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Abstract— Deepfake detection has progressively become a
topic of interest in recent years due to the proliferation of
automated facial forgery generation techniques that are able
to produce manipulated media indistinguishable for the human
eye. One of the most difficult aspects in deepfake detection is
generalization to unseen manipulation techniques, which is a
key factor to make a method useful in real world applications.
In this paper, we propose a new multi-task network termed
SFA, which leverages spatiotemporal features extracted from
video inputs to provide more robust predictions compared to
image-only models, as well as a face alignment task that helps
the network to identify anomalous facial movements in the
temporal dimension. We show that this multi-task approach
improves generalization compared to the single-task baseline,
and succeeds in producing results on par with the current state-
of-the-art using different cross-dataset and cross-manipulation
benchmarks.

I. INTRODUCTION

Over the last decade, deep learning has proven to be an
exceptionally useful tool to solve a wide variety of problems.
One of these applications includes generative models [10],
which can produce novel data from a learned distribution.
“Deepfakes” are images or videos of human faces generated
or manipulated from real data by deep learning techniques.
With the increasing quality of these manipulations and the
ease of use for the general public, they have raised high
concerns due to the serious risk of malicious misusage they
convey.

Thus, deepfake detection has quickly become a popular
topic of research. Early works try to identify forgery artifacts
in the pixel or frequency domains [17], [22], [26], but
perform poorly on cross-dataset benchmarks. Other methods
try to generate pseudo-fakes [5], [19], [29] to improve
generalization, but can only detect spatial artifacts and miss
temporal clues useful to detect manipulated videos that have
been generated frame-by-frame.

Recently, many works have also used spatiotemporal in-
formation from video data to detect artifacts in the temporal
dimension [14], [13], [38], [44]. Although there is some work
on deepfake detection using facial landmarks [32], there is a
lack of research to leverage facial alignment tasks to detect
anomalous facial movements by modeling facial movement
over time.

In this work, we develop a simple but effective multi-
task network termed SFA (Spatiotemporal Face Alignment
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for deepfake detection), which combines spatiotemporal fea-
tures extracted with a video backbone with face alignment,
showing how both tasks can work together and lead to
better generalization to unseen manipulations. To track the
movement of the face in the video, we train the network
to create motion heatmaps [6]. This is a novel approach in
deepfake detection, as previous literature usually employs
2D landmark coordinates obtained by an external network
to train recurrent or graph-based networks [32]. The main
advantage of our approach is that landmark annotations are
not needed at inference time.

In summary, the main contributions of this paper are as
follows:

1) We combine deepfake detection with face alignment
in videos, using both tasks to improve generalization
to unseen manipulation methods not present in the
training dataset. In contrast with previous work, we
train the network to perform face alignment instead of
relying on landmark annotations at inference time.

2) We compare single- and multi-channel motion heat
maps to perform face alignment on videos.

II. RELATED WORK

Since the uprising of deep learning-based methods that
can easily and realistically manipulate the identity and ap-
pearance of a face in images and videos [9], [21], [27], the
field of deepfake detection has also developed significantly.
One of the more desirable properties of forgery detection
methods is the ability to generalize well against manipulation
methods not seen in the training data. Some studies [40], [41]
hint that a key factor in achieving good generalization lies in
avoiding the use of features that may encourage overfitting to
particular manipulation methods of the training dataset, such
as the identity of the subject. Thus, generalizable methods
learn to discard facial features that are not relevant to the
task of deepfake detection.

The methods can be categorized into image and video-
based models. Image-based methods include [19], [24], [43],
which try to focus the attention of the network on certain
parts of the face that are more likely to contain forgery
artifacts. Some methods leverage frequency information to
complement or substitute spatial information [23], [26], [30],
[37] and are more robust to video compression. Another pop-
ular approach is to use contrastive learning techniques [11],
[12], [16], [17], [31] to improve generalization against un-
seen manipulation methods. Cao et al. [3] train an auto-
encoder network to reconstruct only real faces, focusing on
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anomalies found in the decoder features to detect deepfakes.
Other methods generate pseudo-fakes as training data [5],
[19], [29], [38] by blending 2 images of the same person
or even the same image with a slightly modified version of
itself. They are more difficult to detect, forcing the network
to extract more robust features.

