1) + £ (g; () — gk(®), 1)) p (,y; = 0,y = 0) dw>

:Zl<j<k<q (1= 7)Ep(aly; -0y [€ (9 (x) — gi (), 0)]

(1 = 1) Ep(aly,—0) [ (95(2) — gr(x), 1)] = Cp(y; = 0,55 = 0)) .
221<j<k<q (1= 7)) Ep(als, o) [¢ (95 () — gx(),0)]

(1= 1) Ep(afs,=0) [ (95(2) = gr(),1)] = Cp(y; = 0,yx = 0)),,

where the last equation is by Lemmal[I] The proof is completed. O

B.7 PROOF OF THEOREM[3]
LetD = Dy | D2 . .. D, denote the set of all the data used in Eq. . We introduce
D+(g) = {DIRk(g) > B}, and D~ (g) = {DlRA(9) <5}

Then, we have the following lemma.

Lemma 8. The probability measure of ©~(g) can be bounded as follows:

9.2
P (D7 (g)) <exp ( (- wj)gzq = 1)2(3@2/%) ' .
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Proof. When an instance from D; is replaced by another instance, the value of Rﬁ(g) changes at
most (1 — 7;)(¢ — 1)Cy/n;. Therefore, by applying the McDiarmid’s inequality, we can obtain the
following inequality:

p (Rﬁ(g) — Ri(g) + ).

1<j<k<q

— 272
Mp(y; =0,yr, =0) > v) < exp
’ i1 (1= m;)2(q — 1)2C7/n;

Then, we have
P (D (g)) =p (R&(g) < 6)

Mp(y; = 0,3 = 0))

<j<k<q
<p (Rilg) < X,_,_,_ Mp(y; = 0. = 0) + Rh(9) = 7)
<exp ( 7 2" 5 ,
j=1(1 —m;j)*(q — 1)2C¢/n;
which concludes the proof. O

Then, we give the proof of Theorem 3]

Proof of Theorem[3] To begin with, we have

E[Ri(g)| =, _, .., Mply; = 0.5 = 0) = Rk(9) = E | Rh(9) — Ri(g)| > 0
Besides, we have
- q
Ri(g) < Cela— 1Y) (1-m))
Then,
E [Rﬁ(g)] = Dty oney MP(W; = 0,55 = 0) — Ri(9)
—E| R (9) - Ri()]
[ (&Rt - 8]+ 5~ Eh(@)» (B) a
DeD~(g)
< sup (26 + 2R§(g)) Jl D (73) dD
DeD—(g) DeD~(g)
— swp (28+2R4(9)) P (D (9))
DeD~(g)
< (Qﬁ +2C (g — 1) Zq (1- 7Tj)) exp . —372 _ ’
j=1 21 (1 =m;)%(g = 1)*CF/n;
which concludes the first part of the proof. Then we provide an upper bound for

‘Rﬁ(g) —E [Rﬁ(g)] } When an instance from D; is replaced by another instance, the value of

R (g) changes at most (1 — 7;)(q — 1)Cy/n;. Therefore, by applying the McDiarmid’s inequality,
we have the following inequalities with probability at least 1 — §/2:

Rilo) = [fifa)] < X1, 0= m)a = 10n =20
E[Rite)] ~ Fhlo) < X1, (1= m)a = 10w [
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Therefore, we have the following inequalities with probability at least 1 — §:

Fhio) - [fh@)]| <1, 00— ma— o=
Finally,
Ri(e) = X, o, Mply; = 0,3 = 0) = Ri(g)
~ |i(9) —E [Rh(9)| + E[Rh(9)] = X, _,_, Mply; = 0.5 = 0) — Rf(9)|
<|Rh(9) - E[Biio)]| + [E[Br@)] - X, _,_, Mply; = 0.0 = 0) ~ Rf(9)|

j=1

q —27?2
2 2 -1 11—, 27
+ ( B+ 2C(q )ijl( w])) exp( 7 (1_%)2((]_1)2@2/%), @7
which concludes the proof. O

B.8 PROOF OF THEOREM[G]

