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Abstract
Infinite width limits of deep neural networks often have tractable forms. They have been
used to analyse the behaviour of finite networks, as well as being useful methods in their
own right. When investigating infinitely wide CNNs it was observed that the correlations
arising from spatial weight sharing disappear in the infinite limit. This is undesirable, as
spatial correlation is the main motivation behind CNNs. We show that the loss of this
property is not a consequence of the infinite limit, but rather of choosing an independent
weight prior. Correlating the weights maintains the correlations in the activations. Varying
the amount of correlation interpolates between independent-weight limits and mean-pooling.
Empirical evaluation of the infinitely wide network shows that optimal performance is
achieved between the extremes, indicating that correlations can be useful.

1. Introduction

Analysing infinitely wide limits of neural networks has long been used to provide insight into
the properties of neural networks. Neal (1996) first noted such a relationship, through the
correspondence between infinitely wide Bayesian neural networks and Gaussian processes
(GPs). The success of GPs raised the question of whether such a comparatively simple model
could replace a complex neural network. MacKay (1998) noted that taking the infinite limit
resulted in a fixed feature representation, a key desirable property of neural networks. Since
this property is lost due to the infinite limit, MacKay inquired: “have we thrown the baby
out with the bath water?”

In this work, we follow the recent interest in infinitely wide convolutional neural networks
(Garriga-Alonso et al., 2019; Novak et al., 2019), to investigate another property that is lost
when taking the infinite limit: correlation from patches in different parts of the image. Given
that convolutions were developed to introduce these correlations, and that they improve
performance (Arora et al., 2019), it seems undesirable that they are lost when more filters are
added. Currently, the only way of reintroducing these correlations is by changing the model
architecture by introducing mean-pooling (Novak et al., 2019). This raises two questions:

1) Is the loss of patchwise correlations a necessary consequence of the infinite limit?

2) Is an architectural change the only way of reintroducing patchwise correlations?
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We show that the answer to both these questions is "no". Correlations between patches
can also be maintained in the limit without pooling by introducing correlations between
the weights in the prior. The amount of correlation can be controlled, which allows us to
interpolate between the existing approaches of full independence and mean-pooling. Our
approach allows the discrete architectural choice of mean-pooling to be replaced with a more
flexible continuous amount of correlation. Empirical evaluation on CIFAR-10 shows that
this additional flexibility improves performance.

Our work illustrates how choices that are made in the prior affect properties of the limit,
and that good choices can improve performance. The success of this approach in the infinite
limit also raises questions about whether correlated weights should be used in finite networks.

2. Spatial Correlations in Single-Layer Networks

To begin, we will analyse the infinite limit of a single hidden layer convolutional neural network
(CNN). We extend Garriga-Alonso et al. (2019) and Novak et al. (2019) by considering weight
priors with correlations. By adjusting the correlation we can interpolate between existing
independent weight limits and mean-pooling, which previously had to be introduced as a
discrete architectural choice. We also discuss how existing convolutional Gaussian processes
(van der Wilk et al., 2017; Dutordoir et al., 2020) can be obtained from limits of correlated
weight priors.

A single-layer CNN (see fig. 1 for a graphical representation of the notation) takes in an
image input X ∈ RC(0)×P ·Q with width P , height Q, and C(0) channels (e.g. one per colour).
The image is divided up into patches X[p] ∈ RC(0)×p(1)q(1) , with p representing a location of
one of the P ·Q zero-padded patches. Weights are applied by taking an inner product with
all patches, which we do C(1) times to give multiple channels in the next layer. By collecting
all weights in the tensor W(1) ∈ RC(1)×C(0)×p(1)q(1) we can denote the computation of the
pre- and post-nonlinearity activations as
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Figure 1: A deep convolutional neural network following our notation. Infinite limits are
taken over the number of convolutional filters C(`). As the number of filters grow
(vertical), the number of channels in the following layer (horizontal) grow as well.
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In a single-layer CNN, these activations are followed by a fully-connected layer with weights
W(2) ∈ RC(1)×PQ . Our final output is again given by a summation over the activations

f(X) =

C(1)∑
c=1

P ·Q∑
p=1

φ
(
Z(1)
cp(X)

)
W (2)
cp =

∑
cp

A(1)
cp (X)W (2)

cp =
∑
p

A(f)
p (X) , (2)

where A(f)
p (X) denotes the result before the summation over the patch locations p.

We analyse the distribution on function outputs f(X) for some Gaussian prior on the
weights p(W), where W is the collection of the weights at all layers. In all the cases we
consider, we take the prior to be independent over layers and channels. Here we extend on
earlier work by allowing spatial correlation in the final layer’s weights (we will consider all
layers later) through the covariance matrix Σ(1) ∈ RP ·Q×P ·Q . This gives the prior

p(W(1)) =

C(0)∏
c′=0

C(1)∏
c=1

N
(
W

(1)
[cc′:]; 0, I

)
, p(W(2)) =

C(1)∏
c=1

N
(

W
(2)
[c:]; 0,

1

C(1)
Σ(2)

)
, (3)

where we use square brackets to index into a matrix or tensor, using the Numpy colon
notation for the collection of all variables along an axis.