On the other hand, some methods use video data to extract
more informative spatiotemporal features or to track some
biological signals over time inherent to real faces, such as
heart rate [7] or action units [1], [33]. Sun et al. [32] use
a sequence of facial landmarks in a video clip to detect
anomalous movements generated from deepfakes. Haliassos
et al. [13], [14] employ pre-trained networks on audio-visual
data to generate robust features suitable to detect manipulated
videos. Some methods [38], [42], [44] show the proper
training methodology of spatiotemporal deepfake detectors,
since spatial information is generally more dominant and
easy to spot in deepfake detection, and the temporal features
tend to be ignored by the network if trained naively. Xu
et al. [39] leverage a pre-trained image model and adapt it
to video data by stacking several frames into a thumbnail
image.

Similarly to [32], we incorporate facial landmark informa-
tion to detect manipulated videos. However, relying on 2D
landmark coordinates only as in [32] can greatly decrease
the ability to generalize to unseen manipulations, since the
network easily overfits to the particular fake movements
of the training data. Instead, we use face alignment as a
complementary task in a video model to act as regularization
and help the network extract more useful features for cross-
dataset and cross-manipulation scenarios. Another difference
is that this task is incorporated into the network, so landmark
annotations are not needed at inference time.

I1I. METHOD

Our framework consists of a multi-task video transformer
network that leverages spatiotemporal features extracted
from videos, coupled with a face alignment task that im-
proves the single-task baseline. Firstly, the new task helps the
network produce a set of more informative feature maps for
deepfake detection, since the focus is placed on specific parts
of the face, acting as regularization. Secondly, it encourages
the network to pay more attention to the temporal dimension,
since it must track the position of the landmarks throughout
the video clip.

A. Classification

An overview of our model is shown in Fig. 1. The
input video frames I € REXTXHXW are gplit into non-
overlapping 3-dimensional cubes and projected into tokens
x € RP*D where C refers to color channels, T is the
number of frames, H and W are frame height and width,
respectively, P = % : 1% . ng is the number of tokens and D
is the token dimension.

A set of task tokens Xiqs, € ROTL*D are appended to x,
one for the classification task and L for the face alignment

task (one per facial landmark). This new set of tokens x’ =

X U X4k 18 then fed into K sequential transformer layers.
From the output of the last layer, we extract the subset of
transformed task tokens X}, .

Finally, the transformed classification token in x;as i 1s fed
into a fully connected layer that outputs the probability that
the input video contains a deepfake. This task is optimized
with a binary cross-entropy loss, Lpce.

B. Face alignment

Our framework incorporates a face alignment task that
helps the network identify the structure of the face and
track its movement in the input video clip. We represent
this movement via motion heatmaps [6], which are a tempo-
ral aggregation of single-frame probability maps of facial
landmark locations. The direction of this movement can
be encoded with multi-channel heatmaps (see Fig. 2). We
compare single and multi-channel approaches in our ablation
study.

Given a set of L landmarks, we define a set of L task
tokens, each representing the movement of a facial landmark
in the video. At the output of the last encoder layer, we
extract the L tokens and perform a linear projection followed
by a sigmoid activation that converts each token into a motion
heatmap H € RM*H'>XW' where M is the number of
motion channels, and H’ and W' are height and width of
the heatmap.

These heatmaps are optimized via the intersection-over-
union loss:

1 X $ (Yni - Prt)

E» L:l— nl * Pnl 1
N'L;s@ilm(pil)—s(ym-pm) .
M H W
s(h) = Z Z Z hijk 2)

i=1 j=1 k=1

where [V is the number of video clips in a training batch, and
Y € RMXH'XW' and p e RM*H'XW' gre respectively,
the ground-truth and predicted motion heatmaps for the 1-th
landmark in the n-th video of the input batch.

The final loss is the sum of the classification and heatmap
regression losses, £ = Lpce + AL;ou, Where A is the weight
of the heatmap regression task, and is set empirically.

IV. EXPERIMENTS
A. Experimental settings

Datasets. To clearly assess the performance of deepfake
detection models, it is important to use manipulation methods
not seen in the training data. The most common cross-dataset
benchmark used in the literature sets FaceForensics++ [27]
as the training dataset. It consists of 1000 videos obtained
from YouTube and 4 manipulation methods (Deepfakes',
FaceSwapz, Face2Face [35], NeuralTextures [34]) applied to
them, for a total of 4000 manipulated videos.

