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Abstract

We present GeoGrid-Bench, a benchmark designed to evaluate the ability of founda-
tion models to understand geo-spatial data in the grid structure. Geo-spatial datasets
pose distinct challenges due to their dense numerical values, strong spatial and
temporal dependencies, and unique multimodal representations including tabular
data, heatmaps, and geographic visualizations. To assess how foundation models
can support scientific research in this domain, GeoGrid-Bench features large-scale,
real-world data covering 16 climate variables across 150 locations and extended
time frames. The benchmark includes approximately 27,000 question-answer pairs,
systematically generated from 8 domain expert-curated templates to reflect prac-
tical tasks encountered by human scientists. These range from basic queries at a
single location and time to complex spatiotemporal comparisons across regions and
periods. Our evaluation reveals that vision-language models perform best overall,
and we provide a fine-grained analysis of the strengths and limitations of different
foundation models in different geo-spatial tasks. This benchmark offers clearer
insights into how foundation models can be effectively applied to geo-spatial data
analysis and used to support scientific research

1 Introduction

Foundation models have demonstrated transformative capabilities across diverse domains, ranging
from language and vision to programming and reasoning (Hurst et al., [2024; Jaech et al.| [2024;
Jiang et al.| 2024blcla; |Balachandran et al., |2024; Jiang et al.| [2024d; |He et al., [2024a). Their rapid
advancement has naturally inspired research exploring their utility in scientific contexts, particularly
in critical fields like climate science and natural hazard assessment (Mai et al.| 2022} [Xie et al.|
2024 2025; Nguyen et al., [2023}; Mai et al.| 2023} |de Rijke et al., 2025} Mallick et al.,[2025), where
accurate, data-intensive decision-making can profoundly impact human well-being.

Geo-spatial data pose distinct challenges for foundation models due to their inherent spatio-temporal
dependencies and exceptionally high data density. Unlike typical tabular records for knowledge
retrieval (Zhang et al., [2023a} [Pasupat & Liang, 2015} [Zhang et al.; 2025) or natural images, climate
data exists in structured, gridded formats with complex, interconnected numerical values often
represented through modalities such as tables, heatmaps, or geographic images spanning across
space and time. These data are typically organized in highly structured, gridded formats that
encode interconnected numerical values across spatial and temporal dimensions. Each data point
is not an isolated unit but part of a dense, multi-dimensional array that reflects physical processes,

'All code and data are publicly available at our Github repository https://github. com/bowen-upenn/
GeoGrid_Bench and Huggingface https://huggingface.co/datasets/bowen-upenn/GeoGrid_Bench.
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Template Question Location(s) Time Period(s) Geo-Spatial Variable(s)

User questions generated from templates and rewritten by an LLM

2 As a wildfire risk assessment specialist preparing a report for the Santa Monica fire
gn department, I'm curious about how the fire weather index has shifted from summer
%7 S to autumn during historical periods in Santa Monica, California.

Human User

The user can provide data with different modalities, rendering styles, and scales
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AI Model
The model can provide the answer in different aspects

Overall, the fire weather index increases, especially the region at the top-center /
near the block C204 R106 / near the textual mark 'Santa Clara' on the map. - il

Figure 1: Overview of GeoGrid-Bench. The benchmark features questions generated from tem-
plates that vary by location, time period, and climate variable, then rewritten with natural language
context. Each question is paired with multimodal input—either heatmaps as images or tabular grids
of numerical values. We evaluate models on their ability to solve the queries through different
modalities—natural language, code, or vision. Ground-truth answers capture find-grained aspects
like , (from top-left to lower-right), (row and
column indices), and (textual marks on the maps), whenever available.

environmental interactions, or geographical phenomena evolving over time. Meanwhile, models can
also easily get lost in the context (Liu et al.,[2023)) with overwhelming volumes of values per sample.

Informed decision-making in fields such as disaster response, climate science, and urban development
depends on the ability to detect and interpret patterns across regions and over time. However, there
remains a lack of benchmarks that directly address the unique challenges posed by geo-spatial
gridded data. Most existing efforts docus on object detection, semantic segmentation, object counting,
captioning, or scene understanding of Earth observation images (Lacoste et al., 2023} |Danish et al.|
2024; [Zhang & Wang, 2024} [Zheng et al., [2023; Wang et al., 2024aj [Muhtar et al., 2024} |Bazi
et al., [2024; [Kuckreja et al., [2024])), function calls to the Geographic Information System (GIS)
or SQL queries for data retrieval (Krechetova & Kochedykov, 2025; Jiang & Yang| 2024; [Ning
et al.,|2025; Mooney et al.| 2023; Zhang et al.,[2023b)), or simplified query setups that overlook the
spatial-temporal complexities in practical geo-spatial analysis (Bhandari et al., [2023).

