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ABSTRACT

Machine learning methods are getting increasingly better at making predictions,
but at the same time they are also becoming more complicated and less transparent.
As a result, explainers are often relied on to provide interpretability to these
black-box prediction models. As crucial diagnostics tools, it is important that
these explainers themselves are reliable. In this paper we focus on one particular
aspect of reliability, namely that an explainer should give similar explanations for
similar data inputs. We formalize this notion by introducing and defining explainer
astuteness, analogous to astuteness of classifiers. Our formalism is inspired by
the concept of probabilistic Lipschitzness, which captures the probability of local
smoothness of a function. For a variety of explainers (e.g., SHAP, RISE, CXPlain),
we provide lower bound guarantees on the astuteness of these explainers given
the Lipschitzness of the prediction function. These theoretical results imply that
locally smooth prediction functions lend themselves to locally robust explanations.
We evaluate these results empirically on simulated as well as real datasets.

1 INTRODUCTION

Machine learning models have improved over time at prediction and classification, especially with the
advances made in deep learning and availability of large amounts of data. These gains in predictive
power have often been achieved using increasingly complex and black-box models. This has led to
significant interest in, and a proliferation of, explainers that provide explanations for the predictions
made by these black-box models. Given the crucial importance of these explainers it is imperative to
understand what makes them reliable.

In this paper we focus on explainer robustness. A robust explainer is one where similar inputs
results in similar explanations (Alvarez-Melis & Jaakkola, 2018). For example, consider two patients
given the same diagnosis in a medical setting. These two patients share identical symptoms and
are demographically very similar, therefore a diagnostician would expect that factors influencing
the model decision should be similar as well. Prior work in explainer robustness suggests that this
expectation does not always hold true (Alvarez-Melis & Jaakkola, 2018; Ghorbani et al., 2019); small
changes to the input samples can result in large shifts in explanation. For this reason we investigate
the theoretical underpinning of explainer robustness. Specifically, we focus on investigating the
connection between explainer robustness and smoothness of the black-box function being explained.

We propose and formally define explainer astuteness – a property of explainers which captures the
probability that a given method provides similar explanations to similar data points. This definition
allows us to evaluate the robustness for a given explainer over the entire dataset and helps tie explainer
robustness to probabilistic Lipschitzness of classifiers. We then provide a theoretical way to connect
this explainer astuteness to the probabilistic Lipschitzness of the black-box function that is being
explained. Since probabilistic Lipschitzness is a measure of the probability that a function is smooth
in a local neighborhood, our results demonstrate how the smoothness of the black-box function itself
impacts the astuteness of the explainer. This implies that enforcing smoothness on black-box functions
lends them to more robust explanations.

Related Work. A wide variety of explainers have been proposed in the literature (Guidotti et al.,
2018; Arrieta et al., 2020). Explainers can broadly be categorized as feature attribution or feature
selection explainers. Feature attribution explainers provide continuous-valued importance scores to
each of the input features, while feature selection explainers provide binary decisions on whether
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a feature is important or not. Some popular feature attribution explainers can be viewed through
the lens of Shapley values such as SHAP (Lundberg & Lee, 2017), LIME (Ribeiro et al., 2016)
and LIFT (Shrikumar et al., 2016). Some models such as CXPlain (Schwab & Karlen, 2019),
PredDiff (Zintgraf et al., 2017) and feature ablation explainers (Lei et al., 2018) calculate feature
attributions by simulating individual feature removal, while other methods such as RISE (Petsiuk
et al., 2018) calculate the mean effect of a feature’s presence to attribute importance to it. In contrast,
feature selection methods include individual selector approaches such as L2X (Chen et al., 2018) and
INVASE (Yoon et al., 2018), and group-wise selection approaches such as gI (Masoomi et al., 2020).
While seemingly diverse, these models have been shown to have striking underlying similarities, for
example, Lundberg & Lee (2017) unify six different explainers under a single framework. Recently,
Covert et al. (2020) went a step further and combined 25 existing methods under the overall class of
removal-based explainers.

Similarly, there has been a recent increase in research focused on analyzing the behaviour of these
explainers themselves in ways similar to how classification models have been analyzed. Recent work
has focused on dissecting various properties of explainers. Yin et al. (2021) propose stability and
sensitivity as measures of faithfulness of explainers to the decision-making process of the black-
box model and empirically demonstrate the usefulness of these measures. Li et al. (2020) explore
connections between local explainability and model generalization. Ghorbani et al. (2019) test
the robustness of explainers through systemic and adversarial perturbations. Agarwal et al. (2022)
define and discuss theoretical guarantees around faithfulness and stability in the context of Graph
Neural Networks. Our definition of astuteness is related to what they call stability, but defined as a
probability over all available instances in such a way that connection to probabilistic Lipschitzness
of the classifier becomes clear. Alvarez-Melis & Jaakkola (2018) empirically show that robustness,
in the sense that explainers should provide similar explanations for similar inputs, is a desirable
property and how forcing this property yields better explanations. Recently, Agarwal et al. (2021)
explore the robustness of LIME (Ribeiro et al., 2016) and SmoothGrad (Smilkov et al., 2017), and
prove that for these two methods their robustness is related to the maximum value of the gradient
of the predictor function. Our work is closely related to Alvarez-Melis & Jaakkola (2018) and
Agarwal et al. (2021) on explainer robustness. However, instead of enforcing explainers to be robust
themselves (Alvarez-Melis & Jaakkola, 2018), our theoretical results suggest that ensuring robustness
of explanations also depends on the smoothness of the black-box function that is being explained.
Our results are complementary to the results obtained by Agarwal et al. (2021) in that our theorems
cover a wider variety of explainers as compared to only Continuous LIME and SmoothGrad (see
contributions below). We further relate robustness to probabilistic Lipschitzness of black-box models,
which is a quantity that can be empirically estimated.

Additionally, there has been recent work estimating upper-bounds of Lipschitz constant for neural
networks (Virmaux & Scaman, 2018; Fazlyab et al., 2019; Gouk et al., 2021), and enforcing Lipschitz
continuity during neural networks training, with an eye towards improving classifier robustness
(Gouk et al., 2021; Aziznejad et al., 2020; Fawzi et al., 2017; Alemi et al., 2016). Fel et al. (2022)
empirically demonstrated that 1-Lipschitz networks are better suited as predictors that are more
explainable and trustworthy. Our work provides crucial additional motivation for that line of research;
i.e., it provides theoretical reasons to improve Lipschitzness of neural networks from the perspective
of enabling more robust explanations.

