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ABSTRACT

Designing biological sequences that satisfy multiple, often conflicting, functional
and biophysical criteria remains a central challenge in biomolecule engineering.
While discrete flow matching models have recently shown promise for efficient sam-
pling in high-dimensional sequence spaces, existing approaches address only single
objectives or require continuous embeddings that can distort discrete distributions.
We present Multi-Objective-Guided Discrete Flow Matching (MOG-DFM), a
general framework to steer any pretrained discrete-time flow matching generator
toward Pareto-efficient trade-offs across multiple scalar objectives. At each sam-
pling step, MOG-DFM computes a hybrid rank-directional score for candidate
transitions and applies an adaptive hypercone filter to enforce consistent multi-
objective progression. We also trained two unconditional discrete flow matching
models, PepDFM for diverse peptide generation and EnhancerDFM for func-
tional enhancer DNA generation, as base generation models for MOG-DFM. We
demonstrate MOG-DFM’s effectiveness in generating peptide binders optimized
across five properties (hemolysis, non-fouling, solubility, half-life, and binding
affinity), and in designing DNA sequences with specific enhancer classes and DNA
shapes. In total, MOG-DFM proves to be a powerful tool for multi-property-guided
biomolecule sequence design.

1 INTRODUCTION

Designing biological sequences that simultaneously satisfy multiple functional and biophysical
criteria is a foundational challenge in modern bioengineering (Naseri & Koffas,2020). For example,
when engineering therapeutic proteins, one must balance high target-binding affinity with low
immunogenicity and favorable pharmacokinetics (Tominaga et al., [2024); CRISPR guide RNAs
require both high on-target activity and minimal off-target effects (Mohr et al., 2016} |Schmidt et al.|
20235)); and synthetic promoters must achieve strong gene expression while maintaining tissue-specific
activation (Artemyev et al.,[2024).

Most existing biomolecule-design methods focus on optimizing a single objective in isolation
(Zhou et al.| |2019; Nehdi et al., 2020). For example, efforts have been made to reduce protein
toxicity (Kreiser et al.| [2020; Sharma et al.| 2022)) and neural networks are used to improve protein
thermostability (Komp et al.,2025). While these single-objective approaches yield high performance
on their target metrics, they often produce sequences with undesirable trade-offs, high-affinity
peptides may be insoluble or toxic, and stabilized proteins may lose functional specificity (Bigi
et al.,|2023; Rinauro et al.,2024). Consequently, a framework for multi-objective guided generation
that can balance conflicting requirements is critical to meet the demands of practical biomolecular
engineering.

Classical multi-objective optimization (MOO) techniques, such as evolutionary algorithms and
Bayesian optimization, have been successfully applied to black-box tuning of molecular libraries
(Zitzler & Thiele, [1998;; |Deb, [2011} |Ueno et al., 2016; |[Frisby & Langmead, 2021)). More recently,
controllable generative models have been developed to integrate MOO directly into the sampling
process (Li et al.| 2018; [Sousa et al., |2021} |Yao et al., |2024). ParetoFlow (Yuan et al., [2024]), for
instance, leverages continuous-space flow matching to produce Pareto-optimal samples, but operates
only in continuous domains. Applying such techniques to discrete sequences typically requires
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Figure 1: Schematic for MOG-DFM algorithm.

embedding into a continuous manifold, which can distort distributions and complicate property-based
guidance (Beliakov & Lim, [2007; |[Michael et al.| [2024)).

Discrete flow matching has recently emerged as a powerful paradigm for directly modeling and
sampling from complex discrete spaces (Campbell et al., 2024} |Gat et al., 2024; [Dunn & Koes), 2024)).
Two primary variants exist: (i) continuous-time simplex methods, which diffuse discrete data through
a continuous embedding over the probability simplex (Stark et al., [2024} Davis et al., [2024} |Tang
et al.}2025a), and (ii) jump-process models that learn time-dependent transition rates for token-level
stochastic updates (Campbell et al.| 2024} |Gat et al., 2024). The latter is particularly well-suited
for controllable generation, as it naturally supports reweighting of token transitions based on scalar
reward functions.

Recent work has applied these models to single-objective tasks: [Nisonoff et al.|(2025) introduced
rate-based classifier guidance for pretrained samplers, while [Tang et al.| (2025a)) proposed Gumbel-
Softmax Flow Matching with straight-through guidance for controllable discrete generation. Yet,
to our knowledge, no prior work has extended discrete flow matching to support Pareto-guided
generation across multiple objectives.

As such, our key contributions are as follows:

1. MOG-DFM: Multi-Objective-Guided Discrete Flow Matching, a general framework that
steers pretrained discrete flow matching models toward Pareto-efficient solutions via multi-
objective guidance and adaptive hypercone filtering.

2. Rank-Directional Scoring and Hypercone Filtering combine rank-normalized local improve-
ment and directional alignment with a user-specified trade-off vector to reweight token-level
transition velocities, followed by a dynamic angular filtering mechanism that enforces direc-
tional consistency along the Pareto front.

3. Unconditional Base Models for Biomolecule Generation; we train two high-quality discrete
flow matching models: PepDFM for diverse peptide generation and EnhancerDFM for
functional enhancer DNA generation, demonstrating low loss and biological plausibility.

4. Multi-Property Sequence Design; we apply MOG-DFM to two challenging biological gener-
ation tasks: (i) therapeutic peptide binder generation with five competing objectives (affinity,
solubility, hemolysis, half-life, non-fouling), and (ii) enhancer DNA sequence generation guided
by enhancer class and DNA shape.

5. Superior Multi-Objective Optimization; MOG-DFM significantly outperforms classical
evolutionary and diffusion-based baselines on both peptide and DNA tasks, producing sequences
with favorable trade-offs and improved downstream docking, folding, and property scores.
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2 METHODS

2.1 MULTI-OBJECTIVE GUIDED DISCRETE FLOW MATCHING

MOG-DFM (Multi-Objective Guided Discrete Flow Matching) operates under the same setting as
discrete flow matching described in Section[A] Suppose we have a pre-trained discrete flow matching
model that defines a CTMC with factorized velocity field u(y?, z) , which transports probability mass
from an initial distribution pg to the unknown target distribution via mixture path parametrization. In
addition, we assume access to IV pre-trained scalar score functions s, : S — R, wheren =1,..., N,
that assign objective scores to any sequence. Our aim is to generate novel sequences 1 € S whose
objective vectors (51 (1), s2(x1), ..., 8 N(.Z'l)) lie close to the Pareto front (not guaranteed to be
Pareto optimal)

PF = {z€S8 ’ B’ €S su(a') = sp(x) Yn, Am: s (2)) > sim(2)

To achieve this, we will guide the CTMC sampling dynamics of the discrete flow matching model
using multi-objective transition scores, steering the generative process toward Pareto-efficient regions
of the state space (Figure[I} Pseudo code[T} Proof in Section[G).

2.1.1 STEP O: INITIALIZATION AND WEIGHT VECTOR GENERATION

MOG-DFM begins by initializing the generative process at time ¢ = 0 by sampling an initial
sequence xo uniformly from the discrete state space S = [K]?. To steer the generation towards
diverse Pareto-efficient solutions, we introduce a set of weight vectors {w"}* | that uniformly
cover the N-dimensional Pareto Front. Intuitively, each w encodes a particular trade-off among the
N objectives, so sampling different w promotes exploration of distinct regions of the Pareto front.
Concretely, we construct these vectors via the Das-Dennis simplex lattice (Das & Dennisl [1998)) with
H subdivisions, yielding components

ki

YIS

N
ki € Zso, » ki=H, ey
i=1

and then draw one w randomly before the following steps. This defines one direction we want to
optimize in the state space for the current run. The following three steps will then be performed in
each iteration. We set the number of total iterations to be 7T'.