To understand how foundation models can assist geo-spatial data analysis, we introduce GeoGrid-
Bench, a benchmark explicitly designed to evaluate model performance on multimodal, real-world
geo-spatial data. We adopt domain expert-curated query templates to reflect realistic questions that
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é‘g Which region in Philadelphia, PA experienced the largest increase in maximum annual
e temperature during historical period?
User Query
maximum annual temperature maximum annual temperature maximum annual temperature maximum annual temperature

RI95 5675 5

5761 5781 5932

6012 5985 59.38 5021 5919

R194 5754 5780 5513 59,33 5990 6061 5987 5961 5957 5939

R193 57,33 5790 5520 59,59 60.45 6100 60.90 5992 50.89 5977

RI192 5711 5778 5617 59.95 6086 6109 5992 59.92 6012 60.15

RI91 57,37 5799 55.56 50.81 6005 60.02 5993 60.02 60.25 6034

RIS NaN 58.38 59.16 60.89 6016 60.06 60.05 60.15 60.29 60.47

RIB9 NaN 5891 59.63 60.00 6001 6003 60.22 60.36 6051 NaN

RI83 NaN 5971 6002 60.20 5921 6019 NaN NaN NaN NaN

(a) (b) () @

Figure 2: We prepare every data sample in one of the four formats: (a) 2D table as a textual string. (b)
standalone heatmap; (c) heatmap with overlaid numerical annotations at each grid cell; (d) heatmap
overlaid on an actual geographic base map. These formats reflect real-world climate data practices
and differ markedly from typical natural images seen by foundation models. More in Appendix

practitioners would encounter in geo-spatial analysis—providing data in both tabular and image
formats. These tasks range from simple queries about a fixed location and time to more complex
analyses involving multiple locations and temporal comparisons. For each template, we develop oracle
code that is applied uniformly to all query instances, enabling scalable and consistent generation of
question-answer pairs. Our contributions can be summarized as follows:

Large-scale, real-world data: A domain-centric benchmark built on large-scale, real-world climate
projection data, presented in multimodal formats commonly used by actual practitioners, including
structured numerical tables and geographic visualizations.

Scalable query generation: A systematic user query generation pipeline based on domain expert-
designed templates, reflecting diverse and realistic scientific challenges.

Comprehensive evaluation: Evaluation of foundation models with language, coding, multimodal,
and reasoning capabilities across find-grained answer aspects and data modalities to diagnose their
strengths and weaknesses in geo-spatial analysis tasks.

Through comprehensive evaluations, we find that visualizing dense, gridded geo-spatial data as
heatmaps is the most accessible format for existing foundation models to interpret. In contrast, models
struggle to generate flawless code for completing these tasks. Across all model types, identifying
broad trends proves easier than making fine-grained regional distinctions, and models exhibit varying
strengths and weaknesses depending on the task. With GeoGrid-Bench, we aim to shed light on
the strengths and limitations of current foundation models when applied to multimodal geo-spatial
data, a core yet underexplored format in climate science. Our goal is to support and advance the
development of practical Al-assisted tools that can aid scientific research and decision-making.

2 GeoGrid-Bench: Overview of Data Features and Tasks

GeoGrid-Bench aims to reflect the real-world challenges that scientists face when analyzing geo-
spatial data at scale. To achieve this, it features large-scale, real-world geo-spatial data sourced
and sampled from ClimRR (Argonne National Laboratory, [2023)), capturing the complexity of
environmental conditions across 150 locations in North America. ClimRR has demonstrated practical
utility across multiple sectors, supporting hazard mitigation planning in Kentucky, climate risk
assessments by utility companies, and infrastructure planning by engineering firms (TechBrew| [2025}
Center for Climate and Energy Solutions, 2025), while its high-resolution data powers decision
support tools like the Geospatial Energy Mapper (Argonne National Laboratory, [2025) for national-
scale energy and resilience planning. The grid spans 16 diverse climate variables, such as temperature
extremes, precipitation, wind speeds, humidity, fire weather indices, and degree days. An overview
of user-model interaction is shown in Figure/[]

GeoGrid-Bench is built to capture the unique grid structure. Climate projection data are typically
organized across spatial grids and time sequences, resulting in dense, high-dimensional arrays. The
data is inherently interconnected, with each point influenced by its geographic neighbors and historical



s+ context. This structure poses unique challenges: models must capture spatio-temporal dependencies
85 and handle variability across scales to derive meaningful insights.

86 Geo-spatial data is also inherently multimodal, presented as tabular data, heatmaps, or geographic
87 visualizations, with each format sharing alignment across a spatial grid structure. Each grid cell
g8 encodes a rich array of numerical data that captures localized atmospheric behavior and climate
g9 dynamics over time. This multimodal grid structure makes our GeoGrid-Bench an ideal testbed for
90 foundation models designed to reason across space, time, and modality. To perform well, foundation
91 models must integrate spatial context from neighboring cells, understand temporal trends across
92 multi-year projections, and interpret information presented in diverse formats and patterns. GeoGrid-
93 Bench reflects this complexity and we show examples of the data formats in Figure 2}

Templates that require one data frame

1. Which region in the {locationl} experienced the largest increase in {variablel } during {time_framel }?

Templates that require two data frames

2. How has {variablel } changed between {time_framel} and {time_frame2} in the {locationl}?

3. What is the correlation between {variablel} and {variable2} in the {location1} during {time_framel}?

4. How does {variablel} compare between {locationl} and {location2} during {time_framel}?

Templates that require four data frames

5. What is the seasonal variation of {climate_variablel} in {locationl} during {time framel}?

6. Which season in {time_framel} saw the highest levels of {variablel} in {locationl}?

7. Which of {locationl} or {location2} experienced a greater change in {variablel} throughout {time_framel }
and {time_frame2}?