Contributions:

• We formalize and define explainer astuteness which captures the probability that a given
explainer provides similar explanations to similar points. This formalism allows us to
theoretically analyze robustness properties of explainers.

• We provide theoretical results that connect astuteness of explainers to the smoothness of the
black-box function they are providing explanations on. Our results suggest that smooth
black-box functions result in explainers providing more astute explanations. While
this statement is intuitive, proving it is non-trivial and requires additional assumptions for
different explainers (See Section 3.2).

• Specifically we prove this result for astuteness of three classes of explainers: (1) Shapley
value based (e.g. SHAP), (2) explainers that simulate mean effect of features (e.g. RISE),
and (3) explainers that simulate individual feature removal (e.g. CXPlain). Formally, our
theorems establish a lower bound on explainer astuteness that depends on the Lipschitzness
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Figure 1: In this figure we visualize the implication of our theoretical results. For a black-box
prediction function that is locally Lipschitz with a constant L1, the predictions for any two points
x, x′ such that dp(x, x′) ≤ r are within L1dp(x, x

′) distance from each other. Given such a prediction
function, the explanation for the same data points are also expected to be within λ1dp(x, x

′) of each
other where λ1 = CL1

√
d where C is a constant. If we consider a second black-box function with

L2 > L1 that results in λ2 > λ1, indicating that the explanations for this black-box function can
actually end up being farther apart as compared to the first prediction function. This result implies that
locally smooth black-box functions lend themselves to more astute (i.e., robust) explanations.

of the black-box function and square root of data dimensionality. Figure 1 summarizes this
main contribution of our work.

• We demonstrate experimentally that this lower bound indeed holds in practice by comparing
the astuteness predicted by our theorems to the observed astuteness on simulated and real
datasets. We also demonstrate experimentally that the same neural network when trained
with Lipschitz constraints lends itself to more astute explanations compared to when it is
trained with no constraints.

2 BACKGROUND AND NOTATIONS

2.1 REMOVAL-BASED FEATURE EXPLAINERS

As mentioned in Section 1, there exist a wide variety of explainers. Owing to this diversity, in
this work, we concern ourselves with removal-based feature attribution explainers as defined by
Covert et al. (2020) (which showed 25 existing methods under this umbrella). Removal based feature
attribution explainers are methods that define a feature’s influence through the impact of removing
it from a model and assigning continuous-valued scores to each feature signifying its importance.
This includes popular approaches such as SHAP and SHAP variants including KernelSHAP, LIME,
DeepLIFT (Lundberg & Lee, 2017), mean effect based methods such as RISE (Petsiuk et al., 2018),
and individual effects based methods such as CXPlain (Schwab & Karlen, 2019), PredDiff (Zintgraf
et al., 2017), permutation tests (Strobl et al., 2008), and feature ablation explainers (Lei et al., 2018).
All of these methods simulate feature removal either explicitly or implicitly. For example, SHAP
explicitly considers effect of using subsets that include a feature as compared to the effect of removing
that feature from the subset. RISE removes subsets of features while always keeping the feature
that is being evaluated, and estimates the average effect of keeping that feature when other features
are randomly removed. CXPlain explicitly considers the impact of removing a feature on the loss
function used in training the predictor function.

2.2 NOTATION

We denote d-dimensional input data as x ∈ Rd, from a data distribution D. The black-box predictor
function is denoted by f , where f(x) is the prediction given x, this function is assumed to have
been trained on the training samples from D. The explainer is represented by a function ϕ where
ϕ(x) ∈ Rd is the feature attribution vector representing attributions for all features in x while
ϕi(x) ∈ R is the attribution for the ith feature. To simulate the presence or absence of features in a
given subset of features, we use an indicator vector z ∈ {0, 1}d, where zi = 1 when the ith feature is
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present in the subset. To indicate we are only using subsets where feature zi = 1, we use z+i; and to
indicate only using subsets where feature zi = 0, we use z−i. Lastly, the p-norm induced distance
between any two points x, x′ is denoted by dp(x, x

′) = ||x− x′||p, where ||.||p is the p-norm.

3 EXPLAINER ASTUTENESS

Our main interest is in defining a metric that can capture the difference in explanations provided by
an explainer to points that are close to each other in the input space. The same question has been
asked for classifiers. Bhattacharjee & Chaudhuri (2020) came up with the concept of Astuteness
of classifiers, which captures the probability that similar points are assigned the same label by a
classifier. Formally they provide the following definition:
Definition 1. Astuteness of classifiers (Bhattacharjee & Chaudhuri, 2020): The astuteness of a
classifier f over D, denoted as Ar(f,D) is the probability that ∀x, x′ ∈ D such that d(x, x′) ≤ r the
classifier will predict the same label.

Ar(f,D) = Px,x′∼D[f(x) = f(x′)|d(x, x′) ≤ r] (1)

The obvious difference in trying to adapt this definition of astuteness to explainers is that explanations
for nearby points do not have to be exactly the same. Keeping this in mind, we propose and formalize
explainer astuteness, as the probability that the explainer assigns similar explanations to similar
points. The formal definition is as follows:
Definition 2. Explainer astuteness: The explainer astuteness of an explainer E over D, denoted as
Ar,λ(E,D) is the probability that ∀x, x′ ∈ D such that dp(x, x′) ≤ r the explainer E will provide
explanations ϕ(x), ϕ(x′) that are at most λ · dp(x, x′) away from each other, where λ ≥ 0

Ar,λ(E,D) = Px,x′∼D[dp(ϕ(x), ϕ(x
′)) ≤ λ · dp(x, x′)

∣∣∣ dp(x, x′) ≤ r] (2)

A critical observation about definition 2 is that it not only relates to the previously defined notion
of classifier astuteness, but also connects to the concept of probabilistic Lipschitzness. Probabilistic
Lipschitzness captures the probability of a function being locally smooth given a radius r. It is
specially useful for capturing a notion of smoothness of complicated neural network functions for
which enforcing global and deterministic Lipschitzness is difficult. Mangal et al. (2020) formally
defined probabilistic Lipschitzness as follows:
Definition 3. Probabilistic Lipschitzness (Mangal et al., 2020): Given 0 ≤ α ≤ 1, r ≥ 0, a function
f : X → R is probabilistically Lipschitz with a constant L ≥ 0 if