Lemma 9. Based on the above assumptions, for any § > 0, the following inequality holds with
probability at least 1 — §:

sup )+ Mply; = 0,y = 0) = Rh(9)] < (28 +2Ce(q— 1) Y} (1 —))) &'
91,925+ gqeg
+ Zj’:l(l - 1 Z q - 1 (1 - 7(])3{”3"17]' (g) . (28)

Proof. When an instance in D; 1is replaced by another instance, the value of
SUDg, 01 .60 ‘E [Rﬁ( )] — R&(g )’ changes at most (1 — 7;)(¢ — 1)Cy/n;.  Therefore,

by applying the McDiarmid’s inequality, we have the following inequalities with probability at least
1—¢:

o [el#o)] - H| 2| [e[)] - Aico)
91,92,---,94€G 91,925+ ,gqeg
<3 (1= m)a =10y = 9)
Then,
E[ sup [E|Rh(9)| - Fh(o)
91,925+, 94€G

Ep | Rh(9)] - Ri(g))

91,925---,9q€G

=E; [ sup

Rt (g:D) — Rk (g':D')

91,925---:9¢€9

<Ej 5 l sup 1 , (30)

where the last 1nequahty is deduced by applying Jensen’s inequality twice. Here, RR (g; ) denotes
the value of R%(g) on D. Then, we introduce the following lemma.
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Lemma 10. If ¢ : R x {0,1} — R is a Lipschitz continuous function with a Lipschitz constant L,
and satisfies Yy, £(0,y) = 0, we have

9{{n,p (E © (g - g)) < 4Lfm{n,p(g)7
where Lo ((G—G)) = {0 (9; —gx) |9; € G, gx € G}.
Proof.

R, o (G—-G))
=29%;L’p (Lo (G))
<4L49‘{'n}p(g),

where the first inequality is by symmetrization (Mohri et al.l 2012 and the second inequality is by
Lemmaf] The proof is complete.

Therefore, we have
Ri(9;D) — Riy(g; D)
~ || Ak (g:D) - 8] - (e D) - 6
<|Ri(g:D) - Ri(g; D)
- Z1<j<k<q — ( ( — gu()), 0) —¢ (gj(mgl) _gk(mgl)vo))

o Zi;l (e (35a) - (@), 1) ~ ¢ (s5(eF) - an(el).1))
<21Sj<k‘<q Wj - ( ( — gk (), 0) -4 (gj(w'z/> _gk(wg/)ao))
+ 21<j<k<q ae gr(a}),1) — ¢ (gj(fﬂfl) — gi(al), 1))‘
DI e 2 (f

X <

D snea| 9(@5),1) £ (g;(et) — gu(@!), 1))

where the inequalities are due to the triangle inequality. Then, by combining Inequalities[30]and [31]
it is a routine work (Mohri et al., [2012) to show that

1—7rk ng (

9;(@]) — gu(@]),0) ~ 7 (g;(@]) — gu(a]),0))

(6o
l—ﬂk <

, B

El swp |E[Rh(9)| - Rh(g)|

91,925---:99€G

<Z (¢—=1)(A—m)R;,, . (Lo (G-G))
<Z ALi(q = 1)1 = )R, (G)
—Z 4L(q — 1) (1 — )R, , (G) (32)

where the second inequality is by Lemma [T0] and the last equality is by Lemma 3] By combining
Inequalities 29]and [32] we have the following inequalities with probability at least 1 — ¢:

E[Rk(g)| - Rhl9)

sup
91,925---:9¢€G

In (1/5)
<2j 1 (4 —1)Coy | 2 / Z Lo(qg—1)(1 = 7)%R0,,, (G) . (33)
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Finally, we have the following inequality with probability at least 1 — §:

sup ’Rﬁ(g) + Z _ Mp(y; = 0,4, = 0) — Rﬁ(g)‘
91,92,-,94€9 !