Independence between channels makes the collection of all activations1 A(f)(X) a sum
of i.i.d. multivariate random variables, which allows us to apply the central limit theorem
(CLT) as C(1) →∞ (Neal, 1996). The covariance between the final-layer activations for two
inputs X,X′ becomes
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The limit of the sum of the final expectation over W(1) can be found (see appendix D for
details) in closed form for many activations and is denoted as k(1)(X[p],X′[p

′]). We find the
final kernel for the GP by taking the covariance between function values f(X) and f(X′)
and performing the final sum in eq. 2:

k(X,X′) = C
[
f(X), f(X′)

]
=
∑
pp′

k(1)(X[p],X′[p
′])Σ

(2)
pp′ . (5)

We can now see how different choices for Σ(2) give different forms of spatial correlation.

1. We use boldface variables to collect all subscripted tensors into a single matrix or tensor. This can then
be indexed using square brackets, i.e. A(f)

[p](X) = A
(f)
p (X).
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Independence Garriga-Alonso et al. (2019) and Novak et al. (2019) consider Σ
(2)
pp′ = δpp′ ,

i.e. the case where all weights are independent. The resulting kernel simply sums components
over patches, which implies an additive model (Stone, 1985), where a different function
is applied to each patch, after which they are all summed together: f(X) =

∑
p fp(X

[p]).
This structure has commonly been applied to improve GP performance in high-dimensional
settings (e.g. Duvenaud et al., 2011; Durrande et al., 2012). Novak et al. (2019) point out
that the same kernel can be obtained by taking an infinite limit of a locally connected network
(LCN) (LeCun, 1989) where connectivity is the same as in a CNN, but without weight
sharing, indicating that a key desirable feature of CNNs is lost.

Mean-pooling By taking Σ
(2)
pp′ = 1 we make the weights fully correlated over all locations,

leading to identical weights for all p, i.e. W (2)
cp = W

(2)
c . This is equivalent to taking the

mean response over all spatial locations (see eq. 2), or mean-pooling. As Novak et al. (2019)
discuss, this reintroduces the spatial correlation that is the intended result of weight sharing.
The “translation invariant” convolutional GP of Van der Wilk et al. (2017) can be obtained
by this single-layer limit using Gaussian activation functions (van der Wilk, 2019). Since this
mean-pooling was shown to be too restrictive in this single-layer case, Van der Wilk et al.
(2017) considered pooling with constant weights αp (i.e. without a prior on them). In this
framework, this is equivalent to placing a rank 1 prior on the final-layer weights by taking
Σ
(2)
pp′ = αpαp′ . This maintains the spatial correlations, but requirs the αps to be learned by

maximum marginal likelihood (ML-II).

Spatially correlated weights In the pooling examples above, the spatial covariance of
weights is taken to be a rank-1 matrix. We can add more flexibility to the model by varying
the strength of correlation between weights based on their distance in the image. We consider
an exponential decay depending on the distance between two patches: Σ

(2)
pp′ = exp(−d(p, p′)/l).

We recover full independence by taking l→ 0, and mean-pooling with l→∞. Intermediate
values of l allow the rigid assumption of complete weight sharing to be relaxed, while still
retaining spatial correlations between similar patches. This construction gives exactly the
same kernel as investigated by Dutordoir et al. (2020), who named this property “translation
insensitivity”, as opposed to the stricter invariance that mean-pooling gives. The additional
flexibility improved performance without needing to add many parameters that are learned
in an non-Bayesian fashion.

Our construction shows that spatial correlation can be retained in infinite limits without
needing to resort to architectural changes. A simple change to the prior on the weights is all
that is needed. This property is retained in wide limits of deep networks in a similar way,
which we investigate next.

3. Spatial Correlations in Deep Networks

In appendix B, we provide a detailed but informal extension of the previous section’s results
to deep networks. We also formulate the correlated weights prior in the framework provided
by by Yang (2019), which provides a formal justification for our results.

The procedure for computing the kernel has a recursive form similar to existing analyses
(Garriga-Alonso et al., 2019; Novak et al., 2019). Negligible additional computation is needed
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to consider arbitrary correlations, compared to only considering mean-pooling (Novak et al.,
2019; Arora et al., 2019). The main bottleneck is the need for computing covariances for
all pairs of patches in the image, as in eq. 5. For a D-dimensional convolutional layer, the
corresponding kernel computation is a convolution with a 2D-dimensional covariance tensor.

4. Experiments

We seek to test two hypotheses. 1) Can we eliminate architectural choices, and recover their
effect using continuous hyperparameters instead? 2) In the additional search space we have
uncovered, can we find a kernel that performs better than the existing ones?