Templates that require eight data frames

8. How does the seasonal variation of {variablel} in {locationl} compare to that in {location2} for
{time_framel}?

Table 1: Template questions in GeoGrid-Bench. We develop those questions with domain experts.
Each question includes placeholders for one or two locations, time frames, and geo-spatial variables.
This design enables scalable question construction while capturing varying levels of complexity based
on the number of data frames involved.

94 To capture the wide range of questions concerning practitioners at the forefront of geo-spatial analysis,

95 we surveyed 13 domain experts in natural hazard risk domains, resulting in 8 template questions based

96 on their input (Table[T)) and around 27,000 query instances in GeoGrid-Bench. Each template includes

97 placeholders based at one or two geographic locations, time frames, and climate variables, requiring

98 one to eight data frames. This design allows us to generate a scalable set of scientifically concrete

99 queries that reflect analytical goals. Specifically, GeoGrid-Bench evaluates the following capabilities
100 of foundation models: (1) Identifying regions with the most significant patterns. This is crucial
101 for disaster response and monitoring, helping detect hotspots that need timely action. (2) Comparing
102 data across different locations and times. This is essential for uncovering spatial disparities,
103 understanding regional dynamics, and tracking changes over time. (3) Analyzing temporal trends
104 and seasonal variations. This is essential for practitioners to anticipate recurring patterns and detect
105 long-term changes to make informed decisions. (4) Interpreting data in multimodal formats. This
106 is essential for understanding the ability of foundation models to interpret real-world geo-spatial data
107 that is multimodal in nature.

Full List of Climate Variables in GeoGrid-Bench

Maximum Annual Temperature, Minimum Annual Temperature, Consecutive Days with No Precipita-
tion, Cooling Degree Days, Fire Weather Index, Maximum Daily Heat Index, Maximum Seasonal Heat
Index, Number of Days with Daily Heat Index > 95°F/105°F/115°F/125°F, Heating Degree, Annual
Total Precipitation, Maximum Seasonal Temperature, Minimum Seasonal Temperature, Wind Speed.
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3 Constructing &8 GeoGrid-Bench At Scale

@ Real-World Data Dodge City, KA, @l Expert Designed
Boston, MA,
Max Annual Temp, - (;hlcag.o, ILA’ . o
Wind Speed, Philadelphia, PA, ... V\{hlch reglor! in the .
Fire Weather Index, i {locationl} experienced the -PY
Location largest increase in
Annual Precipitation, - 9 .
Heat Index, ... Historical Period, {climate_variablel}|during Oracle Code
Mid-Century Period, {time_framel}?

End-Century Period, ......

Climate Variable
Question Template

Time Frame
Filled Questions Target Answers
Templates enable large-scale A single oracle code handles all filled-
question generation in questions within a given femplate

Figure 3: Overview of the example curation process. Each example in GeoGrid-Bench is con-
structed by combining a query template with sampled climate variables, locations, and time frames
from real-world climate data. Each template is paired with a corresponding oracle code that determin-
istically generates target answers for all filled-in question instances under that template.

GeoGrid-Bench features diverse real-world geo-spatial data We illustrate our sample curation
process in Figure[3] Each data sample is formed by extracting a specific climate-location-time slice
from the ClimRR dataset. We sample from the 16 climate variables listed above. For each climate
variable, we select around 50 locations where this climate variable is the most prominent, resulting in
a total of 150 distinct locations across all climate variables, a subset of ClimRR. For example, the
benchmark includes more regions in Southern California for wildfire risk, while precipitation-related
examples are more concentrated in the Pacific Northwest to reflect region-specific climate concerns.

We render each data sample in either a tabular or image format, both structured over a spatial
grid. For a given location and its longitude and latitude, we retrieve all grid cells within a square
region with edge size 84 to 144 km around it, resulting in approximately 50 to 150 entries in the
12-by-12 km grid. In the tabular modality, we prepare each table with numerical values, a caption,
and row and column indices as textual strings. In the image modality, we prepare three types of
visualization with increasing information densities, as shown in Figure[2} (1) A standalone heatmap,
(2) A heatmap with overlaid numerical annotations at each grid cell. and (3) A heatmap overlaid
on an actual geographic base map. Specifically, we render the tabular data as a heatmap with color
gradients. This heatmap is optionally added with numerical annotation of the value on each cell,
or overlaid on a base map (OpenStreetMap contributors|, [2024)) using Folium (Folium), 2023)). To
maintain consistency with the tabular format, we also render row and column indices around the
heatmap. This visualization offers a richer representation to mirror common practices in real-world
analysis. To isolate the challenge of data retrieval, GeoGrid-Bench provides the foundation model
during evaluation with all necessary data frames in either tabular or image formats, focusing solely
on whether the model can solve the problem given the relevant information.

