
Under review as submission to TMLR

Continual Hyperbolic Learning of Instances and Classes

Anonymous authors
Paper under double-blind review

Abstract

Instance-level continual learning addresses the challenging problem of recognizing and
remembering specific instances of object classes in an incremental setup, where new
instances appear over time. Continual learning of instances forms a more fine-grained
challenge than conventional continual learning, which is only concerned with incremen-
tal discrimination at the class level. In this paper, we argue that for real-world continual
understanding, we need to recognize samples both at the instance and class level. We
find that classes and instances form a hierarchical structure and propose HyperCLIC, a
hyperbolic continual learning algorithm for visual instances and classes, to enable us to
learn from this structure. We introduce continual hyperbolic classification and distilla-
tion objectives, allowing us to embed the hierarchical relations between classes and from
classes to instances. Empirical evaluations show that HyperCLIC can operate effectively
at both levels of granularity and with better hierarchical generalization, outperforming
well-known continual learning algorithms. The code is included with this submission
and will be made publicly available.

1 Introduction

Continual learning addresses a long-standing challenge in machine learning: learning from new classes
leads to the catastrophic forgetting of old classes (Kirkpatrick et al., 2017; Wu et al., 2019). As a result
of catastrophic forgetting, we cannot simply fine-tune models on new data. Many solutions have been
proposed to enable incremental learning from new classes while retaining recognition performance from
old classes. Well-known solutions include data replay (Bang et al., 2021; Wang et al., 2021), model
regularization (Yin et al., 2021; Lee et al., 2020), and knowledge distillation (Kang et al., 2022; Dong
et al., 2022).

Where continual learning typically performs class-level discrimination, recent works have broadened the
scope to instance-level continual learning. Instance-level continual understanding is essential in many
real-world domains such as robotics, where classifying the specific instance of objects helps the robot to
decide where to place or how to use them (Ammirato, 2019; Singh et al., 2014; Held et al., 2016). The
EgoObjects dataset (Zhu et al., 2023) and its latest instance-level continual challenge (Pellegrini et al.,
2022) highlight the difficult and open-ended nature of this problem.

In this work, we strive to perform continual learning simultaneously at the instance and class level.
In many real-world domains, recognition only at one granularity level is insufficient. On one hand,
class-level continual learning is invariant to class instances by design. On the other hand, instance-level
continual learning without class-level awareness is prone to making significant mistakes. For domains
such as robotics, self-driving cars, and more, it is crucial that in the case of instance-level mistakes,
the class-level prediction is still correct to avoid accidents and to be able to generalize to new instances
quickly. Classes and instances are hierarchically related, as classes have their coarse-to-fine hierarchy
(Fellbaum, 2010; Deng et al., 2009), and instances add an additional layer to the hierarchy (Yan et al.,
2024). Figure 1 visualizes the hierarchical organization of classes and their instances.

We propose HyperCLIC, a hyperbolic continual learner that leverages the class-instance hierarchy for
joint instance- and class-level recognition. We first show how the class-instance hierarchy can be embed-
ded as prototypes in hyperbolic space. We then outline hyperbolic classification and distillation losses to
enable incremental learning and hierarchical knowledge retention at both levels of granularity. Experi-
mental evaluation on EgoObjects, Split CIFAR-100 and CORe50 highlight the potential of our approach,
with the ability to perform high-quality recognition at both instance- and class-level.

1

Under review as submission to TMLR

Cl
as

s
 H

ier
ar

ch
y

In
st

an
ce

Hi

er
ar

ch
y

Case Timepiece Lighting Headwear

Suitcase Bag Clock Watch Bulb Lamp Hat Crown

Entity

In
st

an
ce

s
Cl

as
se

s
Su

pe
rc

la
ss

es

Figure 1: Recognizing classes and other instances simultaneously is important in many real-
world applications. By adding instances as an additional layer to the object hierarchy and learning
representations that capture the joint hierarchy, we can classify samples at multiple levels of granularity.

2 Literature Review

2.1 Continual Learning

Continual learning focuses on the ability of a model to learn and retain knowledge incrementally over
time. This field is studied under three main scenarios (Van de Ven et al., 2022; Chen & Liu, 2018): Task-
incremental, class-incremental, and domain-incremental learning. In task-incremental learning (Van de
Ven et al., 2022; Kirkpatrick et al., 2017; Li & Hoiem, 2017), a model is trained on incremental tasks
with clear boundaries. The task ID is known during test time. In contrast, in the class-incremental
learning (Guo et al., 2022a; Kim et al., 2022; 2023; Wu et al., 2019; Rebuffi et al., 2017), the task ID is
not provided, making task-incremental a particular case of class-incremental. Domain-incremental (Shi
& Wang, 2024; Garg et al., 2022b; Kalb et al., 2021; Mirza et al., 2022; Wang et al., 2022b) focuses
on scenarios where the data distribution’s incremental shift is explicitly modeled. In this work, we will
concentrate on class-incremental learning.

Regardless of continual scenarios, the main challenge of continual learning is to alleviate catastrophic
forgetting with only limited access to the previous data (Evron et al., 2022; Shi et al., 2021). Catastrophic
forgetting means that performance on previously learned tasks degrades significantly when learning new
tasks. To address this, various strategies have been developed. Zhou et al. (2023) groups class-incremental
methods into data-centric, model-centric, and algorithm-centric. Data-centric methods concentrate on
solving class-incremental learning with exemplars by using data replay (Prabhu et al., 2020; Bang et al.,
2021; Chaudhry et al., 2018a; Aljundi et al., 2019; Rolnick et al., 2019; Shin et al., 2017; Wang et al.,
2021) or data regularization techniques (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2018b; Zeng et al.,
2019). Model-centric methods either regularize the model parameters from drifting away (Kirkpatrick
et al., 2017; Zenke et al., 2017; Yin et al., 2021; Lee et al., 2020) or dynamically expand the network
structure for stronger representation ability (Yan et al., 2021; Zhou et al., 2022b; Wang et al., 2022a;
Douillard et al., 2022). Algorithm-centric methods either utilize knowledge distillation to resist forgetting
(Rebuffi et al., 2017; Kang et al., 2022; Li & Hoiem, 2017; Hou et al., 2019; Buzzega et al., 2020; Dong
et al., 2022; Douillard et al., 2020) or rectify the bias in the model (Wu et al., 2019; Belouadah & Popescu,
2019; Zhou et al., 2022a; Zhao et al., 2020). Unlike existing continual methods that do not consider data
geometry and use Euclidean space for all data, we advocate using hyperbolic embeddings for continual
learning to capture class-class and class-instance hierarchies.

While class-level continual learning has received significant attention, the problem of joint instance- and
class-level continual learning remains relatively unexplored. The recent EgoObjects benchmark (Zhu
et al., 2023), based on earlier benchmarks (Lomanco & Maltoni, 2017; She et al., 2020), makes it possible
to investigate continual learning at the instance level. Incremental learning of instances has many appli-
cations, such as in (i) robotics, i.e., recognizing and interacting with specific objects in the environment;
(ii) in NLP, i.e., identifying and classifying new instances of entities (e.g., people, locations, organiza-
tions); (iii) in medical imaging, i.e., identifying new forms of lesions and tumors; and (iv) in product
recognition, i.e., product recommendations, inventory management, and visual search. Parshotam &
Kilickaya (2020) realize the need to incrementally recognize different instances of the same object class

2

Under review as submission to TMLR

using a metric learning approach under an object re-identification setting. In contrast, we propose con-
tinually learning both instance-level and class-level representations. According to the challenge winners
(Pellegrini, 2022), iCaRL (Rebuffi et al., 2017) is the best-performing model for instance-level classifica-
tion on the EgoObjects dataset. Therefore, our proposed hyperbolic continual learner takes inspiration
from the core design choices of iCaRL.

2.2 Hyperbolic Learning

Hyperbolic learning has gained considerable attention in deep learning in embedding taxonomies and
tree-like structures (Nickel & Kiela, 2017; Ganea et al., 2018a; Law et al., 2019; Nickel & Kiela, 2018),
graphs (Liu et al., 2019; Chami et al., 2019; Bachmann et al., 2020; Dai et al., 2021), and text (Tifrea
et al., 2018; Zhu et al., 2020; Dhingra et al., 2018; Leimeister & Wilson, 2018). Hyperbolic space is a
space with constant negative curvature that can be thought of as a continuous version of a tree, making
it a good choice to embed any finite tree while preserving the distances (Ungar, 2008; Hamann, 2018).
Based on the tree-like behavior, Nickel & Kiela (2017) introduce a new approach to embed symbolic data
in the Poincaré ball model, a particular hyperbolic space model. Ganea et al. (2018a) take a step forward
and improve the Poincaré embeddings (Nickel & Kiela, 2017) using a model based on the geodesically
convex entailment cones, showing the effectiveness when embedding data with a hierarchical structure.
Furthermore, hyperbolic space has also been used to develop intermediate layers (Ganea et al., 2018a;
Cho et al., 2019), and deep neural networks (Ganea et al., 2018b; Shimizu et al., 2020).

