Chemical Engineering Journal 490 (2024) 151625

o %

ELSEVIER

Contents lists available at ScienceDirect

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej
Review :.)
Recent advances in artificial intelligence boosting materials design for

electrochemical energy storage

inxin Liu“®', Kexin Fan®', Xinmeng Huang "', Jiankai Ge™ ', Yujie Liu"™", Haisu Kang ®"

@ Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

b Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA

¢ Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104, USA

4 Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA

¢ Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125,

USA

f Graduate Group in Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA

ARTICLE INFO ABSTRACT

Keywords:

Artificial intelligence
Batteries

Fuel cells
Supercapacitors
Material design

In the rapidly evolving landscape of electrochemical energy storage (EES), the advent of artificial intelligence
(AI) has emerged as a keystone for innovation in material design, propelling forward the design and discovery of
batteries, fuel cells, supercapacitors, and many other functional materials. This review paper elucidates the
burgeoning role of Al in materials from foundational machine learning (ML) techniques to its current pivotal role
in advancing the frontiers of materials science for energy storage, including enhancing the performance, dura-

bility, and safety of battery technologies, fuel cell efficiency and longevity, and the materials fine-tuning in
supercapacitors to achieve superior energy storage capabilities. Collectively, we present a comprehensive
overview of the recent Al advancements that have significantly accelerated the development of next-generation
materials for EES, offering insights into future research trajectories and the potential for Al to unlock new ho-

rizons in materials science.

1. Introduction

The growth of energy consumption greatly increases the burden on
the environment [1]. To address this issue, it is critical for human society
to pursue clean energy resources, such as wind, water, solar and
hydrogen [2]. Developing electrochemical energy storage devices has
long been considered as a promising topic in the clean energy field, as it
is environment-friendly, high-efficient, and portable [3-6]. Researchers
have been developing different electrochemical energy storage devices
for over a hundred years, including batteries, fuel cells, and super-
capacitors, etc. [7-10]. Among these electrochemical energy storage
devices, materials play a vital role in promoting the ability, capacity,
and duality [11-13]. Therefore, a systematic design of materials for
electrochemical devices is needed, which usually contains designs of
electrodes, electrolytes, catalysts, etc. [14-16].

However, the current landscape of materials design, particularly in
the context of electrochemical energy storage, faces notable challenges.

* Corresponding authors.

Traditionally, the development of new materials relies heavily on trial-
and-error methods, which are time-consuming, labor-intensive, and
often lack precision. Computational methods, including density func-
tional theory (DFT), molecular dynamics (MD), and Monte Carlo (MC),
etc., provide a sophisticated way of designing materials.[236,239,240]
Though computational designs of materials have reached notable
achievements in past decades, they are limited by the accuracy of
methods, timescale/lengthscale limitation, and heavy computational
cost. These often lead to oversimplified models that fail to capture the
behaviors of materials in practical scenario. As a result, the pace of
discovering and optimizing materials for applications like batteries, fuel
cells, and supercapacitors has been slower than desired, hindering the
rapid advancement needed in the clean energy sector.

In recent years, the advent of Al has opened a new era in materials
design, offering transformative solutions to these longstanding chal-
lenges. Al particularly machine learning and deep learning techniques,
can analyze vast datasets, uncovering patterns and relationships that
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elude traditional methods. This capability enables Al to predict material
properties and behaviors with remarkable accuracy, significantly
reducing the reliance on costly and time-consuming experiments and
computational methods. Additionally, Al can optimize the synthesis and
processing parameters, leading to more efficient material development
cycles. The integration of Al in materials design not only accelerates the
discovery of novel materials but also enhances our understanding of
material science, paving the way for more innovative and effective
electrochemical energy storage solutions. The synergy of AI with exist-
ing computational methods also creates new opportunities for more
comprehensive, rapid, and accurate modeling, such as deep learning
potential in MD simulations, generative diffusion models for transition
states, ChatGPT for materials design.[86,238,241,242] The existence of
Al greatly facilitates the formation of innovative and predictive ap-
proaches to materials science.

In this review, we summarized theoretical basis and recent progress
of materials design for electrochemical energy storage with the assis-
tance of Al Starting from introducing basic concepts of Al toolkit, we
discussed classical methods like machine learning, deep learning, and
reinforce learning, and most recent AI techniques like generative
diffusion models and large language models that assist materials design.
Then, focusing on applications, we first introduced how AI could benefit
the development of battery materials, which divided into electrode
materials, electrolyte materials, multiscale modeling, and experimental
planning and synthesis. Second, we discussed the challenge and appli-
cations of machine learning in fuel cell systems. Lastly, we discussed
how Al could help design supercapacitors, such as predicting and opti-
mizing the property, finding descriptors for carbon-based super-
capacitors, and helping characterizations. To wrap up, we pointed out
perspectives, and proposed the future direction of Al accelerating ma-
terials design.

2. Al toolkit for materials design

We offer a summary of classical ML methods in Section 2.1 and then
introduce more recent advancements in artificial intelligence and their
potential applications in energy storage materials.

2.1. Classic Machine learning

ML harnesses algorithms and models to acquire knowledge, make
inferences based on historical data and existing domain knowledge, and
represents a central domain within the broader field of Al. ML can be
further stratified into distinct categories, chiefly supervised learning,
and unsupervised learning, according to the availability of labeled data.
Each of these domains harbors a collection of seminal algorithms.

The premise of supervised learning revolves around a feature vari-
able denoted as x, coupled with an associated label variable y. This label
variable y can be either continuous or discrete. Supervised learning al-
gorithms aim to predict the label variable provided with a feature var-
iable, also called covariates. Depending on the discreteness of label
variables, supervised learning can be further subdivided into two
distinct categories, namely regression tasks and classification tasks
[25-27]. Within the regression task, well-established approaches
encompass but are not limited to linear regression with regularization
(e.g., the /5 and /;-norm regularization) [24,28], Gaussian process
regression [29], time series regression [30]. On the other hand, common
classification algorithms include logistic regression [31], random forest
regression [32], support vector machines [33], the naive Bayes
approach [34].

Conversely, unsupervised learning is uniquely tailored for exploring
and revealing concealed patterns inherent within the features, often
with little or no emphasis on the label variables. The main unsupervised
learning tasks are clustering and dimensionality reduction. Prominent
clustering techniques encompass the K-means clustering [35], Gaussian
mixture models [36], and self-organizing maps [37]. Concurrently,
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seminal dimensionality reduction techniques include the principle
components analysis [38] and independent component analysis [39].

Over the past two decades, ML algorithms have found extensive
application in data-driven materials science [40,41]. Noteworthy ex-
amples include the application of linear regression for the predictive
screening of candidate materials and predicting specific properties
[17,42]. Gaussian process regression has proven invaluable for fore-
casting the performance of various energy materials characterized by
intricate structural compositions, interfaces, and formulations in the
context of solar cells and lithium-ion batteries [43]. Logistic regression,
in turn, plays a pivotal role in the pursuit of energy materials through
high-throughput computational screening techniques [18]. More spe-
cifically, Sodeyama et al. [17] propose a comprehensive machine-
learning strategy with three linear regression techniques, showing that
linear regression facilitates the most precise predictions of the properties
of electrolyte liquids. Building upon logistic regression, Sendek et al.
[18] introduce a novel method for screening to pinpoint high-potential
materials suitable for solid-state electrolytes. Shandiz and Gauvin [44]
utilize eight different clustering algorithms to delve into how the crystal
structure impacts the efficiency of battery electrodes, revealing that the
highest accuracy in predictions can be achieved with random forests.
Pilania et al. [45] develop SVM classification models to predict new
perovskite halides, leading to the discovery of several new compositions
of ABX3 with perovskite structures. More detailed ML applications in
material science are introduced in the sections below. A comprehensive
comparison of classical ML methods is detailed in Table 1.

2.2. Deep learning

Neural networks, often referred to as deep learning models, represent
a revolutionary paradigm and building block in modern machine
learning. The simplest neural network model is the perceptron [46]. The
perceptron comprises three layers: the input layer, the hidden layer, and
the output layer. The input layer aligns with the feature variable x and
thus shares the same dimension as features. After being fed the feature
variable, the hidden layer processes the input through a linear weighted
combination and applies an entry-wise non-linear transformation. The
non-linear transformation is also referred to as activations in deep
learning and can be flexibly adjusted in various scenarios [47]. The
output layer corresponds to the prediction, which serves as the primary
target of supervision. While the perceptron offers ease of use and
interpretability, it may falter in modeling intricate data patterns. The
multilayer perceptron (MLP), also recognized as the fully connected
deep neural network, enhances the vanilla perceptron’s expressiveness
by incorporating multiple hidden layers. Consequently, MLPs demon-
strate remarkable aptitude in capturing intricate relationships [48,49].