We evaluate various models on class-balanced subsets of CIFAR-10 of size 2i ·10, following
Arora et al. (2020). As is standard practice in the wide network literature, we reframe
classification as regression to one-hot targets Y. We subtract C = 0.1 from Y to make its
mean zero, but we observed that this affects the results very little. The test predictions are
the argmax over k of the posterior Gaussian process means

label(x∗) = argmaxk fk(x∗) = argmaxk Kx∗X

(
σ2I + KXX

)−1
Y[:k] , (6)

where σ2 is a hyperparameter, the variance of the observation noise of the GP regression.
We perform cross-validation to find a setting for σ2. We use the eigendecomposition of Kxx

to avoid the need to recompute the inverse for each value of σ2.
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Figure 2: Cross-validation accuracy of the CNNGP-14 and Myrtle10 networks on subsets of
CIFAR10, with varying lengthscale of the Matérn-3/2 kernel that determines the
weight correlation in the last layer. With larger data set sizes N , the improvement
is larger, and the optimal lengthscale λ converges to a similar value (λ ≈ 17). For
all data sets except the largest, the values are averaged over several runs, and the
thin lines represent the ±2σn, the estimated standard deviation of the mean. We
can improve the performance of the classifier by choosing an intermediate λ.
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Figure 3: Correlated weights in intermediate layers. We replace pooling layers in the Myr-
tle10 architecture with larger convolutional filters with correlated weights. The
lengthscale, and thus the amount of correlation, is varied along the x-axis. By
adding correlations to a convolutional layer, we can recover the performance of the
hand-selected architecture with mean-pooling.

4.1. Correlated weights in the last layer

We start with two architectures used in the neural network kernel literature, the CNN-GP
(Novak et al., 2019; Arora et al., 2019) with 14 layers, and the Myrtle network (Shankar
et al., 2020) with 10 layers. The CNNGP-14 architecture ((conv, relu) × 14, pool) has a
32 × 32-sized layer at the end, which is usually transformed into the 1 × 1 output using
mean pooling. The Myrtle10 architecture (((conv, relu)× 2, pool2×2)× 3, pool) has a 8× 8
pooling layer at the end.

We replace the final pooling layers with a layer with correlated weights. Following
Dutordoir et al. (2020), the covariance Σpp′ of the weights is given by the Matérn-3/2 kernel
with lengthscale λ:

Σpp′ =

(
1 +

√
3||p− p′||2

λ

)
exp

(
−
√

3||p− p′||2
λ

)
. (7)

Note that p, p′ are 2-d vectors representing patch locations. The “extremes” of independent
weights and mean pooling are represented by setting Σpp′ = δpp′ and Σpp′ = 11T, respectively.

In figure 2, we investigate how the 4-fold cross-validation accuracy on data sets of size
N = 2i ·10 varies with the lengthscale λ of the Matérn-3/2 kernel, which controls the “amount”
of spatial correlation in the weights of the last layer. For each data point in each line, we
split the data set into 4 folds, and we calculate the test accuracy on 1 fold using the other 3
as training set, for each value of σ that we try. We take the maximum accuracy over σ.

We investigate how the effect above varies with data set size. As the data set grows
larger, we observe that the advantage of having a structured covariance matrix in the output
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becomes more apparent. We can also see the optimal lengthscale λ converging to a similar
value, of about λ ≈ 17, which is evidence for the hypothesis holding with more data. The
optimal lengthscale is the same for both networks, so it may be a property of the CIFAR10
data set.

The largest data set size in each part of the plot was run only once because of computa-
tional constraints. We transform one data set of size N into two data sets of size N/2 by
taking block diagonals of the stored kernel matrix, so we have more runs for the smallest
sizes. This is a valid Monte-Carlo estimate of the true accuracy under the data distribution,
with less variance than independent data sets, because the data sets taken are anti-correlated,
since they have no points in common.

4.2. Correlated weights in intermediate layers

We take the same approach to the experiment in figure 3. This time, we replace the 2× 2
intermediate mean-pooling layer, together with the next 3 × 3 convolution layer, in the
Myrtle10 architecture with correlated weights. We change it to a 6 × 6 weight-correlated
matrix. We observe that when the lengthscale is 0, the performance of the network is poor,
suggesting that the mean-pooling layers in Myrtle10 are necessary. Additionally, we are
able to recover the performance of the hand-selected architecture by varying the lengthscale
parameter.

5. Conclusion

The disappearance of spatial correlations in infinitely wide limits of deep convolutional
neural networks could be seen as another example of how Gaussian processes lose favourable
properties of neural networks. While other work sought to remedy this problem by changing
the architecture (mean-pooling), we showed that changing the weight prior could achieve the
same effect. Our work has three main consequences:

1. Weight correlation shows that locally connected models (without spatial correlation)
and mean-pooling architectures (with spatial correlation) actually exist at ends of a
spectrum. This unifies the two views in the neural network domain. We also unify
two known convolutional architectures that were introduced from the Gaussian process
community.

2. We show empirically that modest performance improvements can be gained by using
weight correlations between the extremes of locally connected networks or mean-pooling.
We also show that the performance of mean-pooling in intermediate layers can be
matched by weight correlation.

3. Using weight correlation may provide advantages during hyperparameter tuning. Dis-
crete architectural choices need to be searched through simple evaluation, while con-
tinuous parameters can use gradient-based optimisation. While we have not taken
advantage of this in our current work, this may be a fruitful direction for future research.
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Appendix A. Related work

Infinitely wide limits of neural networks are currently an important tool for creating approx-
imations and analyses. Here we provide a background on the different infinite limits that
have been developed, together with a brief overview of where they have been applied.