Following the initial success, hyperbolic space has shown success and gained attention in computer vision
tasks in supervised and unsupervised learning (Mettes et al., 2024). Hyperbolic embeddings have shown
benefits in classification and few-shot learning (Khrulkov et al., 2020; Gao et al., 2021; Guo et al., 2022b;
Ghadimi Atigh et al., 2021b), zero-shot learning (Liu et al., 2020; Hong et al., 2023), segmentation (Atigh
et al., 2022; Chen et al., 2023), out-of-distribution generalization (Ganea et al., 2018b; van Spengler et al.,
2023), uncertainty quantification (Atigh et al., 2022; Chen et al., 2023), contrastive learning (Yue et al.,
2023; Ge et al., 2023), hierarchical representation learning (Long et al., 2020; Dhall et al., 2020; Doorenbos
et al., 2024), generative learning (Cho et al., 2024; Dai et al., 2020; Mathieu & Nickel, 2020), and vision-
language representation learning (Ibrahimi et al., 2024; Desai et al., 2023). To our knowledge, Gao
et al. (2023) is the only study that utilizes non-Euclidean geometries for class-level continual learning.
Their approach introduces an expanding geometry of mixed-curvature space, particularly targeting low-
memory scenarios. In contrast, we propose hyperbolic continual learning tailored for joint learning of
instances and classes in a default memory regime.

3 HyperCLIC

In this section, we present our method for continual learning of instances and classes using hyperbolic
geometry. Our goal is to continually learn hierarchy-aware representations, enabling classification at dif-
ferent levels of granularity: instance-, class-, and superclass-level. We follow a class-incremental learning
setup, where new instance classes are introduced at each new task. Consider a sequence of T train-
ing tasks D1,D2, ...,DT with non-overlapping instances, where Dt = (xt

i, y
t
i)

nt

i=1 is the t-th incremental
step with nt training samples. Each xt

i ∈ RD is an example of instance yi ∈ Yt, where Yt is the label
space of task t. We formalize the hierarchy of instances, classes, superclasses, and other nodes as a tree
T = (V,E). Each label in Yt corresponds to a leaf node label of tree T , as detailed in Section 3.1. We
only have access to samples of instances in Dt when training task t. Figure 2 illustrates the two main
components of HyperCLIC: First, we embed the class-instance hierarchy into hyperbolic space using
Poincaré embeddings and entailment cones, leveraging hyperbolic space’s ability to model hierarchical
relationships. Second, we perform continual hyperbolic alignment between visual inputs and the embed-
ded hierarchy. We apply a hyperbolic prototype-based loss for classifying new instances and a hyperbolic
distillation loss to maintain the consistency of embeddings for previously seen instances, ensuring that
the model respects the hierarchical structure during continual learning. Our method consists of two
stages. The objective of the first stage (Section 3.1) is to obtain a set of hyperbolic prototypes, which
are later used in the second stage (Section 3.2) for the classification loss.

3.1 Embedding class-instance hierarchies in hyperbolic space

The joint class-instance tree hierarchy T = (V,E) (Figure 1) consists of four types of vertices V =
VI ∪ VC ∪ VS ∪ VO and four types of directed edges E = EIC ∪ ECS ∪ ESO ∪ EOO. Vertices VI =

3

Under review as submission to TMLR

Hyperbolic Space

Feature
Extractor

Exponential
Map

Task 1

Feature
Extractor

Exponential
Map

Task 2 Memory

Feature
Extractor

Exponential
Map

Task t Memory

Headwear

Case Timepiece

Lighting

Suitcase

Bag Clock

Watch

Bulb

LampCrown

Hat Hierarchy

Case Timepiece Lighting Headwear

Suitcase Bag Clock Watch Bulb Lamp Hat Crown

Entity

ℒembed

ℒcls

ℒdistil

Figure 2: Overview of HyperCLIC . The class-instance hierarchy is projected into a fixed shared
hyperbolic space. When learning an instance (e.g., instance A), samples of A go through the feature
extractor and are mapped into the shared hyperbolic space using the exponential map. These samples
are then pushed toward their hyperbolic instance prototype via classification loss and are encouraged to
maintain hyperbolic logits from previous classes through distillation loss.

{i1, i2, ..., inI
} are the set of instances, VC = {c1, c2, ..., cnC

} the set of classes that are parents of instances,
VS = {s1, s2, ..., snS

} the set of superclasses that are parents of classes, and VO = {o1, o2, ..., onO
} are

the set of other remaining nodes. Each node v ∈ V corresponds to a distinct label. The number of
nodes |V | equals the number of all labels |C| in the hierarchy. EIC = {(ij , ck) | ij ∈ VI , ck ∈ VC}
represent edges between instances and classes, ECS = {(ck, sm) | ck ∈ VC , sm ∈ VS} edges between
classes and superclasses, ESO = {(sm, op) | sm ∈ VS , op ∈ VO} edges between superclasses and other
nodes, and EOO = {(op, oq) | op ∈ VO, oq ∈ VO} represents the remaining 1-hop hypernymy relations.
This formalization defines the hierarchical relationships in a tree structure where each node V (instance,
class, superclass, and other) except the root has exactly one parent. Each instance VI is a leaf node in
the tree structure T .

Given the class-instance tree hierarchy T , our goal is to embed the symbolic tree representation a priori
into a hyperbolic embedding space that incorporates the hierarchical relations between classes and from
classes to instances. We define the hyperbolic manifold using the Poincaré ball model (Nickel & Kiela,
2017), as it is well-suited for gradient-based optimization. More formally, let Bd

c = {z ∈ Rd|c∥z∥2 < 1}
be the open d-dimensional unit ball, where ||.|| denotes the Euclidean norm, and c denotes the curvature.
The Poincaré ball model corresponds to the Riemannian manifold (Bd

c , g
B
z) with the Riemannian metric

tensor gBz = 4(1 − c∥z∥2)−2Id.

Let dT (vi, vj) denote the graph distance between two nodes vi, vj ∈ V based on their hierarchical
relations. Also, let dB(pi, pj) denote the hyperbolic distance between two points pi, pj ∈ Bd in the
Poincaré ball. We seek to obtain a set of prototypes P = {pi}|V |

i=1 corresponding to V = {vi}|V |
i=1 such

that dB(pi, pj) ∝ dT (vi, vj), i.e., the hyperbolic distance dB is proportional to the edge distances in graph
T . The hyperbolic distance dB between two points p1, p2 ∈ Bd is given by the following equation:

dB(p1, p2) = 2√
c

arctanh(
√
c|| − p1 ⊕c p2||). (1)

where ⟨p1, p2⟩ denotes the inner product of two vectors p1 and p2 and ⊕ denotes the Möbius addition
given by:

p1 ⊕c p2 = (1 + 2c⟨p1, p2⟩ + c||p2||2)p1 + (1 − c||p1||2)p2

1 + 2c⟨p1, p2⟩ + c2||p1||2||p2||2
(2)

We minimize the loss function LP oincaré defined by Nickel & Kiela (2017). Let R = {(u, v)} denote the
set of transitive closures in graph T , meaning there is a path from node u to v. Ganea et al. (2018a)
define R as entailment relations, where v entails u, or equivalently, that u is a subconcept of v. LP oincaré
encourages semantically similar objects to be close in the embedding space according to their Poincaré
distance:

LP oincaré =
∑

(u,v)∈R

log e−dB(u,v)∑
v′∈N (u) e

−dB(u,v′) . (3)

4

Under review as submission to TMLR

N (u) = {v|(u, v) /∈ R}∪{u} denotes the set of negative examples for u. Negative examples N (u) include
all nodes v that do not entail u. While the Poincaré loss results in hyperbolic prototypes P in tree-shaped
regions on Bd, there are no guarantees of entailment, i.e., of a partial order relationship that requires the
region of each subtree to be fully covered by their parent tree. Therefore, following Ganea et al. (2018a),
we apply a max-margin entailment loss LEntailment on the extracted Poincaré embeddings P , to enforce
entailment regions:

LEntailment =
∑

(u,v)∈R

E(u, v) +
∑

(u′,v′)∈N

max(0, γ − E(u′, v′)). (4)

The energy function E(u, v) := max(0,Ξ(u, v) − ψ(v)) measures how far point u from belonging to the
entailment cone ψ(v) is. The first term encourages u to be part of the entailment cone ψ(v) for (u, v) ∈ R.
The second term pushes negative samples (u′, v′) ∈ N angularly away for a minimum margin γ > 0 if
they don’t share an entailment cone. For full details of Equation 4, we refer to Ganea et al. (2018a).

We observe that the entailment loss tends to bring the prototypes, especially those of the instances VI ,
too close to each other. To counteract this, we apply a separation loss LS , similar to the approach in
Long et al. (2020), which ensures that all prototypes P are adequately separated.

LS(P) = 1⃗T (P̄ P̄T − I)⃗1, (5)

where P̄ denotes the vector-wise l2-normalization of P . The proposed loss function minimizes the cosine
similarity between any two prototypes. Algorithm 1 summarizes the first stage of HyperCLIC, detailing
the sequential application of the three losses that result in the hyperbolic prototypes. After obtaining
the prototypes for all nodes in the tree T , we only use the prototypes P = {Py}|VI |

y=1 corresponding to the
instance (leaf) nodes V = {vy}|VI |

y=1 in the next section.