2.1.2 STEP 1: GUIDED TRANSITION SCORING

We first randomly select one position ¢ on the sequence so that we will update the token on this
position during the current iteration. At each intermediate state x; and selected position i, each
possible candidate transition y* # 2’ is scored by combining local improvement measures with
global directional alignment. The normalized rank score captures how much each individual objective
improves relative to other possible token replacements, thereby encouraging exploration of promising
local moves; formally, for each objective n we compute

rank (s, (Znew) — n(2))

71 ’

where 7,0, denotes the sequence obtained by replacing the ith token of = with y*. The rank(-)
function maps the raw score change into a uniform scale in [0, 1]. In contrast, the directional term

In(yi,l") = (2)

D(yiwxaw) :As(yz?x) tw (3)
measures the alignment of the multi-objective improvement vector As = [$1(Zpew) —
$1(x), $2(@pew) — S2(), -+, Sn(Tnew) — Sn(x)] with the chosen weight vector w, ensuring that

transitions not only improve individual objectives but collectively move toward the desired trade-off
direction. By z-score normalizing both components and combining them as

N
AS(y', z,w) = Norm [% Z In(yi,x)} + )\Norm[D(yi,x,w)}, @)

n=1
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we balance rank-based exploration against direction-guided exploitation with A > 0. Finally, we
re-weight the original factorized velocity field from the pre-trained discrete flow matching model:

Buj(y',x) exp(AS(y',z,w)), y' # 2’
o Zyi?f:vi ’u’gzuided,t (yl7 € | W), y" =zt

ugiuided7t(yi7m |w) = { Q)

where [ is the strength hyperparameter. Therefore, the guided velocities satisfy the non-negativity
and zero-sum rate conditions by construction, preserving valid CTMC dynamics while favoring
high-utility transitions.

2.1.3 STEP 2: ADAPTIVE HYPERCONE FILTERING

To ensure each candidate token replacement drives the sequence towards the chosen trade-off direction,
we restrict candidate transitions to lie within a cone around the weight vector w. This “hypercone”
mechanism allows the sampler to navigate non-convex or discontinuous regions of the Pareto front
by enforcing local directional consistency (Yuan et al.l 2024). Specifically, for a given position ¢ and
candidate token y*, we compute the angle

satin) ) o

[As(y", )| [lwll
where As(y¢, ) is the multi-objective improvement vector from replacing x* with y*. We accept only

those y* for which o’ < ®, where ® denotes the current hypercone angle. Denoting Y C T'\ {z%}
as the set of accepted tokens, we select the best transition as

Yhest = arg max AS(y',z,w) i Y" £ 0. 0
nax,

o' = arccos<

There are two degenerate cases that may lead to empty Y': If every o > =, indicating that all
possible transitions decrease performance, we will perform a self-transition and retain the current
state; if there exist some a’ < 7 but none lie within the cone (i.e. ® is temporarily too small), we still
advance by choosing the best-aligned candidate

Yhest = arg  max AS(y,z,w), 8)
{y":at<n}

allowing progress while the hypercone angle self-adjusts.

As a pre-defined hypercone angle may be too big or too small during the dynamic optimization process,
we need to adaptively tune the angle for best balancing exploration and exploitation. Specifically, we
compute the rejection rate
L #yiai>9) )
total # of candidate transitions
and its exponential moving average (EMA)

Ty = QpTi—p + (1 - 047“) T't, (10)

where o, € [0,1) is a smoothing coefficient and 7y = 7 is the target rejection rate. We then update
the hypercone angle via

Disn = clip (@4 exp(n (71 = 7)), Punin, Prna ), an

with learning rate 7 > 0 and bounds ®in, Pmax to prevent the hypercone from collapsing or
over-expanding. Intuitively, if too many candidates are being rejected (7 > 7), the hypercone widens
to admit more directions; if too few are rejected (7; < 7), it narrows to focus on the most aligned
transitions.

2.1.4 STEP 3: EULER SAMPLING

Once the guided transition rates ugiuided (y",z | w) have been computed and the best candidate
transition has been selected after hypercone filtering (if not self-transitioning), we evolve the CTMC
via Euler sampling. Specifically, we denote the total outgoing rate from z at time ¢ on coordinate 7 by

Ri(x) = _ugz;uided,t(xivx |w) = Z u;uided,t(yivx | w). (12)
yigtzi
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Table 1: Evaluation of unconditional EnhancerDNA generation. Each method generates 10k sequences, and
we compare their empirical distributions with the data distributions using the Fréchet Biological distance (FBD)
metric. NFE refers to number of function evaluations. # Training Epochs refers to the number of training epochs
needed to get the model checkpoint for this evaluation. The Random Sequence baseline shows the FBD for the
same number and length of sequences with uniform randomly chosen nucleotides. Dirichlet FM refers to the
Dirichlet Flow Matching model.

FBD | NFE | # Training Epochs
Random Sequence | 622.8 - -
Dirichlet FM 53 100 1400
EnhancerDFM 5.9 100 20

The one-step transition kernel for coordinate ¢ is given by the exact Euler-Maruyama analogue for
CTMCs:

exp(h uéuided’t(xi,x | w)) = exp(fh RZ(Q:)), Yyt =z,

P(Xerh - yi | Xt - x) - ugiuided,t(yi?x ‘ w) (13)

th’ (z)

(1 —exp(—h R{(x))), Yt # b

Here, h = 1/T is the step size in the time interval, X; and X, denotes the current state and
the next state respectively. In practice, one draws a uniform random number r € [0, 1]: if r <
1 —exp(—h R} (x)), x* will transition to the best selected candidate; otherwise we retain .

After performing from step 1 to step 3 for T iterations, we end with the final sample x; whose score
vectors have been steered near the Pareto Front, with all objectives optimized.

3 EXPERIMENTS

To the best of our knowledge, there are no public datasets that serve to benchmark multi-objective
optimization algorithms for biological sequences. Therefore, we benchmark MOG-DFM on two tasks:
multi-objective guided peptide binder sequence generation and multi-objective guided enhancer DNA
sequence generation. We will first show two discrete flow matching models developed for peptide
generation and enhancer DNA generation, then we will demonstrate MOG-DFM'’s efficacy on a wide
variety of tasks and examples.

3.1 PEPDFM AND ENHANCERDFM GENERATE DIVERSE AND BIOLOGICALLY PLAUSIBLE
SEQUENCES

To enable the efficient generation of peptide binders, we developed PepDFM, an unconditional
peptide generator based on the Discrete Flow Matching (DFM) framework (Gat et al.,2024) with a
U-Net-style convolutional architecture (Ronneberger et al.,|2015)). Trained on a combined dataset
from PepNN, BioLip2, and PPIRef|Abdin et al.|(2022);|Zhang et al.| (2024); [Bushuiev et al.[ (2023)),
PepDFM achieved a validation loss of 3.1051. As described in Section|A] the low generalized KL
loss during evaluation demonstrates PepDFM’s strong performance. PepDFM can generate diverse
and novel peptides, shown by high Hamming distances from the test set, while the Shannon entropy
of PepDFM-generated samples matches the test set, confirming the biological plausibility of the
generated sequences (Figure [AT).

EnhancerDFM adopts the same model backbone and melanoma enhancer dataset used in Enhancer
DNA design task from Stark, et al. [Stark et al.| (2024). We employed the Fréchet Biological
distance (FBD) metric from |Stark et al.| (2024) to evaluate the performance of EnhancerDFM (Table
[I). Specifically, using the same number of function evaluations (NFE), EnhancerDFM achieved a
comparable FBD of 5.9 compared with Dirichlet FM of 5.3, significantly lower than the FBD of
random sequences, demonstrating EnhancerDFM’s ability to design biologically plausible enhancer
DNA sequences. Significantly, the best EnhancerDFM model is achieved within 20 training epochs,
while the best Dirichlet FM is obtained only in around 1400 training epochs, highlighting discrete
flow matching models’ superior capability of capturing the underlying data distribution.
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Table 2: MOG-DFM generates peptide binders for 10 diverse protein targets, optimizing five therapeutic
properties: hemolysis, non-fouling, solubility, half-life (in hours), and binding affinity. Each value represents the
average of 100 MOG-DFM-designed binders.