Despite the deep and full connection, MLPs easily suffer from over-
fitting due to over-parametrization. The prowess of deep neural net-
works (DNNs) lies in their diverse internal connection architectures.
Specialized internal connection layers enable a more effective acquisi-
tion of hierarchical data representations that abstract increasingly
complex features as information traverses. One representative DNN
model is the convolutional neural network (CNN), renowned for its
proficiency in visual tasks [50]. CNNs deploy convolutional layers, each
associated with a small set of shared weights, to detect features such as
edges, textures, and shapes while reducing spatial dimensions. Subse-
quently, shallow, and fully connected layers are used to facilitate high-
level abstraction and classification. Notable CNN examples include
AlexNet [51], VGG [52], ResNet [53]. Another seminal architectural
marvel is the recurrent neural net- work (RNN) [54]. specifically
designed to handle sequential data types, including time series, speech,
and text. RNNs employ recurrent connections to capture temporal de-
pendencies, making them indispensable for speech recognition and
language modeling applications. Representative RNN models include
GRU [55], LSTM [56], and Seq2Seq [57]. The architectural represen-
tations of the Perceptron, MLP, CNN, and RNN are depicted in Fig. 1.
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Table 1
Comparison of common classic machine learning algorithms.
Algorithms Task Advantages Disadvantages Applications
Linear regression with Regression Simple implementation, model Vulnerability to outliers, poor Feature selection, material
regularization interpretability expressiveness screening[17]
Logistic regression Classification Simple implementation, uncertainty Incapability to capture complex Material screening, property
quantification relationships prediction[18]
Support vector machine Classification Effective in high-dimensions, robust to  Sensitive to hyperparameters, high Material screening, property
outliers computation cost prediction[19]
Naive Bayes Classification Simple implementation, good Vulnerable to correlation, limited Optimization[20]
interpretability expressiveness:
Random forest Regression, Accurate predictions, robust to High computation cost, correlated Material screening, property
classification overfitting predictions prediction[21]
Gaussian mixture model Regression Robust to outliers, soft clustering Unsalable in high dimension, sensitive to Visualization, feature engineering
initialization [22]
K-means/median Clustering Simple implementation, good Sensitive to initialization, vulnerable to Visualization, feature engineering
interpretability data scaling [23]
Principle component analysis ~ Dimension reduction  Decorrelation, good visualization Linear restriction, incapable for category Feature selection [24]
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Fig. 1. Architectures of four common neural networks: (a) Perceptron. (b)
Multilayer Perceptron. (c) Convolutional neural network. (d) Recurrent neural
network. (citation).

The remarkable capacity of DNN models to discern intricate patterns
and dependencies within data renders them invaluable in supervised
and unsupervised learning setups. In materials science, DNNs find
extensive applications, notably in candidate screening and predicting
material properties encompassing vital characteristics like bandgaps,
conductivity, and crystal structures [58,59]. Specifically, CNNs have
emerged as powerful tools for automating tasks such as microstructure
analysis, crystallography, and detecting material defects in images and
electron microscopy data [60]. Furthermore, DNNs facilitate exploring
intricate connections between material properties and crystal structures,
elucidating structural motifs and correlations between composition and
properties [61]. Finally, neural networks are indispensable in handling
substantial datasets, offering promising avenues to ease density func-
tional theory (DFT) calculations and thus drive the development of new
energy materials.

2.3. Reinforcement learning

Reinforcement learning (RL) stands as an emerging subfield of arti-
ficial intelligence, focused on training intelligent agents to make
sequential decisions within dynamic and interactive environments
[62,63]. Unlike supervised or unsupervised learning, RL emphasizes
acquiring knowledge through iterative interaction and feedback. This
dynamic process unfolds through the interaction between one or

multiple agents and an environment, where the agent, typically under
the control of DNN models, observes an environmental state s; such from
the environment at each time step t. The state is a sufficient statistic of
the environment and comprises all the necessary information for the
agent to take the best action, such as the configurations of its actuators
and sensors. The autonomous agent then interacts with the environment
by executing an action at, following the observation of state s;. The
environment, in response, transits to a new state s,.; based on the cur-
rent state and the action taken and sends a reward (or sometimes pen-
alty) rr;1 to the agent. The agent’s objective is to learn an optimal policy
n—a mapping from states to actions— to maximize the expected cu-
mulative reward over the long term. The agent-environment-interaction
loop is illustrated in Fig. 2.

One predominant algorithm in RL is the Q-learning algorithm [64].
The algorithm aims to learn the Q-function—an optimal real-valued
function with action-state input—that quantifies the expected cumula-
tive reward for taking a particular action in each given state and
following the policy thereafter. Deep reinforcement learning (DRL) has
gained significant prominence in recent years, thanks to the successful
integration of deep neural networks with RL [65,66]. Depending on the
module learned using deep neural networks, DRL has diversified into
various branches, each tailored to the distinct function learned using
deep neural networks, including deep Q-networks (DQNs) and policy
gradient methods [67,68].

RL is witnessing burgeoning applications in material science. For
instance, RL can be employed in material discovery and optimization by
endowing agents the capacity to select material compositions and the
fine-tuning of processing parameters, such as temperature and pressure,
to obtain predefined material properties or the optimization of chemical
reactions [70,71]. Moreover, RL is also applicable in catalyst design and
the optimization of chemical reactions. In this regard, agents can learn
optimal reaction conditions, catalyst compositions, and reaction path-
ways to improve the efficiency and selectivity of chemical processes
[72,73]. In addition, RL has demonstrated its utility to optimize exper-
iments in materials science. By strategically selecting the most infor-
mative experiments or measurements, RL endeavors to maximize
scientific discovery while reducing the experimental costs [74].

2.4. Generative diffusion models

Generative diffusion models (abbreviated as diffusion models) have
been recently recognized as the most potent image-generation approach,
providing an innovative approach to modeling intricate data distribu-
tions [75]. Diffusion models are inspired by diffusion processes rooted in
physics and probability theory [76]. In diffusion models, the generative
process starts with a basic distribution, typically Gaussian, and pro-
gressively refines it to approximate a specific empirical data
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Fig. 2. The agent-environment-interaction loop in RL. At time t, the agent receives state s, from the environment. The agent obeys its policy 7 to choose an action at.
Once the action is executed, the environment transits to the next state s, and provides the agent the reward r,;. The agent uses knowledge of state transitions (s,
¢, Se+1,Te1) to improve its policy. Reproduced from Ref. [69]. Copyright IEEE Signal Processing Magazine.

distribution. This intricate process is achieved through a series of
orchestrated transformations, often referred to as “denoising steps”.
Each denoising step applies a learned transformation to the data, pro-
gressively reshaping it to resemble the true data distribution more
closely. Notably, the training of diffusion models follows a reversed
trajectory, where the data distribution is consistently transformed into a
Gaussian distribution by iteratively injecting noise. An underpinning
concept of diffusion models is the score function [77], defined as the
gradient of the logarithm of the probability density Vin(p(x)). This score
function is a vector field that directs the probability density to grow the
most rapidly. The workflow of diffusion models is elucidated in Fig. 3.

Diffusion models find primary utility in generating high-quality
samples and performing image denoising. This category encompasses
representative models such as denoising diffusion probabilistic models
(DDPMs) [79], score-based generative models (SGMs) [80,81], and
stochastic differential equations (Score SDEs) [82]. All of them are
internally modeled with DNNs and show remarkable performance in
generating realistic images. Beyond image generation, diffusion models
have showcased impressive capabilities in density estimation, facili-
tating accurate likelihood assessment for a given data point. This ability
is particularly invaluable when detecting anomaly detection or quanti-
fying uncertainty.

The application horizon of diffusion models has expanded to mate-
rial science. Within the context, diffusion models are deployed for
generating, simulating, and optimizing materials characterized by
desired properties. Notably, diffusion models play a pivotal role in the
generation of novel material structures and compositions, significantly
enhancing the exploration of chemical space and the creation of mate-
rials tailored to specific requirements, such as superconductors [83,84].
Furthermore, these models are harnessed to simulate the properties of

Data —
Fig B

Data «——— Generating samples by denoising

Destructing data by adding noise ———> Noise

materials, including their electronic structures and bandgaps. This
capability enables predicting material properties without necessitating
resource-intensive and costly experimental endeavors [85]. Also, diffu-
sion models find application in generating synthetic material images,
which serve as invaluable resources for training and evaluating image
analysis algorithms. These synthetic images faithfully replicate intricate
microstructures and defects within materials [21]. Most recently, Duan
et al. [86] applied diffusion models to transition state (TS) research,
which could greatly accelerate finding TS between reactants and
products.

2.5. Large language models

Large Language Models (LLMs) represent a groundbreaking
advancement of artificial intelligence. LLMs are initially designed to
predict the next word in a sentence but later manifest a deep under-
standing of grammar, semantics, and general world knowledge. LLMs
have an immense scale of billions or even trillions of parameters and
incorporate an exceptional architecture named transformer into neural
networks, which has proven highly effective in capturing the intricacies
of natural language [87]. At the core of the transformer lies the attention
module, denoted as Attention (Q,K, V) = softmax(QK ')V, composed of
three parameterized matrices: Q (queries), K (keys), and V (values). This
module is central to the model’s ability to process and understand tex-
tual data. An illustrative depiction of single dot-product attention and
multi-head attention (a parallel ensemble version) is presented in Fig. 4.

Training LLMs demands immense computational resources,
including specialized hardware and a vast corpus of text data encom-
passing billions or trillions of words. The field of LLMs has witnessed
several seminal models. GPT-4 (Generative Pre-trained Transformer by

i Score function

ility of perturbed data )

Noise

One denaising step

Fig. 3. Diffusion models continually perturb data by injecting noise, then reverse this process to generate new data from randomly sampled noise. Each denoising
step in the reverse process requires leveraging the score function, i.e., the directions of data distribution pointing to higher likelihood. Reproduced from Ref. [78].

Copyright ACM Computing Surveys.