Px,x′∼D[dp(f(x), f(x
′)) ≤ L · dp(x, x′)

∣∣∣ dp(x, x′) ≤ r] ≥ 1− α (3)

3.1 THEORETICAL BOUNDS OF ASTUTENESS

A cursory comparison between equation 2 and equation 3 hints at the two concepts being related to
each other. In fact, explainer astuteness can be viewed as probabilistic Lipschitzness of the explainer
when it is viewed as a function with a Lipschitz constant λ. However, a much more interesting
question to explore is how the astuteness of explainers is connected to the Lipschitzness of the
black-box model they are trying to explain. We introduce and prove the following theorems which
provide theoretical bounds that connect the Lipschitz constant L of the black-box model to the
astuteness of various explainers including SHAP (Lundberg & Lee, 2017), RISE (Petsiuk et al., 2018),
and methods that simulate individual feature removal such as CXPlain (Schwab & Karlen, 2019).

3.1.1 ASTUTENESS OF SHAP

SHAP (Lundberg & Lee, 2017) is one of the most popular feature attribution based explainers
in use today. Lundberg & Lee (2017) unify 6 existing explanation approaches within the SHAP
framework. Each of these explanation approaches (such as DeepLIFT and kernelSHAP) can be
viewed as approximations of SHAP, since SHAP in its theoretical form is difficult to calculate.
However, in this section we use the theoretical definition of SHAP to establish bounds on astuteness.

For a given data point x ∈ X and a prediction function f , the feature attribution provided by SHAP
for the ith feature is given by:

ϕi(x) =
∑
z−i

|z−i|!(d− |z−i| − 1)!

d!
[f(x⊙ z+i)− f(x⊙ z−i)] (4)
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Before moving on to the actual theorem, we introduce and prove the following Lemma which is
necessary for the proof of Theorem 3.1.
Lemma 1. If,

Px,x′∼D[dp(f(x), f(x
′)] ≤ L ∗ dp(x, x′)

∣∣∣ dp(x, x′) ≤ r] ≥ 1− α

then for y = x ⊙ z+i, y
′ = x′ ⊙ z+i, i.e. y, y′ ∈ ∪Nk = {y|y ∈ Rd, ||y||0 = k, yi ̸= 0} for

k = 1, . . . , d

Px,x′∼D[dp(f(y), f(y
′)) ≤ L ∗ dp(y, y′)

∣∣∣ dp(y, y′) ≤ r] ≥ 1− β

where β ≥ α assuming that the distribution D is defined for all x and y and the equality is approached
if the probability of sampling points from the set Nk = {y|y ∈ Rd, ||y||0 = k, yi ̸= 0} approaches
zero for k = 2, . . . , d relative to the probability of sampling points from N1.

Proof. (Sketch, full proof in Appendix A)

Assume pk is the probability of occurrence of the set Nk = {x|x ∈ Rd, ||x||0 = k, xi ̸= 0} in the
input space and γk is the probability of the set of points that violate Lipschitzness in the set Nk. In
finite case each set Nk can be mapped to a set N′

k of cardinality 2d−k|Nk| after masking with all
possible z+i. In probability terms, the probability of N′

k can be written as p′k = 2d−kpk∑d
j=1 2−jpj

. Let β

be the the proportion of points in all N′
k that also violate Lipschitzness in their unmasked form then

β can be written as

β =

∑d
k=1 2

−kpkγk∑d
j=1 2

−jpj

Considering worse case β requires solving the following equation,

β∗ = max
γ1,...,γd

∑d
k=1 2

−kpkγk∑d
j=1 2

−jpj
,

d∑
i=1

piγi = α, 0 ≤ α ≤ 1, 0 ≤ γi ≤ 1, ∀i = 1, . . . , d (5)

The result of this maximization will be β∗ ≥ α. In the specific case where pk → 0 for k = 2, . . . , d
(i.e., where the probability of sampling any x with a 0 valued element is 0), β → α.

Theorem 3.1. (Astuteness of SHAP) Consider a given r ≥ 0 and 0 ≤ α ≤ 1, and a trained predictive
function f that is probabilistic Lipschitz with a constant L, radius r measured using dp(., .) and
with probability at least 1 − α. Then for SHAP explainers we have astuteness Ar,λ ≥ 1 − β for
λ = 2 p

√
dL. Where β ≥ α, and β → α under conditions specified in Lemma 1.

Proof. Given input x and another input x′ s.t. d(x, x′) ≤ r. And letting |z−i|!(d−|z−i|−1)!
d! = Cz .

Using equation 4 we can write,

dp(ϕi(x), ϕi(x
′)) = ||

∑
z−i

Cz[f(x⊙ z+i)− f(x⊙ z−i)]−
∑
z−i

Cz[f(x
′ ⊙ z+i)− f(x′ ⊙ z−i)]||p (6)

Combining the two sums and re-arranging the R.H.S,

dp(ϕi(x), ϕi(x
′)) = ||

∑
z−i

Cz[f(x⊙ z+i)− f(x′ ⊙ z+i) + f(x′ ⊙ z−i)− f(x⊙ z−i)]||p (7)

Using triangular inequality on the R.H.S twice,

dp(ϕi(x), ϕi(x
′)) ≤ ||

∑
z−i

Cz[f(x⊙ z+i)− f(x′ ⊙ z+i)]||p + ||
∑
z−i

Cz[f(x
′ ⊙ z−i)− f(x⊙ z−i)]||p

≤
∑
z−i

Cz||f(x⊙ z+i)− f(x′ ⊙ z+i)||p +
∑
z−i

Cz||f(x′ ⊙ z−i)− f(x⊙ z−i)||p

(8)

We can replace each value inside the sums in equation 8 with the maximum value across either sums.
Doing so would still preserve the inequality in equation 8, as the sum of n values is always less than
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the maximum among those summed n times. Without loss of generality let us assume this maximum
is |f(x⊙ z∗+i)− f(x′ ⊙ z∗+i)| for some particular z∗. This gives us:

dp(ϕi(x), ϕi(x
′)) ≤ ||f(x⊙ z∗+i)− f(x′ ⊙ z∗+i)||p

∑
z−i

Cz + ||f(x⊙ z∗+i)− f(x′ ⊙ z∗+i)||p
∑
z−i

Cz (9)