Target I]f;‘l‘]‘;; Hemolysis ([) | Non-Fouling (1) | Solubility (1) | Half-Life (1) | Affinity (1)
AMHR2 8 0.0755 0.8352 0.8219 31.624 7.3789
AMHR2 12 0.0570 0.8419 0.8279 28.761 7.4274
AMHR?2 16 0.0618 0.7782 0.7428 31.227 7.6099

EWS::FLI1 8 0.0809 0.8508 0.8296 47.169 6.2251
EWS::FLII 12 0.0616 0.8302 0.8130 34225 63631
EWS::FLI1 16 0.0709 0.7787 0.7400 34.192 6.5912

MYC 8 0.0809 0.8135 0.8005 39.836 6.8488

OXIR 10 0.0741 0.8115 0.7969 33.533 7.4162
DUSPI2 9 0.0735 0.8360 0.8216 33.754 6.4946

1B8Q 8 0.0744 0.8334 0.827 33.243 5.932
1E6I 6 0.0887 0.7884 0.7793 41.164 4.9621
3IDJ 7 0.0924 0.8246 0.7992 30.388 7.6304

SAZ8 11 0.0698 0.8462 0.8420 28.726 6.6051

7IVS 1 0.0628 0.8390 0.8206 32.834 6.9569

3.2 MOG-DFM EFFECTIVELY BALANCES EACH OBJECTIVE TRADE-OFF

To validate that MOG-DFM framework can balance the trade-offs between each objective, we
performed two sets of experiments for peptide binder generation with three property guidance, and
in ablation experiment settings, we removed one or more objectives. In the binder design task for
target 7LUL (affinity, solubility, hemolysis guidance; Table[7), omitting any single guidance causes a
collapse in that property, while the remaining guided metrics may modestly improve. Likewise, in
the binder design task for target CLK1 (affinity, non-fouling, half-life guidance; Table[), disabling
non-fouling guidance allows half-life to exceed 80 hours but drives non-fouling near zero, and
disabling half-life guidance preserves non-fouling yet reduces half-life below 2 hours. In contrast,
enabling all guidance signals produces the most balanced profiles across all objectives. These
results confirm that MOG-DFM precisely targets chosen objectives while preserving the flexibility to
navigate conflicting requirements and push samples toward the Pareto front, thereby demonstrating
the correctness and precision of our multi-objective sampling framework.

3.3 MOG-DFM GENERATES PEPTIDE BINDERS UNDER FIVE PROPERTY GUIDANCE

We next benchmark MOG-DFM on a peptide binder generation task guided by five different properties
that are critical for therapeutic discovery: hemolysis, non-fouling, solubility, half-life, and binding
affinity. To evaluate MOG-DFM in a controlled setting, we designed 100 peptide binders per target
for ten diverse proteins, structured targets with known binders (1B8Q, 1E6I, 3IDJ, SAZS, 7JVS),
structured targets without known binders (AMHR2, OX1R, DUSP12), and intrinsically disordered
targets (EWS::FLI1, MYC) (Table [2). Across all targets and across multiple binder lengths, the
generated peptides achieve low hemolysis rates (0.06-0.09), high non-fouling (>0.78) and solubility
(>0.74), extended half-life (28-47 h), and strong affinity scores (6.4-7.6), demonstrating both balanced
optimization and robustness to sequence length.

For the target proteins with pre-existing binders, we compared the property values between their
known binders with MOG-DFM-designed ones (Figure2JA,B,[AZ). The designed binders significantly
outperform the pre-existing binders across all properties without compromising the binding potential,
which is further confirmed by the ipTM scores computed by AlphaFold3 (Abramson et al.} 2024} and
docking scores calculated by AutoDock VINA (Trott & Olsonl 2010). Although the MOG-DFM-
designed binders bind to similar target positions as the pre-existing ones, they differ significantly in
sequence and structure, demonstrating MOG-DFM’s capacity to explore the vast sequence space for
optimal designs. For target proteins without known binders, complex structures were visualized using
one of the MOG-DFM-designed binders (Figure [A3). The corresponding property scores, as well as
ipTM and docking scores, are also displayed. Some of the designed binders showed longer half-life,
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Figure 2: (A), (B) Complex structures of PDB 5AZ8 with a MOG-DFM-designed binder and its pre-existing
binder. Five property scores are shown for each binder, along with the ipTM score from AlphaFold3 and docking
score from AutoDock VINA. Interacting residues on the target are visualized. (C) Plots showing the mean scores
for each property across the number of iterations during MOG-DFM’s design of binders of length 12-aa for
EWS::FLI1. (D) Density plots illustrating the distribution of predicted property scores for MOG-DFM-designed
EWS::FLI1 binders of length 12-aa, compared to the peptides generated unconditionally by PepDFM. Please
zoom in for better viewing.

while others excelled in non-fouling and solubility, underscoring the comprehensive exploration of
the sequence space by MOG-DFM.

At each iteration, we recorded the mean and standard deviation of the five property scores across
all the 100 binders to evaluate the effectiveness of the guided generation strategy (Figure 2C). All
five properties exhibited an improving trend over iterations, with the average score of the solubility
and non-fouling properties showing a significant increase from a score around 0.3 to 0.8. A large
deviation of the final half-life values is caused by the susceptibility of the half-life value to guidance,
with MOG-DFM balancing the trade-offs between half-life and other values. The improvements of
hemolysis, non-fouling, and solubility gradually converge, demonstrating MOG-DFM’s efficiency in
steering the generation process to the Pareto Front within only 100 iterations.

We visualized the distribution change steered by MOG-DFM by plotting the property score distri-
bution of 100 peptides of length 12 designed for EWS::FLI1 and 100 peptides of the same length
sampled unconditionally from PepDFM (Figure 2D). MOG-DFM effectively shifted and concen-
trated the peptide distribution so that the peptides possess improved properties for all the objectives,
demonstrating MOG-DFM’s ability to steer the generation so that all properties are optimized
simultaneously.

In Section[C|] we demonstrate the reliability of our score models. We now use external evaluation
tools to further confirm that MOG-DFM-designed binders possess desired properties. The average
solubility and half-life for each target across all 100 designed peptides were predicted using ADMET-
Al (Table5)) (Swanson et al.,[2024). ADMET-AL, trained on a different dataset from our solubility
and half-life prediction models, predicts average Log$ values around -2.5 log mol-L ™", which is well
above the conventional -4 threshold for good solubility, and confirms long half-life estimates (>15 h).
These results from an orthogonal predictive model demonstrate MOG-DFM’s capability to generate
candidates with multiple desirable drug properties.
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Table 3: MOG-DFM outperforms traditional multi-objective optimization algorithms in designing peptide
binders guided by five objectives. Each value represents the average of 100 designed binders. The table also
records the average runtime for each algorithm to design a single binder. The best result for each metric is
highlighted in bold.

Target Method Time (s) Hemolysis (]) Non-Fouling Solubility = Half-Life  Affinity
MOPSO 8.54 0.1066 0.4763 0.4684 4.449 6.0594
NSGA-III 33.13 0.0862 0.5715 0.5825 7.324 7.2178
1B8Q SMS-EMOA 8.21 0.1196 0.3450 0.3511 3.023 5.955
SPEA2 17.48 0.0819 0.4973 0.5057 4.126 7.324
PepTune + DPLM 2.46 0.1453 0.3085 0.3213 1.1737 5.2398
MOG-DFM 43.00 0.0785 0.8445 0.8455 27.227 5.9094
MOPSO 11.34 0.0883 04711 0.4255 1.769 6.6958
NSGA-III 37.30 0.0479 0.7138 0.7066 2.901 7.3789
PPP5 SMS-EMOA 8.43 0.1242 0.4269 0.4334 1.031 6.2854
SPEA2 19.02 0.0555 0.6221 0.6098 2.613 7.6253
PepTune + DPLM 4.80 0.1184 0.2752 0.2636 1.2667 5.8454
MOG-DFM 90.00 0.0617 0.7738 0.751 27.775 6.8197

3.4 MOG-DFM OUTPERFORMS STATE-OF-THE-ART BASELINES

We benchmarked MOG-DFM against four established multi-objective optimization (MOO) baselines
(NSGA-III (Deb & Jainl 2013)), SMS-EMOA (Beume et al., 2007), SPEA2 (Zitzler et al.,[2001),
and MOPSO (Coello & Lechugal 2002)) on two protein targets: 1B8Q, a small protein with known
peptide binders, and PPP5, a larger protein without characterized binders (Table 3). Each method
generated 100 candidate binders optimized for five properties: hemolysis, non-fouling, solubility, half-
life, and binding affinity. While MOG-DFM required longer runtimes than evolutionary baselines,
it consistently produced the best trade-offs. For both targets, it lowered hemolysis by more than
10%, increased non-fouling and solubility by 30-50%, and extended half-life by a factor of 3 to 4
relative to the next-best method, all while maintaining competitive binding affinity. These results
underscore MOG-DFM’s effectiveness in navigating high-dimensional property landscapes to yield
peptide binders with balanced, optimized profiles.