X. Liu et al.

Multi-Head Attention

Scaled Dot-Product Attention

| MatMul |

Scaled Dot-Product

Attention D& n

o P gl
v T
\Y% K Q

Fig. 4. Left: Scaled dot-product attention. Right: Multi-head attention consists

of several attention layers running in parallel. Reproduced from Ref. [87].
Copyright Neural Information Processing Systems.

OpenAl) [88] has achieved a milestone with a staggering 100 trillion
parameters. Other examples include Google’s BERT [89] and Facebook’s
RoBERTa [90]. Despite the substantial cost of their training, LLMs
manifest exceptional performance in natural language processing. As
they are exposed to more data, LLMs grasp an innate understanding of
diverse topics and concepts. This understanding empowers them to
generate human-like text and answer questions spanning various sub-
jects, ranging from literature and science to history and pop culture.
LLMs also evolve through in-context learning, enabling them to adapt to
specific tasks or domains without re- training [91]. This adaptability
equips LLMs to function as domain experts, responding to domain-
specific queries and offering tailored recommendations. An in-depth
comparison of LLMs with deep learning and classical ML is referred to
Table 2.

LLMs have great potential to advance research in the field of material
science. They can assist in predicting material properties and speed up
materials discovery. LLMs can serve as natural language interfaces for
accessing materials, databases, and tools, allowing researchers to
conveniently retrieve information using conversational queries. LLMs
can also predict chemical reactions based on input descriptions or con-
straints, facilitating the design of new materials with desired properties
and optimizing chemical processes [92,93]. Furthermore, by analyzing
extensive datasets and scientific literature, language models can uncover
trends, patterns, and correlations in material science and even generate
hypotheses for further experimental investigation [94,95]. A high-level
workflow for leveraging language models to enhance chemistry and
material science research is as in Fig. 5.

3. AI for battery materials
3.1. Electrode materials

3.1.1. Optimization techniques
Battery performance is significantly influenced by both the crystal

Table 2

Comparison of Classic ML, Deep Learning, and LLMs.
Comparison Classic ML Deep Learning LLMs
Training Data Size Moderate Large Very large
Input Datatype Numeric Numeric Multimodal
Human Interaction No No Yes
Feature Engineering Manual Automatic Automatic
Model Complexity Simple Complex Very Complex
Interpretability Good Poor Poorer
Performance Moderate High Highest
Hardware Requirements Low High Very High
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systems of the materials used and the voltages of the electrodes. Crystal
systems impact the battery’s longevity during charge-discharge cycles
due to differences in structural stability, ionic conductivity, and elec-
trochemical stability. On the other hand, electrode voltages play a role
in determining theoretical capacity, energy efficiency, and safety.
Higher voltage materials generally offer greater energy density but may
be more susceptible to unstable chemical reactions under extreme con-
ditions. So, achieving a balance between crystal systems and electrode
voltages is essential in battery research and development to meet
various application requirements, considering factors such as energy
and power density, stability, and safety.

Machine learning is significantly improving lithium-ion battery
technology by optimizing electrode materials. Techniques like Artificial
Neural Networks (ANN), Support Vector Machines (SVM), Random
Forest (RF), K-Nearest Neighbors (KNN), and Extremely Randomized
Trees (ERT) effectively predict cathode material properties. These al-
gorithms focus on specific features like space group, formation energy,
and density to accurately determine crystal systems and electrode
voltages, key for battery performance [96]. RF and ERT are particularly
effective in analyzing crystal volume and site number. Additionally,
techniques like ab initio calculations and Partial Least Squares (PLS)
analysis [97] are crucial for understanding lithium-ion intercalation in
cathodes. The effectiveness of these methods depends on having
comprehensive datasets and selecting relevant descriptors. The suc-
cessful use of these varied algorithms and feature selection techniques
demonstrates machine learning’s vital role in advancing lithium-ion
battery electrode materials.

3.1.2. Performance and durability analysis

The analysis of performance and durability of electrode materials in
lithium-ion batteries increasingly relies on advanced machine learning
methods. These methods play a key role in predicting and enhancing the
properties of the materials. For analyzing electrode material behavior,
techniques like Regression Analysis, Support Vector Machines (SVM),
and Random Forest (RF) are employed. They predict how electrode
materials perform under various conditions, forecasting their response
to stress, degradation, and long-term usage. This is vital for the reli-
ability and lifespan of the batteries. In durability assessment, machine
learning is crucial for understanding and predicting material degrada-
tion over time. This involves examining capacity fade, mechanical
stress, and chemical stability under different charging and discharging
cycles [45,98,99]. Additionally, algorithms model the long-term
behavior of electrode materials, helping in selecting materials that bal-
ance performance and durability. This aims to improve their perfor-
mance and lifespan. There is also a continuous effort to refine the
machine learning models themselves to ensure their accuracy and
effectiveness as electrode materials and battery technologies evolve.
Overall, machine learning is essential in the performance and durability
analysis of electrode materials, driving the development of more effi-
cient and longer-lasting lithium-ion batteries. These techniques foster a
deeper understanding of material behavior, advancing battery
technology.

3.1.3. Cathode

Various machine learning (ML) approaches have been employed to
gain insights and optimize their properties. For Ni-rich NMC cathode
materials, Min et al. utilized ML-aided analysis to determine optimal
synthesis parameters, incorporating input variables such as calcination
temperatures, Ni content, and particle size, while assessing output var-
iables like initial capacity, cycle life, and residual Li [100]. Among the
ML models employed, Elastic Random Tree (ERT) performed the best,
and the optimal experimental parameters suggested by ML were vali-
dated through additional experiments.

In the case of Li-rich layered oxide cathodes, Kireeva and Pervov
employed a Support Vector Machine (SVM) model to uncover synthesis-
property relationships, considering input variables such as composition,
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synthesis method, and temperatures, with outputs including discharge
capacity and Coulombic efficiency [101]. The ML analysis facilitated the
identification of critical parameters influencing tailored cathode
characteristics.

In the study of low-strain cathode materials, Wang et al. constructed
a Partial Least Squares (PLS) model using lattice constants calculated
through Density Functional Theory (DFT) to predict volume changes in
cathode materials [97]. Key descriptors for accurate predictions were
the radius of transition metal ions and their octahedron distortion.

Joshi et al. focused on voltage profiles for various battery chemis-
tries, utilizing data from the Materials Project. Descriptors included
intercalation cation nature and lattice type, leading to the identification
of potential new electrode materials for Na- and K-ion batteries [102].

In the context of charge-informed atomistic modeling, CHGNet, a
machine-learning interatomic potential (MLIP), was published. It
models the universal potential energy surface, pre-trained on a decade’s
worth of density functional theory calculations from the Materials
Project Trajectory Dataset. CHGNet (Fig. 6) stands out for its ability to
explicitly include magnetic moments, enhancing its capability to
represent both atomic and electronic degrees of freedom accurately.
This feature allows it to provide deeper insights into ionic systems,
demonstrating applications in areas like charge-informed molecular
dynamics and Li diffusion. CHGNet’s integration of charge information
marks a significant advancement in simulating complex electron in-
teractions in solid-state materials [103].

For organic electrode materials, Allam et al. created a DFT-based
database for various organic molecules and employed an Artificial
Neural Network (ANN) to predict redox potentials [104]. Input variables
encompassed electronic properties and geometrical information,
revealing the effectiveness of this approach in predicting redox poten-
tials by considering important variables such as electron affinity,
HOMO, LUMO, etc.

ML aids in enhancing the electrochemical properties of organic
radical materials, crucial for improving the performance of electrode
materials in redox flow batteries [105]. In the classification of data sets,
Shandiz et al. explored various algorithms to classify Li-ion silicate-

based cathodes [96]. ML models including Linear Discriminant Analysis
(LDA), Quadratic Discriminant Analysis (QDA), Sparse Discriminant
Analysis (SDA), ANN, SVM, kNN, RF, and ERT were evaluated. RF and
ERT classifiers emerged as the most effective, with relevant descriptors
such as crystal volume, number of sites, formation energy, energy above
hull, and band gap identified in the classification process. These studies
collectively highlight the diverse applications of ML in optimizing and
understanding various aspects of battery cathode materials.

3.2. Electrolyte Materials

3.2.1. Ionic solid electrolyte

Machine learning (ML) techniques have effectively optimized ion
mobility, conductivity, and dendrite growth suppression.

Through the utilization of computational data, partial least squares
(PLS) analysis, and density functional theory (DFT), Min et al. [97]
employed NEB with DFT to compute Lit* migration energies, identifying
low-ionic-conductivity solid electrolytes with olivine-type oxide struc-
tures. Similarly, Jalem et al. [106] employed artificial neural networks
(ANN) to discover low-migration-energy compositions within Tavorite-
Type LIMTO4F solid electrolytes, highlighting ML’s capacity for identi-
fying fast ion conductors.

Studies by Kireeva and Pervov on garnet-type oxide solid electrolytes
utilized support vector machine (SVM) models to predict ionic con-
ductivity, thereby enriching the understanding of material properties
[102]. Fujimura et al. [107] integrated theoretical and experimental
data with SVM to evaluate Lig — cAaBbO4 LISICONs, pinpointing com-
positions with enhanced ionic conductivity. Zhang et al.’s application of
clustering methods to categorize materials based on Li-ion conductivity
underscores the practicality of such ML approaches [108].

