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Abstract

We present GeoGrid-Bench, a benchmark designed to evaluate the ability of founda-1

tion models to understand geo-spatial data in the grid structure. Geo-spatial datasets2

pose distinct challenges due to their dense numerical values, strong spatial and3

temporal dependencies, and unique multimodal representations including tabular4

data, heatmaps, and geographic visualizations. To assess how foundation models5

can support scientific research in this domain, GeoGrid-Bench features large-scale,6

real-world data covering 16 climate variables across 150 locations and extended7

time frames. The benchmark includes approximately 27,000 question-answer pairs,8

systematically generated from 8 domain expert-curated templates to reflect prac-9

tical tasks encountered by human scientists. These range from basic queries at a10

single location and time to complex spatiotemporal comparisons across regions and11

periods. Our evaluation reveals that vision-language models perform best overall,12

and we provide a fine-grained analysis of the strengths and limitations of different13

foundation models in different geo-spatial tasks. This benchmark offers clearer14

insights into how foundation models can be effectively applied to geo-spatial data15

analysis and used to support scientific research.116

1 Introduction17

Foundation models have demonstrated transformative capabilities across diverse domains, ranging18

from language and vision to programming and reasoning (Hurst et al., 2024; Jaech et al., 2024;19

Jiang et al., 2024b,c,a; Balachandran et al., 2024; Jiang et al., 2024d; He et al., 2024a). Their rapid20

advancement has naturally inspired research exploring their utility in scientific contexts, particularly21

in critical fields like climate science and natural hazard assessment (Mai et al., 2022; Xie et al.,22

2024, 2025; Nguyen et al., 2023; Mai et al., 2023; de Rijke et al., 2025; Mallick et al., 2025), where23

accurate, data-intensive decision-making can profoundly impact human well-being.24

Geo-spatial data pose distinct challenges for foundation models due to their inherent spatio-temporal25

dependencies and exceptionally high data density. Unlike typical tabular records for knowledge26

retrieval (Zhang et al., 2023a; Pasupat & Liang, 2015; Zhang et al., 2025) or natural images, climate27

data exists in structured, gridded formats with complex, interconnected numerical values often28

represented through modalities such as tables, heatmaps, or geographic images spanning across29

space and time. These data are typically organized in highly structured, gridded formats that30

encode interconnected numerical values across spatial and temporal dimensions. Each data point31

is not an isolated unit but part of a dense, multi-dimensional array that reflects physical processes,32

1All code and data are publicly available at our Github repository https://github.com/bowen-upenn/
GeoGrid_Bench and Huggingface https://huggingface.co/datasets/bowen-upenn/GeoGrid_Bench.
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Figure 1: Overview of GeoGrid-Bench. The benchmark features questions generated from tem-
plates that vary by location, time period, and climate variable, then rewritten with natural language
context. Each question is paired with multimodal input—either heatmaps as images or tabular grids
of numerical values. We evaluate models on their ability to solve the queries through different
modalities—natural language, code, or vision. Ground-truth answers capture find-grained aspects
like overall trends, spatial references (from top-left to lower-right), coordinate references (row and
column indices), and label references (textual marks on the maps), whenever available.

environmental interactions, or geographical phenomena evolving over time. Meanwhile, models can33

also easily get lost in the context (Liu et al., 2023) with overwhelming volumes of values per sample.34

Informed decision-making in fields such as disaster response, climate science, and urban development35

depends on the ability to detect and interpret patterns across regions and over time. However, there36

remains a lack of benchmarks that directly address the unique challenges posed by geo-spatial37

gridded data. Most existing efforts docus on object detection, semantic segmentation, object counting,38

captioning, or scene understanding of Earth observation images (Lacoste et al., 2023; Danish et al.,39