We also compared against PepTune (Tang et al.,|2025b)), a recent masked discrete diffusion model
for peptide design that couples generation with Monte Carlo Tree Search for MOO. PepTune’s
backbone was adapted to the existing DPLM model Wang et al.| (2024) for wild-type peptide
sequence generation. Despite longer runtimes, MOG-DFM substantially outperformed PepTune
across all objectives, yielding nearly threefold improvements in non-fouling and solubility and a
22-fold increase in half-life. Together, these comparisons demonstrate that MOG-DFM surpasses not
only traditional MOO algorithms but also the current state-of-the-art diffusion-based approach for
multi-objective-guided peptide binder design.

3.5 MOG-DFM GENERATES ENHANCER DNA OF SPECIFIC CLASS WITH SPECIFIED DNA
SHAPES

To demonstrate the universal capability of MOG-DFM in performing multi-objective guided genera-
tion for biological sequences, we applied MOG-DFM to design enhancer DNA sequences guided
by enhancer class and DNA shape. EnhancerDFM was used as the unconditional enhancer DNA
sequence generator, while Deep DNAshape was employed to predict DNA shape (Li et al., 2024)), and
the enhancer class predictor was sourced from |Stark et al.| (2024). Two distinct tasks with different
enhancer class and DNA shape guidance were carried out, and ablation results are presented in Table
[ Given the time constraints, we designed five enhancer sequences of length 100 for each setting.

In the first task, we conditioned the generation to target enhancer class 1 (associated with the
transcription factor binding motif ATF) and a high HelT (helix twist) value, with the maximum HelT
value set to 36. With both guidance criteria in place, MOG-DFM effectively steered the sequence
generation towards enhancer class 1 while simultaneously ensuring that the HelT value approached its
maximum (Table[9). When one or both guidance criteria were removed, the corresponding properties
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showed significant degradation, with the probability of achieving the desired enhancer class dropping
near zero (Table EI) A similar outcome was observed in the second task, which targeted enhancer
class 16 and a higher Rise shape value, with the maximum Rise value set to 3.7. Since the canonical
range for the Rise shape value spans from 3.3 to 3.4, MOG-DFM ensured both a high probability
for the target enhancer class and an optimal DNA shape value, outperforming other ablation settings
(Table[9).

4 RELATED WORKS

Online Multi-Objective Optimization. Recent advances in multi-objective guided generation have
focused on online or sequential decision-making, where solutions are refined with newly acquired
data (Gruver et al., 2023; |Jain et al.| 2023}, |Stanton et al., 2022; |Ahmadianshalchi et al., 2024). A
prominent approach is Bayesian optimization (BO), which iteratively builds a probabilistic surrogate
from observed data and uses an acquisition function to propose the next evaluation (Yu et al., 2020;
Shahriari et al., 2015)). Multi-objective BO often reduces the problem via scalarization (Knowles,
20065 Zhang & Li, 2007} |Paria et al.,2020), or employs more advanced acquisition criteria such as
expected hypervolume improvement (EHVI) (Emmerich & Klinkenberg| |2008) or information gain
(Belakaria et al.l 2021). While MOG-DFM’s directional guidance resembles scalarization and its
Pareto coverage aligns with hypervolume principles, our framework addresses therapeutic design in
an offline regime where each sequence requires costly wet-lab or high-fidelity in-silico evaluation.
This offline, single-batch generation contrasts with the sequential, feedback-driven nature of online
methods, making direct numerical comparison inappropriate.

Offline Multi-Objective Optimization with Diffusion and Flow Matching. Recent advances
in generative modeling, particularly with diffusion and flow matching, have introduced powerful
new tools for multi-objective optimization. For instance, ParetoFlow leverages a flow matching
model guided by a weighted scalarization of the objectives, while PGD-MOO uses a preference-based
classifier to guide a diffusion model towards the Pareto front (Yuan et al.,|2024;/Annadani et al.| 2025)).
However, a key characteristic of these methods is that they are designed to operate in continuous
design or latent spaces. In contrast, MOG-DFM is specifically developed for the discrete token
space inherent to biological sequences. This fundamental difference in the underlying data domain,
continuous vectors versus discrete sequences, precludes a direct and meaningful benchmark.

Offline Multi-Objective Frameworks for Biomolecule Generation. Recent efforts in offline multi-
objective optimization have also targeted biomolecule generation. Methods like EGD and MUDM
have shown success in designing molecules with multiple optimized properties (Sun et al., 2025} |Han
et al.}2023)). However, these approaches primarily focus on generating or optimizing based on 3D
structural representations of proteins. In contrast, our MOG-DFM framework is a sequence-only
algorithm that operates directly in the discrete space of amino acids or nucleotides. This fundamental
difference in data modality makes them unsuitable for a direct numerical benchmark.

5 DISCUSSION

In this work, we have presented Multi-Objective-Guided Discrete Flow Matching (MOG-DFM),
a scalable framework for generating biomolecular sequences that simultaneously optimize multiple,
often conflicting properties. By guiding discrete flow matching models with multi-objective opti-
mization, MOG-DFM enables the design of peptide and DNA sequences with improved therapeutic
and structural characteristics. While MOG-DFM performs well in biological domains, it may face
challenges when scaling to longer sequences, both due to increased computational complexity and
potentially slower convergence. Future work will therefore focus on extending the framework to
handle longer peptides and higher-dimensional outputs, including applications in text and image gen-
eration. From a theoretical perspective, improving Pareto-convergence guarantees and incorporating
uncertainty-aware or feedback-driven guidance remain key directions. Ultimately, MOG-DFM offers
a foundation for generating the next generation of therapeutics, molecules that are not only effective
but explicitly optimized for the multifaceted properties critical to clinical success.
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REPRODUCIBILITY STATEMENT

We have ensured reproducibility through detailed theoretical, algorithmic, and experimental descrip-
tions. The full MOG-DFM procedure is formalized in Section [A]and illustrated schematically in
Figure[I] Proofs of theoretical guarantees are provided in Section[G] Base discrete flow matching
models (PepDFM and EnhancerDFM) are described with complete architecture, training details, and
datasets in Appendix Sections[A]and [C] with quantitative metrics reported in Table[I] Hyperparame-
ter sensitivity benchmarks are provided in Table[I0] and additional ablation studies are presented
throughout the Appendix. Benchmark comparisons against classical and diffusion-based baselines
are reported in Tables E] and@ All datasets (PepNN, BioLip2, PPIRef, melanoma enhancer sequences,
PepLand, PeptideBERT, PEPLife, PepTherDia, THPdb2) are publicly available. We will release
code, trained PepDFM/EnhancerDFM checkpoints, and MOG-DFM sampling scripts to enable full
reproducibility.

ETHICS STATEMENT

This work develops a general generative modeling framework for multi-objective sequence design,
with applications demonstrated on peptides and enhancer DNA. All data used are publicly available
and non-sensitive, consisting of peptide property datasets, enhancer DNA sequences, and benchmark
protein—peptide interaction sets. No human subjects, patient data, or animal experiments were
involved. Potential risks include the misuse of generative models for harmful molecule design. To
mitigate these risks, we will release code and pretrained models strictly under a research-only license,
and provide documentation emphasizing safe and responsible use. The societal benefits (improving
therapeutic peptide design, enhancing drug safety profiles, and enabling efficient exploration of
biological sequence space) substantially outweigh potential risks. We encourage future work using
MOG-DFM to adhere to similar safeguards.
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A DISCRETE FLOW MATCHING

In this paper, the notation for discrete flow matching follows |Gat et al.| (2024). In the discrete
setting, we consider data x = (x1,...,x4) taking values in a finite state space S = T, where
T = [K] = {1,2,..., K} is called the vocabulary. We model a continuous-time Markov chain
(CTMC) { X }+cjo,1] whose time-dependent transition rates w;(y, x) transport probability mass from
an initial distribution py to a target distribution p; (Gat et al.,|2024). The marginal probability at time
t is denoted p;(x), and its evolution is governed by the Kolmogorov forward equation

Co) = Y ulym) pl), (14)

€S

where y is transitioned sequence. The learnable velocity field u;(y, z) is defined as the sum of
factorized velocities:

u(y, @) =y 0y, 2 yuy (v, @), (15)
where i = (1,...,i—1,i+1,...,d) denotes all indices excluding 7 and ¢ is the Kronecker delta
function. The rate conditions for factorized velocities u}(y*, z) are required per dimension i € [d]:

ue(y,x) > 0 forall y’ # o', and Y uj(y’, ) =0 forallz € S, (16)
yieT

so that for small ~ > 0, the one-step kernel

Petne(y | ) = 6(y, ) + hug(y, ) + o(h) (I7)
remains a proper probability mass function.