GeoGrid-Bench builds on expert-curated templates for scalable query generation To ensure
that the benchmark reflects the types of analysis most relevant to practitioners in geospatial research,
we consulted 13 domain experts. These experts routinely engage with geo-spatial data to identify
patterns, assess risks, and support decision-making under uncertainty. We develop eight representative
question templates based on operational needs identified by experts. Each template takes as input
one or two climate variables, locations, and time frames and outputs a filled-in user query in our
benchmark, and may require between one and eight data frames to answer. This structured approach
enables the automatic generation of a wide variety of concrete, data-driven queries. For every
template, we manually craft oracle code that deterministically solves the question and prepares
ground-truth answers in desired formats. Crucially, the same oracle applies uniformly to every query
generated from a given template, enabling the scalability of the benchmark. As a result, once a
template and its oracle are validated, we ensure the quality of every generated instance.
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Each question is a multiple-choice with four options, all generated by the oracle code rather than a
language model. Recognizing that a foundation model may excel at different aspects in answering a
geo-spatial query, the benchmark has each query probe a different aspect in giving the answer, as
shown in Figure[I] Specifically, answer options target the following aspects: (1) Overall patterns
(e.g., the wildfire risk overall increases). (2) Spatial references (e.g., the highest wildfire risk occurs
around the top-left region). (3) Coordinate references (e.g., the highest wildfire risk occurs around
Column 204 Row 106). (4) Label references (e.g., the highest wildfire risk occurs near the textual
label "Santa Clara" on the map), which is only available for the image type "heatmap overlaid on an
actual geographic base map".

In addition, to explore which data modalities most effectively support geo-spatial analysis, we
evaluate models across three input settings: language-only, language and code, and language and
vision. Detailed prompting strategies for each setting are provided in Appendix |Al In each mode,
we provide the model with the user query, the relevant data (in either tabular or image format), all
four multiple-choice options, and system instructions as inputs. We extract the model’s final answer
following the special tokens "####Final Answer" to facilitate answer parsing. If the model fails
to provide an explicit option (a), (b), (c), or (d), we use a sentence embedding model (Reimers &
Gurevychl [2019) to identify the most similar option based on the model’s response. When the model
outputs Python code, we execute the code in a shell environment to extract the final answers.

4 Experiment

4.1 Experimental Setup

We benchmark a range of state-of-the-art closed-source and open-source models on GeoGrid-Bench.
Our evaluation covers 5 models from OpenAl, including 04-mini, GPT-4.1, GPT-4.1-mini, GPT-4o,
and GPT-40-mini (OpenAl, 2024, 2025} Hurst et al.l |2024)), and 6 open-source models including
Llama-4-Maverick, Llama-4-Scout, Llama-3.2-11B-Vision, Llama-3.2-3B, Llama-3.1-8B (Grattafiori
et al.} 2024} |AL [2024), and Qwen-2.5-VL-7B (Bai et al., [2025). OpenAl models are accessed via
API calls, and Llama-4 models are accessed through the Lambda Inference API. Inferences for other
open-source models run locally on four NVIDIA A100-SXM4 GPUs with 40GB of VRAM. For
all models, we set max_new_tokens as 1024 with default temperature and sampling strategies. To
ensure fair evaluation across all models, we used identical zero-shot prompts for every model tested
on a randomly sampled subset of 3,200 examples from GeoGrid-Bench. We conducted additional
ablation experiments using 3-shot prompts on 2 representative open-source models (see Appendix [C).

4.2 Evaluation Results and Findings

Vision-language models achieve the strongest performance in geo-spatial tasks Among the
models we evaluate, o4-mini achieves overall the highest performance, while Llama-4-Maverick
leads among open-source models, as shown in Figure [d] Overall, models that receive input in
the vision modality consistently outperform those using language-only input. This suggests that
converting geo-spatial gridded data into heatmap visualizations—rather than presenting models
directly with large volumes of raw numerical values in tabular forms—enables foundation models
to more effectively interpret such data with complex spatial-temporal patterns. Statistical analyses
confirmed no systematic geographic or temporal biases across the evaluated models (see Appendix D).

