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Abstract

Biological function arises through the dynamical interactions of multiple subsys-
tems, including those between brain areas, within gene regulatory networks, and
more. A common approach to understanding these systems is to model the dy-
namics of each subsystem and characterize communication between them. An
alternative approach is through the lens of control theory: how the subsystems
control one another. This approach involves inferring the directionality, strength,
and contextual modulation of control between subsystems. However, methods
for understanding subsystem control are typically linear and cannot adequately
describe the rich contextual effects enabled by nonlinear complex systems. To
bridge this gap, we devise a data-driven nonlinear control-theoretic framework
to characterize subsystem interactions via the Jacobian of the dynamics. We ad-
dress the challenge of learning Jacobians from time-series data by proposing the
JacobianODE, a deep learning method that leverages properties of the Jacobian
to directly estimate it for arbitrary dynamical systems from data alone. We show
that JacobianODE models outperform existing Jacobian estimation methods on
challenging systems, including high-dimensional chaos. Applying our approach
to a multi-area recurrent neural network (RNN) trained on a working memory
selection task, we show that the “sensory” area gains greater control over the “cog-
nitive” area over learning. Furthermore, we leverage the JacobianODE to directly
control the trained RNN, enabling precise manipulation of its behavior. Our work
lays the foundation for a theoretically grounded and data-driven understanding of
interactions among biological subsystems.
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TThis author is now at Brown University.
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1 Introduction

Complex systems are ubiquitous in nature. These systems exhibit a wide range of behavior and
function, in large part through the dynamic interaction of multiple component subsystems within them.
One approach to understanding such complex systems is to build detailed models of their underlying
dynamics. An alternative and simpler yet powerful approach is offered by control theory, focusing
instead on how subsystems influence and regulate one another, and how they can be controlled.

Control theory thus offers a complementary approach to both understanding and manipulating
biological systems. The theory describes how inputs must be coordinated with system dynamics to
achieve desired behaviors, and can be applied across domains ranging from robotics to biology (Figure
[TIA). The brain coordinates neural activity across multiple interconnected brain areas, dynamically
modulating which regions receive information from which others depending on need and context
[L, 2]]. Interareal interactions play central roles in cognition and consciousness [3H7]], in selective
attention [8H16], decision making [17,[18]], working memory [[19,20], feature binding [21}22], motor
control [23H27]], and learning and memory [28-32].

A common approach to characterizing interareal interactions is to quantify communication between
them, using methods such as reduced-rank regression to define “communication subspaces”. These
subspaces determine low-dimensional projections that maximally align high-dimensional states of
the input area with high-dimensional states of the target area [33H35]]. However, effective control
not only involves alignment of high-variance input states with high-variance target states, but also
appropriate alignment of the inputs with the dynamics of the target area. Given connected subsystems
A and B, an identical signal from B will have dramatically different control effects on A, depending
on whether the signal aligns with stable or unstable directions of A’s dynamics: projections onto
more unstable eigenvectors can much more readily drive the system to novel states. (For more detail

see Appendix[C.1])

Accordingly, recent work in neuroscience has espoused control-theoretic perspectives on interareal
interactions (Figure [IB) [24] [36-42]]. The dominant approach has involved linear control [43H53].
However, the inherently nonlinear dynamics of the brain enable richer contextual control than possible
to fully model with linear systems, necessitating a nonlinear control approach.
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Figure 1: Schematic overview of control-theoretic framework applied to neural interactions. (A)
Control theory generalizes across diverse systems. (B) Illustration of interareal control, highlighting
how neural activity in one area directly influences dynamics in another.
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One approach to extend control-theoretic analyses to nonlinear systems is by linearizing the nonlinear
dynamics through Taylor expansion, which involves the Jacobian. This converts the nonlinear system
into a linear state- and time-dependent one [40, |54H56]], allowing for simple control. Jacobian
linearization for control is straightforward with access to analytical expressions for the non-linear
system, but it becomes non-trivial in purely data-driven scenarios. Estimating the Jacobian involves
conjunctively inferring both a function and its derivative, yet good function approximation need not
yield good approximations of its derivatives (see Section[dand Appendix[C.2).

This paper introduces several key contributions:

* Robust data-driven Jacobian estimation. We present JacobianODE, a deep learning-based
method for estimating Jacobians from noisy trajectories in high-dimensional dynamical
systems. We demonstrate the validity of this approach in several sample systems that include
high-dimensional chaos.

* A framework to characterize control between interacting subsystems via data-driven
Jacobian estimation. Harnessing our Jacobian estimation method, we devise a rigorous,



data-driven approach for nonlinear control-theoretic analysis of how paired interacting
systems, including brain areas, drive and regulate each other across different contexts.

* Data-driven inference of control dynamics in trained recurrent neural networks. We
apply our data-driven framework to a recurrent neural network (RNN) trained on a working
memory task. We show that, purely from data, we can identify key control-theoretic
interactions between the areas, and that these interactions crucially evolve over the course
of learning to produce the desired behavior.

¢ Demonstration of accurate control of rich interacting high-dimensional coupled dy-
namical subsystems. We demonstrate high accuracy in a challenging high-dimensional
data-driven nonlinear control task, enabling precise control of the behavior of the RNN.

Overall, our work lays the foundation for data-driven control-theoretic analyses in complex high-
dimensional nonlinear systems, including the brain.

2 Related work

Interareal communication A wide range of tools have been developed and harnessed to study
interareal communication in neural data [34,57]]. This includes, but is not limited to, methods based
on reduced rank regression [33}|35]], recurrent neural network models of neural dynamics [40} 58163,
Gaussian process factor analysis [64, [65]], canonical correlation analysis [[66H68]], convergent cross
mapping [69-71]], switching dynamical systems [72}[73]], granger causality [74,[75], dynamic causal
mapping [[76]], point process models [[77], and machine learning methods [78, [79].

Nonlinear controllability Classical results assess the controllability of nonlinear control systems
via the Lie theory [80-84]. Another approach to nonlinear network controllability is based on attractor
strength [85]]. Liu et al. [S4] and Parkes et al. [S5] note that the large literature of linear controllability
analyses could be extended locally to nonlinear systems with an appropriate linearization method.

Neural network controllability Linear structural network controllability has been implicated
across a wide range of contexts, tasks, and neuropsychiatric conditions [36} 42| 14447, 149, |50]. This
approach has been extended to functional brain networks [51H53]]. Recent work has characterized
the subspaces of neural activity that are most feedback controllable as opposed to feedforward
controllable using linear methods [43]. Other approaches to neural control analyses consider the
identification of structural driver nodes [86]], and input novelty [87]].

Data-driven Jacobian estimation Besides approaches estimating Jacobians through weighted
linear regressions [88), 189, some methods have used direct parameterization via neural networks
to learn Jacobians of general functions [90} [91]]. These approaches inform our method but do not
explicitly address dynamical systems. Applying path-integral-based Jacobian estimation to dynamical
systems is challenging, as the target function (the system’s time derivative) is typically unobserved.
Beik-Mohammadi et al. [92] utilized this idea in dynamical systems to learn contracting latent
dynamics from demonstrations.

3 JacobianODE: learning Jacobians from data

3.1 Jacobian linearization

We consider nonlinear dynamical systems in R", defined by x(¢) = f(x(¢)). The Jacobian of the
dynamics is a matrix-valued function J¢ : R™ — R™*" (henceforth, J) given by
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At each time ¢, the Jacobian defines a linear subspace relating input and output changes, capturing how
perturbations to the system will propagate. This recasts nonlinear dynamics as linear time-varying
dynamics in the tangent space locally along trajectories (formally, 6x(t) = J¢(x(t))dx(¢), see Figure
left, also see Lohmiller and Slotine [93] for a discussion in the context of virtual displacements).
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Figure 2: Analytical framework for pairwise interacting subsystem control. Trajectory dynamics
(left, top) are locally linearized via Jacobians (left, bottom), explicitly separating within-area (diagonal
blocks) and interareal (off-diagonal blocks) dynamics (right). These separated dynamics can be used
to construct interaction-specific control systems.
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Figure 3: Jacobian estimation with JacobianODE models. (A) Path integration of the Jacobian
predicts future states. (B) Generalized teacher forcing stabilizes trajectory predictions during training.
(C) Loop-closure constraints enforce consistency of Jacobian estimates. (D) Training pipeline,
combining neural Jacobian estimation, path integration, teacher forcing, and self-supervised loop-
closure loss.

3.2 Parameterizing differential equations via the Jacobian

‘We now turn to the problem of how to estimate the Jacobian J from data. We assume that we have
access only to observed trajectories of the system, of the form x () (téj ) 4 EAt), k=1,2,..., j=
1,2, ...where At is a fixed sampling interval, j indexes the trajectory, and t(()j Jisa trajectory-specific
start time. Crucially, we do not assume access to the function f. Our method estimates the Jacobian

directly via a neural network. To do this, we parameterize a neural network function J? with learnable
parameters 6 that is then trained to approximate J.

Path integration Following Lorraine and Hossain and Beik-Mohammadi et al. [92]), we exploit
the fact that the path integral of the Jacobian is path independent in the construction of the loss
function. This is because the rows of the Jacobian are conservative vector fields (i.e., they are the



gradients of scalar functions). For an intuitive picture, consider the work done by the force of gravity
as you climb a mountain. Regardless of the path you take to climb, the resulting work is dependent
only on the start and end points of the path. Formally, for the time derivative function f we have that

ty
F(x(ty)) — F(x(ts) = / Jds = / I(e(r)e(r) dr, @
c ti
where C is a piecewise smooth curve in R™ and ¢ : [t;,t¢] — C is a parameterization of C with
c(t;) = x(t;) and c(t) = x(ts) (Figure 3]A). Given estimates of f(x(t;)) and the Jacobian J,
we can then use Equation to approximate f(x(ty)) at any time ¢;. For these integrals, we use a
line between the endpoints as a simple choice of path (Figure [3]A). Then, to generate an estimate
x(t; + At) of the next step, we can use a standard ordinary differential equation (ODE) integrator

(e.g., Euler, fourth-order Runge—Kautta, etc.) to integrate the estimated time derivative f(x(¢)) (see
Appendix [A] for more detail). To avoid the need to represent f directly (thereby enabling all gradients
to backpropagate through the Jacobian network) we note that we parameterize an estimate of f(x(t;))
in Equation[2]in terms of the Jacobian (see Appendix [A.T).

3.3 Loss functions

Trajectory reconstruction loss Given an observed trajectory x(to + kAt),k = 0,...,7 — 1 of
length T', we can compute the trajectory reconstruction loss, Li,;j(6; x), between the true trajectory
and the estimated trajectory using an appropriate distance measure d (e.g., mean squared error, see
Appendix [A.2]for more detail on generating predictions and the trajectory prediction loss).

Generalized Teacher Forcing To avoid trajectory divergence in chaotic or noisy systems, we
employ Generalized Teacher Forcing, generating recursive predictions partially guided by true states

(Figure 3B, and Appendix [o4].