Algorithm 1
3.1 Embedding class-instance hierarchies in hyperbolic space
Require: The joint class-instance hierarchy T = (V,E)

1: We seek to obtain a set of prototypes P = {pi}|V |
i=1 corresponding to V = {vi}|V |

i=1 such that
dB(pi, pj) ∝ dT (vi, vj)

2: // Initialize prototypes with Poincaré loss:
3: for e in #Poincaré_Epochs do
4: Minimize loss: LP oincaré =

∑
log e−dB (u,v)∑

v′∈N (u)
e−dB (u,v′)

5: end for
6: // Enforce max-margin entailment regions:
7: for e′ in #Entailment_Epochs do
8: Minimize loss: LEntailment =

∑
E(u, v) + max(0, γ − E(u′, v′))

9: end for
10: // Enforce separation between prototypes:
11: for e′′ in #Separation_Epochs do
12: Minimize loss: LS(P) = 1⃗T (P̄ P̄T − I)⃗1
13: end for
14: After obtaining the prototypes for all nodes in the tree T , we only use the prototypes P = {Py}|VI |

y=1

corresponding to the instance (leaf) nodes V = {vy}|VI |
y=1 in the next stage.

5

Under review as submission to TMLR

Algorithm 2
3.2 Continual hyperbolic learning with hierarchical prototypes

Require: P = {Py}|VI |
y=1

1: // The classification loss using prototypes from the previous stage:

2: Lcls = − 1
|Dt|

∑
(xi,yi)∈Dt

∑|C|
i=1 yi · log

(
e

h(zt
i

,yi)∑|C|
j=1

e
h(zt

i
,yj)

)
3: Keep a copy of the model parameters at time t− 1 as θt−1 to calculate the distillation loss:
4: Ldistil = − 1

|Db<t|
∑

(xi,yi)∈Db<t

∑|Cb<t|
i=1 p(yi|zt−1

i) · log p(yi|zt
i)

5: Run network training by minimizing L = Lcls + Ldistil

3.2 Continual hyperbolic learning

We use a backbone φ(.; θt) to extract features from a training sample xi, where θt denotes the model
parameters at timestep t. The extracted features form a Euclidean representation φ(xi; θt). We assume
that the backbone output is in the tangent space TxM, while the extracted prototypes from Section 3.1
are in the hyperbolic space M. Thus, we need to project the Euclidean representation to the hyperbolic
space M through the exponential map function.

zt
i = exp0 (φ(xi; θt)). (6)

Here, zi
t is the hyperbolic representation of φ(xi; θt). The exponential map function is given as (Ganea

et al., 2018b):
expc

0 (x) = tanh (
√
c∥x∥) · x√

c∥x∥
, (7)

where c denotes the curvature of the hyperbolic space. A higher c indicates a more curved space. The
exponential map embeds visual representation into the hyperbolic space where the hierarchy of classes and
instances are embedded as prototypes. Our goal is to minimize the hyperbolic distance of representation
z with its instance prototype Py. Thus, we define the hyperbolic logit h(z, y) as the negative hyperbolic
distance of vector representation z and all prototypes y:

h(z, y) = −dB(z, Py)
τ

. (8)

The temperature parameter τ controls the entropy of the probability distribution while preserving the
relative ranks of each class. We can make the probability distribution more peaked or smoother by
adjusting this parameter. The conditional probability p(yi|zt

i) can be derived by the softmax of the
hyperbolic logit:

p(yi|zt
i) = eh(zt

i ,yi)∑|C|
j=1 e

h(zt
i
,yj)

. (9)

Once the hyperbolic logits are calculated, we can compute the classification loss as the cross entropy
between the hyperbolic logits and the targets:

Lcls = − 1
|Dt|

∑
(xi,yi)∈Dt

|C|∑
i=1

yi · log(eh(zt
i ,yi)∑|C|

j=1 e
h(zt

i
,yj)

). (10)

While the classification loss ensures that the new classes learn their representation, the ultimate goal of
class-incremental learning is to continually learn a model that works both for the old and the new classes.
Formally, the model should not only acquire the knowledge from the current task Dt but also preserve
the knowledge from former tasks Db<t. We use a hyperbolic distillation loss to ensure that the model
predicts the same hyperbolic logits for the old classes Db<t at time t as time t − 1. Following Rebuffi
et al. (2017), we keep a copy of the model parameters at time t − 1 as θt−1 and define the probability
distribution at time t− 1 as p(yi|zt−1

i) where (xi, yi) ∈ Db<t:

p(yi|zt−1
i) = eh(zt−1

i
,yi)∑|C|

j=1 e
h(zt−1

i
,yj)

. (11)

6

Under review as submission to TMLR

The hyperbolic distillation loss is calculated as the cross-entropy loss between the probability distribution
at time t and t− 1:

Ldistil = − 1
|Db<t|

∑
(xi,yi)∈Db<t

|Cb<t|∑
i=1

(eh(zt−1
i

,yi)∑|Cb<t|
j=1 eh(zt−1

i
,yj)

) · log(eh(zt
i ,yi)∑|Cb<t|

j=1 eh(zt
i
,yj)

). (12)

The final loss of the second stage is L = Lcls + Ldistil following Rebuffi et al. (2017). Algorithm 2
summarizes the second stage of HyperCLIC, where the hyperbolic prototypes from the first stage are
used to classify new classes at the current task and distill hyperbolic logits from previousely seen classes.
Samples from old classes Db<t are selected at the end of each task by the herding strategy (Welling,
2009), which is a commonly used strategy aiming to select the most representative samples of each class.
These exemplars are saved in memory and are representative data points of each known instance class. In
addition to distillation loss, the exemplars are also used during inference. During inference, the closeness
to exemplars determines the final prediction for a given data point. We perform the nearest mean of
exemplar classification following Rebuffi et al. (2017):

y∗
i = arg min

y=1,...,nI

∥φ(xi) − µy∥ (13)

Where µy denotes the mean of exemplars for the instance class y and nI denotes the number of instance
classes. The exemplars and their means could be calculated in hyperbolic space, however, we observe
that the Euclidean representations are already aligned with the hierarchy and conclude that there is no
need for an extra hyperbolic computation. Overall, our method aligns classification and distillation losses
with hyperbolic representations of a fixed hierarchy, leveraging the class-instance hierarchy with minor
modifications to existing continual learning methods. This alignment allows continual classification at
multiple levels of granularity such as instance and class-level.

4 Experimental Setup

Datasets We conduct experiments using the class-incremental instance-level continual learning bench-
mark EgoObjects (Zhu et al., 2023), first introduced at the 3rd CLVISION Challenge (Pellegrini et al.,
2022). This dataset comprises a stream of 15 tasks, each created by cropping the main object from
egocentric videos. In total, there are 1110 unique instances from 277 classes. Since the test set labels are
not provided in the challenge, we split the training set into training (80%), testing (10%), and validation
(10%) subsets. Following the challenge convention, we divide the dataset into non-overlapping sets of
gaia_ids, which are identifiers for each unique video clip. We also conduct experiments on CORe50 NC
scenario (Lomonaco et al., 2020; Lomanco & Maltoni, 2017) that is specifically designed for continual
object recognition with 50 domestic object instances belonging to 10 categories under different back-
grounds and lighting. Additionally, we experiment with iCIFAR-100 (Krizhevsky et al., 2009; Rebuffi
et al., 2017), which contains i = 10 tasks, each with 10 classes. Although CIFAR-100 is designed for
class-level classification, has limited hierarchy and lacks instances within classes, we treat the classes as
instances to facilitate comparison with other class-incremental continual learning methods.

Our focus is real-world instance-level continual learning. For this research problem, EgoObjects is the
only large-scale dataset. The Core50 dataset is also an instance-level dataset, but is a toy dataset with
only 50 instances, resulting in minimal differences between methods. We have added Core50 with a
comparison to iCaRL (the closest Euclidean counterpart to our method) to Table 9. We have moved the
CIFAR-100 8 and Core50 9 experiments to the Appendix (7) to keep the focus on EgoObjects as the
only relevant benchmark. We see a great potential for additional large instance-level continual datasets
due to the real-world relevance, but there is unfortunately a lack of large-scale instance-level continual
datasets.

Hierarchies For the EgoObjects (Zhu et al., 2023) dataset, we construct a hierarchy using Word-
Net (Fellbaum, 2010), a comprehensive lexical database of the English language. We match each class in
the dataset with the most frequent noun synset in WordNet. To find the path from the leaf nodes to the
root node, we iteratively choose the hypernym with the shortest path to the root. If this path does not
include the physical_entity.n.01 node, we select the next shortest path that does. We manually add
classes that do not match any synsets to the hierarchy. Categories without any instances (91 out of 277)

7

Under review as submission to TMLR

are removed. We also remove nodes with only one child, except for parents of leaf nodes. The resulting
unbalanced hierarchy has a maximum of 7 instances per category, a minimum of 1, and a depth of 12. Our
automated hierarchy extraction method can be adapted to other datasets. In CIFAR-100 (Krizhevsky
et al., 2009), classes are grouped into 20 superclasses. Each image has a fine label (the class) and a coarse
label (the superclass). Following Yan (2021), we group the 20 superclasses into 7 ultra classes that are
children of the root node. In CORe50, the dataset consists of 10 classes, each containing 5 instances. To
extend the hierarchy, we group the 10 classes into 6 superclasses, which are further grouped into 3 ultra
classes. These 3 ultra classes are then made children of a single root node.