= s |RR(9)+ Y, Mply; = 0.y = 0) ~E|Ri(9)| + E | Rh(9)| - Rh(9)

91,925---,94€G

< sw  |RR(9)+ Y, Mply; =0y = 0)~E[Ri(9)]|+ sw |E|Rh(9)] - Rhl9)

91,92,---,94€9 91,925---,9q€G

q ' , q _ In (1/9)
< (w +20(g - 1)), (- wj)) A+ A-m)a-1C e
q
+30 ALela — D)1= 1) Rap, 9),
where the last inequality is by Inequalities [33]and [T3]} The proof is complete. O

Then, we provide the proof of Theorem [6]

Proof of Theorem|6}
Rg(gr) — Ri(g7)

=Ri(gr) + Y., Mp(y; = 0.y = 0) = Riy(gr) + Ri(gr) — Br(gi) + Rr(gh)
- Zj<k Mp(y; = 0,yx = 0) — Rp(gg)

<RR(@r) + ), _, Mp(y; = 0.y = 0) = Ri(@r) + Ri(gh) = 3,

Ri(g) + Y, Mply; = 0,0 = 0) — Rh(g)|-

i Mp(y; = 0,95 = 0) = Ry(g5)

<2 sup
91,925--,9¢€9

Then, based on Lemma(9] the proof is complete. [

B.9 PROOF OF COROLLARY 2|

Lemma 11 (Theorem 10 in|/Gao & Zhou| (2013)). If ¢ is a differentiable and non-increasing function
such that Wy, £'(0,y) < 0 and €(z,y) + ((—z,y) = M, then Eq. ({) is consistent w.r.. the ranking
loss.

Then we provide the proof of Corollary 2]

Proof of Corollary[2] Since the proposed risk in Eq. () is equivalent to the risk in Eq. (@), it is
sufficient to prove that for any sequence {g,} that if R4 (g:) — RE*, then R} '(f;) — Rf. O

C DETAILS OF EXPERIMENTS

C.1 MORE DETAILS OF DATASETS

For synthetic datasets, we consider two data generation processes. In case-a, irrelevant labels are
flipped to candidate labels independently, which is the assumption used in [Xie & Huang| (2023).
This strategy is common in learning with noisy labels 2018), where PML is a special
case of MLC with noisy labels (Xie & Huang), [2023)). In case-b, we assign non-candidate labels in
a class-wise manner. For each class, we randomly sample a fraction of the training data and assign
that class as a non-candidate label. This data generation process corresponds to the assumption
proposed in this paper. We use this process to confirm the effectiveness of our proposed method
under this assumption. Additionally, we selected high flipping rates to evaluate the effectiveness of
our proposed methods on challenging datasets with high noise rates since real-world datasets have
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low noise rates. We added more descriptions in the revised version. In this paper, we consider the
flipping rate in Case-a and the sampling rate in Case-b to be 0.9.

We performed ten-fold cross-validation on real-world datasets. This means we used nine folds for
training and one fold for testing. Then, we recorded the mean accuracy and standard deviation. For
the synthetic datasets, we generated synthetic labels three times and recorded the mean accuracy and
standard deviation. Finally, we conducted paired t-tests at a 0.05 significance level.

C.2 BASELINE

We evaluate against five classical baselines commonly used in PML/CML learning. (A) BCE: uses
the given candidate label as the cross-entropy target. (B) CCMN (Xie & Huang| 2023)): treats
PML as multi-label classification with class-conditional noise, relying on a noise transition matrix.
(C) GDF 2023): proposes an unbiased risk estimator for multi-labeled single com-
plementary label learning. (D) CTL 2025): introduces a risk-consistent approach by
rewriting the loss function. (E) MLCL 2024): estimates an initial transition matrix via
binary decompositions, then refines it with label correlations.

C.3 IMPLEMENTATION DETAILS

For real-world datasets, we used an MLP encoder for all baselines, trained for 200 epochs with a
learning rate of 5e-3, weight decay of 1e-4, and the SGD optimizer with cosine decay. For synthetic
image datasets, we adopted a ResNet-50 backbone pretrained on ImageNet (Deng et all, [2009),
trained for 30 epochs with a learning rate of 1e-4 using the Adam optimizer. For fair comparisons,
we used the same setup across all baselines. We assumed that the class priors were accessible to
the learning algorithm. We instantiated ¢ with the binary cross-entropy loss for COMES-HL and the
sigmoid loss for COMES-RL.