Interest in infinite limits first started with research into properties of Bayesian priors
on the weights of neural networks. Neal (1996) noted that prior function draws from a
single hidden layer neural network with appropriate Gaussian priors on the weights tended
to a Gaussian process as the width grew to infinity. The simplicity of performing Bayesian
inference in Gaussian process models led to their widespread adoption soon after (Williams
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and Rasmussen, 1996; Rasmussen and Williams, 2006). Over the years, the wide limits of
networks with different weight priors and activation functions have been analysed, leading to
various kernels which specify the properties of the limiting Gaussian processes (Williams,
1997; Cho and Saul, 2009).

With the increasing prominence of deep learning, recursive kernels were introduced in an
attempt to obtain similar properties. Cho and Saul (2009); Mairal et al. (2014) investigated
such methods for fully-connected and convolutional architectures respectively. Despite
similarities between recursive kernels and neural networks, the derivation did not provide
clear relationships, or any equivalence in a limit. Hazan and Jaakkola (2015) took initial
steps to showing the wide limit equivalence of a neural network beyond the single layer case.
Recently, Matthews et al. (2018); Lee et al. (2018) simultaneously provided general results for
the convergence of the prior of deep fully-connected networks to a GP.2 A different class of
limiting kernels, the Neural Tangent Kernel (NTK), originated from analysis of the function
implied by a neural network during optimisation (Jacot et al., 2018), rather than the prior
implied by the weight initialisation. Just like the Bayesian prior limit, this kernel sheds
light on certain properties of neural networks, as well as providing a method with predictive
capabilities of its own. The two approaches end up with subtly different kernels, which both
can be computed as a recursive kernel.

With the general tools in place, Garriga-Alonso et al. (2019); Novak et al. (2019) derived
limits of the prior of convolutional neural networks with infinite filters. These two papers
directly motivated this work by noting that spatial correlations disappeared in the infinite
limit. Spatial mean pooling at the last layer was suggested as one way to recover correlations,
with Novak et al. (2019) providing initial evidence of its importance. Due to computational
constraints, they were limited to using a Monte Carlo approximation to the limiting kernel,
while Arora et al. (2019) performed the computation with the exact NTK. Very recent
preprints provide follow-on work that pushes the performance of limit kernels (Shankar et al.,
2020) and demonstrated the utility of limit kernels for small data tasks (Arora et al., 2020).
Extending on the results for convolutional architectures, Yang (2019) showed how infinite
limits could be derived for a much wider range of network architectures.

In the kernel and Gaussian process community, kernels with convolutional structure have
also been proposed. Notably, these retained spatial correlation in either a fixed (van der
Wilk et al., 2017) or adjustable (Mairal et al., 2014; Dutordoir et al., 2020) way. While
these methods were not derived using an infinite limit, Van der Wilk (2019) provided an
initial construction from an infinitely wide neural network limit. Inspired by these results,
we propose limits of deep convolutional neural networks which retain spatial correlation in a
similar way.

2. The derivation of the limiting kernel differs between the two papers, with the results being consistent.
Matthews et al. (2018) carefully take limits of realisable networks, while Lee et al. (2018) take the infinite
limit of each layer sequentially.
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Appendix B. Spatial Correlations in Infinitely Wide Deep Convolutional
Networks

The setup for the case of a deep neural network follows that of section 2, but with weights
applied to each patch of the activations in the previous layer as

Z(`)
cp(X) =

C(`)∑
γ=1

p(`)q(`)∑
q=1

A(`−1)[p]
γq (X)W (`)

cγq , A(`)
cp(X) = φ

(
Z(`)
cp(X)

)
. (8)

We use two ways to index into activations. We either index into the pth location as A(`)
cp(X),

or into the qth location in the pth patch as A(`)[p]
cq (X). For regular convolutions, the number

of patches is equal to the number of spatial positions in the layer before due to zero-padding,
regardless of filter size. The only operation that changes the spatial size of the activations is
a strided convolution. The one exception is the final layer, where we reduce all activations
with their own weight. To unify notation, we see this as just another convolutional layer, but
with a patch size equal to the activation size, and without zero padding. The final layer can
have multiple output channels to allow e.g. classification with multiple classes.

As pointed out by Matthews et al. (2018), a straightforward application of the central
limit theorem is not strictly possible for deep networks. Fortunately, Yang (2019) developed a
general framework for expressing neural network architectures and finding their corresponding
Gaussian process infinite limits. The resulting kernel is given by the recursion that can be
derived from a more informal argument which takes the infinite width limit in a sequential
layer-by-layer fashion, as was used in Garriga-Alonso et al. (2019). We follow this informal
derivation, as this more naturally illustrates the procedure for computing the kernel. A
formal justification can be found in appendix C.

B.1. Recursive Computation of the Kernel

To derive the limiting kernel for the output of the neural network, we will derive the
distribution of the activations for each layer. In our weight prior, we correlate weights within
a convolutional filter:

N
(

W
(`)
[cγ:]; 0,

1

C(`−1)Σ
(`)

)
. (9)

Our derivation is general for any covariance matrix, so layers with correlated weights can be
interspersed with the usual layers.