Inferior performance in code highlights the need for more agentic models in geo-spatial tasks
Contrary to our expectations, foundation models leveraging programming code do not outperform
their language-only counterparts on our task. Upon closer inspection, much of the generated code
is not directly executable in a single pass. For instance, models produce incomplete scripts or bugs,
omit expected outputs, fail to parse data, or struggle with planning over geo-spatial data—ultimately
requiring human intervention across multiple iterations. This limitation aligns with how we construct
the oracle code in the benchmark. This issue is more severe in open-source models like Llama,
which tend to produce fewer executable code. We, therefore, emphasize the need for stronger agentic
behaviors (Plaat et al., 2025} [Kapoor et al.|[2024; |Ngl 2024) in foundation models, where we define
"agentic" as the ability to autonomously generate fully executable code for human end-users in a
single interaction, particularly when the end-users are domain scientists rather than programmers.
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Which of
{locationl} or

{location2}
experienced a
greater change

What is the
seasonal

Which region in
the {locationl}

How does

Which season in {climate_variabl

What is the
correlation

{climate_variabl
e

How has
{climate_variabl

How does the
seasonal
variation of
{clinate_variabl

variation of experienced the  {time_framel} el} compare 1} and el} changed el} in
{climate_variabl {climate_variabl largest increase saw the highest between {climate_variabl between {location1}
el} throughout el} in ] _dn . levels of {locationl} and e2} in the  {time_framel} compare to that
{time_framel} {locationl} {climate_variabl {climate_variabl {location2} {locationl} a in {location2}
and in el} during el} in ring during {time_frame2} in or
model_name  data_modality overall accuracy  {time_frame2}?  {time_framel}?  {time_frame1}? {location1}?  {time_framel}?  {time_framel}? the {location1}?  {time_framel}?
od-mini language and vision 0644 0667 0673 0743 0623 0453 0453 0724
GPT-4.1 language and vision 0578 0640 0593 0660 0523 0313 0.400 0673
GPT-4.1-mini language and vision 0.568 0.633 0.517 0.600 0.487 0373 0.453 0.680
04-mini language-only 0.534 0.470 0.210 0.590 0.570 0510 0.333
GPT-4o  language and vision 0518 0613 0.407 0630 0773 0447 0370 0380 0525
GPT-4.1 language-only 0512 0690 0670 0.450 0530 0540 0470 0450 0293
GPT-4.1-mini language-only 0511 0640 0670 0.450 0500 0580 0440 0470 0333
GPT-do-mini language and vision 0462 0573 0,657 0363 0700 0400 0437 0373 0192
od-mini  language and code 0453 0650 0,660 0420 0.150 0500 0470 0530 0242
GPT-4o-mini language-only 0.437 0.630 0.550 0.410 0.400 0.270 0.570 0.380 0.283
GPT-4.1-mini  language and code 0.427 0470 0570 0560 0200 0410 0.440 0420 0343
GPT-40 language-only 0423 0.630 0.420 0.430 0.400 0.370 0.420 0.430 0.283
GPT-4.1  language and code 0412 0.500 0.580 0.350 0.290 0.430 0.420 0.440 0.283
GPT-4o-mini  language and code 0369 0440 0530 0270 0260 0330 0400 0390 0333
GPT-4o  language and code 0367 0470 0520 0340 0250 0330 0350 0310 0364
Overall language and vision 0554 0625 0.569 0599 0496 0389 0412 0.559
Overall language-only 0.483 0.676 0.622 0.442 0.408 0.470 0.494 0.448 0.305
Overall  language and code 0.406 0506 0572 0388 0230 0400 0416 0418 0313
Overall all 0481 0602 0588 0476 0474 0455 0433 0426 0392
Which of
{location1} or what is the How does the
. {location2} correlation seasonal . o
What is the  experienced a ween variation of How has  Which region in How does
_seasonal  greater change Which season in {climate_variabl {climate variabl {clinate variabl the {locationl} {climate variabl
variation of in  {time_framel} and el} in el} changed experienced the el} compare
{climate_variabl {climate_variabl saw the highest {climate_variabl {location1} between largest increase between
el} in  el} throughout Tevels of 2} in the compare to that  {time_framel} in  {locationl} and
{locationl}  {time_framel} {climate_variabl {location1}  in {location2} and {clinate_variabl {location2}
ring and i during for {time_frame2} in el1} during during
model_name  data_modality overall_accuracy  {time_framel}?  {time_frame2}? {location1}?  {time_framel}?  {time_framel}? the {location1}?  {time_framel}?  {time_framel}?
Llama-4-Maverick language and vision 0.580 0.627 0.667 0373 0.721 0.443 0.537 0.467
InternVL-3-78B  language and vision 0.552 0.600 0.607 0.496 0.420 0.444 0.585 0.468
Llama-4-Scout language and vision 0508 0463 0607 0727 0517 0556 0378 0423 0393
Quen25-VL-72B  language and vision 0.505 0533 0490 0692 0496 0573 0361 0507 0376
Llama-4-Maverick language-only 0486 0570 0620 0460 0370 0424 0470 0430 0540
Llama-4-Scout language-only 0.457 0.490 0.480 0.530 0510 0.364 0.402 0.470 0.410
Qwen2.5-VL-72B language-only 0.425 0510 0.470 0.410 0.444 0.430 0.404 0.341 0.374
IntermVL-3-788 language-only 0423 0640 0490 0250 0407 0410 0468 0376 0330
Quen25-VL-78  language and vision 0413 0440 0420 0507 0523 0380 0337 0367 0330
Liama-4-Maverick  language and code 0337 0630 0350 0100 0320 0192 0400 0290 0410
InternVL2_5-8B  language and vision 0.329 0.390 0.507 0417 0.347 0273 0.306 0.274 0.365
Llama-3.2-3B language-only 0.312 0.290 0.360 0.410 0.280 0.203 0.280 0.240 0.270
Llama-4-Scout  language and code 0.311 0.470 0.370 0.200 0310 0.182 0.347 0.340 0.270
Quen2.5-VL-78 language-only 0.298 0370 0350 0190 0420 0300 0260 0180 0310
Qwen2.5-VL-7B  language and code 0.286 0310 0.550 0.320 0.180 0.140 0.300 0.200 0.290
InternVL2_5-88 language-only 0.281 0410 0.390 0.350 0.346 0.280 0.330 0212 0.231
Llama-3.2-3B  language and code 0.265 0.620 0.070 0.020 0.240 0.343 0.230 0.290 0310
Llama-3.1-8B  language and code 0.264 0.670 0.060 0.030 0.260 0313 0.240 0.270 0.270
Llama-32-118  language and code 0.261 0690 0.119 0034 0281 0306 0280 0.250 0220
Llama-3.2-11B  language and vision 0.233 0.258 0319 0.403 0.281 0.173 0277 0273 0.231
Llama-3.2-11B language-only 0.204 0.270 0.250 0310 0.110 0.160 0.170 0.160 0.100
Llama-3.1-88 language-only 0173 0.250 0.290 0.330 0.240 0.172 0.240 0.210 0.210
Overall language and vision 0446 0473 0517 0619 0433 0442 0364 0424 0376
Overall language-only 0.340 0422 0411 0.360 0.348 0315 0.336 0.291 0.308
Overall  language and code 0.287 0.565 0.253 0.117 0.265 0.246 0.291 0273 0.295
Overall all 0.359 0477 0.402 0.376 0.352 0.337 0.333 0.328 0.326
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Accuracy