For cross-dataset evaluation, we employ CelebDF-v2 [21],
which consists of YouTube videos tampered with a more

https://github.com/deepfakes/faceswap
’https://github.com/MarekKowalski/FaceSwap
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Fig. 1: Overview of our method. A pre-trained video transformer encoder [2] is given a set of learnable task tokens, which
are used for a deepfake detection task and a motion heatmap regression task. The latter helps to extract more discriminative
features for better generalization as well as forcing the network to focus on the movement of the face in the video input,
leveraging temporal clues to detect anomalous facial movements.

Frame sequence Motion heatmaps

Heatmap sequence

Temporal aggregation

Fig. 2: Ground-truth motion heatmap generation process
for different number of channels M [6]. For visual clarity,
heatmaps for all facial landmarks are shown together.

advanced face swapping algorithm for a total of 518 testing
videos; and DFDCP [9], with 780 testing video clips gener-
ated with two in-house face swapping methods and randomly
subjected to data augmentation.

As cross-manipulation datasets, we use FaceShifter [18],
which applies a two-stage occlusion-aware face swapping
network, and DeeperForensics-1.0 [15], which uses a Varia-
tional Auto-Encoder that generates face-swap images as well
as optical flow information, improving temporal continuity.
Both benchmarks are based on the same real testing videos
as FaceForensics++.

Evaluation metrics. Following previous work, we report the
video level area under the receiver operating characteristic

curve (AUC) in our tables, that is, the average AUC between
all the clips in a video. This ensures a fair comparison
between image and video-based methods.

Implementation details. We first detect faces on each video
with the RetinaFace detector [8], and expand each bounding
box by a factor of 1.3 around its center. We align the faces
to the center of the frame by moving the center of the
bounding box to the landmark corresponding to the tip of
the nose detected by RetinaFace. To obtain the landmarks
used for generating the ground-truth heatmaps in Eq. 1, we
employ a state-of-the-art face alignment method [25]. The
transformer encoder used in our experiments is pre-trained
on a large-scale facial video reconstruction task [2]. Our
network processes video clips of 16 consecutive 224 x 224
frames, and we use H' = W’ = 64 in Eq. 2 as the output size
of our heatmap regression head. The weight of the heatmap
regression loss function A is set to 1.0. We use a batch size of
8 and over-sample the real class on the training set to match
the number of fake videos. We use the Adam optimizer with a
maximum learning rate of 7.07 - 1075, obtained empirically,
and a cosine annealing learning rate scheduler with linear
warm-up. Data augmentation includes hue and brightness
manipulation, affine transformations, image compression,
Gaussian blur and cutout, applied uniformly to all frames
of a video clip.

B. Comparison with the state-of-the-art

Table I shows a comparison of our method with several
state-of-the-art image (first half) and video-based (second
half) deepfake detectors. All methods are trained on Face-
Forensics++ high-quality subset (FF++ HQ), and tested on
CelebDF-v2 (CDF), Deepfake Detection Challenge Preview
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TABLE I: Comparison with the state-of-the-art in terms of
video-level AUC (%). All models are trained on FaceForen-
sics++ HQ and evaluated on CelebDF-v2 (CDF), Deepfake
detection challenge preview (DFDCP), FaceShifter (FSh) and
DeeperForensics (DFo). * indicates results computed by us
with official model weights, otherwise taken from [38], [39].

Cross-dataset Cross-manipulation

Method Avg.
CDF  DFDCP FSh DFo
FWA [20] 69.50 - 65.50 50.20 -
PatchForensics [4] 69.60 - 57.80 81.80 -
Xception [27] 73.70 - 72.00 84.50 -
CNN-aug [36] 75.60 - 65.70 74.40 -
Multi-Att [43] 75.70 - 66.00 77.70 -
Face X-Ray [19] 79.50 80.92 92.80 86.80 85.01
SLADD [5] 79.70 - - - -
CNN-GRU [28] 69.80 - 80.80 74.10 -
LipForensics [14] 82.40 - 97.10 97.60 -
ISTVT [42] 84.10 74.20 99.30 98.60 -
FTCN [44] 86.90 74.00 98.80 98.80 89.63
RealForensics [13] 86.90 - 99.70 99.30 -
AltFreezing [38] 89.50 7091 * 99.40 99.30 89.78
TALL-Swin [39] 90.79 - 99.67 99.62 -
SFA (ours) 89.52 80.58 99.84 99.24 92.30

TABLE II: Ablation study with different number of channels
of motion heatmaps M. All metrics represent video-level
AUC (%).