2024; Zhang & Wang, 2024; Zheng et al., 2023; Wang et al., 2024a; Muhtar et al., 2024; Bazi40

et al., 2024; Kuckreja et al., 2024), function calls to the Geographic Information System (GIS)41

or SQL queries for data retrieval (Krechetova & Kochedykov, 2025; Jiang & Yang, 2024; Ning42

et al., 2025; Mooney et al., 2023; Zhang et al., 2023b), or simplified query setups that overlook the43

spatial-temporal complexities in practical geo-spatial analysis (Bhandari et al., 2023).44

To understand how foundation models can assist geo-spatial data analysis, we introduce GeoGrid-45

Bench, a benchmark explicitly designed to evaluate model performance on multimodal, real-world46

geo-spatial data. We adopt domain expert-curated query templates to reflect realistic questions that47
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Figure 2: We prepare every data sample in one of the four formats: (a) 2D table as a textual string. (b)
standalone heatmap; (c) heatmap with overlaid numerical annotations at each grid cell; (d) heatmap
overlaid on an actual geographic base map. These formats reflect real-world climate data practices
and differ markedly from typical natural images seen by foundation models. More in Appendix B.

practitioners would encounter in geo-spatial analysis—providing data in both tabular and image48

formats. These tasks range from simple queries about a fixed location and time to more complex49

analyses involving multiple locations and temporal comparisons. For each template, we develop oracle50

code that is applied uniformly to all query instances, enabling scalable and consistent generation of51

question-answer pairs. Our contributions can be summarized as follows:52

Large-scale, real-world data: A domain-centric benchmark built on large-scale, real-world climate53

projection data, presented in multimodal formats commonly used by actual practitioners, including54

structured numerical tables and geographic visualizations.55

Scalable query generation: A systematic user query generation pipeline based on domain expert-56

designed templates, reflecting diverse and realistic scientific challenges.57

Comprehensive evaluation: Evaluation of foundation models with language, coding, multimodal,58

and reasoning capabilities across find-grained answer aspects and data modalities to diagnose their59

strengths and weaknesses in geo-spatial analysis tasks.60

Through comprehensive evaluations, we find that visualizing dense, gridded geo-spatial data as61

heatmaps is the most accessible format for existing foundation models to interpret. In contrast, models62

struggle to generate flawless code for completing these tasks. Across all model types, identifying63

broad trends proves easier than making fine-grained regional distinctions, and models exhibit varying64

strengths and weaknesses depending on the task. With GeoGrid-Bench, we aim to shed light on65

the strengths and limitations of current foundation models when applied to multimodal geo-spatial66

data, a core yet underexplored format in climate science. Our goal is to support and advance the67

development of practical AI-assisted tools that can aid scientific research and decision-making.68

2 GeoGrid-Bench: Overview of Data Features and Tasks69

GeoGrid-Bench aims to reflect the real-world challenges that scientists face when analyzing geo-70

spatial data at scale. To achieve this, it features large-scale, real-world geo-spatial data sourced71

and sampled from ClimRR (Argonne National Laboratory, 2023), capturing the complexity of72

environmental conditions across 150 locations in North America. ClimRR has demonstrated practical73

utility across multiple sectors, supporting hazard mitigation planning in Kentucky, climate risk74

assessments by utility companies, and infrastructure planning by engineering firms (TechBrew, 2025;75

Center for Climate and Energy Solutions, 2025), while its high-resolution data powers decision76

support tools like the Geospatial Energy Mapper (Argonne National Laboratory, 2025) for national-77

scale energy and resilience planning. The grid spans 16 diverse climate variables, such as temperature78

extremes, precipitation, wind speeds, humidity, fire weather indices, and degree days. An overview79

of user-model interaction is shown in Figure 1.80

GeoGrid-Bench is built to capture the unique grid structure. Climate projection data are typically81

organized across spatial grids and time sequences, resulting in dense, high-dimensional arrays. The82

data is inherently interconnected, with each point influenced by its geographic neighbors and historical83
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context. This structure poses unique challenges: models must capture spatio-temporal dependencies84

and handle variability across scales to derive meaningful insights.85

Geo-spatial data is also inherently multimodal, presented as tabular data, heatmaps, or geographic86

visualizations, with each format sharing alignment across a spatial grid structure. Each grid cell87

encodes a rich array of numerical data that captures localized atmospheric behavior and climate88

dynamics over time. This multimodal grid structure makes our GeoGrid-Bench an ideal testbed for89

foundation models designed to reason across space, time, and modality. To perform well, foundation90

models must integrate spatial context from neighboring cells, understand temporal trends across91

multi-year projections, and interpret information presented in diverse formats and patterns. GeoGrid-92