Loop closure loss The Jacobian captures how perturbations to the system will propagate along
any direction in state space. Estimating it purely from dynamics constrains only the direction of
the flow, leaving the full solution underdetermined. To address this, we again exploit the fact that
each row of the Jacobian is a conservative vector field. Specifically, we note that for any piecewise

smooth loop Cjoep, We have H fcl J dsH = 0 (see Figure ). Thus, by integrating along loops that
oop 2

contain directions orthogonal to the system’s dynamics (and penalizing the deviation from zero),
we encourage the estimated Jacobians to capture information about other directions in state space
(see Appendices[A.3]and [D.8.2)for full technical details). To ensure broad coverage of tangent space
directions, we form loops from concatenations of line integrals between randomly selected data
points. This strategy samples diverse directions from the tangent space while remaining easy to
compute. The resulting self-supervised loss term, Lioop(6; %), builds on the loss introduced by Iyer

et al. [93]. It constrains J? to satisfy both the dynamics and conservativity. This improves Jacobian
estimation accuracy significantly (see Appendix [C.4]for ablation studies).

Training loss We therefore minimize the following loss function with respect to the parameters 6:
[:(9’ X) = Etraj (97 X) + )\loopﬁloop(g; X) 3)

where Ajoop controls the relative weighting of the loop closure loss Ligop(; %) compared to the
trajectory prediction, and is a hyperparameter of the learning procedure (Figure [3D).

4 Jacobian estimation in dynamical systems

Data To evaluate the quality of the Jacobian estimation procedure, we apply our approach to several
example systems for which the dynamics are known. For this analysis, we used the Van der Pol
oscillator [96]], Lorenz system [97], and the Lorenz 96 system across three different system sizes (12,
32, and 64 dimensional) [98]]. All systems were simulated using the dysts package, which samples
dynamical systems with respect to the characteristic timescale 7 of their Fourier spectrum [99,100].
All training data consisted of 26 trajectories of 12 periods, sampled at 100 time steps per 7. All
models were trained on a 10 time-step prediction task with teacher forcing.

To evaluate the performance of the methods in the presence of noise, we trained the models on data
with 1%, 5%, and 10% Gaussian observation noise added i.i.d over time, where the percentage is
defined via the ratio of the euclidean norm of the noise to the mean euclidean norm of the data.



JacobianODE model For the JacobianODE framework, loop closure loss weights were chosen via
line search (Appendix , where the neural network J? was taken to be a four-layer multilayer
perceptron (MLP) with hidden layer sizes 256, 1024, 2048 and 2048. Path integration was performed
using the trapezoid method from the torchquad package, with each integral discretized into 20 steps
[1O1]. ODE integration was performed using the fourth-order Runge—Kutta (RK4) method from the
torchdiffeq package [102]. The JacobianODE models used 15 observed points to generate the
initial estimate of f (see Section [3.2]and Appendices and[A.2). All models were built in PyTorch
[103]]. Full implementation details are provided in appendices[A]and [D]

Baselines We chose two different Jacobian estimation procedures for comparison. The first was a
neural ordinary differential equation (NeuralODE) model trained to reproduce the dynamics [102].
The NeuralODE was implemented as a four-layer MLP with hidden layers of the same size as
the one used for the JacobianODE model. Jacobians were computed via automatic differentiation.
NeuralODEs were regularized via a penalty on the Frobenius norm of the estimated Jacobians to
prevent the model from learning unnecessarily large negative eigenvalues (see Appendix [D.3) [104-
106]]. We also employed a baseline that estimates Jacobian via a weighted linear regression, which
computes locally linear models at each point in the space [88,89] (see Appendix [D.4).

Table 1: Mean Frobenius norm error on Jacobian estimation, ([|J — J|| ), for each system and noise
level. Errors are reported as mean =+ standard deviation, with mean and standard deviation computed
over five random initializations of the model architectures.

Project Training noise JacobianODE NeuralODE Weighted Linear
VanDerPol (2 dim) 1% 0.7 £0.1 1.0+0.3 6.11
5% 0.72 £ 0.05 0.72 £ 0.08 6.09
10% 1.35 = 0.06 22+0.2 6.08
Lorenz (3 dim) 1% 3.3+0.2 8.7+0.3 21.94
5% 5109 26.0+1.5 21.90
10% 64 +0.1 26.7+0.9 21.84
Lorenz 96 (12 dim) 1% 1.2+0.2 4.8+0.2 28.67
5% 2.7+0.2 59+0.2 28.64
10% 4.6 £ 0.1 6.1 £0.1 28.56
Lorenz 96 (32 dim) 1% 8.7+0.2 16.8 £0.4 47.13
5% 7.8+0.2 17.7+£0.6 46.96
10% 13.45 = 0.09 19.5+04 47.03
Lorenz 96 (64 dim) 1% 309 £ 0.5 455 +0.1 66.39
5% 34.0 £0.2 457 £0.1 66.26
10% 36.0 £0.2 46.0 £0.2 66.29
Task-trained RNN 1% 188.5+7.1 294.02 +0.03 301.46
5% 166.8 + 3.6 294.357 + 0.003 297.63
10% 180.4 £ 0.5 294.328 + 0.004 296.63

Performance We tested the approaches on Jacobian estimation on held-out trajectories without
noise. The JacobianODE method outperforms the baseline methods in terms of mean Frobenius norm
error for virtually all systems (Table[I)). This was also true when considering the spectral matrix

2-norm (see Table[S3]in Appendix[C.3).

We plot performance in Figure [d] While both the JacobianODEs and the NeuralODEs reproduce
the observed dynamics (Figure 4JA-D), the JacobianODE learns a more accurate estimate of the
Jacobian (Figure ] E,F). In particular, looking at Lyapunov spectra learned by the models, we note
that the JacobianODE exceeds the other methods in estimating the full Lyapunov exponent spectrum,
indicating a better overall representation of how perturbations along different directions will evolve

(Figure G, H).
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Figure 4: JacobianODE surpasses benchmark models on chaotic dynamical systems. Error bars
indicate standard deviation, with statistics computed over five different model initializations. (A,B)
State-space trajectories for (A) Lorenz and (B) 64-dimensional Lorenz 96 systems, with 10 time-step
predictions. Spectral embedding was used to reduce the Lorenz 96 data to three dimensions. (C,D)
Accuracy of 10 time-step trajectory predictions at varying noise levels. (E,F) Comparison of Jacobian
estimation accuracy, quantified by mean squared error (MSE) and R?. (G,H) Estimated Lyapunov
spectra averaged over initializations.

5 Control-theoretic analyses in a task-trained RNN

5.1 Characterizing control between subsystems with Jacobian linearization

Consider neural data recorded from two areas, A and B. Concatenating their data into a state vector
x € R", composed of x4 € R™ and x® € R"2, and assuming dynamics governed by f, we
linearize around a reference trajectory (6x(¢) = J(x(t)) dx(t)). Splitting the Jacobian into block
matrices yields:

oxA(t) = JA7A(x(t)) ox? 4+ IBA(x(1)) 0xP

“

oxB(t) = JA7B(x(t)) ox* + IB7B(x(t)) 6xP
where diagonal blocks JA74 € R"4*m4 and JB~B ¢ R"BX"5 represent within-area dynamics,
and off-diagonal blocks JB—74 ¢ Rnaxne J4—=B ¢ RreXna represent interareal interactions
(Figure 2] right). Explicit separation of each area’s control dynamics quantifies the direct influence
each exerts on the other, and readily generalizes beyond two areas (see Appendix [B.3).

Since Jacobians are time-dependent, we obtain a linear time-varying representation of control
dynamics along the trajectory. This enables computation of time-varying reachability ease, capturing
how readily each area drives the other toward novel states [107H109]]. Reachability is quantified via
the reachability Gramian, a matrix defining a local metric in tangent space. For the above control
system capturing the influence of area B on area A, the time-varying reachability Gramian on the
interval [to, ¢1] is defined as

W, (to, 11) 2 / &1y, ) B(r)BT (1)® (11, 7)dr 5)

to

where ® (computed from J A=Ay denotes the state-transition matrix of the intrinsic dynamics of
subsystem A without any input (i.e., 6x4(t) = ®(t,19)0x"(t0)), and B(7) = JB74(x(7)) (see
Appendix [107]. The Gramian W.,.(to,t1) is symmetric and positive semidefinite for every
t1 > to [107]. Each eigenvalue of the reachability Gramian quantifies how easily the target system
can be driven along its corresponding eigenvector. Thus, the trace of the reachability Gramian reflects
average ease of reaching new states, and its minimum eigenvalue reflects the ease along the most
challenging direction of control.
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Figure 5: JacobianODE accurately infers trained RNN Jacobians. Error bars indicate standard
deviation, with statistics computed over five different model initializations. (A) Task schematic,
involving stimuli presentation, delays, cueing, and response. (B) RNN architecture with distinct
visual and cognitive areas interacting. (C—E) Structure of trained weight matrices: (C) recurrent
weights within RNN, (D) input connectivity pattern, and (E) output connectivity. (F) State-space
trajectories from the trained RNN, with 10 time-step predictions. Spectral embedding was used
to reduce the data to three dimensions. (G,H) JacobianODE performance evaluated against other
models for trajectory prediction (G) and Jacobian estimation accuracy (H) at multiple noise levels. (I)
Estimated Lyapunov spectra averaged over initializations.

5.2 Estimating the Jacobian of a task-trained RNN

Task To demonstrate how JacobianODE models could be used in neuroscience, we performed a
control-theoretic analysis of a task-trained RNN. We used a working memory selection task from
Panichello and Buschman (Figure [5JA). On each trial, the network is presented with two of
four possible "colors", denoted by one-hot vectors. After a delay, the network is presented with a
cue indicating which of the colors to select. The network is then asked to reach a state of sustained
activation that corresponds to the selected color.

RNN model To perform this task, we trained a 128-dimensional continuous-time RNN. The RNN
had hidden dynamics defined by

Th(t) = —h + Wy,a(h(t)) + Wyu(t) + b
o(t) = W,,h(t)

where Wy, defines the internal dynamics, Wp; maps the input into the hidden state, W ,;, maps the
hidden state to a four-dimensional output o(¢), b is a bias term, and o is the exponential linear unit
activation. The RNN had two 64-neuron areas: a "visual" area (which received sensory input) and a
"cognitive" (which output the RNN’s color choice) (Figure E[B). To encourage multi-area structure,
we initialized the within-area weights with greater connectivity strength than the across-area weights
(Figure[5[C). Since input comes only to the visual area and output only from the cognitive area, the
two areas are forced to interact to solve the task (Figure |§D,E). The RNN solves this task with 100%
accuracy.

(6)



Jacobian reconstruction quality We trained JacobianODEs on RNN trajectories from the post-cue
delay and response portion of the trials. We used the same baselines as in Section[d} JacobianODEs
are not only robust to noise, but can also benefit from it (for multiple systems in Table[T} 5% training
noise improves estimation). Noise encourages the model to explore how perturbations around the
observed trajectory evolve, which is crucial for learning accurate Jacobians in high-dimensional
systems. Thus (for both the JacobianODE and NeuralODE) we add a small amount of additional
noise to the data during learning. Although the models perform similarly on trajectory reconstruction
(Figure E:,G), on Jacobian estimation, JacobianODEs drastically outperform both baseline models

(Figure [SH,1, and Table/I)).
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Figure 6: JacobianODE reveals differential interareal reachability. Error bars indicate standard
deviation for (A) and (C), and standard error for (B), (E), and (F), with statistics computed over
trajectories. (A) Comparison of interareal reachability between ground truth and JacobianODE
estimates. (B) Temporal evolution of reachability (Gramian trace) throughout the delay period.
(C) Comparison of reachability in early and late learning. (D) Schematic illustrating targeted
control of cognitive-area via visual-area stimulation. (E) Mean accuracy of targeted responses using
JacobianODE versus alternative methods. (F) MSE for multiple ILQR-based methods.