Implementation details For HyperCLIC EgoObjects experiments, we train a ResNet34 back-
bone for 3 epochs following Pellegrini (2022), with a batch_size of 90, and a learning rate of
0.01 for 15 tasks. The memory size is 3500 according to the challenge. The pretrained models
are pretrained with ResNet34_Weights.IMAGENET1K_V1, Wide_ResNet50_2_Weights.IMAGENET1K_V2
and RegNet_X_16GF_Weights.IMAGENET1K_V2. In all datasets, the curvature of the Poincaré model
(PoincaréBallExact Kochurov et al. (2020)) is 1, and the temperature τ is 10. The hyperbolic proto-
types are 64-dimensional using Ganea et al. (2018a) with 150 Poincaré epochs and 50 entailment epochs,
plus separation following Long et al. (2020) with a learning rate of 1.0 for 500 epochs. In the iCIFAR-
100 experiments, we train a ResNet34 backbone for 100 epochs with a batch size of 128, starting with
a learning rate of 2.0 for iCaRL and 0.01 for HyperCLIC. A MultiStepLR scheduler with a gamma of
0.2 is applied after every 50 epochs. The memory size is set to 2000 for the 100 classes. The hyperbolic
prototypes are created in the same way as in EgoObjects. For the pretrained experiments, our method
and baseline are trained for 6 epochs. In the CORe50 experiments, we train a ResNet34 backbone for 3
epochs with a batch size of 90. The learning rate is 0.01 for HyperCLIC and 2.0 for iCaRL. The memory
size is 1000, with 20 samples per instance, as in the iCIFAR-100 experiments. The hyperbolic prototypes
are 10-dimensional and are created using the method in Ganea et al. (2018a), with 150 Poincaré epochs
and 50 entailment epochs.

Evaluation metrics We perform the evaluation on both standard and continual hierarchical metrics.
The standard metrics include average forgetting, average accuracy, and per-task accuracies. In our work,
the accuracy metric reflects only the instance-level accuracy, so we refer to it as the continual instance-
level accuracy. The instance-level accuracy on task t after incremental learning of task t′ is defined
as:

Acctt′

instance = 1
nt

nt∑
i=1

1{ŷi
tt′

= yt
i} (14)

where ŷi
tt′

is the predicted class for instance label yt
i evaluated on the test set of t-th task after in-

cremental learning of the t′-th task. To evaluate continual hierarchical consistency and robustness, we
report continual class-level and superclass-level accuracies, inspired by sibling and cousin accuracy in
Ghadimi Atigh et al. (2021a). For each sample xt

i and its ground-truth instance label yt
i , let p(yt

i) be
the parent class yt

i and gp(yt
i) be the grandparent class of yt

i . In class-level accuracy, a prediction is also
correct if it shares a parent with the target class. The class-level accuracy on task t after incremental
learning of task t′ is defined as:

Acctt′

class = 1
nt

nt∑
i=1

1{p(ŷi
tt′

) = p(yt
i)} (15)

In the superclass-level accuracy, the predicted labels must share a grandparent with the target class to
count as correct. The superclass-level accuracy on task t after incremental learning of task t′ is defined
as:

Acctt′

superclass = 1
nt

nt∑
i=1

1{gp(ŷi
tt′

) = gp(yt
i)} (16)

Similar to Bertinetto et al. (2020); Garg et al. (2022a), we also report the continual distance to the
Lowest Common Ancestor (LCA) that captures the mistake’s hierarchical severity. For the wrong pre-
dictions, LCA distance reports the average number of edges between the predicted node and the LCA
of the predicted and ground-truth nodes. LCA distance reveals how hierarchically far off the inaccurate
predictions are, considering the joint class-instance hierarchy as the ground truth.

8

Under review as submission to TMLR

Table 1: Experimental results on EgoObjects with a ResNet34 backbone. Both with and without
pre-training, HyperCLIC performs best.

Pretrain Accuracy ↑ LCA ↓ Forgetting ↓
Instance Class Superclass

Naive (fine-tune) 0.44 1.07 1.58 5.74 10.38
EWC (Kirkpatrick et al., 2017) 0.22 0.66 1.42 5.26 10.38
iCaRL (Rebuffi et al., 2017) 20.05 21.39 22.24 5.45 10.57
CoPE (De Lange & Tuytelaars, 2021) 3.14 4.45 4.91 5.63 25.38
GDumb (Prabhu et al., 2020) 0.50 1.27 1.88 5.50 5.87
DER (Yan et al., 2021) 19.59 20.59 21.14 5.61 35.39
HyperCLIC 41.76 45.91 48.04 4.93 4.17
Naive (fine-tune) ✓ 6.06 15.55 18.24 4.70 93.03
EWC (Kirkpatrick et al., 2017) ✓ 6.07 15.77 18.37 4.74 92.83
iCaRL (Rebuffi et al., 2017) ✓ 81.63 87.02 87.81 3.89 3.77
CoPE (De Lange & Tuytelaars, 2021) ✓ 37.15 49.89 52.51 4.22 32.40
GDumb (Prabhu et al., 2020) ✓ 61.51 71.00 72.82 4.02 18.22
DER (Yan et al., 2021) ✓ 80.00 84.40 85.20 4.28 10.59
HyperCLIC ✓ 84.81 91.94 92.67 2.99 7.08

Following the 3rd CLVision challenge (Verwimp et al., 2023) and the SSLAD competition (Pellegrini
et al., 2022)), all continual hierarchical metrics are calculated as the average mean over all the tasks.
Here, we take the continual instance-level accuracy as an example. Let Accij

instance ∈ [0, 1] denote the
instance-level classification accuracy evaluated on the test set of the i-th task after incremental learning
of the j-th task. The average mean instance-level accuracy is defined as:

Accuracyinstance-level = 1
T 2

T∑
j=1

T∑
i=1

Accij
instance (17)

where T denotes the number of all tasks. We use the same formulation for average mean class-level
accuracy and superclass-level accuracies. We also report the per-task accuracies at the end of the last
task.

5 Results

5.1 Comparison to existing methods

Hierarchical and continual metrics Table 1 reports the results of different baselines on the EgoOb-
jects dataset. If trained from scratch, HyperCLIC achieves a significantly higher instance-level accuracy
(41.76%), class-level accuracy (45.91%), and superclass-level accuracy (48.04%) compared to all base-
lines. The closest competitor is iCaRL (Rebuffi et al., 2017) with an instance-, class-, and superclass-level
accuracy of 20.05%, 21.39%, and 22.24%, respectively, which is less than half of HyperCLIC ’s perfor-
mance. This demonstrates HyperCLIC’s strength in maintaining performance across different levels of
granularity. HyperCLIC shows a lower LCA value (4.93) indicating that the inaccurate predictions are
less hierarchically severe compared to other baselines. The second-best is EWC (Kirkpatrick et al.,
2017) with 5.26. HyperCLIC also shows the lowest forgetting rate (4.17%), indicating better retention
of learned knowledge. For the pretrained scenario, HyperCLIC again leads with the instance-level ac-
curacy of 84.81%, followed by iCaRL (Rebuffi et al., 2017) with 81.63%, and DER(Yan et al., 2021)
with 80%. DER is a strong non-transformer-based continual baseline. In both trained-from-scratch and
pretrained scenarios, HyperCLIC consistently outperforms all baseline methods across all metrics. It
excels in instance-, class-, and superclass-level accuracies while showing lower LCA values and minimal
forgetting. This indicates that HyperCLIC not only learns a hierarchically-aware representation but
also retains knowledge from previous tasks, proving its superiority and robustness over other existing
methods.

9

Under review as submission to TMLR

In
st

an
ce

-le
ve

l a
cc

ur
ac

y

0

25

50

75

100

T1 T2 T3 T4 T5 T6 T7 T8 T8 T9 T10 T11 T12 T13 T14 T15

iCaRL HyperCLIC iCaRL pretrained HyperCLIC pretrained

Figure 3: The final per-task results and their moving average on EgoObjects with a ResNet34
backbone. HyperCLIC outperforms iCaRL by maintaining prior knowledge while delivering higher ac-
curacy on new tasks.

Given that iCaRL (Rebuffi et al., 2017) has the highest performance after HyperCLIC, we use it as
the primary comparison for evaluating our method in subsequent experiments. Figure 3 illustrates the
instance-level accuracy for each task (T1 to T15) after the completion of all tasks. In both non-pretrained
and pretrained models, iCaRL (Rebuffi et al., 2017) demonstrates higher stability but at the cost of not
learning effective representations for new tasks, thereby compromising its performance on recent tasks
to retain knowledge from previous ones. We can also observe this behavior in Table 1. In contrast, our
method not only preserves knowledge from prior tasks but also achieves higher accuracy on the latest
tasks compared to the baseline.