Sendek et al. [109] used classification LR to distinguish superionic
from non-superionic Li-containing solid electrolytes, emphasizing multi-
descriptor schemes’ effectiveness. Ahmad et al. screened inorganic
solids for dendrite suppression using DFT and trained CGCNN and KRR
models. They identified dendrite-suppressing candidates as soft, aniso-
tropic, and with high mass density.
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Polymer-based solid electrolytes have diverse applications, with
studies primarily focusing on dendrite growth inhibition and the inte-
gration of ceramic composite fillers. Notably, polyethylene oxide (PEO)
stands out due to its ability to establish a stable and resilient solid
electrolyte interface (SEI) layer on lithium metal anodes, thereby
extending battery lifespan. This phenomenon is attributed to the for-
mation of lithium fluoride (LiF), which forms a protective barrier on the
anode surface. Other significant polymers include polyacrylonitrile
(PAN), aliphatic polycarbonates (APCs), polyvinylidene fluoride
(PVDF), and polyacrylates (PAs), which can serve as co-polymers or
crosslinking agents alongside PEO. Moreover, polymers can function as
fillers in composites, synergizing with lithium-ion conductors or ce-
ramics such as NASICON [110-113].

3.2.2. Liquid electrolytes

ML studies are relatively less common due to liquid electrolytes’
highly disordered nature. However, ML methods still offer utility in
various aspects of studying liquid electrolytes.

Nakayama et al. focused on predicting cation-solvent interaction
energies within liquid electrolytes for lithium-ion batteries (LIBs) using
an exhaustive search with a Gaussian Process (GP) method [114]. These
interaction energies are crucial for Li-ion transport and play a significant
role in solvation and desolvation processes at interfaces.

Sodeyama et al. utilized an exhaustive search with linear regression

(ES-LiR) method to incorporate the melting point as a target property for
liquid electrolytes. This approach struck a balance between prediction
accuracy and computational cost [115].

ML-enhanced molecular dynamics (MD) simulations have been
applied to simulate extreme types of liquid electrolytes, particularly
those with significant dipole polarization, such as highly concentrated
electrolytes and ionic-liquid-based electrolytes [116,117]. Neural Net-
works and Deep Tensor Neural Networks are employed to handle atom-
wise system descriptions and polarization terms.

The study of Zn?' in water involved applying ANN to learn an
effective physical potential for highly disordered systems. Challenges
persist when extending this method to more complex systems with an-
ions, cations, and solvents.

Preliminary results from the Johansson Group and MIT Group indi-
cated the potential efficacy of using ML techniques on highly concen-
trated electrolytes (HCE) of LiTFSI in ACN, with a small mean average
error (MAE) observed [17,118].

Furthermore, ML is not limited to computational analysis but can
also enhance experimental studies of electrolytes. Applications range
from using ANN to interpret spectroscopy data to the concept of fully
automated laboratories [119], offering efficient ways to address com-
plex simulation and experimental data comparison challenges.

In conclusion, while ML studies on liquid electrolytes face challenges
due to their disordered nature, still many successful applications and
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potential areas where ML can contribute, including predicting interac-
tion energies, aiding in simulations, and enhancing experimental
studies. These efforts address the challenges in understanding and
optimizing liquid electrolytes for battery technologies.

3.2.3. Property prediction and analysis

ML is revolutionizing the prediction of electrolyte properties in LIBs.
While solid electrolytes are extensively studied, liquid electrolytes pre-
sent challenges due to their disordered structures. The key is under-
standing ion transport, especially the properties of lithium-ion and
solvent interactions. Researchers use ML techniques like multiple linear
regression and Gaussian processes to predict these properties more
accurately [114,120,121]. Additives in electrolytes, crucial for perfor-
mance, are also analyzed using ML, focusing on their redox potential.
Solid electrolytes are highlighted for their potential in safer, high-
performance batteries, with ML aiding in predicting important proper-
ties like ion conductivity and mechanical strength. The main challenge
in applying ML here is the availability of comprehensive data for more
accurate predictions.

3.2.4. Design and optimization approaches

Solid and liquid electrolytes in LIBs present contrasting challenges.
Solid electrolytes, extensively researched, differ from liquid electrolytes,
which are complex due to their disordered structures. Understanding ion
transport, particularly lithium-ion and solvent interactions, is key in this
domain. Machine Learning (ML) techniques like multiple linear regres-
sion and Gaussian processes are increasingly used to predict essential
electrolyte properties more accurately [114,120]. Additionally, ML is
employed to analyze electrolyte additives, focusing on their redox po-
tential, a critical factor for battery performance and longevity. Solid
electrolytes are promising for creating safer, high-performance batte-
ries. ML helps predict vital properties like ion conductivity and me-
chanical strength, essential for their practical use. However, applying
ML effectively in electrolyte research requires comprehensive, high-
quality data. Accurate predictions hinge on extensive datasets
covering various electrolyte properties and compositions. Therefore,
gathering and curating quality data is vital for maximizing ML’s po-
tential in advancing LIB technology. In summary, ML’s integration into
electrolyte research represents a significant step toward optimizing and
innovating LIBs. With ongoing research and data enhancement, ML is
poised to greatly improve our understanding and development of
advanced battery systems.

3.3. Multiscale modeling

Traditional first-principles methods, such as DFT, offer high accuracy
but are computationally demanding, making them most suitable for
small systems. In contrast, interatomic potentials, while less computa-
tionally intensive, are limited by transferability and nonreactivity issues,
restricting their application to specific systems.

3.3.1. Model accuracy

To overcome these limitations, ML-assisted approaches have
emerged as valuable tools. ML techniques enhance the representation of
many-body interatomic potentials [122,123], as demonstrated by
Gaussian approximation potentials (GAP) and ANN potentials. Several
notable case studies illustrate the impact of ML in molecular dynamics
simulations:

Deringer and Csanyi’s GAP Model leverages ML to simulate amor-
phous carbon materials, significantly improving prediction accuracy for
complex compounds [124]. Li et al.’s work demonstrates the effective-
ness of an ANN potential trained on DFT-computed structures of LigPOyq,
enhancing potential models for more accurate material property pre-
dictions [125]. Deng et al.’s eSNAP Model combines the SNAP formalism
with electrostatic interactions, improving property prediction in mate-
rials like Li3N, particularly for complex interactions [126]. Shao et al.
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utilize an ANN potential to simulate ionic conductivity in alkaline
electrolyte solutions, showcasing ML’s ability to reduce computational
costs while maintaining high accuracy, a significant advantage for
complex material systems [127].

Specific ML applications encompass cluster expansion methods for
estimating local properties, DeepDFT for charge density prediction in
large systems (e.g., NMC cathodes and liquid electrolytes), and unsu-
pervised learning methods like density-based clustering of trajectories
(DCT) for elucidating complex diffusion mechanisms in solid electro-
lytes [128,129].

In addition, the integration of CHGNet, a graph neural network-
based MLIP, demonstrates a significant advancement in multiscale
modeling. CHGNet’s ability to accurately represent both atomic and
electronic degrees of freedom, thanks to its pretraining on extensive DFT
calculations, offers improved predictions in complex systems, particu-
larly in solid-state materials. Its inclusion exemplifies ML’s capability to
handle intricate electron interactions in multiscale simulations, further
contributing to the development of sophisticated battery technologies
[105].

Overall, ML plays a pivotal role in advancing battery technology by
enabling more precise and efficient simulations, addressing the intricate
physical and chemical properties of battery materials. This integration is
crucial for developing superior battery technologies that cater to the
diverse nature of battery materials and their behaviors. ML also ad-
dresses computational challenges, facilitating large-scale simulations of
complex compounds, including amorphous materials. However, ML
potentials require substantial reference data, especially for disordered
structures.

3.3.2. Computational efficiency

ML methods, such as Gaussian approximation potentials (GAP) and
artificial neural network ANN potentials, are applied in multiscale
modeling for lithium-ion battery research. These ML techniques enhance
the representation of many-body interatomic potentials, offering a more
computationally feasible alternative to first-principles methods like
Density Functional Theory (DFT). ML facilitates simulations of complex
compounds, including those with amorphous structures. This is benefi-
cial for modeling battery material behaviors that influence performance
and longevity. ML also increases sampling efficiency in cluster expan-
sion methods [105,130], which is useful for connecting atomic scale
interactions with larger scale phenomena in battery materials. In sum-
mary, ML in multiscale modeling for lithium-ion batteries contributes to
more efficient and accurate simulations, aiding in the development of
improved battery technologies.

In conclusion, ML plays a pivotal role in advancing multiscale
modeling of battery materials. It bridges the gap between atomic and
larger length and time scales, benefiting particularly the study of
disordered systems. ML models significantly enhance computational
efficiency without compromising accuracy, addressing the complexities
of battery materials and contributing to the development of improved
battery technologies.

3.4. Experimental planning and synthesis

3.4.1. Methodologies and techniques

In the field of design for LIBs, ML is employed in various capacities to
enhance battery performance and design:

One key application is in Electrolyte Design, where ML is utilized to
identify organic solvents with lower reduction potentials [131]. Typi-
cally employing supervised learning algorithms, this approach improves
the reduction and oxidation stability in electrolytes, thereby contrib-
uting to the expansion of electrochemical windows.

ML also plays a vital role in Cathode Material Improvements.
Through regression analysis, ML helps predict structural changes and
voltage behaviors in NMC cathodes [97]. This predictive capability fa-
cilitates the optimization of cathode designs with the aim of enhancing
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reversible capacities and reducing voltage decay.