However,
∑

z−i
Cz =

∑
z−i

|z−i|!(d−|z−i|−1)!
d! = 1, which gives us,

dp(ϕi(x), ϕi(x
′)) ≤ 2||f(x⊙ z∗+i)− f(x′ ⊙ z∗+i)||p = 2dp(f(x⊙ z∗+i), f(x

′ ⊙ z∗+i)) (10)

Using the fact that f is probabilistic Lipschitz with a given constant L ≥ 0, dp(x, x′) ≤ r, dp(x⊙
z∗+i, x

′ ⊙ z∗+i) ≤ dp(x, x
′) and Lemma 1. We get:

P [2dp(f(x⊙ z∗+i), f(x
′ ⊙ z∗+i)) ≤ 2L · dp(x, x′)] ≥ 1− β

Since equation 10 establishes that dp(ϕi(x), ϕi(x
′)) ≤ 2dp(f(x ⊙ z∗+i), f(x

′ ⊙ z∗+i)), the below
inequality can be now established:

P [dp(ϕi(x), ϕi(x
′)) ≤ 2L · dp(x, x′)] ≥ 1− β (11)

Note that equation 11 is true for each feature i ∈ {1, ..., d}. To conclude our proof, we note that

dp(x, y) =
p

√√√√ d∑
i

|xi − yi|p ≤ p

√√√√ d∑
i

max
i

|xi − yi|p =
p
√
dmax

i
dp(xi, yi)

Utilizing this in equation 11, without loss of generality assuming dp(ϕi(x), ϕi(x
′)) corresponds to

the maximum, gives us:

P [dp(ϕ(x), ϕ(x
′)) ≤ 2

p
√
dL · dp(x, x′)] ≥ 1− β (12)

Since P [dp(ϕ(x), ϕ(x
′)) ≤ 2 p

√
dL · dp(x, x′)] in equation 12 defines Aλ,r for λ = 2 p

√
dL, this

concludes the proof.

Corollary 1. If the prediction function f is locally deterministically L−Lipschitz (α = 0) at radius
r then Shapley explainers are λ−astute for radius r ≥ 0 for λ = 2 p

√
dL

Proof. Note that definition 3 reduces to the definition of deterministic Lipschitz if α = 0. Which
means equation 12 will be true with probability 1. Which concludes the proof.

3.1.2 ASTUTENESS OF “REMOVE INDIVIDUAL” EXPLAINERS

Within the framework of feature removal explainers, a sub-category is the explainers that work
by removing a single feature from the set of all features and calculating feature attributions based
on change in prediction that result from removing that feature. This category includes Occlusion,
CXPlain (Schwab & Karlen, 2019), PredDiff (Zintgraf et al., 2017) Permutation tests (Strobl et al.,
2008), and feature ablation explainers (Lei et al., 2018).

“Remove individual” explainers determine feature explanations for the ith feature by calculating the
difference in prediction with and without that feature included for a given point x. Let z−i ∈ {0, 1}d
represent a binary vector with zi = 0, then the explanation for feature i can be written as:

ϕ(xi) = f(x)− f(x⊙ z−i) (13)

Theorem 3.2. (Astuteness of Remove individual explainers) Consider a given r ≥ 0 and 0 ≤ α ≤ 1
and a trained predictive function f that is locally probabilistic Lipschitz with a constant L, radius r
measured using dp(., .) and probability at least 1− α. Then for Remove individual explainers, we
have the astuteness Ar,λ ≥ 1− α, for λ = 2 p

√
dL, where d is the dimensionality of the data.

Proof. (Sketch, full proof in Appendix A) By considering another point x′ such that dp(x, x′) ≤ r
and equation 13 we get,

dp(ϕ(xi), ϕ(x
′
i)) = dp(f(x)− f(x⊙ z−i), f(x

′)− f(x′ ⊙ z−i)) (14)

then following the exact same steps as the proof for Theorem 1 i.e. writing the right hand side in
terms of p-norm, utilizing triangular inequality, and the definition of probabilistic Lipschitzness leads
us to the desired result.
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Corollary 2. If the prediction function f is locally L−Lipschitz at radius r ≥ 0, then remove
individual explanations are λ−astute for radius r and λ = 2 p

√
dL.

Proof. Same as proof for Corollary 2.1.

3.1.3 ASTUTENESS OF RISE

RISE determines feature explanation for the ith feature by sampling subsets of features and then
calculating the mean value of the prediction function when feature i is included in the subset. RISE
feature attribution for a given point x and feature i for a prediction function f can be written as:

ϕi(x) = Ep(z|zi=1)[f(x⊙ z)] (15)

The following theorem establishes the bound on λ for explainer astuteness of RISE in relation to the
Lipschitzness of black-box prediction function.

Theorem 3.3. (Astuteness of RISE) Consider a given r ≥ 0 and 0 ≤ α ≤ 1, and a trained predictive
function f that is locally deterministically Lipschitz with a constant L (α = 0), radius r measured
using dp(., .) and probability at least 1− α. Then for RISE explainer is λ−astute for radius r and
λ = p

√
dL.

Proof. (Sketch, full proof in Appendix A)

Given input x and another input x′ s.t. d(x, x′) ≤ r, using equation 15 we can write

dp(ϕi(x), ϕi(x
′)) = dp(Ep(z|zi=1)[f(x⊙ z)],Ep(z|zi=1)[f(x

′ ⊙ z)])

= ||Ep(z|zi=1)[f(x⊙ z)]− Ep(z|zi=1)[f(x
′ ⊙ z)]||p = ||Ep(z|zi=1)[f(x⊙ z)− f(x′ ⊙ z)]||p

(16)

Using Jensen’s inequality on R.H.S followed by the fact that E[f ] ≤ max f

dp(ϕi(x), ϕi(x
′)) ≤ max

z
dp(f(x⊙ z), f(x′ ⊙ z)) (17)

Using the fact that f is is deterministically Lipschitz and dp(ϕ(x), ϕ(x
′)) ≤ p

√
d ∗

maxi dp(ϕi(x), ϕi(x
′)) gives us,

P [dp(ϕ(x), ϕ(x
′) ≤ p

√
dL · dp(x, x′)] ≥ 1 (18)

Since P [dp(ϕ(x), ϕ(x
′) ≤ p

√
dL ·dp(x, x′)] defines Aλ,r for λ = p

√
dL, this concludes the proof.