5.2 Ablation study

Quality of the hyperbolic prototypes In the first stage of HyperCLIC, we focus on building high-
quality prototypes that could later be used in the second stage of our method. Thus, we conduct an
ablation on the most critical hyperparameters that define the quality of the prototypes: the hyperbolic
embedding dimension and the number of entailment epochs. The results, presented in Table 2, show
that a very small embedding dimension fails to capture an effective hyperbolic representation. However,
performance improves with medium-sized and larger dimensions, which are competitive. Additionally, we
observed that increasing the number of entailment epochs negatively impacts performance. This occurs
because the entailment loss pushes the children of the same parent too close to each other, leading to a
deterioration in both instance-level accuracy and hierarchical metrics.

Table 2: The effect of different embedding dimensions and entailment epochs on HyperCLIC
in CORe50. Very small dimension sizes cannot capture the hierarchical representation. For larger
dimensions, the number of entailment epochs becomes a significant factor: too few epochs cannot enforce
the entailment cone, while too many epochs collapse leaf nodes into each other.

Dimension Entailment epochs Instance Class Superclass LCA Forgetting

64 150 20.48 35.56 45.58 2.98 -10.67
50 21.13 37.94 48.58 2.91 -9.17

10 150 21.05 34.53 46.84 2.99 -12.19
50 22.89 36.80 47.13 3.01 -11.59

5 150 10.48 22.51 30.59 3.21 -2.82
50 12.05 22.58 32.24 3.26 -5.10

Temperature In the second stage of HyperCLIC, one of the key hyperparameters that significantly
impacts the continual learning of new classes in the classification loss is the temperature. The tempera-
ture, τ , controls the smoothness of the probability distribution derived from the pairwise distances of the
hyperbolic prototypes. In hyperbolic literature (Ibrahimi et al., 2024; Long et al., 2020), τ is commonly

10

Under review as submission to TMLR

Table 3: The effect of different temperatures on HyperCLIC in EgoObjects. Our setting
with temperature of 0.1 is highlighted in gray. Our method is more sensitive to the temperature in the
from-scratch setting.

From scratch Pretrained
Instance Class Superclass LCA Forgetting Instance Class Superclass LCA Forgetting

0.01 26.14 28.26 29.18 5.38 -1.81 77.79 84.90 85.64 3.92 8.06
0.05 11.79 12.93 13.78 5.54 4.52 82.21 90.02 91.16 2.97 6.67
0.09 38.21 42.59 44.44 4.83 3.54 82.03 89.93 91.13 2.91 5.21
Ours 41.76 45.91 48.04 4.93 4.17 84.81 91.94 92.67 2.99 7.08
0.3 19.76 24.07 27.22 4.94 11.82 79.22 88.76 89.88 2.88 7.70
0.5 16.35 20.77 23.68 4.97 9.11 76.80 87.35 88.72 2.74 6.34
1.0 12.67 16.52 19.21 5.03 10.39 71.86 85.35 87.21 2.62 6.47

Table 4: EgoObjects results with different distillation losses with a ResNet34 backbone. Cross-
entropy loss consistently outperforms other distillation losses in both scenarios.

From scratch Pretrained
Instance Class Superclass LCA Forgetting Instance Class Superclass LCA Forgetting

KL divergence 32.60 35.30 36.95 5.13 -1.40 49.76 62.45 65.46 3.75 -6.00
MSE 36.09 40.33 42.53 4.94 8.18 84.38 91.21 92.33 2.92 7.84
Cross-entropy 41.76 45.91 48.04 4.93 4.17 84.11 91.61 92.54 2.96 7.08

set to 0.1. Our results, as shown in Table 3, indicate that HyperCLIC is highly sensitive to the choice
of temperature, especially when trained from scratch compared to using a pretrained model. The best
performance is consistently achieved with a temperature of 0.1 in both scenarios. When the probability
distribution is either too peaked or too smooth, the model struggles to effectively distinguish between
classes.

Distillation loss A key component of our method is the distillation loss, which ensures that the
model retains hyperbolic knowledge from previous tasks. To evaluate this, we tested three different loss
functions: Kullback-Leibner (KL) divergence, Mean Squared Error (MSE), and cross-entropy loss. Table
4 presents the results for both pretrained and from-scratch scenarios. KL divergence shows the lowest
forgetting rates, at −1.40% and −6% respectively, for from-scratch and pretrained scenarios. However,
it performs the worst in terms of hierarchical metrics and instance accuracy, suggesting it disrupts the
balance between plasticity and stability by favoring stability at the expense of plasticity. Cross-entropy
loss performs the best across both scenarios, which is why our method is based on this loss function.
There is also a more notable difference between MSE and cross-entropy when training from scratch
compared to the pretrained scenario.

Balancing Classification and Distillation Losses The continual learning objective in the second
stage of HyperCLIC combines classification and distillation losses, following the approach introduced

Table 5: Balancing the effect of classification and distillation losses in EgoObjects dataset.
Equally weighting the losses yields the highest performance in HyperCLIC.

λ Accuracy ↑ LCA ↓ Forgetting ↓
Instance Class Superclass

0.1 35.33 39.71 42.09 4.90 7.28
0.3 37.54 42.05 44.51 4.83 6.18
Ours 41.76 45.91 48.04 4.93 4.17
0.7 38.02 41.56 43.38 4.92 -0.59
0.9 24.49 26.55 27.83 5.32 -4.92

11

Under review as submission to TMLR

In
st

an
ce

-le
ve

l a
cc

ur
ac

y

50

60

70

80

90

100

Fine-tuned layers

All 10 2 1 Classifier

iCaRL HyperCLIC

C
la

ss
-le

ve
l a

cc
ur

ac
y

50

60

70

80

90

100

Fine-tuned layers

All 10 2 1 Classifier

iCaRL HyperCLIC

Su
pe

rc
la

ss
-le

ve
l a

cc
ur

ac
y

50

60

70

80

90

100

Fine-tuned layers

All 10 2 1 Classifier

iCaRL HyperCLIC

LC
A

di
st

an
ce

2

3

4

5

Fine-tuned layers

All 10 2 1 Classifier

iCaRL HyperCLIC

Figure 4: Performance of HyperCLIC and iCaRL across four metrics with varying numbers of
fine-tuned layers. HyperCLIC excels when all layers are fine-tuned, while iCaRL performs better with
more fixed layers. The Table 1 comparison in the pretrained scenario considers the optimal setup for
each model.

Table 6: Comparison of iCaRL and HyperCLIC on EgoObjects with various pretrained
backbones. HyperCLIC consistently outperforms iCaRL regardless of the architecture, as shown with
ResNet34 (highlighted in gray). This demonstrates that HyperCLIC is adaptable to any backbone and,
when paired with advanced models, enhances joint continual learning of instances and classes.

iCaRL HyperCLIC
Instance Class Superclass LCA Forgetting Instance Class Superclass LCA Forgetting

WideResNet50 82.17 87.46 88.08 4.02 3.42 86.50 94.17 94.61 2.58 6.01
RegNetX_16GF 78.63 86.64 87.58 3.55 5.10 87.22 94.11 95.01 2.59 5.99
ResNet34 81.63 87.02 87.81 3.89 3.77 84.81 91.94 92.67 2.99 7.08

in iCaRL. To evaluate the impact of each loss term, we use a balancing factor, λ, as shown in the
loss function: L = λ · Ldistil + (1 − λ) · Lcls. By varying λ, we assess the influence of classification
and distillation losses on the model’s performance. Table 5 presents the results for different λ values.
Our findings indicate that a fully balanced loss achieves the best performance across both instance-level
accuracy and hierarchical metrics. This highlights the importance of giving equal weight to both losses
to ensure that the model can effectively learn new classes while retaining knowledge of previously learned
classes.

Number of fine-tuned layers We observed that the results of our method and iCaRL differ based
on the number of layers fine-tuned in the pretrained scenario. Figure 4 illustrates the impact on four
hierarchical metrics as the number of fine-tuned layers varies for both methods. For iCaRL, increasing
the number of fine-tuned layers results in worse performance, with lower instance-, class-, and superclass-
level accuracies, and higher LCA distance. Conversely, for HyperCLIC, more fine-tuned layers lead to
improved results. We hypothesize that this is because HyperCLIC enforces a hierarchical structure on
the representations, and since the pretrained model was trained in Euclidean space, fine-tuning more
layers allows HyperCLIC to leverage the model’s capacity to learn hierarchically-aware representations
from the first layer. Given these trends, we use the best scores for each method to compare HyperCLIC
with the baseline in the pretrained scenario.