The goal of training a discrete flow matching model is to learn the velocity field u!. Representing

the marginal velocity u¢ in terms of factorized velocities uf’i enables the following conditional flow
matching loss

Loprm () =Eoz.X,mpy D D, (ui(~,Xt | Z»uf”’(-,Xt)) : (18)

where t ~ 1[0, 1], Z represents a random variable, and i (-, z | z),u’"’(-,z) € R7 satisfy the rate

conditions. This means that ui(-, z | z),u?"*(-, z) € Q,: where, for & € T, we define

Qo =3veRT |v(B)>0VBeT)\{a}, andv(a) = — Z v(B) p C R7. (19)
B#a

This is a convex set, and D’ (u, v) is a Bregman divergence defined by a convex function ®¢ : Qi —
R.

In practice, we can further parametrize the velocity field using a mixture path. Specifically, one
defines a mixture path with scheduler , € [0, 1] so that each coordinate X\* equals 2" or z{”) with
probabilities 1 — k; and & respectively. The mixture marginal velocity is then obtained by averaging

the conditional rates over the posterior of (xg, 1) given X; = x, yielding

wn(y'se) = 3 7= - [0 2h) = o' 2] (et | @), (20)

where £ denotes the time derivative of ;. Therefore, the aim of discrete flow matching model
training, which is to learn the velocity field u}(y’, ), now equals to learning the marginal posterior
pll‘ (@} | z). In this case, we can set the Bregman divergence to the generalized KL comparing

m
general vectors u, v € RZO,

D(u,v) = Z[u] log % —uj +vj|. (21
- j
j
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For this choice of D, we get

D (ut(-7:c | 2o, 21), ul (755)) =1 :Ht [(5(3@1735 ) — l)logpf"t(xl | z) + 6(z],z") —pﬁt(ac | ZE)}
(22)

which implements the loss (8) when conditioning on Z = (X, X;). The generalized KL loss also
provides an evidence lower bound (ELBO) on the likelihood of the target distribution

_1ng§(x1) < Et>XO-,Xtht\U,1 ZD (ui(yXi | X0,$1),uf’i(~,Xt)> ) (23)

where p{ is the marginal generated by the model at time ¢ = 1. Therefore, in addition to training, the
generalized KL loss can also be used for evaluation.

B BASE MODEL DETAILS

B.1 PEPDFM

Model Architecture. The base model is a time-dependent architecture based on U-Net (Ronneberger|
et al.l 2015). It uses two separate embedding layers for sequence and time, followed by five
convolutional blocks with varying dilation rates to capture temporal dependencies, while incorporating
time-conditioning through dense layers. The final output layer generates logits for each token. We
used a polynomial convex schedule with a polynomial exponent of 2.0 for the mixture discrete
probability path in the discrete flow matching.

Dataset Curation. The dataset for PepDFM training was curated from the PepNN, BioLip2, and
PPIRef dataset (Abdin et al.| [2022; [Zhang et al [2024} |Bushuiev et al.| 2023). All peptides from
PepNN and BioLip2 were included, along with sequences from PPIRef ranging from 6 to 49 amino
acids in length. The dataset was divided into training, validation, and test sets at an 80/10/10 ratio.

Training Strategy. The training is conducted on a 2xH100 NVIDIA NVL GPU system with 94 GB
of VRAM for 200 epochs with batch size 512. The model checkpoint with the lowest evaluation loss
was saved. The Adam optimizer was employed with a learning rate le-4. A learning rate scheduler
with 20 warm-up epochs and cosine decay was used, with initial and minimum learning rates both
le-5. The embedding dimension and hidden dimension were set to be 512 and 256 respectively for
the base model.

Dynamic Batching. To enhance computational efficiency and manage variable-length token se-
quences, we implemented dynamic batching. Drawing inspiration from ESM-2’s approach (Lin et al.|
2023), input peptide sequences were sorted by length to optimize GPU memory utilization, with a
maximum token size of 100 per GPU.

B.2 ENHANCERDFM

Model Architecture. The base model for EnhancerDFM applies the same architecture as the
PepDFM. We also used a polynomial convex schedule with a polynomial exponent of 2.0 for the
mixture discrete probability path in the discrete flow matching.

Dataset Curation. The dataset for EnhancerDFM training is curated by (Stark et al., 2024). The
dataset contains 89k enhancer sequences from human melanoma cells (Atak et al., 2021)). Each
sequence is of length 500 paired with cell class labels determined from ATAC-seq data (Buenrostro
et al., 2013). There are 47 such classes of cells in total, with details displayed in Table (Atak et al.,
2021). We applied the same dataset split strategy as (Stark et al., 2024).

Training Strategy. The training is conducted on a 2xH100 NVIDIA NVL GPU system with 94 GB
of VRAM for 1500 epochs with batch size 256. The model checkpoint with the lowest evaluation loss
was saved. The Adam optimizer was employed with a learning rate le-3. A learning rate scheduler
with 150 warm-up epochs and cosine decay was used, with initial and minimum learning rates both
le-4. Both the embedding dimension and hidden dimension were set to be 256 for the base model.

17



Under review as a conference paper at ICLR 2026

C SCORE MODEL DETAILS

We collected hemolysis (9,316), non-fouling (17,185), solubility (18,453), and binding affinity
(1,781) data for classifier training from the PepLand and PeptideBERT datasets (Zhang et al., 2023},
Guntuboina et al., 2023)). All sequences taken are wild-type L-amino acids and are tokenized and
represented by ESM-2 protein language model |[Lin et al.[(2023).

C.1 BOOSTED TREES FOR CLASSIFICATION

For hemolysis, non-fouling, and solubility classification, we trained XGBoost boosted tree models
for logistic regression. We split the data into 0.8/0.2 train/validation using stratified splits from
scikit-learn [Pedregosa et al.| (2011) and generated mean pooled ESM-2-650M |Lin et al.| (2023)
embeddings as input features to the model. We ran 50 trials of OPTUNA |Akiba et al.|(2019) search to
determine the optimal XGBoost hyperparameters (Table d) tracking the best binary classification F1
scores. The best models for each property reached F1 scores of: 0.58, 0.71, and 0.68 on the validation
sets accordingly.

Table 4: XGBoost Hyperparameters for Classification

Hyperparameter  Value/Range

Objective binary:logistic
Lambda [1le—8,10.0]

Alpha [le—8,10.0]
Colsample by Tree [0.1, 1.0]

Subsample [0.1,1.0]

Learning Rate [0.01,0.3]

Max Depth 2, 30]

Min Child Weight ~ [1, 20]

Tree Method hist

C.2 BINDING AFFINITY SCORE MODEL

We developed an unpooled reciprocal attention transformer model to predict protein-peptide binding
affinity, leveraging latent representations from the ESM-2 650M protein language model [Lin et al.
(2023). Instead of relying on pooled representations, the model retains unpooled token-level em-
beddings from ESM-2, which are passed through convolutional layers followed by cross-attention
layers. The binding affinity data was split into a 0.8/0.2 ratio, maintaining similar affinity score
distributions across splits. We used OPTUNA |Akiba et al.|(2019)) for hyperparameter optimization
tracing validation correlation scores. The final model was trained for 50 epochs with a learning rate
of 3.84e-5, a dropout rate of 0.15, 3 initial CNN kernel layers (dimension 384), 4 cross-attention
layers (dimension 2048), and a shared prediction head (dimension 1024) in the end. The classifier
reached 0.64 Spearman’s correlation score on validation data.

C.3 HALF-LIFE SCORE MODEL

Dataset Curation. The half-life dataset is curated from three publicly available datasets: PEPLife,
PepTherDia, and THPdb2 (Mathur et al.,[2016; D’ Aloisio et al., {20215 Jain et al., 2024). Data related
to human subjects were selected, and entries with missing half-life values were excluded. After
removing duplicates, the final dataset consists of 105 entries.