3.2 IMPLICATIONS

The above theoretical results all provide the same critical implication, that is, explainer astutness is
lower bounded by the Lipschitzness of the prediction function. This means that black-box classifiers
that are locally smooth (have a small L at a given radius r) lend themselves to probabilistically
more robust explanations. This work provides the theoretical support on the importance of enforcing
smoothness of classifiers to astuteness of explanations. Note that while this implication makes
intuitive sense, proving it for specific explainers is non-trivial as demonstrated by the three theorems
above. The statement holds true for all three explainers when the classifier can be assumed to be
deterministically Lipschitz, the conditions under which it is still true for probabilistic Lipschitzness
vary in each case. For Theorem 3.1 we have to assume that distribution D is defined over masked
data in addition to the input data and ideally the probability of sampling of masked data from is
significantly smaller compared to probability of sampling points with no value exactly equal to 0.
For Theorem 3.2 the statement is true without additional assumptions. For Theorem 3.3 we can only
prove the statement to be true for the detereminsitic case.

4 EXPERIMENTS
To demonstrate the validity of our theoretical results, we perform a series of experiments. We train
four different classifiers on each of five datasets, and then explain the decisions of these classifiers
using three explainers.

We utilize three simulated datasets introduced by (Chen et al., 2018) namely Orange Skin(OS),
Nonlinear Additive(NA) and Switch, and two real world datasets from UCI Machine Learning
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repository (Asuncion & Newman, 2007) namely Rice (Cinar & Koklu, 2019) and Telescope (Ferenc
et al., 2005). Details for these datasets can be found in Appendix B.

For each dataset we train the following four classifiers; 2layer: A two-layer MLP with ReLU
activations. For simulated datasets each layer has 200 neurons, while for the 2 real datasets we use
32 neurons in each layer. 4layer: A four-layer MLP with ReLU activations, with the same number of
neurons per layer as 2layer. linear: A linear classifier. svm: A support vector machine with Gaussian
kernel. The idea here is that each of these classifiers will have different Lipschitz behavior, and that
should lower bound the explainer astuteness when explaining each of these classifiers according to
our theoretical results.

We evaluate 3 explainers here that are representative of our 3 theorems. Gradient based approximation
and kernel shap approximation of SHAP(Lundberg & Lee, 2017) for the NN classifiers and SVM
respectively serve as representative of Theorem 3.1. Both are included in the implementation provided
by the authors. We modify the implementation of RISE(Petsiuk et al., 2018) provided by the authors
for image datasets to work with tabular datasets, this serves as representative for Theorem 3.3.
Implementation provided by authors for CXPlain (Schwab & Karlen, 2019) serves as representative
for Theorem 3.2.1.

4.1 EFFECT OF LIPSCHITZ CONSTRAINTS ON EXPLAINER ASTUTENESS

Following Gouk et al. (2021)’s proposal we constrain the Lipschitz constant for each layer by adding
a projection step during training where after each update the weight matrices are projected to a
feasible set if they violate the constraints on the Lipschitz constant, the constraints can be controlled
via a hyperparameter. We use this method to train a four layer MLP with high, low and no Lipschitz
constraint. We then calculate astuteness of each of our explainers for all three versions of this neural
network. Figure 2 shows the results. The goal of this set of experiments is to demonstrate the
relationship between Lipschitz regularity of a NN and the astuteness of explainers. As the same NN
is trained on the same data but with different levels of Lipschitz constraints enforced, the astuteness
of explainers varies accordingly. In all cases we see astuteness reaching 1 for smaller values of λ
for the same NN when it is highly constrained (lower lipschitz constant L) vs less constrained or
unconstrained. The results provide empirical evidence in support of the main conclusion that can be
drawn from our work: i.e., enforcing Lipschitzness on classifiers lends them to more astute post-hoc
explanations.

4.2 ESTIMATING PROBABILISTIC LIPSCHITZNESS AND LOWER BOUND FOR ASTUTENESS

To demonstrate the connection between explainer astuteness and probabilistic Lipschitzness as alluded
to by our theory we need to estimate probabilistic Lipschitzness for classifiers. In our experiments we
achieve this by by empirically estimating the Px,x′∼D (equation 3) for a range of values of L ∈ (0, 1)
incremented at 0.1. We do this for each classifier and for each dataset D and set r as median of
pairwise distance for all training points. According to equation 3 this gives us an upperbound on
1− α i.e. we can say that for a given L, r the classifier is Lipschitz with probability at least 1− α.
We can use the estimates for probabilistic Lipschitzness to predict the lower bound of astuteness
using our theorems. We do this by noting that our theorems imply that for λ = CL

√
d, explainer

astuteness is ≥ 1− α. This means we can guarantee that for λ ≥ LC
√
d explainer astuteness should

be lower bounded by 1−α. For each dataset-classifier-explainer combination we can plot two curves.
One, that represents the predicted lower bound on explainer astuteness given a classifier, as described
in the previous paragraph. Second, the actual estimations of explainer astuteness using Definition 2.
According to our theoretical results, at a given λ the estimated explainer astuteness should stay above
the predicted astuteness based on the Lipschitzness of classifiers. We show these curves in Appendix
Figure 3 but summarize them in tabular form in Table 1 to conserve space. The table shows the
difference between the AUC under the estimated astuteness curves (AUC) and the AUC under the
predicted lower bound (AUClb). This number captures the average difference of the lowerbound
over a range of λ values. Note that the values are all positive supporting our result as a lower bound.

1SHAP: https://github.com/slundberg/shap, RISE: https://github.com/eclique/
RISE, CXPLAIN: https://github.com/d909b/cxplain
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Figure 2: Regularizing
the Lipschitness of a neu-
ral network during train-
ing results in higher as-
tuteness for the same
value of λ. Higher regu-
larization results in lower
Lipschitz constant (Gouk
et al., 2021). Astuteness
reaches 1 for smaller val-
ues of λ with Lipschitz
regularized training, as
expected from our the-
orems. The errorbars
represent results across
5 runs to account for
randomness in explainer
runs.