Additionally, ML models, potentially incorporating classification
algorithms, are instrumental in Anode Materials and Coatings
[132,133]. These models pinpoint effective materials for interfacial
coatings, leading to improved cyclability and overall battery
performance.

In the realm of All-Solid-State Batteries, unsupervised learning
techniques like clustering are employed to classify solid-state Li-ion
conductors. This classification aids in the discovery of new, fast Li-
conductors with improved conductivity. These diverse applications of
ML underscore its significant and multifaceted role in advancing the
development of sophisticated materials for LIBs.

3.4.2. Case studies and practical applications

Liu et al used ML to explore the stability of doped garnet LLZO
against Li metal [135]. Ibhahim et al. applied a Bayesian neural network
for modeling conductivity in polyethylene oxide-based electrolytes
[136,137]. Hatakeyama-Sato et al. (Fig. 7) utilized Gaussian process
models to discover high-conductivity Li-ion conductive polymers [134].
Joshi et al. employed ML models to predict voltage profiles in Na- and K-
ion battery cathodes [104]. Wang et al. studied cathode material volume
changes during de-lithiation [138]. Zhang et al. modeled lithium poly-
sulfide adsorption energy on layered sulphides [108]. Shree’s frame-
work combining reinforcement learning with an ML surrogate objective,
trained using quantum chemistry simulations, exemplifies the advanced
computational strategies employed for these studies [106]. Natarajan
and Van der Ven, and Hochins and Visvanathan, used neural networks
for analyzing electrode materials’ disorder during lithiation/de-
lithiation [123,139].

Also, machine learning tools could be utilized to analyze SEI. Sol-
eymanibrojeni et al. [140] presents an active learning workflow coupled
with a kinetic Monte Carlo (kMC) model for SEI formation, integrating
statistical tools to reduce model uncertainty and providing a new
perspective on the reactions controlling SEI formation in Li-ion batte-
ries, crucial for enhancing battery performance and lifespan.

3.4.3. High-Throughput methods

Traditional experimental processes pose significant challenges in
materials discovery for batteries, as they are slow, costly, and heavily
reliant on chemical intuition and trial-and-error approaches. This limi-
tation hampers the rapid exploration of novel materials.

To address these challenges, high-throughput (HT) synthesis
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methods have emerged as a promising alternative (Fig. 8).[141] These
methods, often combinatorial in nature, facilitate the exploration of vast
compositional spaces and synthesis conditions for battery materials.
Examples include the investigation of Si — M thin films, the study of
LiNi; ,3Mn; ,3C01,302 preparation conditions, and the mapping of phase
diagrams for various systems [142]. However, the adoption of HT syn-
thesis requires alternative automated setups and a shift in sample
handling, characterization, and data analysis paradigms.

ML plays a significant role in this context by enabling the analysis of
large and complex experimental datasets, uncovering correlations be-
tween synthesis conditions and sample properties. Despite its significant
potential, ML has yet to be widely applied in the battery field.

Another promising avenue is the integration of robotics with AI or
ML for autonomous material synthesis and electrode/cell optimization,
although this approach remains underreported in the battery field.
Several case studies illustrate the practical application of these concepts.
For instance, Beal and co-workers produced thin-film sample libraries of
Li-ion electrolyte materials using HT physical vapor deposition (PVD)
[143] and employed various analysis techniques, including LA-ICP-MS,
spectroscopic ellipsometry, impedance, and X-ray diffraction (XRD)
[144,145]. They applied techniques such as PCA, multivariate curve
resolution with alternating least squares (MCR-ALS), recursive partition
analysis, and ANN to analyze XRD data [143,146,147].

In another example, Ceder’s group conducted literature data mining
to examine synthesis conditions for metal oxides and sulfides across
thousands of articles. They employed parse trees and neural network
word labeling to extract synthesis step parameters and identified re-
lationships between synthesis temperature and compositional
complexity. However, challenges such as standardization in data pre-
sentation and the lack of negative result reports remain significant
hurdles for text mining.

The key takeaways from these developments include the integration
of HT experimental approaches with ML analysis, enabling the genera-
tion of large experimental datasets and more efficient discovery of
battery materials. Looking ahead, further advancements in Al-aided
approaches, robotics, and literature data mining have the potential to
significantly enhance the efficiency and effectiveness of materials dis-
covery in the battery field. In summary, the application of HT methods,
combined with ML and AI techniques, represents a significant
advancement in the experimental planning, screening, and synthesis of
battery materials, offering the potential for more rapid and cost-effective
development of new battery materials [143].
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4. Al in fuel cells

In the contemporary landscape of the world economy, the integra-
tion and efficient management of sustainable electrical energy genera-
tion are paramount. Traditional methods of energy production have
exerted a profound impact on the global environment, contributing
significantly to climate change [148]. A stark illustration of this is the
revelation from the International Energy Agency, which warns of “En-
ergy-related greenhouse gas emissions leading to considerable climate
degradation with an average 6 °C global warming” [24]. This alarming
situation underscores the urgency for alternatives, and clean energy
emerges as a viable solution to mitigate these challenges.

Fuel cells (FCs) represent a significant advancement in sustainable
energy technology. As electrochemical devices, they convert chemical
energy, most commonly from hydrogen, directly into electrical energy
through an electrochemical reaction with oxygen [149,150,237]. This
process is intrinsically efficient and environmentally friendly, with
water often being the only by-product, starkly contrasting with the
emissions from conventional combustion-based energy generation
[151-153]. The operation of FCs circumvents the significant environ-
mental impacts associated with traditional energy sources, aligning with
the global imperative for green and sustainable energy solutions.

The benefits of FCs extend to high energy conversion efficiency, often
exceeding 60 %, surpassing many traditional energy generation methods

10

[154]. This efficiency, combined with the modularity of FCs, enables
their use in diverse applications, ranging from portable devices to large-
scale power systems. FCs are also known for their reliability and quiet
operation, making them suitable for a variety of environments,
including residential and sensitive industrial areas [155]. The FC market
has responded to these advantages with significant growth, expanding
from $630 million in 2013 to $2.54 billion in 2018 [24]. This expansion
reflects the broadening application of FCs across multiple sectors,
including residential power, transportation, and industrial uses [156].

FCs are differentiated by electrolyte type—acidic or alkaline—and
operating temperature. Alkaline Fuel Cells (AFCs) use aqueous KOH and
work at cooler temperatures up to 100 °C, suitable where pure hydrogen
and oxygen are used [157]. Proton Exchange Membrane Fuel Cells
(PEMFCs) and Direct Methanol Fuel Cells (DMFCs) employ acidic
polymers and operate at similar mild temperatures, making them ideal
for portable applications due to quick start-up times [158]. Phosphoric
Acid Fuel Cells (PAFCs) operate at intermediate temperatures
(150-220 °C) and can handle impure fuels, while Molten Carbonate Fuel
Cells (MCFCs) work at higher temperatures (550-700 °C) suitable for
stationary power generation with the capability of CO. recycling
[159,160]. Solid Oxide Fuel Cells (SOFCs), operating at the highest
temperatures (600-1000 °C), allows for the use of various fuels and non-
precious metal catalysts, thus reducing costs and enhancing fuel flexi-
bility for large-scale applications [161].
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4.1. Current challenges

The path to mainstream adoption of FC technology is fraught with
challenges, particularly in the domains of cost reduction, efficiency
optimization, and durability improvement [40]. The complexity
inherent in FC systems arises from the delicate interplay of phenomena
such as mass transport, heat transfer, and electrochemical reactions,
which are influenced by the materials used, the design of the system, and
the operating conditions [162].

The development of FCs demands breakthroughs in material science,
a deeper understanding of the fundamental processes, and enhance-
ments in analytical and experimental methodologies. For instance, the
use of non-platinum group metal catalysts and advanced membrane
materials, as well as strategies for reducing platinum loading, are critical
for cost management [163]. Additionally, improved water and thermal
management techniques, coupled with sophisticated system health
monitoring, are key for maintaining high performance and extending
the lifespan of FCs [164].

ML has the potential to tackle these multifaceted challenges by
leveraging its strengths in data analysis, pattern recognition, and pre-
dictive modeling. ML algorithms can process vast amounts of experi-
mental and operational data to unearth insights that can inform material
selection, FC design, and operational optimization. These insights can
lead to the identification of cost-effective materials and designs that do
not compromise performance or durability. ML can also assist in real-
time control and diagnostics of FCs, optimizing their operation under
dynamic conditions and predicting maintenance needs before failures
occur. This proactive approach to maintenance can significantly
enhance the durability and reliability of FC systems.

Furthermore, unlike traditional physical models, ML models can
efficiently handle the complex, multi-physical interactions within a FC
without explicitly programming the underlying phenomena [165]. This
approach is advantageous when physics is not fully understood or too
complex to model directly. Once trained, ML models can rapidly eval-
uate scenarios and simulate conditions for large, multi-cell systems,
which would be computationally intensive with physics-based models.
This efficiency is crucial for the iterative design and testing cycles
needed to propel FC technology forward.

In conclusion, ML stands as a transformative tool in the FC industry,
offering a route to overcome current technical and economic barriers. It
can accelerate the development of FCs by enhancing our understanding
of their operation, improving design and material selection, and opti-
mizing performance and longevity, thus propelling FCs toward
competitive commercialization.