Backbones All results reported thus far utilize the ResNet34 backbone. Table 6 compares our method
with the leading baseline, iCaRL (Rebuffi et al., 2017), using various pretrained backbones. The findings
indicate that HyperCLIC consistently surpasses the baseline across the hierarchical metrics when using
WideResNet50, RegNetX, and ResNet34 as the backbone architectures. Notably, HyperCLIC achieves
the highest performance with the RegNet backbone, attaining instance-, class-, and superclass-level accu-
racies of 87.22%, 94.11%, and 95.01%, respectively, compared to the best iCaRL results for WideResNet,
which are 82.17%, 87.46%, and 88.08%. Although HyperCLIC improves the LCA distance by nearly
one edge, it shows a higher forgetting rate. These results suggest that our method, particularly when
combined with advanced models such as transformers, has the potential to significantly enhance the joint
continual learning of instances and classes.

12

Under review as submission to TMLR

Lo
w

High

iCaRL HyperCLICHyperbolic prototypes

Figure 5: Left: the pair-wise distances of the instance-level hyperbolic prototypes. Middle & right: the
class-level predictions only for the wrong instance-level predictions. The squares highlight the hierarchical
structure of HyperCLIC mistakes compared with iCaRL and its similarity to the original hierarchy.

iC
aR

L

Backpack Christmas bush Jug Picture frame Oven CookieJug

Christmas bushBackpack Footwear Bottle Computer keyboardGT Picture frameSkateboard

O
ur

s

Backpack Houseplant Footwear Mug Earphone PineappleSkateboard

Instance Class Instance Class Instance Class Instance Class Instance Class Instance Class Instance Class

Figure 6: Qualitative examples from EgoObjects comparing instance and class-level predictions for
ground truth (1st row), iCaRL (2nd row), and our method (3rd row). Green indicates correct predictions,
while red and orange denote severe and less severe hierarchical errors, respectively. HyperCLIC makes
less severe (orange) errors compared to iCaRL.

Class-level errors Figure 5 compares the class-level confusion matrix for incorrectly predicted in-
stances between iCaRL and HyperCLIC, alongside the distances of hyperbolic prototypes. In this ma-
trix, the squares represent children of the same parent node, and larger squares encompass multiple
subtrees. The aim of this experiment is to demonstrate that even when instances are misclassified, Hy-
perCLIC’s class-level predictions still follow the hierarchical structure. As shown, iCaRL’s class-level
predictions are evenly distributed, while HyperCLIC’s predictions are primarily concentrated along the
diagonal. Additionally, a similar hierarchical organization is observed in HyperCLIC when compared
with the pairwise hyperbolic prototype distances, represented by matching squares. This indicates that
HyperCLIC maintains the hierarchical structure, even when making incorrect predictions, resulting in
less severe errors.

Qualitative examples: success and failure cases Figure 6 presents several images from the test set
and compares the instance and class-level predictions of our method against the baseline. In the far-left
example, both methods easily make correct instance-level predictions. Whereas, the far-right example
is challenging for both methods, as it depicts food items in a drawing, leading both to predict unrelated
instances and classes. The middle examples reveal that when HyperCLIC makes an incorrect instance-
level prediction, the class-level prediction remains hierarchically close. For example, it might mistake a
“Christmas bush” for a “house plant” or a “bottle” for a “mug”. This suggests that by incorporating
hierarchical information during training, HyperCLIC reduces the severity of hierarchical errors.

Statistical Significance To evaluate the generality and stability of our method across different runs,
we compare HyperCLIC with the best-performing baselines, iCaRL and DER, in both from-scratch and
pretrained settings. Each experiment is conducted using 5 different random seeds, and we report the
average and standard deviation of the results in Appendix Table 10. Additionally, we perform statistical
significance testing to compare HyperCLIC with the baselines. Table 7 presents the p-values for each
metric. The results demonstrate that there are statistically significant differences between HyperCLIC
and the two baselines across all metrics. Specifically, all p-values are below the commonly used threshold
of p < 0.05, confirming that the observed performance improvements are statistically significant.

13

Under review as submission to TMLR

Table 7: Statistical Significance Testing (p-values) of HyperCLIC Compared with iCaRL and
DER in From-Scratch and Pretrained Settings. HyperCLIC demonstrates statistical significance
compared to iCaRL and DER across all metrics, with a threshold of p < 0.05.

From scratch
Instance Class Superclass LCA Forgetting

iCaRL 3.80 · 10−7 1.46 · 10−7 1.45 · 10−7 1.19 · 10−9 1.59 · 10−4

DER 1.53 · 10−6 5.79 · 10−7 3.96 · 10−7 2.71 · 10−6 2.84 · 10−10

Pretrained
Instance Class Superclass LCA Forgetting

iCaRL 2.84 · 10−2 1.61 · 10−5 4.98 · 10−6 1.76 · 10−11 2.60 · 10−2

DER 4.50 · 10−2 9.29 · 10−6 4.21 · 10−6 2.07 · 10−7 3.00 · 10−3

6 Conclusion and Discussion

Instance-level continual learning addresses the challenging task of recognizing and remembering specific
instances of object classes in an incremental setup, where new instances appear over time. This ap-
proach forms a more fine-grained challenge than conventional continual learning, which typically focuses
on incremental discrimination at the class level. In this paper, we introduced a method for continu-
ally learning at both instance and class levels, arguing that real-world continual understanding requires
recognizing samples at multiple layers of granularity. We observed that classes and instances form a
hierarchical structure that can be leveraged to enhance learning at both levels. To this end, we pro-
posed HyperCLIC, a hyperbolic continual algorithm designed for jointly learning instances and classes.
We introduced continual hyperbolic classification and hyperbolic distillation, which embed the hierar-
chical relationships between classes and from classes to instances. Our experiments demonstrated that
HyperCLIC operates effectively at multiple levels of granularity and achieves superior hierarchical gen-
eralization, consistently outperforming strong continual learning baselines. We conducted ablations on
different distillation losses, backbone architectures, and pretrained models. Additionally, we presented
qualitative analysis on class-level errors and provided evidence that our method makes less hierarchi-
cally severe mistakes. HyperCLIC enables real-world continual understanding, where recognizing and
remembering both instances and classes over time is crucial.

References
Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection for

online continual learning. NeurIPS, 2019.

Phil Ammirato. Recognizing Fine-Grained Object Instances for Robotics Applications. PhD thesis, The
University of North Carolina at Chapel Hill, 2019.

Mina Ghadimi Atigh, Julian Schoep, Erman Acar, Nanne Van Noord, and Pascal Mettes. Hyperbolic
image segmentation. In CVPR, 2022.

Gregor Bachmann, Gary Bécigneul, and Octavian Ganea. Constant curvature graph convolutional net-
works. In ICML, 2020.

Jihwan Bang, Heesu Kim, YoungJoon Yoo, Jung-Woo Ha, and Jonghyun Choi. Rainbow memory:
Continual learning with a memory of diverse samples. In CVPR, 2021.

Eden Belouadah and Adrian Popescu. Il2m: Class incremental learning with dual memory. In ICCV,
2019.

Luca Bertinetto, Romain Mueller, Konstantinos Tertikas, Sina Samangooei, and Nicholas A Lord. Mak-
ing better mistakes: Leveraging class hierarchies with deep networks. In CVPR, 2020.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark experience
for general continual learning: a strong, simple baseline. NeurIPS, 2020.

14

Under review as submission to TMLR

Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional neural
networks. NeurIPS, 2019.

Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian walk
for incremental learning: Understanding forgetting and intransigence. In ECCV, 2018a.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient lifelong
learning with a-gem. arXiv preprint arXiv:1812.00420, 2018b.

Bike Chen, Wei Peng, Xiaofeng Cao, and Juha Röning. Hyperbolic uncertainty aware semantic segmen-
tation. T-ITS, 2023.

Zhiyuan Chen and Bing Liu. Lifelong machine learning. Springer, 2018.

Hyunghoon Cho, Benjamin DeMeo, Jian Peng, and Bonnie Berger. Large-margin classification in hy-
perbolic space. In AIStat, 2019.

Seunghyuk Cho, Juyong Lee, and Dongwoo Kim. Hyperbolic vae via latent gaussian distributions.
NeurIPS, 2024.

Jindou Dai, Yuwei Wu, Zhi Gao, and Yunde Jia. A hyperbolic-to-hyperbolic graph convolutional network.
In CVPR, 2021.

Shuyang Dai, Zhe Gan, Yu Cheng, Chenyang Tao, Lawrence Carin, and Jingjing Liu. Apo-vae: Text
generation in hyperbolic space. arXiv preprint arXiv:2005.00054, 2020.

Matthias De Lange and Tinne Tuytelaars. Continual prototype evolution: Learning online from non-
stationary data streams. In ICCV, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierar-
chical image database. In CVPR, 2009.

Karan Desai, Maximilian Nickel, Tanmay Rajpurohit, Justin Johnson, and Shanmukha Ramakrishna
Vedantam. Hyperbolic image-text representations. In ICML, 2023.

Ankit Dhall, Anastasia Makarova, Octavian Ganea, Dario Pavllo, Michael Greeff, and Andreas Krause.
Hierarchical image classification using entailment cone embeddings. In CVPR, 2020.