Bench reflects this complexity and we show examples of the data formats in Figure 2.93

Templates that require one data frame
1. Which region in the {location1} experienced the largest increase in {variable1} during {time_frame1}?

Templates that require two data frames
2. How has {variable1} changed between {time_frame1} and {time_frame2} in the {location1}?

3. What is the correlation between {variable1} and {variable2} in the {location1} during {time_frame1}?

4. How does {variable1} compare between {location1} and {location2} during {time_frame1}?

Templates that require four data frames
5. What is the seasonal variation of {climate_variable1} in {location1} during {time_frame1}?

6. Which season in {time_frame1} saw the highest levels of {variable1} in {location1}?

7. Which of {location1} or {location2} experienced a greater change in {variable1} throughout {time_frame1}
and {time_frame2}?

Templates that require eight data frames
8. How does the seasonal variation of {variable1} in {location1} compare to that in {location2} for
{time_frame1}?

Table 1: Template questions in GeoGrid-Bench. We develop those questions with domain experts.
Each question includes placeholders for one or two locations, time frames, and geo-spatial variables.
This design enables scalable question construction while capturing varying levels of complexity based
on the number of data frames involved.

To capture the wide range of questions concerning practitioners at the forefront of geo-spatial analysis,94

we surveyed 13 domain experts in natural hazard risk domains, resulting in 8 template questions based95

on their input (Table 1) and around 27,000 query instances in GeoGrid-Bench. Each template includes96

placeholders based at one or two geographic locations, time frames, and climate variables, requiring97

one to eight data frames. This design allows us to generate a scalable set of scientifically concrete98

queries that reflect analytical goals. Specifically, GeoGrid-Bench evaluates the following capabilities99

of foundation models: (1) Identifying regions with the most significant patterns. This is crucial100

for disaster response and monitoring, helping detect hotspots that need timely action. (2) Comparing101

data across different locations and times. This is essential for uncovering spatial disparities,102

understanding regional dynamics, and tracking changes over time. (3) Analyzing temporal trends103

and seasonal variations. This is essential for practitioners to anticipate recurring patterns and detect104

long-term changes to make informed decisions. (4) Interpreting data in multimodal formats. This105

is essential for understanding the ability of foundation models to interpret real-world geo-spatial data106

that is multimodal in nature.107

Full List of Climate Variables in GeoGrid-Bench

Maximum Annual Temperature, Minimum Annual Temperature, Consecutive Days with No Precipita-
tion, Cooling Degree Days, Fire Weather Index, Maximum Daily Heat Index, Maximum Seasonal Heat
Index, Number of Days with Daily Heat Index > 95°F/105°F/115°F/125°F, Heating Degree, Annual
Total Precipitation, Maximum Seasonal Temperature, Minimum Seasonal Temperature, Wind Speed.
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3 Constructing GeoGrid-Bench At Scale108

Figure 3: Overview of the example curation process. Each example in GeoGrid-Bench is con-
structed by combining a query template with sampled climate variables, locations, and time frames
from real-world climate data. Each template is paired with a corresponding oracle code that determin-
istically generates target answers for all filled-in question instances under that template.