5.3 Reachability in the task-trained RNN across contexts

Next, we used the Jacobians learned by the JacobianODE (trained on 5% noise) to evaluate reachability
control in the RNN, and compared it to evaluations using ground truth Jacobians. All analyses were
performed using the 10 time-step reachability Gramian. We first found that it was on average
easier for the visual area to drive the cognitive area, both when considering overall ease (Gramian
trace) and worst-case ease (Gramian minimum eigenvalue) (Figure[6A, larger values indicate greater
reachability). We next considered how reachability ease varied throughout the delay period. We
found that the visual area could drive the cognitive area more easily at the beginning of the delay,
with ease decreasing into the middle of the delay period (Figure[6B, bottom). The cognitive area was
able to drive the visual area more easily slightly later in the delay period (Figure 6B, top). Finally, we
considered whether reachability changes over the course of learning. We found that both directions of
reachability increased after learning (Figure [B[C). The JacobianODE reproduced all results accurately
(Figure [fA-C, comparison with ground truth). Our analysis reveals that reachability is crucial in
the RNN’s ability to perform the working memory task, with the visual area’s ability to drive the
cognitive area shortly after the cue being especially important.

5.4 Controlling the task-trained RNN

To further validate our approach, we used JacobianODE-learned Jacobians to control the task-trained
RNN (Figure[6D). Given a trial in which the network was cued to respond with a particular color, we
tested if we could induce a specific incorrect response by input to the visual area alone. To do so,
we implemented Iterative Linear Quadratic Regulator (ILQR) control, which relies on knowledge
of the Jacobian [T12]]. The controller guided the network towards the mean hidden state of



training trials corresponding to the desired incorrect color. We defined accuracy as the percentage of
time points during which the RNN output the desired color. We found that the JacobianODE widely
outperformed the baseline models on this task, achieving an accuracy nearing that of the ground truth
system (Figure [0E). The JacobianODE was furthermore able to achieve the lowest mean squared
error on the desired control trajectory (Figure[6F). This illustrates that while both the JacobianODE
and the NeuralODE can learn the dynamics, only the JacobianODE learns a representation of the
Jacobian that is sufficient for control.

6 Discussion

Extended Jacobian estimation A natural extension of JacobianODE models would add inductive
biases for particular classes of dynamics. For example, one could parameterize a negative definite
matrix and thus ensure contracting dynamics [92]]. Other extensions could include an L1 penalty to
encourage sparsity, as well as the inclusion of known dynamic structure (e.g., hierarchical structure,
low-rank structure, etc.). In neuroscience, connectomic constraints could be incorporated to capture
interactions within a neural circuit.

Limitations A future challenge for JacobianODE models is partially observed dynamics. Recent
work has identified that it is possible to learn latent embeddings that approximately recover the true
state from partial observation [[113H117]. Jacobian-based dynamics learning has been performed in a
latent space [92| [118]], however it is unclear whether this translates to accurate Jacobian estimation,
given the challenges related to automatic differentiation and Jacobian estimation presented here.
We also note that reachability estimates depend sensitively on several factors: the alignment of
cross-subsystem interactions and within-subsystem dynamics, the eigenvectors and eigenvalues of
within-subsystem Jacobians, and the way activity propagates within each subsystem (see Appendix
[CI). While our method reliably captures broad trends in reachability over time, fine-grained, time-
point-specific comparisons should be interpreted with caution. Finally, although JacobianODE
models scale well to moderately high-dimensional systems, their performance in systems that are
orders of magnitude larger than those considered here (e.g., recordings of thousands of neurons via
calcium imaging) remains to be tested. In many practical settings, this may not be a limitation: neural
representations during tasks often exhibit intrinsic dimensionalities comparable to those studied here,
enabling JacobianODE models to operate in reduced dimensionality (see Appendix [C.7). Notably,
most models converged in under 45 minutes on a single GPU, suggesting favorable scaling (see Table
[S7). Future work should explore the viability of the method in higher dimensions, and assess whether
dimensionality reduction strategies (such as latent state models or low-rank Jacobian approximations)
can further improve scalability and accuracy.

Broader impact on dynamical systems We demonstrated in this work that it is possible to learn high
accuracy Jacobians of arbitrary dynamical systems from data. While in this work we focus on control-
theoretic analyses, we emphasize that JacobianODE models can be trained in any dynamical setting.
Jacobians are widely applicable, and are essential in stability analysis [80, [119H123]], contraction
theory [40l 180l 93| [124H126]], and nonlinear control [56, [111} 112 [1275129], among many other
settings.

Broader impact on control-theoretic analyses The control-theoretic analysis presented here is
performed with respect to a particular reference trajectory. It therefore describes the local con-
trollability properties along the reference trajectory, rather than global properties for the overall
system [56]. This locality is desirable in biological settings due to the context-sensitive nature of the
relevant processes. Applications of this approach could involve a comparison of the functioning of
the autonomic nervous system, or gene regulatory networks, between control and disease states, given
the association of these processes with disease [[130-H138]. Future work should investigate whether a
more global Jacobian-based control analysis (e.g., contraction theory) is achievable in a data-driven
manner via JacobianODE models. This would be useful especially in engineering settings where
global controllability is desirable, such as robotics and prosthetic limbs.
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A JacobianODE technical details

A.1 Parameterizing the time derivative via the Jacobian

Recall that, for the time derivative function f, we have that the path integral is independent of the
choice of path:

f(x(ty)) —f(x(t;)) = /Cst = /fJ(c(r))c’(r) dr, @)

t;

where C is a piecewise smooth curve in R™ and ¢ : [t;,t¢] — C is a parameterization of C with
c(t;) = x(t;) and c(ty) = x(ty) (also see equation [2). Path integration notably provides only
differences between f at distinct points. Thus, knowing the value of f at one point is needed for
trajectory reconstruction, which we do not assume. To address this, we note it is possible to represent
f solely through the Jacobian at a point x(t) as

G(t07 t; J, C) + X(t) — X(to)
t—tg ’

f(x(1)) = ®

where

t et
G(to,t;J,c) = / / J(cs_,t(r))cls’t(r)drds 9)
to /s

and we have abbreviated ¢, ((r) = c(r; s, t, x(s),x(t)), a piecewise smooth curve on [s, t] parame-
terized by r and beginning and ending at x(s) and x(¢) respectively. Intuitively, we can circumvent
the need to know f by recognizing that integrating f between time points will produce the difference
in the system states at those time points, which are known to us. With this formalism, we avoid the
need to represent f directly, thereby enabling all gradients to backpropagate through the Jacobian
network. The proof of this formalism is presented below.

Proposition 1 (Jacobian-parameterized ODEs). Let x(t) = f(x(t)) and let J¢(x(t)) = J(x(t)) =
%f (x(t)). Then given times to,t we can express f parameterized by the Jacobian as
Gto, t;J, ¢) +x(t) — x(to)
f(x(t)) = .

t—to

where

t t
Glto, 3, ¢) = / / J(car(r)e, (r)drds
to /s

and we have abbreviated cs +(r) = c(r; s,t,%x(s), x(

t)), a piecewise smooth curve on [s,t] parame-
terized by r and beginning and ending at x(s) and x(t

) respectively.

Proof. For given times ¢, tg, and s, from the fundamental theorem of calculus, we have that

x(t) - x(to) = / £(x(s))ds

to

and

f(x(1)) — £(x(s)) = / I(cs,i(r))eg 4 (r)dr

Letting
H(s.0) = [ 3easlr)el, (r)dr = E(x(0) ~ £(x(s)

We then have that
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/t /t G (x(s))ds

Letting now

t t t
Glto £:J, ) = / Hi(s, t)ds = / / I(car(r))e, (r)drds
to to Js

G(to,t:d,¢) = (1 = to)f(x(t)) — (x(t) — x(to))

‘We can see that
and thus

G(to,t;J,¢) +x(t) — x(to)
t—to

f(x(1)) =

A.2 Path integrating to generate predictions

Given an initial observed trajectory x(to + kAt),k = 0,...,b of length at least two (b > 1), we
compute an estimate of f(x(tg + bAt)) of £(x(tg + bAt)) by replacing J with J? in equation
Specifically, we compute an estimate of f(x(¢;)) of £(x(t;)) as

G(tmtb;jea c) + x(tp) — x(to)
ty — to

f(x(th)) = : (10)
In practice, we compute this estimate by constructing a cubic spline on the initial observed trajectory
using 15 points (i.e., b = 14). Given that the computation of GG involves a double integral - one
over states and over time - using a spline is computationally advantageous. This is because the path
integral (and all intermediate steps) can be quickly computed along the full spline, with the result
of each intermediate step along the path then being summed to approximate the time integral. The
integral is computed by interpolating 4 points for every gap between observed points, resulting in a
discretization of 58 points along the spline. Integrals are computed using the trapezoid method from
torchquad [101]].

Once we have constructed our estimate of f(x(#;)) we can estimate f at any other point x () as

R {‘I(tb, t) + f(x(ty)), ifty <t
F(x(t)) =  B(x(ty)) — H(t,ty), ifty >t
f(X( b)) iftb =t

where by convention we integrate forwards in time and H is the path integral defined above, with J
in place of J. In practice, for the integration path c(r; s, ¢,x(s), x(t)), we construct a line from x(s)
to x(t) as

clristox(s).x() = (1= 7= ) (o) + 1 =2x(0)

t—s t—s
to maintain the interpretability of having r in the range [s, t] however it can be easily seen that setting
/ r—s
T =
t—s

c(r’) = (1 —r")x(s) +r'x(t)
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with 7/ taking values on [0, 1]. Line integrals are computed with 20 discretization steps using the
trapezoid method from torchquad [101].

Using f(x(t)), we can then generate predictions as

t+At
(t+ At) = x() + /t F(x(r))dr (11

where the integral can be computed by a standard ODE solver (we used the RK4 method from
torchdiffeq with default values for the relative and absolute tolerance).

We can then compute the trajectory reconstruction loss as

Lii(0;%) Z d (x(to + kAt), X(to + kAt)) (12)
k=b+1

where d is a distance measure between trajectories (e.g. mean squared error).