Pre-training on stability data. Given the small size of the half-life dataset, which is insufficient for
training a model to capture the underlying data distribution, we first pre-trained a score model on
a larger stability dataset to predict peptide stability (Tsuboyama et al.,|2023). The model consists
of three linear layers with ReLLU activation functions, and a dropout rate of 0.3 was applied. The
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model was trained on a 2xH100 NVIDIA NVL GPU system with 94 GB of VRAM for 50 epochs.
The Adam optimizer was employed with a learning rate le-2. A learning rate scheduler with 5
warm-up epochs and cosine decay was used, with initial and minimum learning rates both le-3. After
training, the model achieved a validation Spearman’s correlation of 0.7915 and an R? value of 0.6864,
demonstrating the reliability of the stability score model.

Fine-tuning on half-life data. The pre-trained stability score model was subsequently fine-tuned on
the half-life dataset. Since half-life values span a wide range, the model was adapted to predict the
base-10 logarithm of the half-life (h) values to stabilize the learning process. After fine-tuning, the
model achieved a validation Spearman’s correlation of 0.8581 and an R? value of 0.5977.

D SAMPLING DETAILS

D.1 PEPTIDE BINDER GENERATION TASKS

Objective Description. Five key property objectives are considered in the peptide binder generation
tasks: hemolysis, non-fouling, solubility, half-life, and binding affinity. Each of these properties plays
a crucial role in optimizing the therapeutic potential of peptides. Hemolysis refers to the peptide’s
ability to minimize red blood cell lysis, ensuring safe systemic circulation (Pirtskhalava et al., 2013)).
Non-fouling properties describe the peptide’s resistance to unwanted interactions with biomolecules,
thus enhancing its stability and bioavailability in vivo (Chen et al.,[2009). Solubility is critical for
ensuring adequate peptide dissolution in biological fluids, directly influencing its absorption and
therapeutic efficacy (Fosgerau & Hoffmann| [2015). Half-life indicates the duration for which the
peptide remains active in circulation, which is vital for reducing dosing frequency (Swansonl 2014).
Finally, binding affinity measures the strength of the peptide’s interaction with its target, directly
correlating to its biological activity and potency in therapeutic applications (Bostrom et al., 2008)).

Score Model Settings. To align all objectives as maximization, we convert the predicted hemolysis
rate h into a score 1 — h, so that lower hemolysis yields a higher value. We also cap the predicted
log-scale half-life at 2 (i.e., 100 h) to prevent it from dominating the optimization and ensure balanced
trade-offs across all properties. For the remaining objectives, non-fouling, solubility, and binding
affinity, we directly employ their model outputs during sampling.

Hyperparameter Settings. The hyperparameters were set as follows: The number of divisions used
in generating weight vectors, num_div, was set to 64, A to 1.0, 5 to 1.0, a- t0 0.5, 7 t0 0.3, 1y to 1.0,
Dnit 10 45°, @, to 15°, D0, to 75°. The total sampling step 7" was 100.

D.2 ENHANCER DNA GENERATION TASKS

Hyperparameter Settings. The hyperparameters were set the same as those in peptide binder
generation tasks, except that the total sampling step 1" was set to 800.

E HYPERPARAMETER SENSITIVITY BENCHMARK

There are several hyperparameters in MOG-DFM whose settings may affect generative performance.
To assess this sensitivity, we evaluated peptide binder design across a broad range of values for each
parameter (Table[I0). We find that increasing the number of sampling steps consistently improves all
performance metrics, as finer discretization more closely approximates the continuous-time dynamics.
In contrast, setting the initial hypercone angle ®;,;; too small or too large both degrade results: an
overly narrow cone restricts exploration, while an overly wide cone dilutes directional guidance. By
comparison, the remaining hyperparameters (i.e., 3, A, a;., 0, 7, and the bounds P ;,, P15 ) exhibit
only modest impact on outcomes, indicating that MOG-DFM is robust to moderate variations in these
settings.
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F ADAPTIVE HYPERCONE FILTERING ENHANCES MULTI-OBJECTIVE
OPTIMIZATION

To quantify the contribution of our adaptive hypercone mechanism, we performed an ablation
study on three protein targets (3IDJ, 4E-BP2, and EWS::FLI1), generating 100 peptide binders for
each target. Removing hypercone filtering entirely (“w/o filtering”) causes a dramatic collapse in
half-life, from roughly 30-35 h down to 4-13 h, while leaving non-fouling and solubility largely
unchanged, indicating that filtering out poorly aligned moves is essential for optimizing objectives that
require gradual, coordinated changes. Introducing static hypercone gating without angle adaptation
(“w/o adaptation”) recovers much of the half-life gains (to 23-37 h), but at the expense of reduced
non-fouling and solubility scores and only marginal improvements in affinity. In contrast, the full
MOG-DFM, with both directional hypercone filtering and adaptive angle updates, simultaneously
elevates half-life and maintains strong performance across all five objectives. This effect is especially
pronounced on disordered targets (4E-BP2 and EWS::FLI1), where dynamic cone adjustment is
essential for navigating the irregular, non-convex Pareto landscapes.

G ADDITIONAL PROOF

Claim: MOG-DFM directs the discrete generation process toward the Pareto front by inducing a
positive expected improvement in the direction of a specified weight vector w € RY,

Proof: Let S = 7 be the discrete sequence space over vocabulary 7, and let 2 € S denote the
current sequence state at time ¢ € [0, 1]. Assume the multi-objective score function s : S — RV
is measurable, with N scalar objectives. Define the improvement vector at a candidate transition
yt € T\ {2} at position i € {1,...,d} as:

As(y',z) = s(27)) = s(a),
where z(i~¥") denotes the sequence z with token z replaced by .

Let w € RY be a fixed unit-norm trade-off vector sampled uniformly from the Das-Dennis lattice
covering the simplex AV 1. Define the directional improvement of a transition 3 as:

D(yivx;w) = As(y17x) tW.

Define the set of feasible transitions (those within the hypercone of angle ® € (0, 7)) at time ¢ as:

AS(yi,.’L‘) tw ) }
arccos - <o,
(IIAS(y%I)I el

Let pi(- | o, w) be the conditional probability measure over feasible transitions defined by:

i exp (AS(y, z,w)
Mt(y | :(:,w) = (Z(x w) ) ’ 1{yi€Yi(-1’7w7‘I’)}’

Yi(x,w, ®) = {yi e T\ {z"}

where AS() is the rank-directional guidance score and Z(z,w) 1= 3 iy €xp (AS(y',z,w)) is

the normalizing partition function. Assume that Yi(x,w, ®) is non-empty, or else the algorithm falls
back to selecting the best y* with D(y*, z; w) > 0 by construction.

‘We now consider the expected improvement in the direction of w over all guided transitions:

d
i 1 i Q0
]EiNZ/{[d]7 yiropd(lz,w) [D(y 7:1;;("})] = E E E D(y ,(E;OJ) ’ Mt(y | wi)’
i=1 yteYi(z,w,P)

Since each y* € Y'(x,w,®) satisfies arccos (WM) < ® < m, it follows that
D(y*, z;w) > 0 for all y* € Y. Moreover, ui(y" | z,w) > 0 by construction.
Therefore, each term in the sum is strictly positive, and thus:

E[As(zpew, z) - w] > 0,
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where Tyew = 29" is the updated sequence following a guided and filtered transition.

Hence, the MOG-DFM procedure ensures that in expectation, the sampling dynamics induce forward
motion along the Pareto trade-off direction w, thereby steering generation toward the Pareto frontier.

O
H ADDITIONAL FIGURES AND TABLES

Table 5: Average solubility (LogS) and half-life (in hours) metrics computed by ADMET-AI for each target
across the 100 MOG-DFM-designed binders.