Figure 4: Evaluation results. The top table shows OpenAl models and the bottom table shows
open-source models. Each row corresponds to one model with one data modality—Ilanguage-only,
language and code, or language and vision, while each column represents a query template in Tablem

Common error patterns in geo-spatial reasoning We randomly collected 50 examples where
models produced incorrect answers and identified several common error patterns. First, models
sometimes provided step-by-step analytical plans without converting them into explicit mathematical
calculations, instead giving final answers directly after the plan. Second, some analyses failed to
extract actual values from the provided data tables and instead relied on the model’s own assumptions
rather than the actual data. Third, models sometimes focused on and were distracted by local
regional patterns rather than analyzing overall correlations across the spatial domain. Finally, when
visualizations were provided, models occasionally failed to extract relevant textual annotations and
numerical markers from the images, limiting their ability to perform precise quantitative analysis.

Fine-grained geo-spatial tasks reveals different strength-weakness tradeoffs Commercial and
open-source models exhibit different strengths and weaknesses in fine-grained geo-spatial tasks, as
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Figure 5: More evaluation results. (a) OpenAl models and (b) open-source models evaluated under
different data modalities. Columns represent fine-grained answer aspects defined in Section [3]
including trend, spatial references, coordinate references, and label references. There exist NaN
values since the label reference is only available for the vision modality. (c) vision-language models,
which are evaluated on three visualization types, as mentioned in Section |§| and Figure E}

shown in Figure ] Specifically, open-source models generally struggle more than commercial ones
in identifying regions with the most significant patterns. However, both types of models perform well
when comparing trends between two locations or analyzing seasonal variations at a single location.
In contrast, they show weaker performance when comparing seasonal variations across multiple
locations or comparing data across different locations and times.

Models perform better at identifying overall trends than fine-grained region detections As
mentioned in Figure[] target answers captures fine-grained aspects in answering these geo-spatial
queries. Evaluation results in Figure |§| (a) and (b) show that models perform best on the "trend"
column, while accuracy drops for spatial, coordinate, or label references—highlighting a need for
improvement in fine-grained regional understanding.

Heatmaps with numerical annotations enhance performance, whereas map-overlaid heatmaps
pose greater challenges for vision-language models Figure [3] (c) compares model performance
across three input image formats defined in Figure[2] Adding numerical annotations to heatmaps
improves model accuracy compared to using color gradients alone. In contrast, the most realistic
format, where heatmaps are overlaid on geographic base maps, poses the greatest challenge for all
models, as the added visual complexity hinders spatial pattern recognition.