A.3 Loop closure loss

While the space of Jacobian functions J? that solve the dynamics problem may be quite large, we
are interested only in functions J? that both solve the dynamics problem and generate matrices with
rows that are conservative vector fields. To effectively restrict our optimization to this space, we
employ a self-supervised loss building on the loss introduced by Iyer et al. [95]. This loss imposes a
conservative constraint on the rows of the Jacobian matrix. Specifically, for any piecewise smooth

curve Ciqoop starting and ending at the same state xo, we have that H f e J dsH =0.
loop 2

Thus, given nigops sets of any L (not necessarily sequential) points {x()(t1),x" (t5),...,xV (t1)}

we can form a loop ¢ consisting of the sequence lines from x() (¢;) to x(V (t;41),i = 1,..., L — 1,

Ioop
followed by a line from x()(¢1) to x()(¢;). We then define the following regularization loss to
enforce this conservation constraint:
/ 30ds
c®

loop

2

Moops

1 1

Eloop(e; X) = (13)

n .
loops ) 9

We note that while other choices for loops would have been possible (for instance, forward and
backward passes along observed trajectories, or arbitrary circles beginning and ending at the same
point), the approach presented here has several advantages (as discussed in Section[3.3). Namely,
it balances computational tractability with uniform sampling of the directions in the tangent space.
Enforcing that all the points that comprise the loop are on the data manifold ensures that the loops
are integrated in directions that are as informative as possible for estimating the Jacobian of the given
dynamical system.

B Control-theoretic analysis details

B.1 Gramian computation

We begin with equation ] from Section[5] in which we separate the locally-linearized dynamics in
the tangent space into separate pairwise inter-subsystem control interactions. These pairwise control
interactions are in general of the form

oxA(t) = A(t)ox?(t) + B(t)0xB(t)

where A is the within-subsystem Jacobian, B is the across subsystem Jacobian and x*, x” are the
states of subsystems A and B, respectively. For a given control system, the time-varying reachablhty
Gramian on the interval [tg, t1] is defined as

B

W, (to, 1) £ /tl ®(t, 7)B(r)BY (1)@ (t1,7)dr

to
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where ® denotes the state-transition matrix of the intrinsic dynamics of subsystem A without

any input (i.e., 0x4(t) = ®(t,t0)6x(to)) [107]. Differentiating with respect to ¢, we obtain

5xA(t) = %@(t, t0)dx*(to). Noting also that, in the absence of input from subsystem B, we have
oxA(t) = A(t)oxA(t) = A(t)®(t,t0)0x" (to)

Thus setting the equations equal to each other and canceling §x* (%) from both sides we obtain

%@(t to) = A(t)P(t,to)

Note that ®(t,to) = I. Now, letting T'(t, 7) = ®(¢, 7)B(7)B? (7)®7 (¢, 7) and differentiating the
Gramian expression with respect to the second argument (and using the Leibniz integral rule) yields

0 o [t
7‘N7 _ — N
at T(t07t) at /to (t?T)dT

—1(t t)i(t)ﬁ(t,to)gt(tow | gtn r)dr

=IB(t)BT(H)I(1) — 0 + —rm
to

and observing

—I‘tT (

= A(t
At

T
®(t,tg ) B(7)BT (1)®T (t,7) + ®(t,t0)B(1)B (1) <a<I’(t,7')>

ot
(t)®(t,t0)B(T)BT (1)@ (t,7) + ®(t, ) B(r)BT (1) ®T (¢, 7)AT(t)
(OT(t,7) + T(t, 7)AT (1)

we can continue

%WT(to,t) = B)BT(t) + A(t) /t (¢, 7)dr + (/t r(t,7>d7) AT (#)

=B(t)BT(t) + A(t)W,.(to, t) + W,.(to, t)AT(t)

which illustrates that the reachability Gramian can be solved for using an ODE integrator (with
initial condition W,.(to,tog) = 0) [56]. In practice, to compute the reachability Gramians using the
trained JacobianODE models, we fit a cubic spline c(¢) to the reference trajectory x(¢) and compute
J(t) = J(c(t)). We can then parse the Jacobian matrix into its component submatrices and compute
the Gramians accordingly.

The reachability Gramian is a symmetric positive semidefinite matrix [107]. The optimal cost of
driving the system from state dx to state dx; on time interval [to, t1] can be computed as

<5X1 — @(tl,fo)a)(O)T W:l(to,h) ((5X1 — ‘I’(tl,t0>(5X0>

Thus each eigenvalue of W,. reflects the ease of control along the corresponding eigenvector [107,
109]]. Eigenvectors with larger corresponding eigenvalues will have smaller inverse eigenvalues, and
thus scale the cost down along those directions when computing the cost as above.

B.2 Extension to non-autonomous dynamics

While we deal with autonomous systems in this work, we note that this construction can easily be
extended to include non-autonomous dynamical systems, of the form x(¢) = f(x, t) by constructing
an augmented state x € R™™! which is simply the concatenation of x with ¢. This yields the
autonomous dynamics X = f (x), where f: R*t1 — R s the concatenation of f with a function
that maps all states to 1.
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B.3 Extension to more than two subsystems

Consider a nonlinear dynamical system in R”, defined by %(¢) = f(x(¢)). Suppose now that
the system is composed of K subsystems, where the time evolution of subsystem k is given by
x(F)(t) € R™. x(t) is then comprised of a concatenation of the x(*)(¢), with Zszl ng = n. Given
a particular reference trajectory, x(¢), with J as the Jacobian of f, then the tangent space dynamics
around the reference trajectory for subsystem « € {1, ..., K'} are given by

K

5 (1) = 3 3 (x(1))5x M) (1)

k=1

where J¥7(x(t)) € R™*" is the submatrix of J(x(¢)) in which the columns correspond to
subsystem k and the rows correspond to subsystem «. Now, for a given subsystem 8 € {1, ..., K'}
with 8 # «, we wish to analyze the ease with which [ can control « locally around the reference
trajectory, without intervention from other subsystems. Discounting the interventions from other
subsystems equates to setting 6x(¥) (t) = 0 for k # «, 3, leaving the expression

Sx (1) = Joo (x())6x () (1) + TP~ (x(£))xP) (t)

which quantifies the influence 5 can exert over « in the absence of perturbations from any other
subsystem. Using this representation, the reachability Gramian can be computed as described above.
Performing this procedure for all pairs of subsystems «, 8 € {1, ..., K } thus characterizes all pairwise
control relationships between subsystems along the reference trajectory.

C Supplementary results

C.1 Control and communication capture different phenomena

In the Introduction (Section [I) we note that measuring communication between two systems is
different than measuring control. To illustrate this, consider two brain areas, A and B, whose
dynamics are internally linear. The areas are connected only through a linear feedforward interaction
term from area B to area A (Figure[ST]A). Concretely, we consider the dynamics:

A(t) — JA—)AXA(t) + JB—>AXB(t)

P (t) = 3B PxB (1)

Here, the J matrices are time-invariant. When considering communication between brain areas, one
might aim to find the subspaces in which communication between B and A occurs, as well as the
messages passed [33,[73]. In this construction, the subspace in which area B communicates with area
A is explicitly given by JP~4, and thus the message, or input, from area B to area A at any time ¢ is
simply given by JZ74x(t). We pick the dimensions of each region to be n4 = np = 4 and let the
eigenvectors of the (negative definite matrix) J4 =4 be given by v;,i = 1,2, 3, 4. The eigenvectors
are numbered in order of decreasing real part of their corresponding eigenvalue. Now, suppose we
construct the interaction matrix JZ~4 in two different ways: If we let (1) JP~4 = v, 17" (Figure
[SIB, left) , then the signal from B is projected onto the most stable mode of region A, whereas if we
let (2) JP74 = v417 (Figure , right), the signal is projected onto the least stable mode. While
interaction 1 and interaction 2 communicated messages with identical magnitudes, interaction 2 led
to much lower cost reachability control (Figure[ST|C). This illustrates that control depends not only on
the directions along which the areas can communicate, but also on how aligned the communication is
with the target area’s dynamics.

C.2 Derivative estimation is not implied by function estimation

An alternative approach to directly estimating the Jacobians would be to learn an approximation
f of the function f, and then approximate the Jacobian via automatic differentiation (i.e., an esti-

mate J = %f' , as with the NeuralODEs). While this can be effective in certain scenarios, it is
not generally the case that approximating a function well will yield a good approximation of its
derivative. To illustrate this, we recall an example from Latrémoliere et al. [90], in which functions
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Figure S1: Communication versus control in linear systems and the challenge of Jacobian
estimation. (A) Setup of two linearly connected brain areas, A and B. (B) Interaction matrices
projecting signals from area B onto either the most stable (Interaction 1) or least stable (Interaction
2) eigenvectors of area A. (C) Although both interactions communicate identical signal magnitudes,
Interaction 2 provides significantly enhanced reachability due to alignment with unstable modes of
area A dynamics. (D) An illustrative example demonstrating that accurate approximation of a function
(left panel) does not guarantee accurate approximation of its derivative (right panel), emphasizing the
necessity of directly estimating the Jacobian.

fn = L cos(nz) are used to approximate the function f(z) = 0 (Figure|S1]D). While these approx-
imations improve with increasing n (i.e., lim, ., f, = f), this is not the case for the derivative
(limy, 00 f = —sin(nx) # f’). This demonstrates the necessity of learning J directly (rather than
first approximating f), which we also demonstrate empirically. In the context of machine learning,
this setting could be interpreted as overfitting [90]. As long as function estimates match at the specific
points in the training set, how the function fluctuates between these points is not constrained to match
the true function. For this reason, we included the Frobenius norm Jacobian regularization in our
implementation of the NeuralODEs (Appendix [D.3).

C.3 Full benchmark dynamical systems results

We here present the full results for all considered example dynamical systems. 10 time-step trajectory
predictions along with Jacobian estimation and estimated Lyapunov spectra are displayed in Figure
along with MSE and R? in Table (trajectory prediction) and Table (Jacobian estimation).
Jacobian estimation errors using the 2-norm are presented in Table [S3]

C.4 Ablation studies

To determine the value of the different components of the JacobianODE learning framework, we
performed several ablation studies. We chose to evaluate on the Lorenz system and the task-trained
RNN:ss, as these together provide two common settings of chaos and stability, as well as low- and
high-dimensional dynamics.

Ablating the Jacobian-parameterized ODEs The JacobianODE framework constructs an estimate
of the initial time derivative f via a double integral of the Jacobian as described in Section[3.2] To
briefly recall, Jacobian path integration is described as

f(x(ty)) —f(x(t;) = /Cst = /fJ(c(r))c’(r) dr, (14)

t;

When we do not have access to the initial derivative and base point f(x(¢;)),x(¢;), we use the
following formulation
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Table S1: Trajectory prediction metrics (MSE and R?) for each system and training noise. Errors are
mean =+ standard deviation across five random initializations of the model architectures.