Cross-dataset Cross-manipulation

Method Avg.
CDF DFDCP FSh DFo

Baseline  87.17 78.45 99.55 98.50 90.92

M=1 89.70 79.84 99.82 99.17 92.13

M=2 89.52 80.58 99.84 99.24 92.30

(DFDCP), FaceShifter (FSh) and DeeperForensics-1.0 (DFo)
datasets. Note that some of the methods are trained on
pseudo-fakes instead of the original fake videos of FF++.
Best and second best results are shown in bold and under-
lined, respectively.

We can see that our method can achieve very competitive
results in all testing datasets, and even establishes new
state-of-the-art on FaceShifter. This shows that modeling
the movement of the face as a high-level source of in-
formation incorporated in the model has a positive effect
on the deepfake detection task. Overall, results show the
generalization capabilities of our method to unseen domains
and manipulation techniques not seen in the training dataset.

C. Ablation study

Table II shows the performance of our method when using
different number of channels in the motion heatmaps. First,
compared to the baseline detector, which includes only a
classification token and lacks the face alignment task, we
can see that adding the heatmap regression task consistently
improves the average results considering all test datasets.
This highlights the usefulness of the face alignment task,
as the network is forced to extract more robust features

(b) Multi-task.

(a) Single-task.

Fig. 3: Visualization of the attention map of the class token
for single- and multi-task networks in a manipulated video
from FaceForensics++. The baseline network (3a) fails to
recognize the deepfake. The multi-task approach (3b) focuses
on different parts of the face and correctly classifies it.

and track the movement of the face in the input video.
This is important to detect forgery clues in the temporal
dimension, as deepfake videos are usually crafted frame-by-
frame without considering any temporal consistency.

This results also show that using heatmaps that model
the direction of the movement (M=2) slightly improves the
single-channel approach (M=1). This is notable in DFDCP,
where videos have been altered with several augmentations,
such as reduced encoding quality and image downsampling.
Since the pixel-level data of these videos is less informative,
having access to a high-level representation of the face can
improve the performance of the network. With more motion
channels, the face alignment task becomes more difficult, and
the network is forced to increase its importance. In contrast,
deepfake videos in CDF can be easily spotted by looking at
spatial discrepancies in the face, such as color and resolution
differences caused by the face swapping procedure, and high-
level representations become less useful.

Additionally, we show in Fig. 3 the effect of the face
alignment task on the attention maps of the classification
token aggregated over the temporal dimension. We can see
that, when the model is trained with both tasks, the attention
of the network to relevant parts of the face is more notorious.
This is a result of the regularization effect of the face
alignment task, as the network is more likely to extract
features more related to the structure of the face, disregarding
irrelevant parts of the input frames.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we present a novel approach to the challeng-
ing task of detecting deepfakes. We showed how a simple
framework can leverage face alignment on videos to improve
the generalization ability of a baseline detector.

Since face alignment is a useful tool for locating the face
and its different parts in the image, we believe that this work
can be further extended to improve the interpretability of the
deepfake detector by accurately showing which parts of the
face have been manipulated. This could also be used as a
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complement to pseudo-fake generation techniques extended
to videos.

VI. ACKNOWLEDGMENTS

José M. Buenaposada and Luis Baumela are members of
the Madrid Ellis unit, funded by the Regional Government
of Madrid. Alejandro Cobo was funded by a predoctoral
contract from Universidad Politécnica de Madrid.

ETHICAL IMPACT STATEMENT

Manipulated media derived from deepfake generation
technologies present a serious risk to society as they can
be used for malicious purposes, such as face spoofing or
identity theft. Because of the fast development of Al, it is
very difficult to foresee the actual generalization capabilities
of a deepfake detector, and future manipulation techniques
can include the detector predictions to generate data more
robust to that specific model. Thus, we cannot guarantee the
applicability of our work to all deepfake detection contexts
in the future, which can lead to false negative predictions
and cause a sense of false security among its users.

To address this issue, one strategy to follow is to con-
tinually improve the training data with more modern fake
generation techniques and retrain the network to keep it up-
to-date.

Despite the potential risks, we believe that our research can
have a positive impact on society by exposing manipulated
media and preventing malicious uses of deepfakes.
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