Table 1: AUC−AUClb(↓). The observed AUC is lower bounded by the predicted AUC. As
expected, The difference between the two is always ≥ 0.

2layer 4layer linear svm

Datasets SHAP RISE CXPlain SHAP RISE CXPlain SHAP RISE CXPlain SHAP RISE CXPlain

OS .585 .477 .551 .489 .415 .426 .043 .017 .043 .761 .628 .732
NA .359 .289 .318 .285 .216 .244 .452 .391 .474 .742 .653 .708

Switch .053 .053 .003 .086 .083 .039 .043 .028 .034 .557 .472 .524
Rice .249 .142 .229 .292 .131 .252 .258 .165 .241 .426 .347 .413

Telescope .324 .213 .317 .345 .244 .333 .223 .149 .211 .501 .439 .504

5 CONCLUSION, LIMITATIONS AND BROADER IMPACT
In this paper we formally defined explainer astuteness which captures the probability that a given
explainer will assign similar explanations to similar points. We theoretically prove that this explainer
astuteness is proportional to the probabilistic Lipschitzness of the black-box function that is being
explained. As probabilistic Lipschitzness captures local smoothness properties of a function, this
result suggests that enforcing smoothness on black-box models can lend these models to more robust
explanations. In terms of limitations, we observe that our empirical results suggest that our predicted
lower bound can be tightened further. One possible conjecture here is that the tightness of this bound
depends on how different explainers calculate attribution scores, e.g. empirically we observe RISE
and SHAP (that both depend on expectations over subsets) behave similarly to each other but different
from CXPlain. Some explainers such as LIME for tabular data have the option to use a discretization
step prior to calculating feature attributions. As a consequence, two observations with all features
belonging to the same bins would receive exactly the same explanation, whereas two arbitrarily close
inputs may receive completely different explanations (when the number of perturbed sample is large
(Garreau & von Luxburg, 2020)). In that sense, tabular LIME would not be astute by our formulation,
regardless of classifier Lipschitzness. Robustness is also only one property of a reliable explainer;
there are other properties that are investigated in recent literature, as we outline in Section 1. These
other properties, e.g. faithfulness (Agarwal et al., 2022) may also be theoretically probed in very
similar ways as we did for robustness. Additionally, robustness can sometimes be at odds with with
correctness (See for example Zhou et al. (2022) and "Logic Trap 3" in Ju et al. (2022)) and is best
viewed as one part of explanation reliability and trustworthiness (Zhou et al., 2022).

From a broader societal impact perspective, we would like to make it clear that just enforcing
Lipschitzness on blackbox classifiers should not be considered as doing enough in terms of making
them more transparent and interpretable. Our work is intended to be a call to action for the field
to concentrate more on improving blackbox models for explainability purposes when they are
conceptualized and trained and provides one of possibly many ways to achieve that goal.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Chirag Agarwal, Marinka Zitnik, and Himabindu Lakkaraju. Probing gnn explainers: A rigorous
theoretical and empirical analysis of gnn explanation methods. In International Conference on
Artificial Intelligence and Statistics, pp. 8969–8996. PMLR, 2022.

Sushant Agarwal, Shahin Jabbari, Chirag Agarwal, Sohini Upadhyay, Zhiwei Steven Wu, and
Himabindu Lakkaraju. Towards the unification and robustness of perturbation and gradient based
explanations. arXiv preprint arXiv:2102.10618, 2021.

Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational information
bottleneck. arXiv preprint arXiv:1612.00410, 2016.

David Alvarez-Melis and Tommi S Jaakkola. On the robustness of interpretability methods. arXiv
preprint arXiv:1806.08049, 2018.

Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik,
Alberto Barbado, Salvador García, Sergio Gil-López, Daniel Molina, Richard Benjamins, et al.
Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward
responsible ai. Information Fusion, 58:82–115, 2020.

Arthur Asuncion and David Newman. Uci machine learning repository, 2007.

Shayan Aziznejad, Harshit Gupta, Joaquim Campos, and Michael Unser. Deep neural networks with
trainable activations and controlled lipschitz constant. IEEE Transactions on Signal Processing,
68:4688–4699, 2020.

Robi Bhattacharjee and Kamalika Chaudhuri. When are non-parametric methods robust? In
International Conference on Machine Learning, pp. 832–841. PMLR, 2020.

Jianbo Chen, Le Song, Martin Wainwright, and Michael Jordan. Learning to explain: An information-
theoretic perspective on model interpretation. In International Conference on Machine Learning,
pp. 883–892. PMLR, 2018.

Ilkay Cinar and Murat Koklu. Classification of rice varieties using artificial intelligence methods.
International Journal of Intelligent Systems and Applications in Engineering, 7(3):188–194, 2019.

Ian Covert, Scott Lundberg, and Su-In Lee. Explaining by removing: A unified framework for model
explanation. arXiv preprint arXiv:2011.14878, 2020.

Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. The robustness of deep
networks: A geometrical perspective. IEEE Signal Processing Magazine, 34(6):50–62, 2017.

Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas. Efficient
and accurate estimation of lipschitz constants for deep neural networks. Advances in Neural
Information Processing Systems, 32, 2019.

Thomas Fel, David Vigouroux, Rémi Cadène, and Thomas Serre. How good is your explanation?
algorithmic stability measures to assess the quality of explanations for deep neural networks. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 720–730,
2022.

Daniel Ferenc, MAGIC collaboration, et al. The magic gamma-ray observatory. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 553(1-2):274–281, 2005.

Damien Garreau and Ulrike von Luxburg. Looking deeper into tabular lime. arXiv preprint
arXiv:2008.11092, 2020.

Amirata Ghorbani, Abubakar Abid, and James Zou. Interpretation of neural networks is fragile. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 3681–3688, 2019.

Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J Cree. Regularisation of neural networks
by enforcing lipschitz continuity. Machine Learning, 110(2):393–416, 2021.

10



Under review as a conference paper at ICLR 2023

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and Dino
Pedreschi. A survey of methods for explaining black box models. ACM computing surveys (CSUR),
51(5):1–42, 2018.

Yiming Ju, Yuanzhe Zhang, Zhao Yang, Zhongtao Jiang, Kang Liu, and Jun Zhao. Logic traps in
evaluating attribution scores. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 5911–5922, 2022.

Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman. Distribution-free
predictive inference for regression. Journal of the American Statistical Association, 113(523):
1094–1111, 2018.

Jeffrey Li, Vaishnavh Nagarajan, Gregory Plumb, and Ameet Talwalkar. A learning theoretic
perspective on local explainability. arXiv preprint arXiv:2011.01205, 2020.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In Proceed-
ings of the 31st international conference on neural information processing systems, pp. 4768–4777,
2017.

Ravi Mangal, Kartik Sarangmath, Aditya V Nori, and Alessandro Orso. Probabilistic lipschitz
analysis of neural networks. In International Static Analysis Symposium, pp. 274–309. Springer,
2020.

Aria Masoomi, Chieh Wu, Tingting Zhao, Zifeng Wang, Peter Castaldi, and Jennifer Dy. Instance-
wise feature grouping. Advances in Neural Information Processing Systems, 33, 2020.

Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling for explanation of
black-box models. arXiv preprint arXiv:1806.07421, 2018.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?" explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144, 2016.

Patrick Schwab and Walter Karlen. Cxplain: Causal explanations for model interpretation under
uncertainty. arXiv preprint arXiv:1910.12336, 2019.

Avanti Shrikumar, Peyton Greenside, Anna Shcherbina, and Anshul Kundaje. Not just a black
box: Learning important features through propagating activation differences. arXiv preprint
arXiv:1605.01713, 2016.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smoothgrad:
removing noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.

Carolin Strobl, Anne-Laure Boulesteix, Thomas Kneib, Thomas Augustin, and Achim Zeileis.
Conditional variable importance for random forests. BMC bioinformatics, 9(1):1–11, 2008.

Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and
efficient estimation. Advances in Neural Information Processing Systems, 31, 2018.

Fan Yin, Zhouxing Shi, Cho-Jui Hsieh, and Kai-Wei Chang. On the faithfulness measurements for
model interpretations. arXiv preprint arXiv:2104.08782, 2021.

Jinsung Yoon, James Jordon, and Mihaela van der Schaar. Invase: Instance-wise variable selection
using neural networks. In International Conference on Learning Representations, 2018.

Yilun Zhou, Marco Tulio Ribeiro, and Julie Shah. Exsum: From local explanations to model
understanding. arXiv preprint arXiv:2205.00130, 2022.

Luisa M Zintgraf, Taco S Cohen, Tameem Adel, and Max Welling. Visualizing deep neural network
decisions: Prediction difference analysis. arXiv preprint arXiv:1702.04595, 2017.

11



Under review as a conference paper at ICLR 2023

A DETAILED PROOFS

We include the detailed proofs for Lemma 1, Theorems 3.3 and 3.2 here.

Proof. (Proof for Lemma 1)

Let us assume,

pk = P [Nk], s.t.Nk = {x | x ∈ Rd, ||x||0 = k, xi ̸= 0}

and let L̂ be the set of points that violate Lipschitzness, then assume,

γk = P [L̂ | Nk]

given that α is the probability of the set of points that violate Lipschitzness across D, we can use
Bayes’ rule to write,

α = P [L̂] =
d∑

k=1

pkγk

If we consider the case where the sets Nk are finite, each Nk can be mapped to a set N′
k of cardinality,

|N′
k| =

d−k∑
b=0

(
d− k

b

)
|Nk| = 2d−k|Nk|

In more general terms, the probability of N′
k can be written as,

p′k = P [N′
k] =

2d−kpk∑d
j=1 2

d−jpj
=

2−kpk∑d
j=1 2

−jpj

Let us define β as the proportion of points in all N′
k that also violate Lipschitzness in their unmasked

form. This leads us to the following equation for β

β =

∑d
k=1 2

−kpkγk∑d
j=1 2

−jpj

The worse case β would then be obtained by considering a maximization over γk,

β∗ = max
γ1,...,γd

∑d
k=1 2

−kpkγk∑d
j=1 2

−jpj
,

d∑
i=1

piγi = α, 0 ≤ α ≤ 1, 0 ≤ γi ≤ 1, ∀i = 1, . . . , d (19)

This constrained optimization problem can be solved by assigning γk = 1 for the largest pk until the
budget α is exhausted where only a fractional value of γ can be assigned, and 0 for the remaining
values of k. This β∗ ≥ α in general. In the specific case where pk → 0 for k = 2, . . . , d, when
compared to p1 (i.e. where the probability of sampling a point from D such that any of the values are
exactly 0 is very small compared to the probability of sampling points with all non-zero values which
would generally be the case for sampling real data), β∗ → α

Proof. (For Theorem 3.2) By considering another point x′ such that dp(x, x′) ≤ r and equation 13
we get,

dp(ϕ(xi), ϕ(x
′
i)) = dp(f(x)− f(x⊙ z−i), f(x

′)− f(x′ ⊙ z−i)) (20)

using the fact that dp(x, y) = ||x− y||p where ||.||p is the p-norm, the RHS gives us,

dp(ϕi(x), ϕi(x
′)) = ||f(x)− f(x⊙ z−i)− f(x′) + f(x′ ⊙ z−i)||p (21)

12



Under review as a conference paper at ICLR 2023

using triangular inequality,

dp(ϕi(x), ϕi(x
′)) ≤ ||f(x)− f(x′)||p + ||f(x′ ⊙ z−i)− f(x⊙ z−i)||p (22)

w.l.o.g assuming the first term on the right is bigger than the second term

dp(ϕi(x), ϕi(x
′)) ≤ 2||f(x)− f(x′)||p = 2dp(f(x), f(x

′)) (23)

using the fact that f is probabilistic Lipschitz get us,

P [dp(ϕi(x), ϕi(x
′)) ≤ 2Ldp(x, x

′)] ≥ 1− α (24)

to conclude the proof note that dp(ϕ(x), ϕ(x′)) ≤ p
√
d ∗maxi dp(ϕi(x), ϕi(x

′)), which gives us,

P [dp(ϕ(x), ϕ(x
′)) ≤ 2

p
√
dL · dp(x, x′)] ≥ 1− α (25)

Proof. (For Theorem 3.3)

Given input x and another input x′ s.t. d(x, x′) ≤ r, using equation 15 we can write

dp(ϕi(x), ϕi(x
′)) = dp(Ep(z|zi=1)[f(x⊙ z)],Ep(z|zi = 1)[f(x′ ⊙ z)])