MSE R?
Project Training noise JacobianODE NeuralODE JacobianODE NeuralODE
VanDerPol (2 dim) 1% 0.00017 + 0.00007 0.0004 + 0.0002 0.99987 £ 0.00005 0.9996 + 0.0002
5% 0.0010 + 0.0006  0.0009 + 0.0002 0.9995 £ 0.0003  0.99949 + 0.00009
10% 0.004 + 0.001 0.0041 + 0.0009 0.9979 £ 0.0005  0.9969 + 0.0003
Lorenz (3 dim) 1% 0.07 £0.02 0.045 £ 0.004 0.99979 £ 0.00004 0.99986 + 0.00001
5% 0.12+0.03 0.10 + 0.01 0.9996 + 0.0001  0.99958 + 0.00004
10% 0.16 £ 0.02 0.41£0.05 0.99928 + 0.00008 0.9981 £ 0.0003
Lorenz 96 (12dim) 1% 0.0035 + 0.0007 0.033 £ 0.003 0.99969 + 0.00007  0.9969 + 0.0003
5% 0.014 + 0.001 0.051 +0.003 0.9985 +0.0001  0.9955 + 0.0003
10% 0.038 £ 0.002 0.063 + 0.005 0.9960 £ 0.0002  0.9940 + 0.0007
Lorenz 96 (32 dim) 1% 0.079 + 0.004 0.23 £0.01 0.9939 + 0.0003 0.977 £ 0.002
5% 0.079 £ 0.004 0.26 £ 0.02 0.9939 £ 0.0003 0.974 £ 0.002
10% 0.205 + 0.001 0.34 £0.02 0.9837 £ 0.0001 0.968 + 0.002
Lorenz 96 (64 dim) 1% 0.72 £ 0.03 1.194 + 0.005 0.946 + 0.002 0.8997 + 0.0007
5% 0.79 £ 0.01 1.205 £ 0.007 0.9400 £ 0.0010  0.8986 + 0.0010
10% 0.87 £ 0.01 1.23 £0.01 0.9332 + 0.0009 0.896 + 0.001
Task-trained RNN 1% 0.0042 £ 0.0006  0.00558 + 0.00002 0.9981 £ 0.0003  0.99762 + 0.00001
5% 0.0043 + 0.0006 0.00596 + 0.00005 0.9981 £ 0.0002 0.99747 +0.00002

10%

0.0089 + 0.0001  0.00655 + 0.00003

0.99591 + 0.00004

0.99721 + 0.00001

Table S2: Jacobian estimation metrics (MSE and R?) for each system and training noise. Errors are
mean = standard deviation across five random initializations of the model architectures.

MSE R?
Project Training noise ~ JacobianODE  NeuralODE JacobianODE Neural ODE
VanDerPol (2 dim) 1% 0.18 + 0.06 0.4+0.1 0.985 £ 0.005 0.97 £ 0.01
5% 0.16 + 0.02 0.17 £0.03 0.987 £ 0.002 0.985 £ 0.002
10% 0.50 + 0.04 1.6+£0.3 0.958 £ 0.003 0.86 +£0.03
Lorenz (3 dim) 1% 24+0.1 12.0+0.7 0.954 £ 0.002 0.77 £ 0.01
5% 4.6+1.2 82.0+£9.2 0.91 + 0.02 -0.6+0.2
10% 57+£0.2 83.0+52 0.891 £ 0.004 -0.58 £0.10
Lorenz 96 (12dim) 1% 0.012£0.003 0.18 +0.01 0.9979 £ 0.0006  0.969 + 0.002
5% 0.053 £0.006 0.27 +0.02 0.991 £ 0.001 0.953 +0.003
10% 0.153 £0.008 0.27 +£0.01 0.973 £ 0.001 0.951 £ 0.002
Lorenz 96 (32 dim) 1% 0.075 £0.004 0.28 +£0.01 0.965 + 0.002 0.866 + 0.006
5% 0.060 +0.003  0.32+0.02 0.972 £ 0.001 0.850 £ 0.009
10% 0.180 £ 0.003  0.38 +0.02 0.915 £ 0.001 0.820 £ 0.008
Lorenz 96 (64 dim) 1% 0.238 £ 0.007 0.515 +0.002 0.773 + 0.007 0.509 + 0.002
5% 0.286 £ 0.003 0.519 +0.003 0.727 £ 0.003 0.505 £ 0.003
10% 0.321 £0.004 0.527 +0.005 0.694 £ 0.003 0.497 £ 0.005
Task-trained RNN 1% 22£0.2 5.2777 £0.0009 0.59 + 0.03 -0.0008 + 0.0002
5% 1.70 £ 0.08 5.2900 + 0.0001 0.68 +£0.01 -0.00315 + 0.00002
10% 1.99 £0.01 5.2889 +0.0001 0.623 + 0.002 -0.00295 + 0.00002

where

f(x(1)) =

G(to,t;J,c) +x(t) — x(to)

t—to

)

G(to,t;J,c) = /t: /:J(cs7t(r))c;7t(r)drds

15)

(16)

Alternatively, one could use Equation[14]and learn f(x(t;)) and x(¢;) as learnable parameters (x(¢;) is
needed as the first point of the path, i.e. c(¢;) = x(¢;) inside the integral) [92]. Here, the path integral
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Table S3: Mean 2-norm error on Jacobian estimation, (||J — J||2), for each system and noise level.
Errors are reported as mean =+ standard deviation, with mean and standard deviation computed over
five random initializations of the model architectures.

Project Training noise ~ JacobianODE NeuralODE Weighted Linear
VanDerPol (2 dim) 1% 0.7+0.1 1.0+£0.3 6.05
5% 0.71 £ 0.05 0.71 + 0.08 6.03
10% 1.31 £ 0.05 22+02 6.02
Lorenz (3 dim) 1% 3.2+0.2 8.6+0.3 17.06
5% 49+0.9 259+15 17.02
10% 6.0 0.1 264 +09 16.95
Lorenz 96 (12 dim) 1% 0.8+0.1 35+£0.2 14.94
5% 1.75 £ 0.09 4.1+0.1 14.93
10% 2.91 +0.09 42+0.1 14.92
Lorenz 96 (32 dim) 1% 3.75 £ 0.08 7.8+0.1 16.29
5% 3.10 £ 0.09 81+0.2 16.26
10% 4.89 + 0.05 8.6+0.1 16.28
Lorenz 96 (64 dim) 1% 8.4+0.1 12.63 £ 0.02 16.84
5% 9.04 £ 0.07 12.66 + 0.03 16.81
10% 9.42 + 0.06 12.72 £ 0.05 16.82
Task-trained RNN 1% 304+ 04 38.565 + 0.006 39.29
5% 29.4+0.9 38.5611 + 0.0004 38.91
10% 36.0 £ 0.1 38.5600 + 0.0004 38.70

between x(¢;) and x(¢¢) is a linear interpolation, as before. These ablated models were trained on
10 time-step prediction, as with the original JacobianODEs. For these models, we completed a full
sweep over the loop closure loss weight Ajoop in order to determine the best hyperparameter.

Ablating teacher forcing We trained models without any teacher-forcing. That is, models were
able to generate only one-step predictions, without any recursive predictions. Again we did a full
hyperparameter sweep to pick Ajoop.

Ablating loop closure loss We ablated the loop closure loss in two ways. The first was to set
Aloop = 0 to illustrate what would happen if there were no constraints placed on the learned Jacobians.
The second was to instead use the Jacobian Frobenius norm regularization that was used for the
NeuralODEs (details are in Appendix . We did a full sweep to pick Ajac, the Frobenius norm
regularization weight.

Table S4: Mean Frobenius norm error (||J — J||z) for different model ablations on the Lorenz
system with 10% observation noise. Errors are reported as mean + standard deviation, with statistics
computed over 8 test trajectories, each consisting of 1200 points.

Model variant Frobenius norm error
JacobianODE (original) 6.46 + 1.50
With learned base derivative point 7.87+1.14
No teacher forcing 11.59 £ 1.30
No loop closure 58.22 +£2.00
With Jacobian penalty instead of loop closure 9.59 +£2.45

Ablation results The performance of the ablated models on Jacobian estimation in the Lorenz system
are presented in Table [S4] The original JacobianODE outperforms all ablated models, indicating
that all components of the JacobianODE training framework improve the model’s performance
in this setting. Ablating the Jacobian-parameterized initial derivative estimate resulted in a slight
decrease in the estimation loss. This is potentially because the network could offload some of the
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responsibility for generating correct trajectory predictions onto the estimated base point x(¢;) and

derivative estimate f(x(#;)), slightly reducing the necessity of estimating correct Jacobians. Ablating
the teacher forcing annealing predictably led to worse Jacobian estimation, as the network no longer
has to consider how errors will propagate along the trajectory. The most dramatic increase in error
was with the ablation of the loop closure loss. Without this important regularization, the learned
Jacobians reproduced the dynamics but were not constrained to be conservative, resulting in poor
Jacobian estimation. The inclusion of the Frobenius penalty on the Jacobians mitigated this, although
it did not encourage accurate Jacobian estimation to the same degree as the loop closure loss.

Table S5: Mean Frobenius norm error (||J — J|| ) for different model ablations on the task-trained
RNN with 10% observation noise. Errors are reported as mean =+ standard deviation, with statistics
computed over 409 test trajectories, each consisting of the 49 points from the second delay and
response epochs.

Model variant Frobenius norm error
JacobianODE (original) 180.13 £ 1.55
With learned base derivative point 186.28 + 1.17
No teacher forcing 187.72 £ 1.63
No loop closure 313.31 £29.88
With Jacobian penalty instead of loop closure 163.69 + 4.22

We then tested the ablated the models on Jacobian estimation in the task-trained RNN, with results
presented in Table [S5] Again, ablating the Jacobian-parameterized derivative estimates, teacher
forcing, and loop closure resulted in worse Jacobian estimation. Interestingly, in this setting, the
inclusion of a penalty on the Frobenius norm of the Jacobians outperformed the use of the loop
closure loss. This could potentially be because the loop closure loss is more difficult to drive to zero
in high dimensional systems, or because the loop closure loss is more important in chaotic systems
like the Lorenz system considered above. Future work should consider in what contexts each kind of
regularization is most beneficial to JacobianODE models.

C.5 NeuralODEs achieve improved performance at the cost of increased inference time

In the main paper, we implemented both the JacobianODEs and the NeuralODEs as four-layer
MLPs, with the four layers having sizes of 256, 1024, 2048, and 2048 respectively. This was done
for the fairest architectural comparison between the models, to ensure that both models had the
same representational capacity when generating their respective outputs. However, there are many
architectural changes that we could make to this setup that impact performance. We hypothesized
based on the discussion in Appendix [C.2]that increasing the hidden layer size of the NeuralODEs
would improve Jacobian estimation, as larger models have been known to learn smoother representa-
tions. Furthermore, we wondered whether including residual blocks in place of the standard MLP
implementation would improve Jacobian estimation.

To test this, we implemented the NeuralODEs as four-layer residual networks and tested three
different sizes of hidden layer: 1024, 2048, and 4096. Results are in Table@ For nearly all models,
these changes yielded only marginal improvements over the original NeuralODE model. Only the
model with 4096-dimensional hidden layers under 10% training noise achieves a performance near
the original JacobianODEs. However, the performance limit is still below that of the JacobianODEzs,
even with a large increase in the representational capacity of the model. It is furthermore of note that
the Neural ODEs were able to significantly improve performance only in the high noise setting. This
suggests that high noise is necessary for the model to be forced to learn the response of the system
to perturbation. In contrast, JacobianODEs perform similarly across all noise levels, indicating a
stronger inductive bias to learn the response of the system to perturbation.

While the increased hidden layer size seems to induce smoother hidden representations (as expected),
it comes with increasing computational cost. Recall that the NeuralODEmodels directly parameterize
the dynamics as x = f?(x). The Jacobian at state x is computed by directly backpropagating

through the Neural ODE £, thereby significantly increasing compute. On the other hand, the
JacobianODEs only require a forward pass. We evaluated the Jacobian inference time of JacobianODE
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Table S6: Mean Frobenius norm error ([|J — J||z) for different model types on the task-trained RNN
data across observation noise levels. Errors are reported as mean =+ standard deviation, with statistics
computed over 409 test trajectories.