4.2. Applications of ML in fuel Cells

This section methodically examines the application of ML techniques
in FC technology, encompassing aspects of design, performance evalu-
ation, and durability prediction. The design and performance evaluation
of FCs focus on areas such as material selection and chemical reaction
modeling, which directly impact the polarization or current-voltage (I-
V) curves. Durability prediction, an essential aspect of FC technology,
involves assessing the State of Health (SoH), estimating the Remaining
Useful Life (RUL) of the FCs, and conducting fault diagnostics. SoH is a
vital measure of an FC’s condition, indicating its level of degradation
and capacity to carry out particular discharge activities. By monitoring
SoH, one can enhance performance consistency and prolong the lifespan
of the FC, thereby diminishing running expenses. Fault prediction is
aimed at identifying potential issues before they lead to system failure.
Fault diagnosis in FCs involves determining the nature and location of
faults, such as identifying occurrences of flooding or other abnormal
conditions.

4.2.1. Fuel cell design and performance evaluation
ML enhances FC design by efficiently processing complex data that
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would be formidable to handle through manual methods. It streamlines
material selection by scouring comprehensive databases to pinpoint
optimal candidates for FC components like membranes and catalysts,
taking into account a range of properties and performance metrics. This
approach is becoming increasingly prevalent in the fields of chemistry
and materials science for the discovery of new material properties and
the development of advanced materials [166]. Traditional approaches
to material property characterization, such as experimental measure-
ments and theoretical calculations, are often resource-intensive,
demanding considerable cost, time, and computational power.
Furthermore, the myriad of factors influencing material properties
complicates the quest for suitable materials using conventional tech-
niques alone. ML provides a significant advantage in this realm by
leveraging existing data to predict material properties, even when the
underlying physical phenomena are not fully understood, thus
enhancing the search for materials and expediting the development
process with increased efficiency.

In an innovative study focused on optimizing the performance of
PEMFCs, Wang et al. [167] developed a novel artificial intelligence (AI)
framework to enhance the catalyst layer (CL), the core electrochemical
reaction region of PEMFCs. Existing experimental and modeling
methods have proven insufficient for the in-depth optimization of the CL
composition. This limitation is mainly due to the complexity involved in
accurately modeling and experimentally testing the numerous variables
that influence the CL’s performance. Such variables include the con-
centration and distribution of the catalyst, ionomer, and pore structures
within the CL. Traditional methods often fail to capture the intricate
interactions between these variables, leading to suboptimal CL designs
that do not fully exploit the potential of the PEMFCs. To address these
problems, this study introduced a combination of a data-driven surro-
gate model and a stochastic optimization algorithm. This approach
aimed at achieving global optimization of multiple variables to improve
the maximum power density of PEMFCs. The foundation of this opti-
mization framework was a database generated from simulation results of
a three-dimensional computational fluid dynamics (CFD) PEMFC model
(Fig. 9a), coupled with a CL agglomerate model (Fig. 9b). This database
served to train the surrogate model, which was based on the Support
Vector Machine (SVM) algorithm. The surrogate model’s prediction
performance was impressive, with a squared correlation coefficient (R-
square) of 0.9908 and a mean percentage error of just 3.3375 % in the
test set. This indicated that the surrogate model’s accuracy was com-
parable to that of the physical CFD model but was far more efficient in
terms of computation resources. For instance, the surrogate model could
calculate a polarization curve in about a second, a task that could take
hundreds of processor-hours using the physical CFD model. The effi-
ciency of the surrogate model was further leveraged by incorporating it
into a Genetic Algorithm (GA) to determine the optimal CL composition.
To validate this approach, the optimal composition identified by the
surrogate model was tested against the physical model. The comparison
revealed a minimal percentage error of only 1.3950 % between the
surrogate model’s predictions and the physical model’s simulations of
maximum power densities under the optimal CL conditions (Fig. 9c).

In another study addressing the complexities of PEMFCs, Ding et al.
[168] showcased the efficacy of explainable Al in enhancing the design
of high-performance membrane electrode assemblies (MEAs). The
study’s workflow began with the development of a multiphysics model,
experimentally validated to reliably predict current-voltage (IV) curves
under various conditions. The researchers then utilized 11 key experi-
mental parameters to construct surrogate models through eight different
ML algorithms. A critical aspect of this study was the application of
interpretative methods such as feature ranking, partial dependence plots
(PDP), and SHAP analysis on these AI models. This analysis was
instrumental in understanding how each input parameter influenced the
output performance. A notable finding was the need for a tradeoff in
catalyst layer thickness, balancing chemical reaction and mass transfer.
The ANN model, with an impressive R? of 0.99854, emerged as the best-
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the CL single agglomerate. Reproduced from Ref. [167]. Copyright 2020, Elsevier. (c) Surrogate model predicted and physical model simulated polarization curves
under the optimal CL composition. Reproduced from Ref. [167]. Copyright 2020, Elsevier. (d) Design Framework of DMSCs. Reproduced from Ref. [169]. Copyright
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2019, American Chemical Society. (f) Comparison of DFT-computed AGoy* values with those predicted by GBR algorithm. Reproduced from Ref. [169] Copyright

2019, American Chemical Society.

performing model. It was subsequently used as the basis for optimization
via a genetic algorithm, leading to the prediction of an optimal catalyst
layer thickness of 4.88 pm. The experimental results closely aligned with
the Al predictions, especially in areas such as ionomer content, a crucial
determinant of FC performance. The optimized MEA achieved remark-
able results, with a maximum power density of 1.27 W/cm? and a cur-
rent density of 1.27 A/ecm? at 0.7 V, significantly outperforming
commercial products with 3.2 times the regularized Pt utilization.

For the optimization of oxygen reduction reaction (ORR) catalyst,
Zhu et al. [169] explored the activity origin and design principles for
dual-metal-site catalysts (DMSCs) using a combination of DFT compu-
tations and ML (Fig. 9d). The study identified that the catalytic activity
of DMSCs, crucial for the ORR in PEMFCs, is primarily determined by
several fundamental factors, including the electron affinity, electro-
negativity, and radii of the embedded metal atoms (Fig. 9e). The re-
searchers developed predictor equations using ML to quantitatively
describe the ORR activity of DMSCs, revealing that several experimen-
tally unexplored DMSCs could exhibit outstanding ORR activity, sur-
passing even platinum. The ML study utilized gradient boosted
regression (GBR) for its high accuracy in training, with a root mean
square error (RMSE) of 0.036 and coefficient of determination ®R?
values of 0.993 indicating a strong correlation with DFT-computed data
(Fig. 9f). This approach allowed for efficient screening of highly active
catalysts from a vast pool of candidates, significantly enhancing the
process of material selection for ORR catalysts. The study’s results have
implications for the broader field of FC technology, providing a frame-
work for designing and evaluating DMSCs with high ORR activity.
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ML is also increasingly being utilized in the chemical reaction
modeling of FCs. A typical ANN structure used for predicting cell voltage
comprises three layers: an input layer (feeding in operating conditions
such as current, temperature, pressure, flow rate, and humidity), hidden
layers, and an output layer (outputting cell voltage). Various studies
exemplify the application of this approach.

Su et al. [170] developed a three-layer ANN-based model to predict
cell voltage uniformity in a 140-cell, 60 kW PEMFC stack, using a
backpropagation algorithm for training (Fig. 10a). The model, exhibit-
ing remarkable accuracy with less than 2 mV error in various conditions,
identified improved voltage uniformity and performance with increased
cathode pressure, and a decrease in performance at higher operating
currents. This model, focusing on steady-state conditions, addresses a
crucial research gap in predicting cell voltage distributions, challenging
for physics-based models due to complex geometry and computational
demands.

Lietal [171] proposed a novel deep learning framework integrating
Long Short-Term Memory (LSTM) and ANN to enhance the prediction
accuracy of dynamic output voltage in PEMFC (Fig. 10b). This frame-
work uniquely combines LSTM’s ability to extract temporal information
from past PEMFC states—determined using autocorrelation and partial
autocorrelation functions—with the ANN’s capability to learn from
current system inputs like stack temperature, fluid temperature, and
pressure. The fusion of LSTM and ANN outputs, leveraging both his-
torical and current data, enables more accurate predictions of PEMFC'’s
dynamic output voltage. Validated with data from a laboratory-scale
PEMFC system, this model was compared against existing methods
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Fig. 10. (a) The ANN model structure. Reproduced from Ref. [170]. Copyright 2022, Elsevier. (b) Structure of the LSTM and ANN fusion model. Reproduced from
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like SVR, standalone ANN, and LSTM (Fig. 10c). The LSTM-ANN fusion biocatalyst in treating tofu wastewater, their approach involved a two-
model demonstrated superior performance, achieving the lowest mean phase process. Initially, they developed an ANN model to accurately
square error of 1.303 in predicting the dynamic output voltage. predict operational parameters of the MMFC, notably enhancing the

Sayed et al. [172] introduced a hybrid method that integrates ANN coefficient-of-determination for both power density and COD removal
and a Forensic-Based Investigation algorithm (FBI) to optimize efficiency beyond traditional ANOVA methods. This was followed by the
microalgae-based microbial FCs (MMFC). Focusing on the use of yeast application of the FBI method to optimize concentrations of yeast and
(Saccharomyces cerevisiae) as a bioanode and microalgae as a cathodic wastewater, aiming to simultaneously maximize power density and COD
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removal. Compared with an optimized performance by response surface
methodology and measured data, the integration between ANN and FBI
increased the performance of MMFC is by 2.24 %.