GeoGrid-Bench features diverse real-world geo-spatial data We illustrate our sample curation109

process in Figure 3. Each data sample is formed by extracting a specific climate-location-time slice110

from the ClimRR dataset. We sample from the 16 climate variables listed above. For each climate111

variable, we select around 50 locations where this climate variable is the most prominent, resulting in112

a total of 150 distinct locations across all climate variables, a subset of ClimRR. For example, the113

benchmark includes more regions in Southern California for wildfire risk, while precipitation-related114

examples are more concentrated in the Pacific Northwest to reflect region-specific climate concerns.115

We render each data sample in either a tabular or image format, both structured over a spatial116

grid. For a given location and its longitude and latitude, we retrieve all grid cells within a square117

region with edge size 84 to 144 km around it, resulting in approximately 50 to 150 entries in the118

12-by-12 km grid. In the tabular modality, we prepare each table with numerical values, a caption,119

and row and column indices as textual strings. In the image modality, we prepare three types of120

visualization with increasing information densities, as shown in Figure 2: (1) A standalone heatmap,121

(2) A heatmap with overlaid numerical annotations at each grid cell. and (3) A heatmap overlaid122

on an actual geographic base map. Specifically, we render the tabular data as a heatmap with color123

gradients. This heatmap is optionally added with numerical annotation of the value on each cell,124

or overlaid on a base map (OpenStreetMap contributors, 2024) using Folium (Folium, 2023). To125

maintain consistency with the tabular format, we also render row and column indices around the126

heatmap. This visualization offers a richer representation to mirror common practices in real-world127

analysis. To isolate the challenge of data retrieval, GeoGrid-Bench provides the foundation model128

during evaluation with all necessary data frames in either tabular or image formats, focusing solely129

on whether the model can solve the problem given the relevant information.130

GeoGrid-Bench builds on expert-curated templates for scalable query generation To ensure131

that the benchmark reflects the types of analysis most relevant to practitioners in geospatial research,132

we consulted 13 domain experts. These experts routinely engage with geo-spatial data to identify133

patterns, assess risks, and support decision-making under uncertainty. We develop eight representative134

question templates based on operational needs identified by experts. Each template takes as input135

one or two climate variables, locations, and time frames and outputs a filled-in user query in our136

benchmark, and may require between one and eight data frames to answer. This structured approach137

enables the automatic generation of a wide variety of concrete, data-driven queries. For every138

template, we manually craft oracle code that deterministically solves the question and prepares139

ground-truth answers in desired formats. Crucially, the same oracle applies uniformly to every query140

generated from a given template, enabling the scalability of the benchmark. As a result, once a141

template and its oracle are validated, we ensure the quality of every generated instance.142
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Each question is a multiple-choice with four options, all generated by the oracle code rather than a143

language model. Recognizing that a foundation model may excel at different aspects in answering a144

geo-spatial query, the benchmark has each query probe a different aspect in giving the answer, as145

shown in Figure 1. Specifically, answer options target the following aspects: (1) Overall patterns146

(e.g., the wildfire risk overall increases). (2) Spatial references (e.g., the highest wildfire risk occurs147

around the top-left region). (3) Coordinate references (e.g., the highest wildfire risk occurs around148

Column 204 Row 106). (4) Label references (e.g., the highest wildfire risk occurs near the textual149

label "Santa Clara" on the map), which is only available for the image type "heatmap overlaid on an150

actual geographic base map".151

In addition, to explore which data modalities most effectively support geo-spatial analysis, we152

evaluate models across three input settings: language-only, language and code, and language and153

vision. Detailed prompting strategies for each setting are provided in Appendix A. In each mode,154

we provide the model with the user query, the relevant data (in either tabular or image format), all155

four multiple-choice options, and system instructions as inputs. We extract the model’s final answer156

following the special tokens "####Final Answer" to facilitate answer parsing. If the model fails157

to provide an explicit option (a), (b), (c), or (d), we use a sentence embedding model (Reimers &158

Gurevych, 2019) to identify the most similar option based on the model’s response. When the model159

outputs Python code, we execute the code in a shell environment to extract the final answers.160

4 Experiment161

4.1 Experimental Setup162

We benchmark a range of state-of-the-art closed-source and open-source models on GeoGrid-Bench.163