A Gaussian process is determined by the covariance of function values for pairs of inputs
X,X′. Since the activations at the top layer are the function values, we will compute
covariances between activations from the bottom of the network up. Starting from the
recursion in eq. 8, we can find the covariance between any two pre-nonlinearity activations

11
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from a pair of inputs X,X′:

CW

[
Z(`)
cp(X), Z

(`)
c′p′(X

′)
]

=
C(`−1)∑
γ=1

C(`−1)∑
γ′=1

∑
q=1

∑
q′=1

EW

[
A(`−1)[p]
γq (X)W (`)

cγqA
(`−1)[p′]
γq′ (X′)W

(`)
cγ′q′

]
= δcc′

1

C(`−1)

∑
γqq′

EW

[
A(`−1)[p]
γq (X)A

(`−1)[p′]
γq′ (X′)

]
Σ
(`)
qq′

= δcc′K
(`)
pp′(X,X

′) . (10)

For ` = 1, the activations in the previous layer are the image inputs, i.e. A(0)(X) = X, making
the expectation a simple product between image patches. The pre-nonlinearity activations
are Gaussian, because of the linear relationship with the weights. This allows us to find the
covariance of the post-nonlinearity activations. Since Z(`)(X),Z(`)(X′) are jointly Gaussian,
the expectation will only depend on pairwise covariances. Here we represent this dependence
through the function F (·, ·, ·) (see appendix B for details on the computation):

EW

[
A`cp(X)A`cp′(X

′)
]

= EZ(`)(X),Z(`)(X′)

[
φ
(
Z(`)
cp(X)

)
φ
(
Z(`)
cp(X

′)
)]

= F (K(`)
pp (X,X),K

(`)
pp′(X,X

′),K
(`)
p′p′(X

′,X′))

= V
(`)
pp′ (X,X

′) . (11)

The pre- and post-nonlinearity activations are independent between different channels, and
identical over all channels, so we omit denoting the channel indices.

To compute the covariance of the pre-nonlinearity for ` ≥ 2, we can again apply eq. 10.
Equation 11 shows that the post-nonlinearity covariances are constant over channels, so we
can simplify eq. 10 further:

K
(`)
pp′(X,X

′) =
1

C(`−1)

∑
γqq′

EW

[
A(`−1)[p]
γq (X)A

(`−1)[p′]
γq′ (X′)

]
Σ
(`)
qq′

=
∑

q∈pth patch

∑
q′∈p′th patch

V
(`−1)[p]
qq′ (X,X′)Σ

(`)
qq′ . (12)

We next want to compute the post-nonlinearity activations for layer `. For finite C(1), Z(2)(X)
will not be Gaussian, which is required by eq. 11. However, if we take C(`−1) →∞, Z(`)(X)
will converge to a Gaussian by the central limit theorem, all while keeping the covariance
constant. After taking the limit, we can then apply eq. 11. This provides us with a recursive
procedure to compute the covariances all the way up to the final layer, by sequentially taking
limits of C(`) →∞.

B.2. Computational Properties: convolutions double in dimensions

The core of the kernel computation for convolutional networks, whether or not they have
spatial correlations, is the sum over pairs of elements of input patches qq′, for each pair of
output locations pp′ in eq. 10. For a network that is built with convolutions of 2-dimensional
inputs with 2-dimensional weights, the sum in 10 is exactly a 4-dimensional convolution of
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the full second moment of the input distribution (for inputs X, the outer product), with the
4-dimensional covariance tensor of the weights. In general, a D-dimensional convolution
in weight space corresponds to a 2D-dimensional convolution in covariance space, with the
same strides, dilation and padding.

With this framework, the expression for the covariance of the next layer when using
independent weights becomes a 4-d convolution of the activations’ second moment with a
diagonal 4-d covariance tensor Σ(`). This is conceptually simpler, but computationally more
complex, than the convolution-like sums over diagonals pp′ of Arora et al. (2019).

B.3. Implementation

We extend the neural-tangents (Novak et al., 2020) library with a convolution layer and a
read-out layer, that admit a 4-dimensional covariance tensor for the weights. This allows
interoperation with existing operators.

4d convolutions are uncommon in deep learning, so our implementation uses a sum over
q(`) 3-d convolutions, where q(`) = 3 is the spatial size of the convolutional filter. While
this enables GPU acceleration, computing the kernel is a costly operation. Reproducing
our results takes around 10 days using an nVidia RTX 2070 GPU. Access to computational
resources limited our experiments to subsets of data on CIFAR-10.

Appendix C. Proof that a CNN with correlations in the weights
converges to a GP

In this section, we formally prove that a CNN with correlated weights converges to a Gaussian
process in the limit of infinite width. Using the Netsor programming language due to Yang
(2019), most of the work in the proof is done by one step: describe a CNN with correlated
weights in Netsor .

For the reader’s convenience, we informally recall the Netsor programming language
(Yang, 2019) and the key property of its programs (Corollary 6). The outline of our
presentation here also closely follows Yang (2019). Readers familiar with Netsor should
skip to appendix C.3, where we show the program that proves Theorem 9.