C.4 DEFINITIONS OF EVALUATION METRICS

Given a test dataset D’ = {(«},Y/)},_,, the evaluation metrics used in the paper can be defined as

follows (Zhang & Zhoul, 014[; Wu & ZhouL 2017):

¢ Ranking loss:

1 n |ZZ|
' VWY 34
W L VT GY
where Z; = {(u,v)|gu(}) < go(x}), (u,v) € Y x (V\Y/)}.
* One error:
1 'IL/
v 2., Hargmaxey g () ¢ V) . (35)
* Hamming loss:
1 ’VL
e i Dy L) # 05) (36)
* Coverage:
1 n’ '
% Zi=1 (manEYi/ Rank(m;,j) - 1) ) (37)
where Rank(x}, j) = 2.1 _, I(gx(x}) = g;(x})).
* Average Precision:
n’ ’] |
SRt 38
21 1 \Y’| ZJeY’ Rank (xl,7)’ (38)

where R(z;, j) = {klgk(x;) > g;(27), k € Y/}
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p(xly: = 0)

IrrelevaniAo class 1

p(xly; = 0)

p(xlyq = 0)

Figure 4: The diagram of the proposed data generation process.

D MORE DISCUSSIONS

D.1 DATA GENERATION PROCESS

Lemma [T] indicates a class-wise data generation process of PML. Based on the PML problem def-
inition, the candidate label set for each instance can be regarded as being generated by excluding
obviously irrelevant labels. Based on this, we propose the following data generation assumption:
We ask annotators to determine whether a label is obviously irrelevant. However, it is difficult to
accurately determine all irrelevant labels for a given image, so only some irrelevant labels can be
identified. If they are uncertain, we ask the annotators to skip this question. We formulate this
process as the sampling scheme p(s; = 0|z, y; = 0) = p; in Lemmal[l} that is, only some irrel-
evant labels are considered non-candidate labels. Based on this data generation process, we prove
that p(z|s; = 0) = p(z|y; = 0) in Lemma This is the basis for further theoretical derivations.
Figure[d] shows the diagram of the proposed data generation process.

D.2 INSTANCE-DEPENDENT CASES

The current literature on partial multi-label learning (PML) and complementary multi-label learning
(CML) assumes that label generation is independent of instances (see Table[I). Following previous
work, we also consider the instance-independent case. It is very challenging to design consistent
methods for instance-dependent cases due to the difficulty of estimating instance-dependent genera-
tion processes, as far as we know from the literature on weakly supervised learning. In future work,
we will consider developing instance-dependent methods with strong theoretical guarantees.

E MORE EXPERIMENTAL ANALYSIS

Based on Table 3] we can draw the following conclusions: (1) The proposed COMES-HL and
COMES-RL approaches outperform the compared methods in different cases of synthetic datasets,
thus validating the effectiveness of our approaches in handling various data generation assumptions.
(2) CCMN and MLCL are both based on the uniform distribution assumption, which differs from
case-a and case-b, representing two more realistic data generation processes. Therefore, they fail
to achieve superior performance. (3) Although GDF and CTL use transition matrices to model
generation processes, which seems a more practical assumption, estimation of generation processes
is inaccurate, as discussed in the Introduction section. (4) Our proposed approaches do not rely on
these assumptions, and their strong classification performance also results from the effectiveness of
the proposed risk-correction techniques.

F FURTHER DISCUSSION ABOUT THE ASSUMPTIONS IN THEOREMS [2] AND [3]

Theorem only hold when o > 0. This means that, for each class-wise classification risk
Ep(z)y;=1) [£ (g5 (2) , 1)], the risk value should be greater than zero. This assumption can hold
for many loss functions. For example, in COMES-HL, the cross-entropy loss used in the paper
cannot become zero due to the assumption about the boundness of the logits: sup, g lgilleo < Cg.
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Theorem only holds when v > 0. We assume that the classification risk Rﬁ(g) is always positive.
This assumption holds for many symmetric loss functions, such as the sigmoid loss function used in
our paper. The value of the sigmoid loss function cannot become zero due to the assumption about
the boundness of the logits: sup, g |gjle < Cg. We will consider the corner cases of & = 0 and
~ = 0 as our future work.