Leetal [173] proposed an innovative approach using ANN to model
and optimize the performance of direct urea-hydrogen peroxide FCs
(DUHPEFCs). They predicted the DUHPFC’s voltage based on key design
and operational parameters, including anode catalyst properties, urea
concentration, KOH concentration, temperature, and feeding flow rate.
The most effective ANN model utilized a two-hidden layer structure with
a 7-10-6-1 topology, leveraging the Levenberg-Marquardt algorithm,
logistic sigmoid function, and 80 % of the data for training. This model
demonstrated excellent prediction capability, evidenced by a mean
squared error (MSE) of 0.51 x 10~* and an R-value of 0.9993.
Furthermore, to identify the optimal process parameters for the
DUHPFCs, bio-inspired algorithms (BIAs) such as Particle Swarm Opti-
mization (PSO) and GA were applied. Both algorithms yielded similar
optimal results, though the ANN-PSO combination was faster than ANN-
GA in performance. Under optimal conditions identified by these
methods—using Nig 2Cog g/Ni-foam as the anode catalyst, urea con-
centration of 1.4 M, KOH concentration of 6.2 M, temperature of 70 °C,
and a flow rate of 5.9 mL/min—the calculated maximum power density
reached 45.6 mW/cm?.

Nguyen et al. [174] developed a novel approach to optimize mem-
braneless microfluidic FC (MMFC) performance (Fig. 10d), combining
an ANN with a Genetic Algorithm (GA) (Fig. 10e). They utilized a three-
dimensional multiphysics model (R? = 0.976) to generate training data
for the ANN, which accurately simulated the MMFC performance (R% =
0.999) with significantly reduced computation time (0.041 s). The ANN-
GA model identified optimal MMFC design and operational parameters,
achieving a maximum power density of 0.263 mW/cm?2. The ANN-GA
and 3D multiphysics simulations show a strong concordance in pre-
dicting power density and current density under optimal operating
conditions (Fig. 10f).

4.2.2. Durability prediction

This section of the review addresses the use of ML methods in pre-
dicting the durability of FCs, with a particular emphasis on the SoH and
Remaining Useful Life (RUL). ML methods offer significant benefits in
monitoring the SoH of FCs, thereby improving performance stability and
extending service life. The fast response and robustness of ML methods
in predicting the RUL are particularly advantageous, especially under
varying FC system loads which can lead to operational challenges such
as thermoelectric oscillations, insufficient fuel, carbon deposition in
reformers, and system temperature overruns, which is due to the
discrepancy in response times between the electrical characteristics of
the FC (milliseconds) and the slower responses of gas delivery (seconds)
and temperature (minutes), creating a significant lag between gas de-
livery and thermal response [175].

Based on FC degradation, various durability tests and prognostics
models are proposed. Generally, the present prognostics approaches can
be concluded as model-based, data-driven, and hybrid methods. The
model-based method is based on physical models to study the aging
prediction of FCs. Shen et al. [176] employed a model-predictive-based
fuzzy control method to solve a nonlinear optimization problem aimed
at improving fuel economy, maintaining battery charge, and reducing
FC degradation. The novel approach integrates a SoH estimator and an
energy storage system scheduler to optimize performance amidst un-
certainties. By utilizing a Takagi-Sugeno (T-S) fuzzy model, the system
effectively addresses nonlinear powertrain challenges and concurrently
considers battery sustenance, FC durability, and fuel economy. Bressel
et al. [177] introduced an aging tolerant control strategy and prognos-
tics for PEMFC using a time-varying model structured in the Energetic
Macroscopic Representation (EMR) formalism (Fig. 11). This strategy
generates load current references considering SoH and calculates gas
input flows through an inverted energetic model. A Maximum Power
Point Tracking algorithm identifies the maximum power deliverable and
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forecasts RUL. The research validates a Degradation Tolerant Control
(DTC) method that adjusts inputs based on SoH to reduce aging effects,
moving beyond traditional SoH thresholds to a power-based end-of-life
indicator.

The data-driven method overcomes the drawbacks of the physical
model by learning directly from the historical experimental data to make
the prediction [70]. The traditional neural network-based approach as
well as newly emerging approaches like ML and deep learning are some
typical frameworks for the data-driven prediction method. Nagulapati
et al. [178] monitored the SoH of PEMFCs using data-driven ML tech-
niques. The study utilized a dataset from 1000 h of PEMFC operation
under dynamic load conditions, the research analyzed the impact of
training data volume on the prediction accuracies of three ML models:
Gaussian Process Regression (GPR), SVM, and ANN. The models were
assessed using indicators such as cell voltages, current density distri-
bution, and impedance spectra. The dataset was divided to represent
various degradation stages with training and testing ratios of 30:70,
50:50, and 70:30. The results indicated that GPR excelled in predicting
nonlinear time series data with a lower RMSE, particularly in the early
and middle stages of degradation. SVM showed robust performance in
smaller, more complex datasets, while ANN demonstrated high accuracy
and convergence, particularly with larger training sets reflecting
advanced degradation. Mao and Jackson also compared various tradi-
tional ML approaches (ANN, ANFIS, PF) for SoH prediction, with ANN
showing the best prediction effect despite high computational re-
quirements. ANFIS provided accurate predictions with lower computa-
tional costs, and PF was suitable for complex situations like FC faults.
Zuo et al. [179] introduced an attention-enhanced Recurrent Neural
Network (RNN) model, combining it with LSTM and Gated Recurrent
Unit (GRU) to improve the durability prognostics of PEMFC in PHM
systems (Fig. 12). This model notably increased prediction accuracy for
PEMFC output voltage degradation, achieving lower root mean square
errors than conventional LSTM and GRU models.

Deep Reinforcement Learning (DRL) is distinct from traditional
methods like SVM and ANN due to its approach to long-term operational
strategies. DRL is capable of dynamically managing power output and
system efficiency by learning from interactions with the FC system
environment [180]. While SVM and ANN rely on predefined data and
may have limitations in adapting to variable conditions, DRL’s contin-
uous learning process allows it to adjust to changing scenarios, offering a
different approach to optimizing FC performance and longevity. Zhang
et al. [181] proposed a data-driven DRL-based energy management
strategy (EMS) to optimize the performance and lifespan of both
lithium-ion batteries (LIB) and PEMFC in FC vehicles (FCVs). This
strategy is unique in its synchronous consideration of the SoH and
thermal effects on the LIB and PEMFC stack under real-world driving
scenarios. Employing the Soft Actor-Critic (SAC) algorithm for its sta-
bility and efficiency in continuous action spaces, the proposed EMS
dynamically allocates power to maximize a multi-objective reward,
effectively balancing hydrogen consumption rate and minimizing tran-
sient costs related to SoH descent and temperature penalties. The EMS
was trained and validated using long-term driving data from Chonggqing
city, China. Results showcased the proposed SAC-based EMS’s superi-
ority, enhancing overall SoH of the powertrain by up to 14.01 %
compared to other DRL approaches, while effectively regulating
maximum temperatures. This not only addresses the common short-
comings in value-based RL and deterministic policy-based DRL methods
but also prioritizes the durability and thermal stability of the powertrain
system. In parallel, Chen et al. [182] also proposed a DRL-based EMS for
FC vehicles but emphasizing the health degradation of both the FC
system and the power battery. They improved the standard SAC algo-
rithm by introducing a Beta policy to solve the high bias issue caused by
the inconsistency between the infinite support of stochastic policy and
the bounded physics constraints (Fig. 13). This study aimed to find a
balance between driving cost and charge margin, considering health
constraints as a crucial part of the strategy. The EMS showed a
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performance gap of 5.12 % with dynamic programming-based EMS
regarding money cost but was 4.72 % better concerning equivalent
hydrogen consumption.

Song et al. [183] developed a DRL-based EMS for FC hybrid electric
vehicles (FCHEVs) using a fully-continuous Deep Deterministic Policy
Gradient (DDPG) algorithm (Fig. 14). This novel approach optimizes
real-time power distribution while addressing thermal and aging be-
haviors of the hybrid power sources, marking a first in enhancing FCHEV
safety and lifespan. The strategy effectively reduced temperature spikes
in lithium-ion batteries and hybrid system degradation, leading to
improved thermal safety, operating performance, and economy. Vali-
dated under typical road conditions, the DDPG-based EMS outperformed
traditional methods by focusing not only on fuel economy and charge
balance but also on mitigating the detrimental effects of power demands
and frequent starts-stops on the power supply system.

Jia et al. [184] developed a health-aware DRL EMS for FC hybrid
electric buses (FCHEB), addressing the limitations of traditional DRL
algorithms such as overestimation and poor training stability. Recog-
nizing that DRL-based EMSs often fail to generalize beyond specific
optimization objectives, the researchers utilized the Twin Delayed Deep
Deterministic (TD3) policy gradient algorithm, combined with high-
quality learning experience (HQLE) obtained from actual city bus
driving cycles and an advanced model predictive control (MPC) strategy
(Fig. 15). This approach was aimed at improving the optimization
capability of the strategy and ensuring the health of the vehicular energy
systems. The proposed TD3-HQLE-based EMS significantly improved
training efficiency by 61.85 % and fuel economy by 7.45 %, while also
extending the FC’s life by 4 % and the battery’s life by 19.4 % compared
to the conventional TD3-based EMS. These results highlight the efficacy
of the health-aware DRL approach in addressing the inherent drawbacks
of DRL algorithms, enhancing fuel economy, and monitoring and
extending the SoH of the vehicle’s energy systems.