We write [n] to mean the set {1, . . . , n}.

C.1. The Netsor programming language

There are three types of variables: G(n)-vars, A(n1, n2)-vars, and H(n)-vars. Each of these
have one or two parameters, which are the widths we will take to infinity. For a given index
in [n] (or [n1], [n2]), each of these variables is a scalar. To represent vectors that do not grow
to infinity, we need to use collections of variables.

G-vars (Gaussian-vars) are n-wise approximately i.i.d. and Gaussian. By “n-wise (approxi-
mately) independent” we mean that there can be correlations between G-vars, but only
within a single index i ∈ 1, . . . , n. G-vars will converge in distribution to an n-wise
independent, identically distributed Gaussian in the limit of n→∞, if all widths are
n.

13
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A-vars represent matrices, like the weight matrices of a dense neural network. Their entries
are always i.i.d. Gaussian with with zero mean, even for finite instantiations of the
program (finite n). There are no correlations between different A-vars, or elements of
the same A-var.

H-vars represent variables that become n-wise i.i.d. (not necessarily Gaussian) in the infinite
limit. G is a subtype of H, so all G-vars are also H-vars.

We indicate the type of a variable, or each variable in a collection, using “var : Type”.

Definition 1 (Netsor program) A Netsor program consists of:

Input: A set of G-vars or A-vars.

Body: New variables can be defined using the following rules:

MatMul: A(n1, n2)× H(n2)→ G(n1). Multiply an an i.i.d. Gaussian matrix times an
i.i.d. vector, which becomes a Gaussian vector in the limit n2 →∞.

LinComb: Given constants α1, . . . , αK , and G-vars x1, . . . , xK of type G(n1), their
linear combination

∑K
k=1 αkxk is a G-var.

Nonlin: applying an elementwise nonlinear function φ : Rk → R, we map several
G-vars x1, . . . , xK to one H-var.

Output: A tuple of scalars (vT
1x1/

√
n1, . . . , v

T
KxK/

√
nK). The variables vk : G(n) are

input G-vars used only in the output tuple of the program. It may be the case that
vi = vj for different i, j. Each xk : H(nk) is an H-var.

C.2. The output of a Netsor program converges to a Gaussian process

Definition 2 (Controlled function) A function φ : Rk → R is controlled if

|φ(x)| ≤ C exp
(
‖x‖(2−ε)2

)
+ c

for C, c, ε > 0, where ‖ · ‖2 is the L2 norm.

Intuitively, this means that the function φ grows more slowly than the rate at which the
tail of a Gaussian decays. Recall that the tail of a mean zero, identity covariance Gaussian
decays as N (x |0, I) ∝ exp

(
−‖x‖22

)
.

Assumption 3 All nonlinear functions φ(·) in the Netsor program are controlled.

Assumption 4 (Distribution of A-var inputs) Each element Wc,γ ∈ Ai(n, n) in each
input A-var is sampled from the zero-mean, i.i.d. Gaussian, Wc,γ ∼ N

(
0, σ2w/n

)
.

Assumption 5 (Distribution of G-var inputs) Consider the input vector of all G-vars
for each channel c ∈ [n], that is the vector zc := [xc : x is input G-var]. It is drawn from
a Gaussian, zc ∼ N

(
µin,Σin). The covariance Σin may be singular. The G-vars v that

correspond to the output are sampled independently from all other G-vars, so they are excluded
from each zc

14
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Yang (2019) goes on to prove the Netsor master theorem, from which the corollary of
interest follows.

Corollary 6 (Corollary 5.5, abridged, Yang (2019)) Fix a Netsor program with con-
trolled nonlinearities, and draw its inputs according to assumptions 4 and 5. For simplicity,
fix the widths of all the variables to n. The program outputs are (vT

1x1/
√
n, . . . , vT

KxK/
√
n),

where each xk is an H-var, and each vk is a G-var independent from all others with variance
σ2vk (there can be some repeated indices, vi = vj). Then, as n→∞, the output tuple converges
in distribution to a Gaussian N (0,K). The value of K is given by the recursive rules in
equation 2 of Yang (2019).

Informally, the rules consist of recursively calculating the covariances of the program’s
G-vars and output, assuming at every step that the G-vars are n-wise i.i.d. and Gaussian.
This is the approach we employ in Section 4 of the main paper.

C.3. Description in Netsor of a CNN with correlations in the weights

The canonical way to represent convolutional filters in Netsor (Yang, 2019, Netsor program
4) is to use one A-var for every spatial location of the weights. That is, if our convolutional
patches have size p(`) × q(`), we define the input W

(`)
q : A(C(`+1), C(`)) for all q ∈ [p(`)q(`)].

But A-vars have to be independent of each other, so how can we add correlation in the
weights? We apply the correlation separately, using a LinComb operation. For this, we will
use the following well-known lemma, which is the Lε+ µ expression of a Gaussian random
variable.

Lemma 7 Let µ, Σ be an arbitrary mean vector and covariance matrix, respectively. Let
u1, . . . , uK ∼ N (0, 1) be a collection of i.i.d. Gaussian random variables. Then, there exists
a lower-triangular square matrix L such that LLT = Σ. Furthermore, the random vector
w ∈ RK , w := Lu + µ (equivalently, wk =

∑k
j=1 Lkjuj + µk ) has a Gaussian distribution,

w ∼ N (µ,Σ).