Bhuwan Dhingra, Christopher J Shallue, Mohammad Norouzi, Andrew M Dai, and George E Dahl.
Embedding text in hyperbolic spaces. arXiv preprint arXiv:1806.04313, 2018.

Jiahua Dong, Lixu Wang, Zhen Fang, Gan Sun, Shichao Xu, Xiao Wang, and Qi Zhu. Federated class-
incremental learning. In CVPR, 2022.

Lars Jelte Doorenbos, Pablo Márquez Neila, Raphael Sznitman, and Pascal Mettes. Hyperbolic random
forests. TMLR, 2024.

Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas Robert, and Eduardo Valle. Podnet: Pooled
outputs distillation for small-tasks incremental learning. In ECCV, 2020.

Arthur Douillard, Alexandre Ramé, Guillaume Couairon, and Matthieu Cord. Dytox: Transformers for
continual learning with dynamic token expansion. In CVPR, 2022.

Itay Evron, Edward Moroshko, Rachel Ward, Nathan Srebro, and Daniel Soudry. How catastrophic can
catastrophic forgetting be in linear regression? In Conference on Learning Theory, 2022.

C Fellbaum. About wordnet. wordnet. princeton university, 2010.

Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic entailment cones for learning
hierarchical embeddings. In ICML, 2018a.

Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. NeurIPS, 2018b.

Zhi Gao, Yuwei Wu, Yunde Jia, and Mehrtash Harandi. Curvature generation in curved spaces for
few-shot learning. In ICCV, 2021.

15

Under review as submission to TMLR

Zhi Gao, Chen Xu, Feng Li, Yunde Jia, Mehrtash Harandi, and Yuwei Wu. Exploring data geometry for
continual learning. In CVPR, 2023.

Ashima Garg, Depanshu Sani, and Saket Anand. Learning hierarchy aware features for reducing mistake
severity. In ECCV, 2022a.

Prachi Garg, Rohit Saluja, Vineeth N Balasubramanian, Chetan Arora, Anbumani Subramanian, and
CV Jawahar. Multi-domain incremental learning for semantic segmentation. In WACV, 2022b.

Songwei Ge, Shlok Mishra, Simon Kornblith, Chun-Liang Li, and David Jacobs. Hyperbolic contrastive
learning for visual representations beyond objects. In CVPR, 2023.

Mina Ghadimi Atigh, Martin Keller-Ressel, and Pascal Mettes. Hyperbolic busemann learning with ideal
prototypes. NeurIPS, 2021a.

Mina Ghadimi Atigh, Martin Keller-Ressel, and Pascal Mettes. Hyperbolic busemann learning with ideal
prototypes. NeurIPS, 2021b.

Yiduo Guo, Bing Liu, and Dongyan Zhao. Online continual learning through mutual information maxi-
mization. In ICML, 2022a.

Yunhui Guo, Xudong Wang, Yubei Chen, and Stella X Yu. Clipped hyperbolic classifiers are super-
hyperbolic classifiers. In CVPR, 2022b.

Matthias Hamann. On the tree-likeness of hyperbolic spaces. In Mathematical proceedings of the cam-
bridge philosophical society. Cambridge University Press, 2018.

David Held, Sebastian Thrun, and Silvio Savarese. Robust single-view instance recognition. In IEEE
International Conference on Robotics and Automation (ICRA), 2016.

Jie Hong, Zeeshan Hayder, Junlin Han, Pengfei Fang, Mehrtash Harandi, and Lars Petersson. Hyperbolic
audio-visual zero-shot learning. In ICCV, 2023.

Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier
incrementally via rebalancing. In CVPR, 2019.

Sarah Ibrahimi, Mina Ghadimi Atigh, Nanne Van Noord, Pascal Mettes, and Marcel Worring. Intriguing
properties of hyperbolic embeddings in vision-language models. TMLR, 2024.

Tobias Kalb, Masoud Roschani, Miriam Ruf, and Jürgen Beyerer. Continual learning for class-and
domain-incremental semantic segmentation. In IEEE IV, 2021.

Minsoo Kang, Jaeyoo Park, and Bohyung Han. Class-incremental learning by knowledge distillation
with adaptive feature consolidation. In CVPR, 2022.

Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan Oseledets, and Victor Lempitsky.
Hyperbolic image embeddings. In CVPR, 2020.

Gyuhak Kim, Changnan Xiao, Tatsuya Konishi, Zixuan Ke, and Bing Liu. A theoretical study on solving
continual learning. NeurIPS, 2022.

Gyuhak Kim, Changnan Xiao, Tatsuya Konishi, and Bing Liu. Learnability and algorithm for continual
learning. In ICML, 2023.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 2017.

Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian optimization in pytorch.
arXiv preprint arXiv:2005.02819, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Marc Law, Renjie Liao, Jake Snell, and Richard Zemel. Lorentzian distance learning for hyperbolic
representations. In ICML, 2019.

16

Under review as submission to TMLR

Janghyeon Lee, Hyeong Gwon Hong, Donggyu Joo, and Junmo Kim. Continual learning with extended
kronecker-factored approximate curvature. In CVPR, 2020.

Matthias Leimeister and Benjamin J Wilson. Skip-gram word embeddings in hyperbolic space. arXiv
preprint arXiv:1809.01498, 2018.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE PAMI, 2017.

Qi Liu, Maximilian Nickel, and Douwe Kiela. Hyperbolic graph neural networks. NeurIPS, 2019.

Shaoteng Liu, Jingjing Chen, Liangming Pan, Chong-Wah Ngo, Tat-Seng Chua, and Yu-Gang Jiang.
Hyperbolic visual embedding learning for zero-shot recognition. In CVPR, 2020.

V Lomanco and Davide Maltoni. Core50: a new dataset and benchmark for continual object recognition.
In PMLR, 2017.

Vincenzo Lomonaco, Davide Maltoni, Lorenzo Pellegrini, et al. Rehearsal-free continual learning over
small non-iid batches. In CVPR Workshops, 2020.

Teng Long, Pascal Mettes, Heng Tao Shen, and Cees GM Snoek. Searching for actions on the hyperbole.
In CVPR, 2020.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. NeurIPS,
2017.

Emile Mathieu and Maximilian Nickel. Riemannian continuous normalizing flows. NeurIPS, 2020.

Pascal Mettes, Mina Ghadimi Atigh, Martin Keller-Ressel, Jeffrey Gu, and Serena Yeung. Hyperbolic
deep learning in computer vision: A survey. IJCV, 2024.

M Jehanzeb Mirza, Marc Masana, Horst Possegger, and Horst Bischof. An efficient domain-incremental
learning approach to drive in all weather conditions. In CVPR, 2022.

Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representations.
NeurIPS, 2017.

Maximillian Nickel and Douwe Kiela. Learning continuous hierarchies in the lorentz model of hyperbolic
geometry. In ICML, 2018.

Kishan Parshotam and Mert Kilickaya. Continual learning of object instances. In CVPR, 2020.

Lorenzo Pellegrini. clvision-challenge-2022 reports. https://github.com/ContinualAI/
clvision-challenge-2022/tree/main/reports, 2022.

Lorenzo Pellegrini, Chenchen Zhu, Fanyi Xiao, Zhicheng Yan, Antonio Carta, Matthias De Lange,
Vincenzo Lomonaco, Roshan Sumbaly, Pau Rodriguez, and David Vazquez. 3rd continual learning
workshop challenge on egocentric category and instance level object understanding. arXiv preprint
arXiv:2212.06833, 2022. URL https://sites.google.com/view/clvision2022/challenge.

Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb: A simple approach that questions our
progress in continual learning. In ECCV, 2020.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incre-
mental classifier and representation learning. In CVPR, 2017.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. NeurIPS, 2019.

Qi She, Fan Feng, Xinyue Hao, Qihan Yang, Chuanlin Lan, Vincenzo Lomonaco, Xuesong Shi, Zhengwei
Wang, Yao Guo, Yimin Zhang, et al. Openloris-object: A robotic vision dataset and benchmark for
lifelong deep learning. In ICRA, 2020.

Guangyuan Shi, Jiaxin Chen, Wenlong Zhang, Li-Ming Zhan, and Xiao-Ming Wu. Overcoming catas-
trophic forgetting in incremental few-shot learning by finding flat minima. NeurIPS, 2021.

17

https://github.com/ContinualAI/clvision-challenge-2022/tree/main/reports
https://github.com/ContinualAI/clvision-challenge-2022/tree/main/reports
https://sites.google.com/view/clvision2022/challenge

Under review as submission to TMLR

Haizhou Shi and Hao Wang. A unified approach to domain incremental learning with memory: Theory
and algorithm. NeurIPS, 2024.

Ryohei Shimizu, Yusuke Mukuta, and Tatsuya Harada. Hyperbolic neural networks++. arXiv preprint
arXiv:2006.08210, 2020.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. NeurIPS, 2017.

Arjun Singh, James Sha, Karthik S Narayan, Tudor Achim, and Pieter Abbeel. Bigbird: A large-scale 3d
database of object instances. In IEEE international conference on robotics and automation (ICRA),
2014.