Our evaluation covers 5 models from OpenAI, including o4-mini, GPT-4.1, GPT-4.1-mini, GPT-4o,164

and GPT-4o-mini (OpenAI, 2024, 2025; Hurst et al., 2024), and 6 open-source models including165

Llama-4-Maverick, Llama-4-Scout, Llama-3.2-11B-Vision, Llama-3.2-3B, Llama-3.1-8B (Grattafiori166

et al., 2024; AI, 2024), and Qwen-2.5-VL-7B (Bai et al., 2025). OpenAI models are accessed via167

API calls, and Llama-4 models are accessed through the Lambda Inference API. Inferences for other168

open-source models run locally on four NVIDIA A100-SXM4 GPUs with 40GB of VRAM. For169

all models, we set max_new_tokens as 1024 with default temperature and sampling strategies. To170

ensure fair evaluation across all models, we used identical zero-shot prompts for every model tested171

on a randomly sampled subset of 3,200 examples from GeoGrid-Bench. We conducted additional172

ablation experiments using 3-shot prompts on 2 representative open-source models (see Appendix C).173

4.2 Evaluation Results and Findings174

Vision-language models achieve the strongest performance in geo-spatial tasks Among the175

models we evaluate, o4-mini achieves overall the highest performance, while Llama-4-Maverick176

leads among open-source models, as shown in Figure 4. Overall, models that receive input in177

the vision modality consistently outperform those using language-only input. This suggests that178

converting geo-spatial gridded data into heatmap visualizations—rather than presenting models179

directly with large volumes of raw numerical values in tabular forms—enables foundation models180

to more effectively interpret such data with complex spatial-temporal patterns. Statistical analyses181

confirmed no systematic geographic or temporal biases across the evaluated models (see Appendix D).182

Inferior performance in code highlights the need for more agentic models in geo-spatial tasks183

Contrary to our expectations, foundation models leveraging programming code do not outperform184

their language-only counterparts on our task. Upon closer inspection, much of the generated code185

is not directly executable in a single pass. For instance, models produce incomplete scripts or bugs,186

omit expected outputs, fail to parse data, or struggle with planning over geo-spatial data—ultimately187

requiring human intervention across multiple iterations. This limitation aligns with how we construct188

the oracle code in the benchmark. This issue is more severe in open-source models like Llama,189

which tend to produce fewer executable code. We, therefore, emphasize the need for stronger agentic190

behaviors (Plaat et al., 2025; Kapoor et al., 2024; Ng, 2024) in foundation models, where we define191

"agentic" as the ability to autonomously generate fully executable code for human end-users in a192

single interaction, particularly when the end-users are domain scientists rather than programmers.193
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Figure 4: Evaluation results. The top table shows OpenAI models and the bottom table shows
open-source models. Each row corresponds to one model with one data modality—language-only,
language and code, or language and vision, while each column represents a query template in Table 1.

Common error patterns in geo-spatial reasoning We randomly collected 50 examples where194

models produced incorrect answers and identified several common error patterns. First, models195

sometimes provided step-by-step analytical plans without converting them into explicit mathematical196

calculations, instead giving final answers directly after the plan. Second, some analyses failed to197

extract actual values from the provided data tables and instead relied on the model’s own assumptions198

rather than the actual data. Third, models sometimes focused on and were distracted by local199

regional patterns rather than analyzing overall correlations across the spatial domain. Finally, when200

visualizations were provided, models occasionally failed to extract relevant textual annotations and201

numerical markers from the images, limiting their ability to perform precise quantitative analysis.202

Fine-grained geo-spatial tasks reveals different strength-weakness tradeoffs Commercial and203

open-source models exhibit different strengths and weaknesses in fine-grained geo-spatial tasks, as204
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(a)

(c)

(b)

Figure 5: More evaluation results. (a) OpenAI models and (b) open-source models evaluated under
different data modalities. Columns represent fine-grained answer aspects defined in Section 3,
including trend, spatial references, coordinate references, and label references. There exist NaN
values since the label reference is only available for the vision modality. (c) vision-language models,
which are evaluated on three visualization types, as mentioned in Section 3 and Figure 2.