5 Related Work

Geo-Spatial Reasoning with LLMs Geo-spatial reasoning involves understanding and analyzing
complex data based on its spatial and temporal relationships in the world (Schottlander & Shekel,
2025). Most existing work focuses on Earth observation data from satellite or remote sensing
imagery (Lacoste et al., 2023} |Zhang et al., 2023bj [Danish et al.l |2024; [Zhang & Wang] [2024;
Zheng et al.,[2023; Wang et al.,[2024a; Muhtar et al., [2024; Bazi et al.,2024; Kuckreja et al.| 2024;
Tao et al., 2025} [Liu et al., 2025)), performing scene understanding tasks such as object detection,
semantic segmentation, object counting, captioning. Notable examples include GeoGPT (Zhang et al.|
2023b)), GeoBench (Danish et al., |[2024)), EarthVQA (Wang et al., 2024a), GEOBench-VLM (Danish
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et al.}2024), and GeoChat (Kuckreja et al., 2024). However, gridded geo-spatial data is critical for
capturing spatial and temporal patterns, remains largely overlooked in the Al-assisted geo-spatial
research. Our work, GeoGrid-Bench, specifically targets this gap by focusing on grid-based data in
both tabular and image formats, and evaluating how foundation models can analyze the underlying
patterns. Other efforts in geo-spatial research have focused on text-based data retrieval with tool
usages, particularly through Geographic Information Systems (GIS) (National Geographic Society,
2025)), SQL, or GeoSPARQL (van Rees| [2013) queries (Krechetova & Kochedykov, |2025; Ning et al.}
2025; Mooney et al.| 2023} |Li & Ning, |[2023} Jiang & Yang| 2024} Resch et al.| [2025} Zhang et al.|
2023b; Jiang et al.| [2024e) or Retrieval-Augmented Generation (RAG) systems (Cromp et al., 2024;
Xie et al., [2024] [2025; [Vaghefi et al.| [2023; [Thulke et al., 2024} Bulian et al.| 2023)). Representative
works include GeoGPT (Zhang et al., [2023b), GeoBenchX (Krechetova & Kochedykov, [2025)),
Autonomous GIS (Li & Ning}, 2023)), WildfireGPT (Xie et al.} 2024} 2025)), and ChatClimate |Vaghefi
et al.|(2023). These approaches typically present geo-spatial information in textual formats and then
rely on specific query syntax or semantic embeddings to interact with their databases. In contrast, our
work sidesteps the data retrieval part and focuses on the geo-spatial data analysis itself.

Tabular Reasoning with LLMs Gridded geo-spatial data is often represented in tabular formats,
posing unique challenges for language models in processing structured, numerically dense informa-
tion. Current literature primarily focus on tables from databases with rich semantic annotations such
as a descriptive name of each entity. Benchmarks like HybridQA, TabFact, ToTTo, WikiTQ, and oth-
ers (Chen et al.| 2020, 2019; Parikh et al., 20205 |Aly et al., 2021} |Chen et al., 2021} |Pasupat & Liang,
2015)) focus on simple fact extractions and He et al.|(2024b); |Sui et al.|(2024) cover more advanced
analysis that still rely heavily on semantic cues. In contrast, our work focuses on tables dominated by
large volumes of numerical values, with spatial dependencies and no semantic annotations except for
coordinates, presenting a different form of tabular reasoning (Fang et al.| 2024} [Zhang et al., [2025).
To handle tabular data with language models, current work adopts strategies such as serializing tables
into Markdown or other common formats (Fang et al., 2024; Wang et al., |2024b), fine-tuning on
tabular tasks (Yang et al., 2023} |Zhang et al., 2023a; |L1 et al., 2023 |Thomas et al., [2024)), leveraging
tool use and code generation (Fang et al., [2024; |Cromp et al.| [2024; |Cheng et al.| 2022} Zhang et al.|
2023c)), or using image-based table representations (Deng et al.,|2024)). In our work, we extend this
line of research by visualizing tables with geo-spatial semantics heatmaps or overlays on actual maps
and by exploring code-based analysis in geo-spatial contexts that introduce unique challenges.

6 Conclusion

We introduced @8 GeoGrid-Bench, a comprehensive benchmark designed to evaluate the capability
of foundation models to understand multimodal gridded geo-spatial data. GeoGrid-Bench features
structured, dense numerical data using real-world gridded datasets and expert-curated templates to
evaluate scientifically relevant geo-spatial tasks. This integrated design enables robust and scalable
assessment of foundation models across vision, language, and code modalities. Our evaluation reveals
that while vision-language models excel at interpreting spatial patterns from heatmaps, they still
struggle with fine-grained regional understanding and label-based reasoning. Meanwhile, language
and code models show limited success in generating executable analysis scripts without human
intervention, highlighting the need for stronger agentic behavior. These findings point to several
critical areas where model capabilities must improve to meet the practical needs of geo-spatial
scientific analysis. Overall, this work can inform the development of more capable models to
process and understand the dense numerical data, spatiotemporal dependencies, and multimodal
representations of geo-spatial data, supporting the advancement of foundation models for informed
decision-making and resilience building across a wide range of real-world challenges.