Training noise ~ Training noise ~ Learnable parameters

Model type 5% 10%

JacobianODE (original) 1741 2.4 180.1 £ 1.5 4.02e+07
NeuralODE (original) 294.0+2.4 293.9+24 6.85e+06
NeuralODE (1024 dim. hidden layers) 291.6+2.3 289.8 +2.3 3.41e+06
NeuralODE (2048 dim. hidden layers) 288.5+2.3 275.0+2.7 1.31e+07
NeuralODE (4096 dim. hidden layers) 275.8+2.4 1842 +5.6 5.14e+07

and Neural ODE models with four hidden layers of the same size on an H100 GPU. Each model was
timed on inferring the Jacobians of 100 batches of the 128-dimensional task-trained RNN, with each
batch containing 16 sequences of length 25. Timings were repeated ten times for each model. Results
are plotted in Figure [S3]
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Figure S3: JacobianODEs achieve highly efficient Jacobian inference. Jacobian inference times
computed over ten repetitions of 100 batches (error bars indicate mean =+ standard deviation). Red
circles indicate the inference time corresponding to the largest hidden layer dimension of the highest
performing NeuralODE model in Table[S6] Green circles indicate the inference time corresponding
to the largest hidden layer dimension of the highest performing JacobianODE model in Table [SG
Each plot illustrates the same data but with different x and y scaling.

The JacobianODE achieves much faster inference times than the NeuralODE — approximately
two orders of magnitude faster at large hidden dimension sizes. Furthermore, as shown in Table
[S6l the JacobianODE with a maximum hidden layer size of 2048 outperforms the Neural ODE
with a maximum hidden layer size of 4096 on Jacobian estimation, and does so with orders of
magnitude faster inference (Figure[S3] green and red circles, Table[S6). This suggests that while both
architectures appear to have inference times that scale approximately exponentially, the JacobianODE
achieves more favorable scaling across every hidden layer size we tested. Our analysis therefore
illustrates that it is possible to improve the NeuralODEs’ Jacobian estimation with larger models, but
the inference time scaling renders these models ill-equipped for important settings such as real-time
control and the analysis of high-volume neural data.

C.6 Comparison to echo state networks

Echo state networks (ESNs, or reservoir networks) are tools for time-series forecasting and analysis.
ESNs are typically implemented as RNNs with fixed, sparse, hidden connectivity. The output weights
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of the ESNs can then be trained via linear regression to reproduce specific temporal patterns. ESNs
have been shown to be able to forecast the Lorenz 63 system for a particular choice of hyperparameters
[139]. We note that Pathak et al. [139] implements the same method as Pathak et al. [140] . We
implemented the ESNs exact hyperparameters reported in Pathak et. al. 2017 for the Lorenz system,
which involved a reservoir of 300 nodes. Our implementation of the Lorenz system was simulated
with a sampling interval of 0.015 s, very similar to the 0.02 s used in the paper. Thus, for consistency
of comparison with JacobianODEs, we fit ESN models to data sampled every 0.015 s.

To enable Jacobian estimation, we changed one small implementation detail from Pathak et al. [139].
Specifically, we trained the network output weights to predict the third variable z using only the
network state r(t), as opposed to the vector ¥ (¢) for which the node state is squared (7;(t) = r2(t))
for half of the nodes <. This is because squaring the reservoir state complicates Jacobian computation,
and was stated by Pathak et al. [[139] and Lu et al. [141] to only be necessary for symmetry breaking if
only the z variable of the Lorenz system were provided. We trained the ESNs on the same volume of
data as the JacobianODEs and NeuralODEs, with 1% observation noise. We swept the regularization
parameter /3 to ensure a good fit. We furthermore generated predictions using a 150 time-step lead-up
to ensure the ESNs converged to a good internal representation. The ESNs predicted the Lorenz
system well, achieving an MSE of 0.03 on the 10-step prediction task from our paper (on test data).
This was very similar to the reported 10-step prediction MSEs of 0.07 and 0.04 for the JacobianODEs
and NeuralODEs, respectively.

In Pathak et al. [139], the Lyapunov exponents of the system were computed using the Jacobian
of the interior dynamics of the ESN, as the recursion necessary to compute the Jacobian can be
formulated uniquely only in regard to this state representation. Thus, each of these Jacobians would
be a 300 x 300 matrix. While this suffices to compute the Lyapunov exponents, it does not suffice for
our purposes of obtaining Jacobian estimates of the dynamics of the original system. For this purpose,
it has been shown that it is possible to obtain an estimate of the Jacobian of the original dynamical
system (i.e., not the echo state space) using ESNs [[142]. However, as Banerjee et al. [142] noted,
it is necessary to invert the non-square ESN output matrix in order to obtain these Jacobians, thus
they are non-uniquely determined, and are used in the paper "only for causality estimation purposes".
Nevertheless, we computed ESN-estimated Jacobians on the 1% observation noise test data. We used
a large (7,200 time-step) lead-up and ensured coherence to the trajectory by feeding in the true state
as input. The Frobenius norm error over five random seeds was 85.8 £ 3.1, much larger than the
reported errors of 3.3 0.2 and 8.7 &£ 0.3 for the JacobianODEs and NeuralODEs respectively. Thus,
similar to the Neural ODE, while ESNs can achieve comparable prediction on chaotic systems, they
do so without enabling an accurate reconstruction of the Jacobian of the original dynamical system.

C.7 Analyzing the dimensionality of Jacobian manifolds

RNN activity is often confined to low-dimensional manifolds, potentially simplifying Jacobian
estimation. To address the extent to which this influences our results, we performed the following
analyses.

Jacobian rank: We first note that both the RNN hidden weight matrix and nearly all Jacobians had
full rank (128; ~0.1% had rank 127). To assess the effective rank, we computed the participation ratio
(PR), a singular value-based measure of intrinsic dimensionality. The RNN weight matrix had a PR
of 123, and the Jacobians had a mean PR of ~106 (std 0.7).

Intrinsic-data dimensionality: Another possibility is that the data itself may be low-dimensional.
Since the Jacobian is a function of the trajectory data, the Jacobian manifold’s intrinsic dimension is
at most that of the trajectory manifold. To estimate the intrinsic dimensions, we pooled time points
from a large sample of trajectories. For RNN state vectors, we computed PR directly; for Jacobians,
we flattened them into n2-dimensional vectors before computing PR. We found the RNN trajectory
PR to be ~13.5, and the Jacobian PR to be ~6. Given the 128D extrinsic space, this confirms both
RNN states and Jacobians lie on lower-dimensional manifolds.

Notably, prior work estimated the dimensionality of prefrontal cortex delay activity at 24 using ~4000
neurons, falling to ~6 when subsampled to 100 neurons [[143]]. These values were interpreted as
high-dimensional. Thus, the dimensionalities we observe are consistent with biological systems
performing complex tasks.
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Furthermore, in the 64-dimensional Lorenz 96 system, the trajectory PR was ~47.5, and the Jacobians
had a PR of ~50, which we believe to be high-dimensional enough to demonstrate the effectiveness
of our method on complex systems.

We note that in larger systems, approximating the Jacobian as low rank may be more efficient.
Rather than computing each of the outputs directly, we can constrain the Jacobian to be low-rank
by designing the output as a low-rank combination of vectors (e.g., it learns to output a low-rank
singular value decomposition).

D Experimental details

D.1 Dynamical systems data

We used the following dynamical systems for the testing and validation of Jacobian estimation.

Van der Pol oscillator We implement the classic Van der Pol oscillator [96]. The system is governed
by the following equations

T =y
§ = pl—a?)y -z
We pick i = 2 in our implementation.

Lorenz We implement the Lorenz system introduced by Lorenz [97] as

i = o(y—x)
y =x(p—2)—y
Z =xy— Pz

with the typical choices for parameters (o = 10, p = 28, 8 = 8/3).

Lorenz 96 We implement the Lorenz 96 system introduced by Lorenz [98] and defined by
Z; = (UC(i+1) (mod N) — L(i—2) (mod N))x(ifl) (mod N) = i (mod N) T F

with F = 8and N € {12,32,64}.

Simulation We use the dysts package to simulate all dynamical systems [99,[100]. The charac-
teristic timescale of their Fourier spectrum 7 is selected and the systems are sampled with respect
to 7. For all systems, the training data consisted of 26 trajectories of 12 periods, sampled at 100
time steps per 7. The validation data consisted of 6 trajectories of 12 periods sampled at 100 time
steps per 7. The test data consisted of 8 trajectories of 12 periods sampled at 100 time steps per 7.
Trajectories were initialized using a random normal distribution with standard deviation 0.2. The
simulation algorithm used was Radau. Batches were constructed by moving a sliding window along
the signal. The sequence length was selected such that the generated predictions would generate 10

novel time points (i.e., 11 time steps for the NeuralODE, and 25 time steps for the JacobianODE, due
to the 15 time steps used to estimate the initial time derivative f).

Noise We define P% observation noise with P = 100p in the following way. Let Agignal =
E {Hm(t)”é] be the expected squared norm of the signal with x(¢) € R™. Then consider a noise
signal n(t) € R™ where each component 7;(t) ~ A (0, ﬁp\ /Agignar). Then

n

E [In(®)l3] = E [Z n?(t)] = Ep0] =3 L A = P Asgr

i=1

o p2 Asignal =p
Asignal
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D.2 Task-trained RNN

The task used to train the RNN was exactly as defined in Section[5] The hidden dimensionality of the
RNN was 128, and the input dimensionality was 10, where the first four dimensions represented the
one-hot encoded "upper" color, the second four dimensions represented the one-hot encoded "lower"
color, and the last two dimensions represented the one-hot encoded cue. The RNN used for the task
had hidden dynamics defined by

th(t) = —h + Wy,a(h(t)) + Wyu(t) + b
o(t) = W,,h(t)

with 7 = 50 ms, which for the purposes of training was discretized with Euler integration with a time
step of At = 20 ms. Wy, is the 128x128 dimensional matrix that defines the internal dynamics,
‘W,; is the 128 x 10 dimensional matrix that maps the input into the hidden state, W, is the 4x128
dimensional output matrix that maps the hidden state to a four-dimensional output o(¢), and b is
a static bias term. o was taken to be an exponential linear unit activation with & = 1. The RNN
hidden state was split into two "areas" each with 64 dimensions. The input matrix Wp,; was masked
during training so that inputs could only flow into the first 64 dimensions — the "visual" area. The
same procedure was performed for the output matrix W, except the mask was such that outputs
could stem only from the second group of 64 dimensions — the "cognitive" area. The within-area
subblocks of the matrix Wy, were first initialized such that the real part of the eigenvalues were
randomly distributed on the interval [—0.1, 0] and the imaginary part of the eigenvalues were randomly
distributed on the interval [0, 27r]. The eigenvectors were random orthonormal matrices. We then
computed the matrix exponential of this matrix. The across-area weights were first initialized to
be random normal, then divided by the 2-norm of the resulting matrix and multiplied by 0.05. The
input and output matrices were initialized as random normal and then scaled by the 2-norm of the
resulting matrix. The static bias b was initialized at 0. After initialization, all weights could be
altered unimpeded (except for the masks). Notably, the inputs u(t) were present only during the
stimulus and cue presentation epochs — otherwise the network evolved autonomously. The loss was
computed via cross entropy loss on the RNN outputs during the response period (the final 250 ms of
the trial).