shown in Figure 4. Specifically, open-source models generally struggle more than commercial ones205

in identifying regions with the most significant patterns. However, both types of models perform well206

when comparing trends between two locations or analyzing seasonal variations at a single location.207

In contrast, they show weaker performance when comparing seasonal variations across multiple208

locations or comparing data across different locations and times.209

Models perform better at identifying overall trends than fine-grained region detections As210

mentioned in Figure 1, target answers captures fine-grained aspects in answering these geo-spatial211

queries. Evaluation results in Figure 5 (a) and (b) show that models perform best on the "trend"212

column, while accuracy drops for spatial, coordinate, or label references—highlighting a need for213

improvement in fine-grained regional understanding.214

Heatmaps with numerical annotations enhance performance, whereas map-overlaid heatmaps215

pose greater challenges for vision-language models Figure 5 (c) compares model performance216

across three input image formats defined in Figure 2. Adding numerical annotations to heatmaps217

improves model accuracy compared to using color gradients alone. In contrast, the most realistic218

format, where heatmaps are overlaid on geographic base maps, poses the greatest challenge for all219

models, as the added visual complexity hinders spatial pattern recognition.220

5 Related Work221

Geo-Spatial Reasoning with LLMs Geo-spatial reasoning involves understanding and analyzing222

complex data based on its spatial and temporal relationships in the world (Schottlander & Shekel,223

2025). Most existing work focuses on Earth observation data from satellite or remote sensing224

imagery (Lacoste et al., 2023; Zhang et al., 2023b; Danish et al., 2024; Zhang & Wang, 2024;225

Zheng et al., 2023; Wang et al., 2024a; Muhtar et al., 2024; Bazi et al., 2024; Kuckreja et al., 2024;226

Tao et al., 2025; Liu et al., 2025), performing scene understanding tasks such as object detection,227

semantic segmentation, object counting, captioning. Notable examples include GeoGPT (Zhang et al.,228

2023b), GeoBench (Danish et al., 2024), EarthVQA (Wang et al., 2024a), GEOBench-VLM (Danish229
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et al., 2024), and GeoChat (Kuckreja et al., 2024). However, gridded geo-spatial data is critical for230

capturing spatial and temporal patterns, remains largely overlooked in the AI-assisted geo-spatial231

research. Our work, GeoGrid-Bench, specifically targets this gap by focusing on grid-based data in232

both tabular and image formats, and evaluating how foundation models can analyze the underlying233

patterns. Other efforts in geo-spatial research have focused on text-based data retrieval with tool234

usages, particularly through Geographic Information Systems (GIS) (National Geographic Society,235

2025), SQL, or GeoSPARQL (van Rees, 2013) queries (Krechetova & Kochedykov, 2025; Ning et al.,236

2025; Mooney et al., 2023; Li & Ning, 2023; Jiang & Yang, 2024; Resch et al., 2025; Zhang et al.,237

2023b; Jiang et al., 2024e) or Retrieval-Augmented Generation (RAG) systems (Cromp et al., 2024;238

Xie et al., 2024, 2025; Vaghefi et al., 2023; Thulke et al., 2024; Bulian et al., 2023). Representative239

works include GeoGPT (Zhang et al., 2023b), GeoBenchX (Krechetova & Kochedykov, 2025),240

Autonomous GIS (Li & Ning, 2023), WildfireGPT (Xie et al., 2024, 2025), and ChatClimate Vaghefi241

et al. (2023). These approaches typically present geo-spatial information in textual formats and then242

rely on specific query syntax or semantic embeddings to interact with their databases. In contrast, our243

work sidesteps the data retrieval part and focuses on the geo-spatial data analysis itself.244