Limitations and Future Work We acknowledge that this dataset is limited to the United States
due to data availability. Additionally, our benchmark focuses on geo-spatial data in gridded formats,
intentionally excluding other common data types such as Earth observation and remote sensing
imagery, which have already been extensively studied in prior work. However, the underlying
framework are designed to be generalizable and can be readily applied to similar gridded geo-spatial
datasets from other regions. Building on this foundation, future work will focus on expanding
GeoGrid-Bench beyond the United States and incorporating richer data modalities such as satellite
imagery, elevation maps, and land use data to enable broader and more diverse analytical capabilities.
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A Inference Prompts

To evaluate models across different modalities, we design prompts for three settings: language-only,
language and code, and language and vision. Each prompt is designed to be simple yet encourage
model response with desired style and consistent answer formatting.

» Language-only: models receive data in tabular format with instructions "Think step by step
before making a decision. Then, explicitly state your final choice after the special phrase
"####Final Answer" followed by (a), (b), (c), or (d). Please don’t use programming code.".

» Language and programming code: models receive data in tabular format with instructions
"Please write Python code to answer the question and show the complete script. You must
include a print statement at the end of the code that outputs the final answer using the
special phrase "####Final Answer’ followed by (a), (b), (c), or (d)."”

* Language and vision: models receive climate data in one of the three image formats with
instructions "Analyze this image and answer the question. Think step by step before making
a decision. Then, explicitly state your final choice after the special phrase "####Final
Answer" followed by (a), (b), (c), or (d).".

B Examples of Data Visualizations for All Query Templates

maximum annual temperature

Figure 6: Template 1: Which region in {locationl} experienced the largest increase in {cli-
mate_variablel} during {time_framel}? This example takes location]l = New York City, NY,
climate_variablel = maximum annual temperate, and time_framel = historical period.
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Figure 7: Template 2: How has {climate_variablel} changed between {time_framel} and
{time_frame2} in the {locationl}? This example takes locationl = New York City, NY, cli-
mate_variablel = maximum annual temperate, time_framel = historical period, and time_frame2 =
mid-century period (RCP-4.5).
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Figure 8: Template 3: What is the correlation between {climate_variablel} and {climate_variable2}
in the {locationl} during {time_framel}? This example takes locationl = New York City, NY,
climate_variablel = maximum annual temperate, climate_variable2 = minimum annual temperate,
and time_framel = historical period.
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Figure 9: Template 4: How does {climate_variablel} compare between {locationl} and {location2}
during {time_framel}? This example takes location]l = New York City, NY, location2 = Los Angeles,
CA, climate_variablel = maximum annual temperate, and time_framel = historical period.
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Figure 10: Template 5: What is the seasonal variation of {climate_variablel} in {locationl} during
{time_framel}? Same data is used in Template 6: Which season in {time_framel } saw the highest
levels of {climate_variablel} in {locationl}? This example takes locationl = New York City, NY,
climate_variablel = maximum annual temperate, and time_framel = historical period.
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Figure 11: Template 7. Which of {locationl} or {location2} experienced a greater change in
{climate_variablel} throughout {time_framel} and {time_frame2}? This example takes locationl =
New York City, NY, location2 = Los Angeles, CA, climate_variable] = maximum annual temperate,
time_framel = historical period, and time_framel = mid-century period (RCP4.5).
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Figure 12: Template 8. How does the seasonal variation of {climate_variablel} in {locationl}
compare to that in {location2} for {time_framel}? This example takes locationl = New York City,
NY, location2 = Los Angeles, CA, climate_variable] = maximum annual temperate, and time_framel
= historical period.
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C Ablation Study: Zero-shot vs. 3-shot Prompting

To assess the impact of prompting strategy on model performance, we conducted ablation experiments
comparing zero-shot and 3-shot prompting approaches on two representative models: Llama-3.1-8B-
Instruct and Qwen2.5-VL-7B-Instruct. Overall, results demonstrate performance improvements from
zero-shot to 3-shot prompting.

Model Name Prompting Strategy Overall Accuracy
Llama-3.1-8B-Instruct 3-shot 0.196
Qwen2.5-VL-7B-Instruct 3-shot 0.369
Llama-3.1-8B-Instruct zero-shot 0.173
Qwen2.5-VL-7B-Instruct zero-shot 0.298

Table 2: Performance comparison between zero-shot and 3-shot prompting strategies on language-
only tasks.

D Geographic and Temporal Bias Analysis

We conducted statistical analyses to test for geographic and temporal biases across four models: GPT-
40, GPT-40-mini, Llama-4-Maverick-17b-128e, and Qwen2.5-VL-7b. We used one-way ANOVA
tests with model accuracy as the dependent variable and geographic/temporal categories as inde-
pendent variables. For geographic analysis, we grouped the questions by US regions (Northeast,
South, Midwest, West) and city prominence (major vs. other cities). For temporal analysis, we
categorized the questions by its relevance to historical, mid-century, and end-century periods. For
GPT-40 (shown as example), the tests revealed no significant geographic bias across US regions
(F=0.709, p=0.547), no temporal bias across historical/future periods (F=1.096, p=0.335), and no bias
for more prominent cities (F=1.432, p=0.232). All four models failed to reject the null hypothesis
across all tested dimensions. No systematic geographic or temporal bias exists in these models.
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