Alexandru Tifrea, Gary Bécigneul, and Octavian-Eugen Ganea. Poincar\’e glove: Hyperbolic word
embeddings. arXiv preprint arXiv:1810.06546, 2018.

Abraham Albert Ungar. A gyrovector space approach to hyperbolic geometry. Synthesis Lectures on
Mathematics and Statistics, 2008.

Gido M Van de Ven, Tinne Tuytelaars, and Andreas S Tolias. Three types of incremental learning.
Nature Machine Intelligence, 2022.

Max van Spengler, Erwin Berkhout, and Pascal Mettes. Poincaré resnet. In ICCV, 2023.

Eli Verwimp, Kuo Yang, Sarah Parisot, Lanqing Hong, Steven McDonagh, Eduardo Pérez-Pellitero,
Matthias De Lange, and Tinne Tuytelaars. Clad: A realistic continual learning benchmark for au-
tonomous driving. Neural Networks, 2023.

Fu-Yun Wang, Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Foster: Feature boosting and compression
for class-incremental learning. In ECCV, 2022a.

Liyuan Wang, Kuo Yang, Chongxuan Li, Lanqing Hong, Zhenguo Li, and Jun Zhu. Ordisco: Effective
and efficient usage of incremental unlabeled data for semi-supervised continual learning. In CVPR,
2021.

Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. S-prompts learning with pre-trained transformers: An
occam’s razor for domain incremental learning. NeurIPS, 2022b.

Max Welling. Herding dynamical weights to learn. In ICML, 2009.

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu. Large
scale incremental learning. In CVPR, 2019.

Cheng Yan, Feng Zhao, and Yudong Zhang. From concept to instance: Hierarchical reinforced knowledge
graph reasoning. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024.

Edwin S Yan. Cifar-100 hierarchy, 2021. URL https://github.com/edwin-yan/hierarchical_
classification/blob/master/CIFAR100_helper.py.

Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for class
incremental learning. In CVPR, 2021.

Haiyan Yin, Ping Li, et al. Mitigating forgetting in online continual learning with neuron calibration.
NeurIPS, 2021.

Yun Yue, Fangzhou Lin, Kazunori D Yamada, and Ziming Zhang. Hyperbolic contrastive learning. arXiv
preprint arXiv:2302.01409, 2023.

Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu. Continual learning of context-dependent processing
in neural networks. Nature Machine Intelligence, 2019.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence. In
ICML, 2017.

Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-Tao Xia. Maintaining discrimination and
fairness in class incremental learning. In CVPR, 2020.

18

https://github.com/edwin-yan/hierarchical_classification/blob/master/CIFAR100_helper.py
https://github.com/edwin-yan/hierarchical_classification/blob/master/CIFAR100_helper.py

Under review as submission to TMLR

Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, Liang Ma, Shiliang Pu, and De-Chuan Zhan. Forward com-
patible few-shot class-incremental learning. In CVPR, 2022a.

Da-Wei Zhou, Qi-Wei Wang, Han-Jia Ye, and De-Chuan Zhan. A model or 603 exemplars: Towards
memory-efficient class-incremental learning. arXiv preprint arXiv:2205.13218, 2022b.

Da-Wei Zhou, Qi-Wei Wang, Zhi-Hong Qi, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Deep class-
incremental learning: A survey. arXiv preprint arXiv:2302.03648, 2023.

Chenchen Zhu, Fanyi Xiao, Andrés Alvarado, Yasmine Babaei, Jiabo Hu, Hichem El-Mohri, Sean Cula-
tana, Roshan Sumbaly, and Zhicheng Yan. Egoobjects: A large-scale egocentric dataset for fine-grained
object understanding. In ICCV, 2023.

Yudong Zhu, Di Zhou, Jinghui Xiao, Xin Jiang, Xiao Chen, and Qun Liu. Hypertext: Endowing fasttext
with hyperbolic geometry. In EMNLP, 2020.

19

Under review as submission to TMLR

7 Appendix

Split CIFAR-100 In addition to evaluating our results on the EgoObjects dataset (Zhu et al., 2023),
which serves as an instance-level continual learning benchmark, we also benchmark our method on
iCIFAR-100 (Krizhevsky et al., 2009) to enable comparisons with other methods. Table 8 presents the
performance of HyperCLIC and iCaRL (Rebuffi et al., 2017) on the iCIFAR-100 dataset under both
pretrained and training-from-scratch conditions. When training from scratch, HyperCLIC demonstrates
performance comparable to iCaRL in terms of instance- and class-level accuracy while surpassing iCaRL
in LCA distance and super-class accuracy, indicating that the model effectively learns hierarchical repre-
sentations. A lower LCA distance signifies that the model’s errors adhere more closely to the underlying
hierarchy. We also observe a higher degree of forgetting compared to the EgoObjects dataset. When
pretrained, HyperCLIC consistently achieves superior hierarchical metrics than the baseline, although it
still exhibits higher forgetting rates. Additionally, there is a noticeable difference between pretrained and
from-scratch performance in EgoObjects versus iCIFAR-100, likely due to pretrained backbones being
trained with class-level supervision that reduces intra-class variance.
Regarding forgetting, we note that HyperCLIC achieves higher classification accuracy on each new task,
learning more than the baselines, though it also tends to forget more information. On the other hand,
the baselines learn less on each new task but exhibit less forgetting. This trade-off between learning
new information and forgetting is characteristic of methods that aim to build and refine hierarchical
representations, as HyperCLIC does.

Table 8: Results on the Split CIFAR-100 dataset with a ResNet34 backbone. HyperCLIC consis-
tently outperforms iCaRL in hierarchical metrics. At the instance level, HyperCLIC is comparable with
iCaRL without pretraining and better with pretraining.

Pretrain Accuracy ↑ LCA ↓ Forgetting ↓
Instance Class Superclass

iCaRL 47.55 62.32 73.38 2.22 14.36
HyperCLIC 45.52 62.31 74.76 2.15 24.76
iCaRL ✓ 55.86 70.40 79.82 2.12 11.50
HyperCLIC ✓ 56.46 74.11 84.52 1.95 15.39

CORe50 We evaluate HyperCLIC and iCaRL on the CORe50 new class setting. As shown in Table
9, HyperCLIC outperforms iCaRL by 1% in instance-level accuracy, 4% in class-level accuracy, and
6% in superclass-level accuracy, all without requiring heavy hyperparameter tuning. It is important to
note that CORe50 is a toy dataset with only 50 instances, making the hierarchy quite limited. Thus,
leading to minimal differences between HyperCLIC and the baseline. However, as demonstrated in the
EgoObjects dataset, our method excels in large-scale datasets with more complex hierarchies, where it
can fully leverage its advantages.

Table 9: Results on the CORe50 dataset at NC (new classes) scenario with a ResNet34 back-
bone. HyperCLIC outperforms iCaRL in instance-level and hierarchical metrics.

Accuracy ↑ LCA ↓ Forgetting ↓
Instance Class Superclass

iCaRL 21.41 32.45 41.71 3.16 −1.097·101

HyperCLIC 22.89 36.80 47.13 3.01 −1.159·101

Extra Runs In continual learning, the order of class presentation can significantly affect the final
results. To demonstrate the generality of our method, we run HyperCLIC and the best-performing

20

Under review as submission to TMLR

baselines with 5 different random seeds in both from-scratch and pretrained settings on the EgoObjects
benchmark, and report the average and standard deviations. Table 10 presents the results of this
experiment. The findings suggest that HyperCLIC outperforms both DER and iCaRL in all metrics
across both settings.

Table 10: The average ± standard deviation of HyperCLIC , iCaRL, and DER, evaluated
with 5 different random seeds in both from-scratch and pretrained settings on the EgoOb-
jects benchmark. HyperCLIC outperforms both strong baselines across all metrics.

Pretrain Accuracy ↑ LCA ↓ Forgetting ↓
Instance Class Superclass

iCaRL 21.49 ± 0.91 22.51 ± 0.87 23.62 ± 0.85 5.45 ± 0.01 8.72 ± 1.15
DER 18.69 ± 2.63 19.89 ± 2.58 20.56 ± 2.47 5.46 ± 0.10 33.90 ± 1.18
HyperCLIC 38.55 ± 2.37 42.74 ± 2.50 44.68 ± 2.63 4.91 ± 0.03 3.34 ± 1.39
iCaRL ✓ 81.63 ± 0.20 87.03 ± 0.15 87.77 ± 0.16 3.91 ± 0.01 3.74 ± 0.30
DER ✓ 80.73 ± 0.59 85.37 ± 0.83 86.13 ± 0.80 4.15 ± 0.16 9.98 ± 0.53
HyperCLIC ✓ 83.14 ± 1.24 90.83 ± 0.91 91.75 ± 0.81 2.94 ± 0.03 5.61 ± 1.5

21

	Introduction
	Literature Review
	Continual Learning
	Hyperbolic Learning

	HyperCLIC
	Embedding class-instance hierarchies in hyperbolic space
	Continual hyperbolic learning

	Experimental Setup
	Results
	Comparison to existing methods
	Ablation study

	Conclusion and Discussion
	Appendix