Tabular Reasoning with LLMs Gridded geo-spatial data is often represented in tabular formats,245

posing unique challenges for language models in processing structured, numerically dense informa-246

tion. Current literature primarily focus on tables from databases with rich semantic annotations such247

as a descriptive name of each entity. Benchmarks like HybridQA, TabFact, ToTTo, WikiTQ, and oth-248

ers (Chen et al., 2020, 2019; Parikh et al., 2020; Aly et al., 2021; Chen et al., 2021; Pasupat & Liang,249

2015) focus on simple fact extractions and He et al. (2024b); Sui et al. (2024) cover more advanced250

analysis that still rely heavily on semantic cues. In contrast, our work focuses on tables dominated by251

large volumes of numerical values, with spatial dependencies and no semantic annotations except for252

coordinates, presenting a different form of tabular reasoning (Fang et al., 2024; Zhang et al., 2025).253

To handle tabular data with language models, current work adopts strategies such as serializing tables254

into Markdown or other common formats (Fang et al., 2024; Wang et al., 2024b), fine-tuning on255

tabular tasks (Yang et al., 2023; Zhang et al., 2023a; Li et al., 2023; Thomas et al., 2024), leveraging256

tool use and code generation (Fang et al., 2024; Cromp et al., 2024; Cheng et al., 2022; Zhang et al.,257

2023c), or using image-based table representations (Deng et al., 2024). In our work, we extend this258

line of research by visualizing tables with geo-spatial semantics heatmaps or overlays on actual maps259

and by exploring code-based analysis in geo-spatial contexts that introduce unique challenges.260

6 Conclusion261

We introduced GeoGrid-Bench, a comprehensive benchmark designed to evaluate the capability262

of foundation models to understand multimodal gridded geo-spatial data. GeoGrid-Bench features263

structured, dense numerical data using real-world gridded datasets and expert-curated templates to264

evaluate scientifically relevant geo-spatial tasks. This integrated design enables robust and scalable265

assessment of foundation models across vision, language, and code modalities. Our evaluation reveals266

that while vision-language models excel at interpreting spatial patterns from heatmaps, they still267

struggle with fine-grained regional understanding and label-based reasoning. Meanwhile, language268

and code models show limited success in generating executable analysis scripts without human269

intervention, highlighting the need for stronger agentic behavior. These findings point to several270

critical areas where model capabilities must improve to meet the practical needs of geo-spatial271

scientific analysis. Overall, this work can inform the development of more capable models to272

process and understand the dense numerical data, spatiotemporal dependencies, and multimodal273

representations of geo-spatial data, supporting the advancement of foundation models for informed274

decision-making and resilience building across a wide range of real-world challenges.275

Limitations and Future Work We acknowledge that this dataset is limited to the United States276

due to data availability. Additionally, our benchmark focuses on geo-spatial data in gridded formats,277

intentionally excluding other common data types such as Earth observation and remote sensing278

imagery, which have already been extensively studied in prior work. However, the underlying279

framework are designed to be generalizable and can be readily applied to similar gridded geo-spatial280

datasets from other regions. Building on this foundation, future work will focus on expanding281

GeoGrid-Bench beyond the United States and incorporating richer data modalities such as satellite282

imagery, elevation maps, and land use data to enable broader and more diverse analytical capabilities.283
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A Inference Prompts500

To evaluate models across different modalities, we design prompts for three settings: language-only,501

language and code, and language and vision. Each prompt is designed to be simple yet encourage502

model response with desired style and consistent answer formatting.503

• Language-only: models receive data in tabular format with instructions "Think step by step504

before making a decision. Then, explicitly state your final choice after the special phrase505

"####Final Answer" followed by (a), (b), (c), or (d). Please don’t use programming code.".506

• Language and programming code: models receive data in tabular format with instructions507

"Please write Python code to answer the question and show the complete script. You must508

include a print statement at the end of the code that outputs the final answer using the509

special phrase "####Final Answer’ followed by (a), (b), (c), or (d)."510

• Language and vision: models receive climate data in one of the three image formats with511

instructions "Analyze this image and answer the question. Think step by step before making512

a decision. Then, explicitly state your final choice after the special phrase "####Final513

Answer" followed by (a), (b), (c), or (d).".514

B Examples of Data Visualizations for All Query Templates515

Figure 6: Template 1: Which region in {location1} experienced the largest increase in {cli-
mate_variable1} during {time_frame1}? This example takes location1 = New York City, NY,
climate_variable1 = maximum annual temperate, and time_frame1 = historical period.