Target LogS Half-Life
AMHR2 -2.3931 15.505
AMHR2 -2.5055 18.777
AMHR2 -2.5784 16.463

EWS:FLI1 | -2.3869 18.945
EWS:FLI1 | -2.3813 16.305
EWS:FLI1 | -2.5457 15.984

MYC -2.4053 16.491

OX1R -2.4772 23.002
DUSP12 -2.4333 19.258

1B8Q -2.3203 18.7862
1E61 -2.0394  19.9358
31DJ -2.4193  20.3586
SAZS8 -2.5964  16.3016
7IVS -2.4824  20.2565

Table 6: Ablation study results for the adaptive hypercone filtering module in MOG-DFM. Three settings
are evaluated: *w/o filtering’ indicates the module is completely disabled, *w/o adaptation’ means the module is
enabled but the hypercone is not adaptive, and "MOG-DFM’ represents the complete algorithm. For each setting,
100 peptide binders were designed, with lengths of 7, 12, and 12 for the targets 31DJ, 4E-BP2, and EWS::FLI1,
respectively.

Target Method Hemolysis ()  Non-Fouling  Solubility = Half-Life  Affinity
w/o filtering 0.0660 0.8430 0.8482 12.50 7.3730

3IDJ w/o adaptation 0.0856 0.8060 0.7970 37.17 7.3142
MOG-DFM 0.0924 0.8246 0.7992 30.39 7.6304

w/o filtering 0.0504 0.8582 0.8600 12.62 6.5066

4E-BP2 w/o adaptation 0.0638 0.8418 0.8234 23.44 6.4548
MOG-DFM 0.0698 0.8210 0.8050 34.88 6.5824

w/o filtering 0.0450 0.8596 0.8570 4.40 6.1392

EWS::FLI1  w/o adaptation 0.0620 0.8444 0.8482 28.82 6.2118
MOG-DFM 0.0616 0.8302 0.8130 34.225 6.3631
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Table 7: Ablation results for peptide binder design targeting PDB 7LUL with different guidance settings. For
each setting, 100 binders of length 7 were designed.

Afﬁnig“gi?:ﬁfls;“;‘eg;mlysis Affinity  Solubility Hemolysis (/)
v v v 63489 0.8890 0.0620
x v v 50514 0.9482 0.0406
v x v 6.9060  0.4224 0.0488
v v x 65304  0.8975 0.1019
X x v 50761 0.7148 0.0163
X v x 52434 09772 0.0955
v X x 74834 0.1218 0.3281
X X X 55631 0.3736 0.1567

Table 8: Ablation results for peptide binder design targeting PDB CLK1 with different guidance settings. For
each setting, 100 binders of length 12 were designed.

AfﬁnityG llzgs?lfsuslier:tgm}glilf-Life Affinity - Non-Fouling  Half-Life
v v v | 69194 07401 51.73
x v v | 64135 08107 60.75
v x v | 7530 03062 84.70
v v x| 74150 08560 1.24
x < v | 62363 02624 96.44
x v x 6.1378 09503 0.94
v x < 85943  0.2439 3.15
x x x 58026  0.3999 1.94
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Table 9: Performance evaluation of MOG-DFM in guided DNA sequence generation. Task 1 guides the
generation towards the HelT shape and enhancer class 1, while Task 2 targets the Rise shape and enhancer class
16. The table presents the predicted DNA shape values (HelT for Task 1, Rise for Task 2) and enhancer class
probabilities (class 1 for Task 1, class 16 for Task 2) under various guidance conditions. The ’Shape’ column
shows the predicted DNA shape values obtained using Deep DNAshape, and the *Class Prob’ column displays
the predicted enhancer class probabilities. Ablation studies were conducted by removing one or both guidance
criteria, as shown by the rows corresponding to different combinations of shape and class guidance. For each
setting, 5 enhancer DNA sequences were designed.

Guidance Settings Task 1 Task 2

Shape Class Class Prob  Shape | Class Prob Shape
0.7504 36.0100 0.9960 3.3640
0.6507 36.0100 0.9922 3.3680
v v 0.6821 36.0000 0.9864 3.3669
0.7097 36.0000 0.9976 3.3680
0.6425 36.0000 0.9961 3.3623
0.9999 34.3274 1.0000 3.3368
0.9999 34.4715 1.0000 3.3345
v X 0.9989 34.4257 0.9999 3.3348
0.9997 34.5226 0.9994 3.3357
0.9998 34.4210 1.0000 3.3340
0.0026 36.0017 | 2.36E-05  3.3690
0.0055 36.0238 0.0005 3.3647
X v 0.0062 36.0214 0.0114 3.3705
0.0186 36.0396 0.0001 3.3717
0.0051 36.0304 0.0054 3.3669
0.0362 34.7379 0.0008 3.3283
0.0364 34.5350 0.0057 3.3258
X X 0.0309 34.5720 0.0476 3.3268
0.0138 34.3060 0.0632 3.3378
0.0213 34.5500 0.0003 3.3320
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Table 10: Hyperparameter sensitivity benchmark for MOG-DFM in peptide binder generation, guided by five
objectives. For each setting, 100 peptide binders are designed with a length matching that of the pre-existing
binder for each target.

pa}rlglfzer Target | Value | Hemolysis () Non-Fouling Solubility Half-Life Affinity
32 0.0994 0.8088 0.7924 38.39 6.5436

num_div 6MLC | 64 0.0863 0.8280 0.8232 3491 6.3260
128 0.0890 0.8438 0.8386 32.97 6.4197

0.5 0.0829 0.7894 0.761 28.10 6.7884

5 U7 1 0.0684 0.8388 0.8321 41.78 7.0002
1.5 0.0585 0.8588 0.8582 47.65 7.0505

2 0.0615 0.8461 0.8416 53.45 7.0169

0.5 0.0703 0.8168 0.8152 30.89 6.4838

A 1AYC 1 0.0647 0.8362 0.8207 33.28 6.4549
2 0.0587 0.8690 0.8461 41.90 6.5317

0.1 0.0777 0.8361 0.8051 37.83 6.0569

03 0.0718 0.8441 0.8280 38.83 6.0484

ar 208Y | 05 0.0718 0.8529 0.8421 31.45 6.0445
0.7 0.0688 0.8403 0.8377 35.50 6.0839

0.9 0.0813 0.8288 0.8091 4525 6.1599

0.5 0.0633 0.8437 0.8368 29.48 73657

n LTV 1 0.0601 0.8256 0.8144 24.47 73111
2 0.0624 0.8125 0.7887 35.13 7.1974

15 0.0746 0.8285 0.8007 34.04 7.0335

30 0.0792 0.8393 0.8187 35.60 7.0251

Dinit 5M02 45 0.0747 0.8338 0.8192 36.29 7.0944
60 0.0813 0.8095 0.7970 3825 7.0932

75 0.0830 0.8139 0.7949 33.29 7.1261

[0,90] 0.0572 0.8385 0.8200 26.64 8.2201

[®min, Pmax] | 3EQS | [15.75] 0.0599 0.8373 0.8116 29.56 8.1673
[30,60] 0.0614 0.8159 0.8020 35.71 8.2313

0 0.0614 0.8252 0.8119 24.57 7.0112

0.1 0.0650 0.8017 0.7835 31.19 7.1067

T SEIC 03 0.0595 0.8224 0.8088 28.72 7.0756
0.5 0.0555 0.8310 0.8043 24.03 7.0862

0.7 0.0590 0.8360 0.8078 28.27 7.0477

50 0.0757 0.7386 0.7219 15.22 6.9155

- SKRI 100 0.0580 0.8617 0.8504 30.25 6.9946
200 0.0525 0.8695 0.8621 41.53 7.2166

500 0.0518 0.8799 0.8760 57.65 72172
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Table 11: Motif clusters and associated properties of enhancer DNA sequences. In this paper, each class refers to
its corresponding cluster ID.