For the training data, we generated 4096 random trials, and used 80% for training and the remainder
for validation. The batch size used was 32. Training was performed for 40 epochs. The learning rate
was 0.0005. For use with the Jacobian estimation models, data was batched and used for training
exactly as was done with the other dynamical systems data (see Appendix [D.I)). Observation noise
was also computed in the same way.

D.3 NeuralODE details

Neural ODE models directly estimate the time derivative f with a neural-network parameterized
function £¢. Then the Jacobians can be computed as J = 2 £9.

The NeuralODEs were implemented as described in Section ] and ODE integration was done exactly
as for the JacobianODE using the torchdiffeq package with the RK4 method [102]]. To regularize
the Neural ODE we implemented a Frobenius norm penalty on the estimated Jacobians, i.e.

Jx(t)| )

£jac = )\jac < P

where J is the estimated Jacobian computed via automatic differentation and Aj,c is a hyperparameter
that controls the relative weighting of the Jacobian penalty [104H106]. As mentioned in the main text,
this penalty prevents the model from learning unnecessarily large eigenvalues and encourages better
Jacobian estimation.

D.4 Weighted linear Jacobian details

We implemented a baseline Jacobian estimation method using weighted linear regression models as
described in Deyle et al. [88]]. Given a reference point x(¢*) at which the (discrete) Jacobian will be
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computed, all other points are weighted according to

iy = exp ) =0

where
T
d=">"|lx(t:) — x(t")|
i=1

is the average distance from x(¢*) to all other points. We then perform a linear regression using the
weighted points (and a bias term), the result of which is an estimate of the discrete Jacobian at x(¢*),
which can be converted to continuous time by subtracting the identity matrix and dividing by the

sampling time step (i.e., J= J‘“%‘;*I, where J discrete 18 the discrete Jacobian). The parameter 6 tunes
how strongly the regression is weighted towards local points. To pick 6, we sweep over values range
from O to 10, and pick the value that yields the best one-step prediction according to

X(E* + 2A8) = x(t* + At) + 2 (x(t* + At) — x(t7))

where J is the estimated Jacobian. This form of prediction has been previously been used to learn
Jacobians in machine learning settings [90]]. To test the method, we pick 6 based on data with
observation noise at a particular noise level, then add in the denoised data to the data pool in order to
compute regressions and estimate Jacobians at the true points.

D.5 Model details

All models were implemented as four-layer MLPS, with the four layers having sizes of 256, 1024,
2048, and 2048 respectively. All models used a sigmoid linear unit activation. JacobianODE models
output to the dimension n? which was then reshaped into the matrix of the appropriate dimension.
NeuralODEs output to the dimension n.

D.6 Lyapunov spectrum computation

To compute the Lyapunov spectrum, we employ a QR based algorithm [121} [122]. We discretize the

Jacobians using the matrix exponential (i.e., Jgiscrete = eIty and then propagate a bundle of small
vectors through the Jacobians, using QR to ensure the perturbations remain bounded.

D.7 Iterative Linear Quadratic Regulator (ILQR)

We implement the standard algorithm for ILQR, the details of which can be found in Li and Todorov
[L11]] and Tassa et al. [[112]. In brief, the ILQR algorithm linearizes the system dynamics around
a nominal trajectory using the Jacobian, and then iteratively optimizes the control sequence using
forward and backward passes to minimize the total control cost. The state cost matrix QQ was a
diagonal matrix with 1.0 along the diagonal. The final state cost matrix Qs was a diagonal matrix
with 1.0 along the diagonal. The control cost matrix R was a diagonal matrix with 0.01 along the
diagonal. The control matrix was a 128 x 128 matrix in which the 64 x 64 block corresponding to
the first 64 neurons (the "visual" area) was the 64-dimensional identity matrix. The control algorithm
was seeded with only the initial state of the test trajectory with 5% noise. The control sequence was
initialized random normal with standard deviation 0.001 and mean 0. The ILQR algorithm was run
for a max of 100 iterations. The regularization was initialized at 1.0, with a minimum of 1 x 10—
and a maximum of 1 x 10'°. Ay was set to 2, as in Tassa et al. [112]]. If the backward pass failed
20 times in a row, the optimization was stopped. The list of values for the line search parameter «

was 1.17% for k € 0,...,9 (see Tassa et al. [[112]). The linear model used for the linear baseline was
computed via linear regression.

D.8 Training details

All models were implemented in PyTorch. The batch size used was 16. Gradients were accumulated
for 4 batches. Training epochs were limited to 500 shuffled batches. Validation epochs were limited
to 100 randomly chosen batches. Testing used all testing data. Training was run for a maximum of
1000 epochs, 3 hours, or until the early stopping was activated (see Appendix [D.8.6), whichever came
first.
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D.8.1 Generalized Teacher Forcing

The Jacobian can be best learned when training predictions are generated recursively (i.e., replacing
x(t) by x(t)). However, in chaotic systems, and/or systems with measurement noise (as considered
here), this could lead to catastrophic divergence of the predicted trajectory from the true trajectory
during training. We therefore employ Generalized Teacher Forcing when training all models [94].
Generalized Teacher Forcing prevents catastrophic divergence by forcing the generated predictions
along the line from the prediction to the true state. Specifically, for a given predicted state X(¢) and
true state x(¢), the teacher forced state is

x(t) = (1 — a)x(t) + ax(t)

with « € [0, 1]. This effectively forces the predictions along a line from the prediction to the true
state, by an amount with proportion o. & = 1 corresponds to fully-forced prediction (i.e., one-step
prediction) and o = 0 corresponds to completely unforced prediction (i.e., autonomous prediction).
Hess et al. [94] suggested that a good estimate of « is

Q= max (max [1 . 1(1))1 ,0) an
P 1G(T75)ll
(p)

where J;.;, are the Jacobians of the modeled dynamics computed at data-constrained states, p
indicates the batch or sequence index, and

T2 —
IGAEL = (H JT_k>

k=0
effectively computes the discrete maximum Lyapunov exponent. In our implementation, we compute

1G(I 59)2) || using a QR-decomposition-based Lyapunov computation algorithm [121]]. As the Jacobian
of the dynamics is necessary to compute this quantity, the JacobianODEs enjoy an advantage over
other models in that the Jacobians are directly output by the model, and do not have to be computed
via differentiating the model itself.

We furthemore employ a slightly modified version of the suggested annealing process in Hess et al.
[94], which sets ag = 1 and updates o, as
Qp = YQp_1 + (1 - ’}/)0[

where « is computed according to equation [I7] Following the suggested hyperparameters, we set
~v = 0.999 and update «, every 5 batches. Once the teacher forced state X(¢) is computed, it can
simply replace x(t) in equation to generate predictions.

D.8.2 Loop closure loss

We implemented a loop closure loss as discussed in Section [3.3]and Appendix[A.3] For each loop,
we used 20 randomly chosen points from the batch. For each batch, we constructed the same number
of loops as there were batches. Path integrals were discretized in 20 steps and computed using the
trapezoid method from torchquad [101].

D.8.3 Validation loss

All models were validated on 10 time-step prediction task with teacher forcing parameter o = 0 (i.e.,
autonomous prediction).

D.8.4 Learning rate scheduling

For all models, the learning rate was annealed in accordance with teacher forcing annealing. Given
an initial and final learning rates 7); and 1y we compute the effective learning rate as
n=ns+olan)(m —ny)
where «,, is the current value of the teacher forcing parameter and
Qp
ap + (1 — ap)e kan

oan) =
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o(ay,) is a scaling function with o(1) = 1 and ¢(0) = 0 and for which the shape of the scaling is
controlled by the parameter k. For positive values of k, the scaling is super-linear, and for negative
values of k it is sub-linear. We use £ = 1, ensuring that the learning rate does not decrease too
quickly at the start of learning. We set ; = 10~ and ) = 10~6 for all models.

D.8.5 Optimizer and weight decay

All models were trained with PyTorch’s AdamW optimizer with the learning rate as descried above,
and weight decay parameter 10~#. All other parameters were default (3; = 0.9, 83 = 0.999, ¢ =
10~8). We also used gradient norm clipping, with a clipping value of 1.0.

D.8.6 Early stopping

For all models, we implemented an early stopping scheme that halted the training if the validation
loss improved by less than 1% for two epochs in a row.

D.8.7 Added noise during learning

For the models trained on the task-trained RNN dynamics, we added 5% Gaussian i.i.d. noise (defined
relative to the norm of the training data with observation noise already added). Noise was sampled
for each batch and added prior to the trajectory generation step of the learning process. Additional
noise was not added for the loop closure computation.

D.8.8 Hyperparameter selection

For the JacobianODEs, the primary hyperparameter to select is the loop closure loss
Aloop-  To select this hyperparameter, we trained JacobianODE models with Ajop €
[0,1076,107°,1074,1073,1072,1071, 1, 10]. For each run, the epoch with the lowest trajectory
validation loss (L) is kept. Then, for this model, we compute the one-step prediction error on
validation data, the validation loop closure loss (Liq0p), and the percentage of Jacobian eigenvalues
on all validation data that have a decay rate faster than the sampling rate ﬁ. We exclude any models
that meet any of the following criteria:

1. One-step prediction error greater than the persistence baseline. The persistence baseline
is computed as the mean error between each time step kAt and the subsequent time step
(k + 1) At across the dataset, and constitutes a sanity check for whether a model is capturing
meaningful information about the dynamics.

2. Loop closure loss greater than /n, where n is the system dimension (see Appendix @
for the derivation of this bound). As discussed in the main text, we are interested in Jacobians
that not only solve the trajectory prediction problem, but that also are constructed so that the
rows of the matrix are approximately conservative vector fields.

3. More than 0.1% of the Jacobian eigenvalues have a decay rate faster than the sampling
rate ﬁ. Since large negative eigenvalues do not impact trajectory prediction, the models
may erroneously learn Jacobians with large negative eigenvalues. If the decay rate of these
eigenvalues is faster than the sampling rate, we can infer that the eigenvalues are not aligned
with the observed data.

If none of the models that meet criterion (2) meet criterion (1), we discount criterion (2), as this
suggests that a loop closure loss below y/n bound is too strict to obtain good prediction on this
system. Additionally, if none of the models that meet criterion (3) meet criterion (1), we discount
criterion (1), as this suggests that noise is very high in the data, which leads to both high one-step
prediction error, and large negative eigenvalues to compensate for the perturbations introduced by the
noise. Of the remaining models, we select the one with the lowest trajectory validation 1oss Lig;.

For the NeuralODEs, we needed to select the hyperparameter Aj,c, which regularized the mean frobe-
nius norm of the Jacobians computed through automatic differentiation. Again, to select this hyperpa-
rameter, we trained JacobianODE models with Aj,c € [0, 1076,1075,1074,1073,1072,1071, 1, 10].
We followed exactly the above procedure with the exception of criterion (2), which was deemed
unnecessary, as computing the Jacobians implicitly via a gradient of the model (using automatic
differentiation) ensures that the rows of the matrix are conservative.
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All other hyperparameters (model size, learning rate, length of initial trajectory, number of discretiza-
tion steps, etc.) were fixed for all systems. Given the wide range of systems and behaviors and
dimensionalities that the JacobianODEs are capable of capturing, this indicates that the method is
robust given a reasonable choice of these hyperparameters.