G EXPERIMENTS ON THE ROBUSTNESS OF INACCURATELY ESTIMATED
CLASS PRIORS

Tables[]and[5]show experimental results with inaccurately estimated class priors. Here, “-E” means
that our methods use inaccurately estimated class priors. We can observe that the proposed methods
can achieve satisfactory performance with inaccurate class priors.

Table 4: Experimental results with inaccurately estimated class priors on mirflickr. Here, “-E” means
that our methods use inaccurately estimated class priors.

Approach Ranking Loss| One Error| Hamming Loss| Average Precision?
BCE 0.106 £0.008  0.275 £0.021  0.220 + 0.007 0.813 £ 0.011
CCMN 0.106 £0.011  0.282 £0.030  0.220 £+ 0.006 0.811 £+ 0.016
GDF 0.159 £ 0.007  0.409 £0.027  0.277 £ 0.007 0.742 + 0.013
CTL 0.130 £0.006  0.366 £ 0.017  0.237 + 0.006 0.772 £+ 0.009
MLCL 0.498 £0.035 0.810 £0.066  0.601 £ 0.020 0.446 £+ 0.038
COMES-HL 0.095 £ 0.009 0.171 £0.019  0.164 £ 0.003 0.843 +0.013
COMES-RL 0.106 £0.006  0.206 £ 0.036  0.186 + 0.008 0.818 £ 0.011
COMES-HL-E  0.107 £0.008 0.133 +£0.010  0.158 4+ 0.002 0.858 £ 0.007
COMES-RL-E  0.104 £0.010 0.1894+0.010  0.183 4+ 0.006 0.824 + 0.012

Table 5: Experimental results with inaccurately estimated class priors on yeastBP, yeastCC, and
yeastMF. Here, “-E” means that our methods use inaccurately estimated class priors.

Approach One Error| Hamming Loss| Average Precisionf
yeastBP yeastCC yeastMF yeastBP yeastCC yeastMF yeastBP yeastCC yeastMF

BCE 0.871 £ 0.008 0.814 £0.019  0.886 + 0.020 | 0.148 £ 0.007 0.162 +0.007  0.153 £ 0.006 | 0.150 +0.013  0.487 £ 0.016  0.379 + 0.019
CCMN 0.878 £0.016  0.823 £0.016  0.882 £ 0.012 | 0.151 £0.007 0.163 £ 0.008 0.150 £ 0.005 | 0.150 £ 0.012  0.479 £ 0.016  0.386 + 0.021
GDF 0.976 £ 0.006  0.971 £0.008  0.972 £ 0.007 | 0.499 £0.016  0.489 £0.026  0.497 £ 0.030 | 0.057 £0.002  0.135 £ 0.010  0.144 £ 0.016
CTL 0.970 £0.006  0.964 £0.004  0.963 £ 0.010 | 0.493 £0.009  0.499 £0.007  0.496 £ 0.006 | 0.060 £ 0.002  0.154 £ 0.004  0.165 £ 0.013
MLCL 0.961 £0.038  0.862 £ 0.066 0.887 £ 0.066 | 0.881 £ 0.096 0.845 +0.051  0.837 £0.024 | 0.082 +0.015 0.402 +0.080 0.375 + 0.124
COMES-HL 0.641 +0.030  0.744 +0.020  0.800 4+ 0.023 | 0.073 £ 0.008 0.119 +0.015 0.101 +0.005 | 0.458 +0.020  0.657 + 0.020  0.552 + 0.023
COMES-RL 0.808 £ 0.016  0.754 £ 0.022  0.805 4+ 0.020 | 0.051 £ 0.001  0.045 +0.004  0.048 £ 0.003 | 0.315+0.015 0.651 +0.023  0.549 + 0.019
COMES-HL-E  0.747 £0.020  0.803 £ 0.013  0.850 £ 0.008 | 0.042 £ 0.003  0.082 £ 0.003  0.103 £ 0.004 | 0.303 £ 0.008 0.475 £ 0.023  0.432 £ 0.020
COMES-RL-E  0.957 +£0.009 0.850 £0.014  0.889 +0.006 | 0.051 +0.001  0.045 + 0.001  0.049 +0.001 | 0.106 +0.008 0.400 + 0.031  0.347 £+ 0.009
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