Cluster ID | # of explainable ASCAVs | Motif Annotation | # of Motifs in the cluster
cluster_1 3278 ATF 71
cluster_2 1041 CTCF 85
cluster_3 2480 EBOX 91
cluster_4 4011 AP1 191
cluster_5 1165 RUNX 37
cluster_6 789 SP 20
cluster_7 1285 ETS 33
cluster_8 544 TEAD 9
cluster_9 1024 TFAP 53

cluster_10 334 Other 4

cluster_11 935 SOX 17

cluster_12 1010 CTCFL 16

cluster_13 696 GATA 7

cluster_14 141 Other 2

cluster_15 601 TEAD 6

cluster_16 805 Other 7

cluster_17 270 Other 4

cluster_18 475 Other 5

cluster_19 473 ZNF 6

cluster_20 395 Other 4

cluster_21 393 Other 4

cluster_22 768 NRF 8

cluster_23 214 Other 2

cluster_24 336 Other 2

cluster_25 375 Other 3

cluster_26 215 Other 2

cluster_27 234 Other 2

cluster_28 354 Other 3

cluster_29 210 Other 2

cluster_30 200 Other 2

cluster_31 218 Other 2

cluster_32 415 Other 2

cluster_33 387 SOX 2

cluster_34 116 Other 1

cluster_35 121 Other 1
cluster_36 394 Other 2
cluster_37 112 Other 1
cluster_38 111 Other 1
cluster_39 107 Other 1
cluster_40 118 Other 1
cluster_41 144 Other 1
cluster_42 105 Other 1
cluster_43 102 Other 1
cluster_44 108 Other 1
cluster_45 114 Other 1
cluster_46 118 Other 1
cluster_47 119 Other 1
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Figure Al: (A) The Hamming distance of sampled peptides of different lengths to the peptides of the same

length in the test set. (B) The Shannon Entropy of sampled peptides of different lengths to the peptides of the
same length in the test set.
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A

Hemolysis: 0.060
Non-Fouling: 0.93
Solubility: 0.92
Half-Life: 80.39 h
Affinity: 6.10
ipTM: 0.60
Docking Score: -5.2

C

Hemolysis: 0.137
Non-Fouling: 0.76
Solubility: 0.45
Half-Life: 57.67 h
Affinity: 6.13
ipTM: 0.73
Docking Score: -7.2

1E6I designed binder
FFWAGV

E

Hemolysis: 0.127
Non-Fouling: 0.78
Solubility: 0.77
Half-Life: 92.64 h
Affinity: 8.00
ipTM: 0.75
Docking Score:-7.2 .

3IDJ designed binder
DFVAAGV

G

Hemolysis: 0.13
Non-Fouling: 0.59
Solubility: 0.68
Half-Life: 39.70 h
Affinity: 7.94
ipTM: 0.56
Docking Score: -7.3

7JVS designed binder
WMLWCITWGTC

B

Hemolysis: 0.170
Non-Fouling: 0.57
Solubility: 0.35
Half-Life: 0.61 h
Affinity: 4.93
ipTM: 0.72
Docking Score: -5.1

1B8Q pre-existing binder
VVKVDSV

D

Hemolysis: 0.090
Non-Fouling: 0.27
Solubility: 0.43
Half-Life: 1.87 h
Affinity: 4.14
ipTM: 0.58
Docking Score: -7.4

1E6I pre-existing binder
AKRHR

F

Hemolysis: 0.210 ‘
Non-Fouling: 0.21
Solubility: 0.23
Half-Life: 41.96 h
Affinity: 7.10
ipTM: 0.66
Docking Score: -6.3

3IDJ pre-existing binder
ELDAWAS

H

Hemolysis: 0.24
Non-Fouling: 0.32
Solubility: 0.20
Half-Life: 0.84 h
Affinity: 6.16
ipTM: 0.43

Docking Score: -5.5

7JVS pre-existing binder
KLNLQFFASKK

Figure A2: Complex structures of target proteins with pre-existing binders. (A)-(B) 1B8Q, (C)-(D) 1E6I,
(E)-(F) 31DJ, (G)-(H) 7JVS. Each panel shows the complex structure of the target with either a MOG-DFM-
designed binder or its pre-existing binder. For each binder, five property scores are provided, as well as the
ipTM score from AlphaFold3 and the docking score from AutoDock VINA. Interacting residues on the target

are visualized.
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A

Hemolysis: 0.075
Non-Fouling: 0.69
Solubility: 0.81
Half-Life: 27.91 h
Affinity: 8.68

ipTM: 0.87
Docking Score: -6.0

AMHR2 designed binder
DAEAWVEV

C

Hemolysis: 0.051
Non-Fouling: 0.51
Solubility: 0.60
Half-Life: 6.33 h
Affinity: 8.55

ipTM: 0.77
Docking Score: -6.0

AMHR2 designed binder
PFRAEEDLGEEVEVHC

E

Hemolysis: 0.079
Non-Fouling: 0.53
Solubility: 0.54
Half-Life: 17.57 h
Affinity: 8.31

ipTM: 0.70
Docking Score: -6.7

EWS::FLI1 designed binder
WKKFMAWIVRDG

G

Hemolysis: 0.057
Non-Fouling: 0.77
Solubility: 0.79
Half-Life: 0.38 h
Affinity: 7.68
ipTM: 0.55
Docking Score: -6.6

J
P

MYC designed binder
VAKWRVRP

Hemolysis: 0.072
Non-Fouling: 0.39
Solubility: 0.44
Half-Life: 2.32 h
Affinity: 7.67
ipTM: 0.42
Docking Score: -7.3

DUSP12 designed binder
ESTRWPRVC

B

Hemolysis: 0.070
Non-Fouling: 0.53
Solubility: 0.43
Half-Life: 8.27 h
Affinity: 8.47
ipTM: 0.90
Docking Score: -6.3

AMHR2 designed binder
DYAMRTRRRRWG

D

Hemolysis: 0.089
Non-Fouling: 0.64
Solubility: 0.43
Half-Life: 93.95 h
Affinity: 8.18
ipTM: 0.72
Docking Score: -5.6

EWS::FLI1 designed binder
EVIWWWIC

F

Hemolysis: 0.108
Non-Fouling: 0.83
Solubility: 0.70
Half-Life: 2.02 h
Affinity: 7.95

ipTM: 0.67
Docking Score: -5.5

EWS::FLI1 designed binder
EVTYTSVFAQAVAIVC

H

Hemolysis: 0.047
Non-Fouling: 0.59
Solubility: 0.55
Half-Life: 5.07 h
Affinity: 9.73
ipTM: 0.52 .
Docking Score: -8.2

OX1R designed binder
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Figure A3: Complex structures of target proteins without pre-existing binders. (A)-(C) AMHR?2, (D)-(F)
EWS::FLI1, (G) MYC, (H) OX1R, (I) DUSP12. Each panel shows the complex structure of the target with a
MOG-DFM-designed binder. For each binder, five property scores are provided, as well as the ipTM score from
AlphaFold3 and the docking score from AutoDock VINA. Interacting residues on the target are visualized.
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Algorithm 1 MOG-DFM: Multi-Objective-Guided Discrete Flow Matching

1: Input: Pre-trained discrete flow matching model, multi-objective score functions

2: Output: Sequence z; with multi-objective optimized properties

3: Initialize:

4:  Sample an initial sequence xo uniformly from the discrete state space S

5. Generate a set of weight vectors {wy } 2L | that uniformly cover the N-dimensional Pareto front
6:  Select a weight vector w randomly from {wy, }
7
8

: for t = 0 to 1 with step size h = % do
: Step 1: Guided Transition Scoring

9: Select a position ¢ in the sequence to update
10: For each candidate transition y; # x;:
11: Compute the normalized rank score I, (y;, z) for each objective n
12: Compute D(y;, z,w) based on the alignment of improvements with w
13: Combine rank and direction components:

N
1
AS(y;,r,w) = Norm i Z I, (yi, )| + X Norm [D(y;, z,w)]

n=1
14: Re-weight the original velocity field w;(y;, ) by the combined score
15: Step 2: Adaptive Hypercone Filtering
16: Compute angle «; between improvement vector As(y;, x) and weight vector w
17: Accept transitions y; where «; < @ (hypercone angle)
18: Select the best transition 3°°* from the candidates
19: Adapt Hypercone Angle:
20: Compute the rejection rate r; based on the number of rejected candidate transitions
21: Compute the exponential moving average 7; of rejection rate
22: Update the hypercone angle ® based on the moving average:

(I)tJrh = CllP (q)t €xXp (77 (Ft - T)) ) (I)mina q)max)
23: Step 3: Euler Sampling

24: Use Euler’s method to sample the next state based on the guided velocity field
25: Transition to the new sequence

26: Update time: t — ¢t 4+ h

27: end for

28: Return: Final sequence z;
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I USE OF LARGE LANGUAGE MODELS (LLMS)

We acknowledge the use of large language models (LLMs) to assist in polishing and editing parts of
this manuscript. LLMs were used to refine phrasing, improve clarity, and ensure consistency of style
across sections. All technical content, experiments, analyses, and conclusions were developed by the
authors, with LLM support limited to language refinement and editorial improvements.
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