D.8.9 Model hyperparameters and training details

Below are presented the details of all Jacobian estimation models considered in the main paper.

Table S7: Hyperparameters used and model details for each system and noise level. Training time is
reported in seconds.

System Noise Model Loop closure weight Jacobian penalty ~ Training time (s) Final epoch Learning rate  Min learning rate Weight decay ~ Learnable parameters
VanDerPol (2dim) 1% JacobianODE ~ 0.0010 0 882.139 15 0.0001 1.00e-06 0.0001 6.568¢+06
1%  NeuralODE 0 1.00¢-06 949217 21 0.0001 1.00e-06 0.0001 6.564¢+06
5%  JacobianODE  0.0001 0 692.980 1 0.0001 1.00e-06 0.0001 6.568¢+06
5%  NeuralODE 0 0 249.451 6 0.0001 1.00e-06 0.0001 6.564¢+06
10%  JacobianODE  0.010 0 678.794 10 0.0001 1.00e-06 0.0001 6.568¢+06
10%  NeuralODE 0 0.0010 713221 16 0.0001 1.00e-06 0.0001 6.564¢+06
Lorenz (3 dim) 1%  JacobianODE  0.0010 0 972268 16 0.0001 1.00e-06 0.0001 6.578¢+06
1%  NeuralODE 0 0.0010 889.819 18 0.0001 1.00e-06 0.0001 6.566¢+06
5%  JacobianODE 0.010 0 1.147¢403 18 0.0001 1.00e-06 0.0001 6.578¢+06
5%  NeuralODE 0 0.0010 680.651 15 0.0001 1.00e-06 0.0001 65660406
10%  JacobianODE  0.010 0 388.346 6 0.0001 1.00e-06 0.0001 6.578¢+06
10%  NeuralODE 0 0.010 421.488 8 0.0001 1.00e-06 0.0001 6.566¢+06
Lorenz 96 (12dim) 1%  JacobianODE  0.0010 0 1.817¢+03 31 0.0001 1.00e-06 0.0001 6.857¢+06
1%  NeuralODE 0 1.00e-06 1.892¢+03 32 0.0001 1.00e-06 0.0001 6.587¢+06
5%  JacobianODE  0.0010 0 716.408 12 0.0001 1.00e-06 0.0001 6.857¢+06
5%  NeuralODE 0 0.0010 1.147e403 19 0.0001 1.00e-06 0.0001 6.587¢+06
10%  JacobianODE  0.010 0 1213e+03 18 0.0001 1.00e-06 0.0001 6.857¢+06
10%  NeuralODE 0 0.0001 851.803 14 0.0001 1.00e-06 0.0001 6.587¢+06
Lorenz 96 (32dim) 1%  JacobianODE  0.010 0 5.1600+03 85 0.0001 1.00e-06 0.0001 8.665¢+06
1%  NeuralODE 0 0.0010 4204e403 43 0.0001 1.00e-06 0.0001 6.633¢+06
5%  JacobianODE  0.0010 0 1.341e+03 2 0.0001 1.00e-06 0.0001 8.665¢+06
5%  NeuralODE 0 0.0010 3.855¢403 39 0.0001 1.00e-06 0.0001 6.633¢406
10%  JacobianODE ~ 0.0001 0 868.262 14 0.0001 1.00e-06 0.0001 8.665¢+06
10%  NeuralODE 0 0.0010 2.695¢+03 28 0.0001 1.00e-06 0.0001 6.633¢+06
Lorenz 96 (64 dim) 1%  JacobianODE  0.0010 0 2.749¢403 40 0.0001 1.00e-06 0.0001 1.497e407
1%  NeuralODE 0 0.010 4.801e+03 30 0.0001 1.00e-06 0.0001 6.706e+06
5%  JacobianODE  0.0001 0 1.748¢+03 27 0.0001 1.00e-06 0.0001 1.497e+07
5%  NeuralODE 0 0.010 4.879¢403 30 0.0001 1.00e-06 0.0001 6.706¢+06
10%  JacobianODE  0.0010 0 1701403 25 0.0001 1.00e-06 0.0001 1497407
10%  NeuralODE 0 0.010 4237e403 2 0.0001 1.00e-06 0.0001 6.706¢+06
Task-trained RNN 1% JacobianODE  0.0001 0 2.496e403 32 0.0001 1.00e-06 0.0001 4.016e+07
1%  NeuralODE 0 0 9.777¢+03 38 0.0001 1.00e-06 0.0001 6.854¢406
5%  JacobianODE  0.0001 0 2352¢403 29 0.0001 1.00e-06 0.0001 4.016e+07
5%  NeuralODE 0 1.00¢-05 7.770¢+03 27 0.0001 1.00e-06 0.0001 6.854¢406
10%  JacobianODE  0.010 0 2.172e403 27 0.0001 1.00e-06 0.0001 4.016e+07
10%  NeuralODE 0 1.00e-05 5.260e+03 18 0.0001 1.00e-06 0.0001 6.854¢406

D.9 Information about computing resources and efficiency

All models were able to be trained on a single H100 GPU, with 80 GB of memory.

Jacobian inference times Jacobian inference times for the JacobianODE and NeuralODE models
are discussed in Appendix[C.3] As discussed, models were implemented with four hidden layers of
the same size, and tested on 100 batches of the 128-dimensional task-trained RNN data, with each
batch consisting of 16 sequences of length 25. Timings were repeated ten times for each model (see
Figure[S3|for details).

Training time Total training times for each of the chosen models are presented in Table
Furthermore, we include the training time (including backward pass) for 100 batches (with 16
sequences per batch), using 10 time-step prediction, in Table [S§]

D.10 Statistical details

All statistics were computed using scipy. For the comparison between JacobianODE and Neural ODE
trajectory and Jacobian predictions, as well as the comparison of Gramian traces and minimum
eigenvalues, we used a two-sample t-test. For the comparison of ILQR control accuracies and errors,
we used a Wilcoxon signed-rank test.
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Table S8: Trajectory training time (seconds) for each system and noise level. Training used 100
batches, with 16 sequences per batch, as well as 10 time-step prediction.

Model Lorenz (3 dim) VanDerPol (2 dim) Lorenz 96 (12 dim) Lorenz 96 (32 dim) Lorenz 96 (64 dim) Task-trained RNN
1% noise
JacobianODE 15.772 13.737 11.604 16.469 16.214 23.855
Neural ODE 8.215 8.403 11.852 12.075 18.192 14.955
5% noise
JacobianODE 12.422 16.772 10.655 13.121 12.949 23.197
Neural ODE 6.191 5.841 13.501 8.021 21.307 30.209
10% noise
JacobianODE 12.590 15.719 18.447 10.506 18.900 22.482
Neural ODE 11.083 9.875 15.269 8.008 17.826 33.074

D.11 Derivation of loop closure loss bound

We consider the loop closure loss as defined in[3.3] We are interested in estimating a bound on the

€rror
2

Jds
0)

loop 2

E

where n is the system dimension. While in theory this quantity should be 0, in practice due to
numerical estimation error, it will not be. First recall, that

L X(t(i+1) (mod L))
/(l) Jds = Z/ J(c(r))c (r)dr
C i—1 /%(ti  (mod L))

where L is the number of loop points and c is a line from X(Z; (mod ) t0 X(t(i+1) (mod 1)) We
assume that

2 2
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Vi, € [1,.., L], which is justified as the numerical error accrued will likely be similar along different
lines for the same system. Thus

2 L 2
1 1 X(t(i41) (mod L))
E |- / Jds|| | =E | = Z J(c(r))c (r)dr
n c](of)i) 2 NS %t (mod 1)) 9
L , 2
1 x(t(i41) (mod L))
<-E|> / J(c(r)< (r)dr
n i=1 [|/*(ti  (moa L)) 9
1 L I X(t(i4+1) (mod L)) 2
=-YE / I(c(r))e (r)dr
n i=1 X(t; (mod L)) 9
L& I e 2
=-YE / J(c(r)< (r)dr
"= x(to) 9

2
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where we have used the fact that the errors are assumed to be equivalent for each of the line segments
comprising the overall loop path. Recall now that for the trapezoid integration rule, the error £ in
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(b—a)®
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integrating ff f(z)dx can be computed as E = — 1" (u) for some u € [a, b]. Thus the squared

error is bounded as )
(b — a)S "

max o ] (W) ,

In our case, when path integrating lines, we are effectively integrating from a = O to b = 1.

Furthermore, let g(r) = J(c(r))c’(r), the integrand of our line integrations. We assume that

E?<

E ||[jmax, g"(r) ||§] o n - y/n where the first n comes from the fact that the norm involves summing

over the n components of the vector g”(r) and the second +/n involves an assumption that loop
closure loss will be more difficult to compute accurately in higher dimensions, though this will be

more pronounced as dimensionality initially starts increasing. Thus E {Hmax,, g”(r) Hg} =kn-\/n

for some k € R*. Now, continuing on,

2

1 L x(t)
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Finally, assuming that the number of discretization steps M was chosen to be large enough such that

M* > o35 Lk we finally obtain
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction claim the the paper contributes robust data-driven
Jacobian estimation, a framework to characterize control between interacting subsystems,
inference of control dynamics in trained recurrent neural networks, and accurate control
of the trained network. All claims are substantiated in detail through a description of the
presented method and analytical framework, as well as comprehensive testing. See Sections

Bl @} and[5]

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The primary limitation of the present approach is that it was not tested
on partially observed system dynamics, a limitation which is discussed in the Discussion
(Section@. The method was tested on a wide range of datasets (Section E[) and computational
efficiency is discussed in Appendix [D.9]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: A complete and correct proof of the presented theoretical result, that the time
derivative f can be represented in terms of its Jacobian, is provided in Appendix

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides full information about the presented methods and experi-
ments, with sufficient detail that all results could be reproduced.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: As part of the submission, we provide an anonymized link to download the
analyzed data, as well as all code implementing the models, baselines, control analyses, and
data generation. If the paper is accepted, the full code will be open sourced.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all training and test details, including data splits, hyperpa-
rameter selection, and training details such as optimizers.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper includes error bars and statistical information. Additionally, the
factors of variability that the errors are capturing are clearly stated.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide information about compute resources needed to reproduce the
experiments in Appendix
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Ethical considerations have been taken into account and the research conforms
fully to the NeurIPS code of ethics.
Guidelines:
* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, the paper discusses societal impacts, including potential applications to
modeling biological dysfunction in disease. There are no expected negative impacts.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper contributes an analytical framework for characterizing nonlinear
control in interacting subsystems, and poses no risk of misuse. We do not make use of any
language models or image generators, and do not use any scraped datasets. We therefore do
not describe safeguards.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we implement existing methods in our paper and cite the original creators
appropriately.

Guidelines:

* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide well-documented code for generating the models and implementing
the datasets used in this paper.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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