15



Figure 7: Template 2: How has {climate_variable1} changed between {time_frame1} and
{time_frame2} in the {location1}? This example takes location1 = New York City, NY, cli-
mate_variable1 = maximum annual temperate, time_frame1 = historical period, and time_frame2 =
mid-century period (RCP-4.5).
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Figure 8: Template 3: What is the correlation between {climate_variable1} and {climate_variable2}
in the {location1} during {time_frame1}? This example takes location1 = New York City, NY,
climate_variable1 = maximum annual temperate, climate_variable2 = minimum annual temperate,
and time_frame1 = historical period.
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Figure 9: Template 4: How does {climate_variable1} compare between {location1} and {location2}
during {time_frame1}? This example takes location1 = New York City, NY, location2 = Los Angeles,
CA, climate_variable1 = maximum annual temperate, and time_frame1 = historical period.
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Figure 10: Template 5: What is the seasonal variation of {climate_variable1} in {location1} during
{time_frame1}? Same data is used in Template 6: Which season in {time_frame1} saw the highest
levels of {climate_variable1} in {location1}? This example takes location1 = New York City, NY,
climate_variable1 = maximum annual temperate, and time_frame1 = historical period.
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Figure 11: Template 7. Which of {location1} or {location2} experienced a greater change in
{climate_variable1} throughout {time_frame1} and {time_frame2}? This example takes location1 =
New York City, NY, location2 = Los Angeles, CA, climate_variable1 = maximum annual temperate,
time_frame1 = historical period, and time_frame1 = mid-century period (RCP4.5).
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Figure 12: Template 8. How does the seasonal variation of {climate_variable1} in {location1}
compare to that in {location2} for {time_frame1}? This example takes location1 = New York City,
NY, location2 = Los Angeles, CA, climate_variable1 = maximum annual temperate, and time_frame1
= historical period.
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C Ablation Study: Zero-shot vs. 3-shot Prompting516

To assess the impact of prompting strategy on model performance, we conducted ablation experiments517

comparing zero-shot and 3-shot prompting approaches on two representative models: Llama-3.1-8B-518

Instruct and Qwen2.5-VL-7B-Instruct. Overall, results demonstrate performance improvements from519

zero-shot to 3-shot prompting.520

Model Name Prompting Strategy Overall Accuracy
Llama-3.1-8B-Instruct 3-shot 0.196
Qwen2.5-VL-7B-Instruct 3-shot 0.369
Llama-3.1-8B-Instruct zero-shot 0.173
Qwen2.5-VL-7B-Instruct zero-shot 0.298

Table 2: Performance comparison between zero-shot and 3-shot prompting strategies on language-
only tasks.

D Geographic and Temporal Bias Analysis521

We conducted statistical analyses to test for geographic and temporal biases across four models: GPT-522

4o, GPT-4o-mini, Llama-4-Maverick-17b-128e, and Qwen2.5-VL-7b. We used one-way ANOVA523

tests with model accuracy as the dependent variable and geographic/temporal categories as inde-524

pendent variables. For geographic analysis, we grouped the questions by US regions (Northeast,525

South, Midwest, West) and city prominence (major vs. other cities). For temporal analysis, we526

categorized the questions by its relevance to historical, mid-century, and end-century periods. For527

GPT-4o (shown as example), the tests revealed no significant geographic bias across US regions528

(F=0.709, p=0.547), no temporal bias across historical/future periods (F=1.096, p=0.335), and no bias529

for more prominent cities (F=1.432, p=0.232). All four models failed to reject the null hypothesis530

across all tested dimensions. No systematic geographic or temporal bias exists in these models.531
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