= ||Ep(z|zi=1)[f(x⊙ z)]− Ep(z|zi = 1)[f(x′ ⊙ z)]||p
= ||Ep(z|zi=1)[f(x⊙ z)− f(x′ ⊙ z)]||p

(26)

Using Jensen’s inequality on R.H.S,

dp(ϕi(x), ϕi(x
′)) ≤ Ep(z|zi=1)[||f(x⊙ z)− f(x′ ⊙ z)||p] (27)

Using the fact that E[f ] ≤ max f ,

dp(ϕi(x), ϕi(x
′)) ≤ max

z
||f(x⊙ z)− f(x′ ⊙ z)||p

= max
z

dp(f(x⊙ z), f(x′ ⊙ z))
(28)

Using the fact that f is deterministically Lipschitz with some constant L ≥ 0, and dp(x ⊙ z, x′ ⊙ z) ≤
dp(x, x

′), ∀z. Then using the definition of probabilistic Lipschitz with α = 0 we get,

P (max
z

dp(f(x⊙ z), f(x′ ⊙ z)) ≤ L ∗ d(x, x′) ≥ 1 (29)

Using this in equation 28 gives us,

P [dp(ϕi(x), ϕi(x
′)) ≤ L ∗ d(x, x′)] ≥ 1 (30)

Note that equation 30 is true for each feature i ∈ {1, ..., d}. To conclude the proof note that dp(ϕ(x), ϕ(x′) ≤
p
√
d ∗maxi dp(ϕi(x), ϕi(x

′)). Utilizing this with equation 30 leads us to

P [dp(ϕ(x), ϕ(x
′) ≤ p

√
dL · dp(x, x′)] ≥ 1 (31)

Since P [dp(ϕ(x), ϕ(x
′) ≤ p

√
dL · dp(x, x′)] defines Aλ,r for λ ≥ p

√
dL, this concludes the proof.
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B DATASET DETAILS

• Orange-skin: The input data is again generated from a 10-dimensional standard Gaussian
distribution. The ground truth class probabilities are proportional to exp{

∑4
i=1 X

2
i − 4}.

In this case the first 4 features are important globally for all data points.
• Nonlinear-additive: Similar to Orange-skin dataset except the ground trugh class proba-

bilities are proportional to exp{−100 sin 2X1 + 2|X2|+X3 + exp{−X4}}, and therefore
each of the 4 important features for prediction are nonlinearly related to the prediction itself.

• Switch: This simulated dataset is specifically for instancewise feature explanations. For
the input data feature X1 is generated by a mixture of Gaussian distributions centered at
±3. If X1 is generated from the Gaussian distribution centered at +3, X2 to X5 are used
to generate the prediction probabilities according to the Orange skin model. Otherwise X6

to X9 are used to generate the prediction probabilities according to the Nonlinear-additive
model.

• Rice (Cinar & Koklu, 2019):This dataset consists of 3810 samples of rice grains of two
different varieties (Cammeo and Osmancik). 7 morphological features are provided for each
sample.

• Telescope(Ferenc et al., 2005): This dataset consists of 19000+ Monte-Carlo generated
samples to simulate registration of high energy gamma particles in a ground-based atmo-
spheric Cherenkov gamma telescope using the imaging technique. Each sample is labelled
as either background or gamma signal and consists of 10 features.

C TRAINING DETAILS

Training splits and hyperparameter choices have relatively little effect on our experiments. Regardless,
the details used in results shown are provided here for completeness:

• Train/Test Split: For all synthetic datasets we use 106 training points and 103 test points.
The neural networks classifiers were trained with a batch size of 1000 for 2 epochs. While
SVM was trained with default parameters used in https://scikit-learn.org/
stable/modules/generated/sklearn.svm.SVC.html.
For Telescope and Rice datasets test set sizes of 5% and 33% were used, with a batch size
of 32 trained for 100 epochs. SVM was again trained with default parameters.

• radius r: For all experiments we used radius equal to the median of pairwise distance. This
is standard practice and also allows for a big enough r where we can sample enough points
to provide empirical estimates.

D ADDITIONAL RESULTS

Table 2 shows the normalized AUC for the estimated explainer astuteness and the predicted AUC
based on the predicted lower bound curve. As expected the predicted AUC lower bounds the estimated
AUC.

Figure 3 shows the same plots as shown in Figure ?? but includes all datasets.
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Figure 3: This figure experimentally shows the implication of our theoretical results. It corresponds
to the AUC values shown in Table 1. Given each combination of dataset, classifier and explainer we
observe that the estimated explainer astuteness for SHAP, RISE and CXPLAIN is lower bounded by
the astuteness predicted by our theoretical results given a value of λ. The predicted lower bound is
depicted by dashed lines, while solid lines depict the actual estimate of explainer astuteness.
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Table 2: Observed AUC and (Predicted AUC). The observed AUC is lower bounded by the predicted
AUC and so the observed AUC should always be higher than the predicted AUC. The AUC values
are normalized between 0 and 1.

2layer 4layer linear svm

Datasets SHAP RISE CXP (LB) SHAP RISE CXP (LB) SHAP RISE CXP (LB) SHAP RISE CXP (LB)

OS .954 .847 .920 (.369) .969 .896 .906 (.480) .994 .967 .994 (.950) .945 .813 .917 (.184)
NA .978 .909 .936 (.618) .981 .926 .940 (.696) .972 .912 .994 (.520) .971 .883 .937 (.229)

Switch .998 .996 .948 (.945) .996 .988 .948 (.909) .994 .978 .988 (.950) .969 .885 .936 (.412)
Rice .962 .886 .974 (.803) .932 .824 .932 (.793) .968 .901 .962 (.800) .981 .906 .970 (.715)

Telescope .962 .863 .954 (.637) .955 .863 .944 (.610) .980 .906 .967 (.756) .969 .909 .972 (.467)

Figure 4: Regularizing the Lipschitness of a neural network during training results in higher astuteness
for the same value of λ. Higher regularization results in lower Lipschitz constant (Gouk et al., 2021).
Astuteness reaches 1 for smaller values of λ with Lipschitz regularized training, as expected from our
theorems. The errorbars represent results across 5 runs to account for randomness in training.
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