Proof Σ is a covariance matrix so it is positive semi-definite, thus a lower-triangular square
matrix L s.t. LLT = Σ always exists. (If Σ is singular, L might have zeros in the diagonal.)
The vector w is Gaussian because it is a linear transformation of u. Calculating its moments
finishes the proof.

Thus, to express convolution in Netsor with correlated weights w, we can use the following
strategy. First, express several convolutions with uncorrelated weights u. Then, combine the
output of the convolutions using LinComb and coefficients of the matrix L.

If the correlated weights have a non-zero mean, we can add an input G-var with mean µ
and variance 0, and use it in the LinComb as well. Because we only use µ = 0 in the main
text, we omit this step here.

Lemma 8 (The convolution with L-trick is correct) Consider the definitions in algo-
rithm 1. Define the correlated convolution

Y (2)
cp (Xm) :=

C(2)∑
γ=1

p(2)q(2)∑
q=1

A(1)[p]
γq (Xm)W (2)

cγq
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Algorithm 1: Netsor description of the CNN in Figure 1, with correlated weights.
/* Program for M training + test points, X1, . . . ,XM. The activation

nonlinearity is φ. */
/* G-vars for the 1st layer pre-activations, for all spatial locations p and

input points Xm. */

Input :Z(1)
p (Xm) : G(C(1)) for p ∈

[
P (1)Q(1)

]
and m ∈ [M ].

/* A-vars for the independent convolutional patches U, for every location i
in a patch and layer `. */

Input :U(`)
i : A

(
C(`), C(`−1)) for i ∈ [p(`)q(`)] and ` ∈ {2}.

/* G-vars for the output, for every location i */

Input :U(3)
i : G

(
C(2)

)
for i ∈ [P (2)Q(2)]

/* Construct the second layer’s independent activations B
(2)[p]
q , for each

spatial location p, location q in a patch and location i in a patch. */
for m ∈ [M ], p ∈

[
P (1)Q(1)

]
, q ∈

[
p(1)q(1)

]
, i ∈

[
p(1)q(1)

]
do

Nonlin: A(1)
p (Xm) := φ(Z

(1)
p (Xm)) : H(C(1))

MatMul: B(2)[p]
qi (Xm) := U

(2)
i A

(1)[p]
q (Xm) : G(C(2))

end
/* Correlate the activations according to Σ(2) = L(2)

(
L(2)

)T
*/

for m ∈ [M ], p ∈
[
P (2)Q(2)

]
do

/* Convolution (sum in a patch, index q) with weights made dependent with
index i (c.f. Lemma 7) */

LinComb: Z(2)
p (Xm) :=

∑p(1)q(1)

q=1

∑q
i=1 L

(2)
qi B

(2)[p]
qi (Xm) : G(C(2))

end
/* Repeat the last two for-loops as needed to create more layers */

for m ∈ [M ], p ∈
[
P (2)Q(2)

]
do

Nonlin: A(2)
p (Xm) := φ(Z

(2)
p (Xm)) : H(C(2))

end
/* One output for every spatial location p, spatial location i and data point

m */

Output :
{(
U

(3)
i

)T
A
(2)
p (Xm)/

√
C(2) : for p ∈

[
P (2)Q(2)

]
, i ∈

[
P (2)Q(2)

]
and m ∈ [M ]

}
Output postprocessing: correlate the outputs (not strictly part of Netsor , c.f.

Lemma 7)
{
Z(3)(Xm) :=

∑P (2)Q(2)

p=1

∑p
i=1

(
U

(3)
i

)T
A
(2)
p (Xm) : for m ∈ [M ]

}
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where W
(2)
cγ ∼ N

(
0, 1

C(1) Σ
(2)
)
, for γ ∈ [C(1)] and c ∈ [C(2)], mirroring eqs. (6) and (7) in

the main text. Then, conditioning on the value of A(1)
γp(Xm) for all γ ∈ C(1), p ∈ [P (1)Q(1)]

and m ∈ [M ], and for any widths C(1), C(2), the random variables Y (2)
cp (Xm) and Z(2)

cp (Xm)
have the same distribution for all c ∈ [C(2)], p ∈ [P (2)Q(2)] and m ∈ [M ].

(Note, we abused notation and used c to index into the G-var Z(2)
p (Xm), and γ for A(2)

q (Xm).)
Proof Conditioned on A(1)(X), both Z(2)(X) and Y(2)(X) are Gaussian, because they are
linear combinations of Gaussians. Thus, we just have to show their first two moments are
equal. First, the mean. E

[
Z

(2)
cp (Xm)

]
= 0 because each E

[
U

(2)
cγ

]
= 0, and E

[
Y

(2)
cp (Xm)

]
= 0

because E
[
W

(1)
cγ

]
= 0.

The covariance is more involved. First we rewrite Z(2)
cp (Xm) as a function of A(1)(Xm),

by substituting the definition of B(2)[p]
qi (Xm) into it and making the indices of the MatMul

explicit

Z(2)
cp (Xm) =

p(1)q(1)∑
q=1

q∑
i=1

L
(2)
qi

C(1)∑
γ=1

U
(2)
cγiA

(1)[p]
γq (Xm) (13)

Then we can write out the second moment:

E
[
Z(2)
cp (Xm)Z

(2)
c′p′(Xm′)

]
=

p(1)q(1)∑
q=1

p(1)q(1)∑
q′=1

q∑
i=1

q′∑
i′=1

C(1)∑
γ=1

C(1)∑
γ′=1

L
(2)
qi L

(2)
q′i′E

[
U

(2)
cγiU

(2)
c′γ′i′

]
A(1)[p]
γq (Xm)A

(1)[p′]
γ′q′ (Xm′)

(14)

Because the U
(2)
i are independent, that is E

[
U

(2)
cγiU

(2)
c′γ′i′

]
= δcc′δγγ′δii′1/C

(1) (assumption 4),
the covariance across output channels c, c′ is zero if c 6= c′. Furthermore, we can reduce some
double sums to single sums:

E
[
Z(2)
cp (Xm)Z

(2)
c′p′(Xm′)

]
= δcc′

p(1)q(1)∑
q=1

p(1)q(1)∑
q′=1

1

C(1)

C(1)∑
γ=1

min(q,q′)∑
i=1

L
(2)
qi L

(2)
q′i′A

(1)[p]
γq (Xm)A(1)[p′]

γq (Xm′)

(15)

= δcc′

p(1)q(1)∑
q=1

p(1)q(1)∑
q′=1

1

C(1)

C(1)∑
γ=1

Σ
(2)
qq′A

(1)[p]
γq (Xm)A(1)[p′]

γq (Xm′), (16)

where we recognized
∑min(q,q′)

i=1 L
(2)
qi L

(2)
q′i′ as lower-triangular matrix multiplication, and recall

that Σ(2) = L(2)
(
L(2)

)T.
The covariance E

[
Y

(2)
cp (Xm)Y

(2)
c′p′(Xm′)

]
(conditioned on A(1)(Xm)) has exactly the same

expression. This can be derived in the same way as equation (8) in the main text.

Theorem 9 (Correlated CNN converges in distribution to a GP) Given a set ofM
input points X1, . . . ,XM , the postprocessed output of the Netsor program in algorithm 1
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correctly implements a CNN with correlated weights and 3 layers, as described in equa-
tions (6) and (7) and figure 1 of the main text. Fix the widths of all channels C(`) = n.
Under assumptions (4,5,3), as n → ∞, the output of the correlated CNN applied to the
training set {Xm}Mm=1 converges in distribution to a Gaussian process with mean 0, and
covariance K(3)(Xm,Xm′) given by equation (12) in appendix B.

Proof We proceed in order of the claims.

• The program in algorithm 1 is correct: the novel part of this program, compared
to the CNNs with mean pooling of Yang (2019, appendix B.2), is the application of
Lemma 7 to correlate the convolution weights and the postprocessed output. Applying
Lemma 8 to both, we can see that Algorithm 1 implements a 3-layer CNN with
correlated weights.

• The postprocessed output of the program converges to a GP with covariance
in equation (10) of the main text. Using Corollary 6, we show the output tuple of the
Netsor program in algorithm 1 converges in distribution to a GP, with mean zero and
a covariance that is independent across the index i of the output G-vars U (3)

i . Using
the same technique as Lemma 8, we can show that the covariance of the postprocessed
output Z(3)(Xm) is the correct one.

Now we need only show that the postprocessed outputs
{
Z(3)(Xm)

}M
m=1

converge to a
GP in distribution. Convergence in distribution is convergence of the expectation of all
bounded functions. Since the covariance Σ(3) of the last layer weights is fixed, the set
of bounded functions of

{
Z(3)(Xm)

}M
m=1

is the same as the set of bounded functions

of
{(
U

(3)
i

)T
A
(2)
p (Xm)/

√
C(2)

}
i,m

.

Appendix D. Details of the expectation of the nonlinearities.

For details on the computation of the expectation for the second moment of tanhs, see the
appendix of (Lee et al., 2018).

For the balanced ReLU nonlinearity (φ(x) =
√

2 max(0, x)), which we use in all the
experiments in this paper, we can use the expression by Cho and Saul (2009):

V
(`)
pp′ (X,X

′) =

√
K

(`)
pp (X,X)K

(`)
p′p′(X

′,X′)

π

(
sin θ

(`)
pp′ + (π − θ(`)pp′) cos θ

(`)
pp′

)
(17)

where θ(`)pp′ = cos−1
(
K

(`)
pp′(X,X

′)/
√
K

(`)
pp (X,X)K

(`)
p′p′(X

′,X′)

)
.

This expression implies that V (`)
pp (X,X) = K

(`)
pp (X,X) and V (`)

p′p′(X
′,X′) = K

(`)
p′p′(X

′,X′).
This was adopted from the start of the GP-NN literature by Lee et al. (2018); Matthews

et al. (2018). The neural-tangents library (Novak et al., 2020) implements a numerically
stable version of it.
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