Fault diagnostics in FCs, essential for balancing system lifespan,
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manufacturing costs, and performance, categorize faults into internal (e.
g., electrode degradation, catalyst poisoning) and external (e.g., failures
in fuel, air supply, and heating units). ML-based fault diagnosis, using
historical data or knowledge for training classifiers or expert systems,
has become more prevalent due to the complexity and computational
intensity of model-based methods. For example, Zheng et al. [185]
developed a data-driven online fault diagnosis method for solid oxide FC
systems, focusing on air leakage and fuel starvation using PCA and SVM.
Tian et al. [186] introduced a data-driven method for diagnosing
hydrogen leakage in FC vehicles, overcoming limitations of traditional
hydrogen concentration sensors (HCSs). Using Fisher discrimination
analysis, linear least squares for preprocessing, and relevance vector
machine for pattern recognition, their method achieved over 95 % ac-
curacy in diagnosing leaks larger than 2 g/s and consistently out-
performed conventional HCS-based methods, especially when leaks
were distant from sensors. Xing et al. [187] developed a data-driven fault
diagnosis approach for PEMFCs using sensor pre-selection and ANN. By
analyzing sensor data in time and frequency domains, they filtered out
less responsive sensors and used the remaining data to build an ANN
model, trained with various algorithms. The method achieved 99.2 %
diagnostic accuracy and 98.3 % recall.

FC fault diagnosis research has seen the application of traditional ML
methods like SVM, ANNs, and Bayesian networks, which perform well
even with a small amount of training data. In contrast, DL methods,
which have become increasingly popular, require a large volume of
training data. Zhang et al. [188] tackled simultaneous fault diagnosis in
solid oxide FC systems using a stacked sparse autoencoder (SSAE),
equipped with K-binary classifiers. This method efficiently extracts
crucial features from raw system data, significantly enhancing fault
diagnosis by utilizing both labeled and unlabeled samples. Zuo et al.
[189] developed a deep learning-based method to diagnose flooding
faults in PEMFC under varying load conditions. They used indicators
based on water transport mechanisms and visualized time-series data as
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Fig. 13. The overall architecture of the proposed SAC-EMS. Reproduced from Ref. [182]. Copyright 2023, Elsevier.

2-D graphs for analysis with a CNN enhanced by batch normalization for
better generalization. Validated with real PEMFC data, their model
effectively identified flooding faults with over 99 % accuracy. Zhang and
Guo [190] introduced BPNN-InceptionNet, a fault diagnosis method for
PEMFC systems in FC trams, utilizing information fusion and deep
learning (Fig. 16). The method employs a back propagation neural
network (BPNN) to extract features from data and then uses an
InceptionNet-based CNN for fault classification. Experiments revealed a
kappa coefficient of 0.9884 for BPNN-InceptionNet, outperforming
traditional BPNN, BPNN-VGG, and SVM classifiers. Yuan et al. [191]
developed a novel fault diagnosis framework for PEMFCs using a hybrid
deep learning network combining Residual Network (ResNet) and
LSTM. This approach effectively diagnoses 25 types of faults, including
membrane drying and flooding, with an impressive 99.632 % accuracy,
outperforming conventional models.

In summary, whether using traditional ML or DL methods, fault
diagnosis of FCs typically requires extensive data collection for training.
Current fault diagnosis mainly focuses on external and simple internal
faults, with limited research on complex internal faults like catalyst
poisoning. Combining data-driven ML models with fault mechanism/
simulation models could enhance interpretability and improve predic-
tion performance, offering a promising avenue for future research in FC
diagnostics.

5. Al for supercapacitor

Supercapacitors (SCs), or ultracapacitors, which can store up to 100
times more energy per unit volume/mass compared to conventional
electrolytic capacitors, are one of the most advanced electrical energy
storage technologies for the past few years [192,193]. Typical applica-
tions of SCs include automotive fields, public transportation, wearables,
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telecommunications, etc. Meanwhile, with the rapid evolving AI de-
velopments, computational-driven material science is able to make
significant progress, providing guidelines and interpretations to exper-
iments and giving further accurate predictions for either new materials
and extraordinary properties [194-196]. This synergy, when coming to
the realm of supercapacitors between Al and material science, heralds a
new era of innovation, where the intelligent analysis and processing of
vast datasets can identify potential materials and structural designs that
could revolutionize supercapacitor technology. This multidisciplinary
approach will not only accelerate the development of high-performance
SCs but also enhances our understanding of the underlying electro-
chemical processes, setting the stage for the next generation of energy
storage solutions.

5.1. Performance predictions and optimizations of general SCs

A significant kind of electrochemical charge storage mechanism is
electrostatic double-layer capacitors (EDLCs), which store energy
through the electrostatic attraction of ions on the surface involving the
formation of a Helmholtz double-layer charges with certain separations
at the interface between the electrode surface and the electrolyte, rather
than through chemical reactions, as is the case similar to batteries but
with extremely higher power density in the order of 15 kW kg~!
[197,198]. Based on these treasurable device foundations, character-
izing their capacitance becomes a necessity, not only for choosing the
most appropriate electrode materials, but also to help with the optimi-
zation of EDLC design.

Mediocre modeling of EDLCs is restricted on many aspects, such as
limitations on just few electrolytes and electrodes, incompleteness of
traditional theories [199], manifest heavier computational cost when
going for higher accuracy or larger system size [200,201]. Conversely,
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Fig. 14. The schematic frameworks of DDPG-based control system. Reproduced from Ref. [183]. Copyright 2023, IEEE.

the current widespread availability of open-source literature has trans-
formed Al into a potent tool for managing experimental data pertaining
to EDLCs, enabling the execution of comprehensive ML analyses across
various EDLC models, and facilitating the development of a holistic
perspective on optimized EDLCs. Enormous research has been con-
ducted on using data-driven ML methods, for instance, SVM, neural
networks (NNs), to predict properties of batteries [202,203]. Specif-
ically, for general EDLCs, Nanda et al. [204] build datasets from 400 +
published literatures including essential features of electrolytes, elec-
trodes, and device that could potentially affect capacity retention, then
use ML algorithms like RF and Random Subspace (RS) for prediction
models for accomplishing attribute prioritization to determine highest-
ranked attributes. See Fig. 17(a)—(b) for details. It turns out that car-
bon/polymer, type of electrodes, and testing current density are top
ones, which is consistent with the theoretical validations. Furthermore,
Su et al. [205] dive into the importance of solvent effects for capacity
performance by combining ML approaches and experimental data and
select the size of solvent molecule (doy, dmy) and the dielectric constant
(&) as variables with most contributions according to the best ML model,
further improving the conventional Helmholtz model [206] by adding
more terms to give clues to classical density functional theory simula-
tions as shown in Fig. 17(c)—(e). Other than these basic ML routes, more
advanced technologies are being applied to investigate EDLCs. Li et al.
[207] and Zhou et al. [208] employ extreme learning machine (ELM)
model and hybrid genetic algorithm (HGA) in view of the introductory

workflow as Fig. 17 (f) for the prediction of EDLC life cycles with lower
MSE, less estimation time, and insufficient data, indicating strong Al-
based approaches for real-time forecasting of supercapacitor aging in
industrial settings, significantly outperforming existing models and
potentially revolutionizing the prediction of the remaining useful life for
both supercapacitors and secondary ion batteries with its precision and
robustness.

In addition to some specific physical properties, the general potential
for electrochemical energy storage in SCs [209], such as charge/voltage
relation, can be predicted via the above-mentioned ML methods, for
example, SVM and NNs from Jha et al. [210], SVR and RF from Shariq
etal [211], extreme gradient boosting (XGBoost) from Liu et al. [212].
All of these works show great alignment comparing with experiments.

5.2. Carbon-based SCs descriptions

Known as the most common electrode materials, carbon is definitely
crucial to SCs given the advantages of controllable porosity, high ther-
mal stability, and lower cost [213]. Nevertheless, conventional carbon
materials are way too far to fulfill the requirements of SC device, so
researchers start to focus on the carbon nanomaterials [214,215], for
example, activated carbon (AC), graphene, carbon nanotubes, three-
dimensional carbon (3DC) to look for high-performance SCs with
certain designing mechanisms and fabrications [216]. As we delve
deeper into the potential of these nanomaterials, it becomes clearer that
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the integration of Al stands as the next logical step. The advanced an-
alytics and predictive modeling further enhance the development of
carbon-based nanomaterials, offering unprecedented precision in the
design and optimization of the next generation of supercapacitors,

possibilities.
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thereby bridging the gap between current limitations and future

First, for general carbon materials, Zhu et al. [217] and other re-
searchers [218-220] apply various models like artificial NN and extreme
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learning machine to predict the capacitance of different carbon-based
SCs, which takes into account of features like specific surface area
(SSA), Ip/Ig ratio, pore volume (PV), pore size (PS), and so on, illustrated
in Fig. 18(a-b). Furthermore, from the ML technical perspective, Ahmed
et al. [221] utilize hyperparameter tuning to refine the efficiency of
normal ML algorithms like RF and RS to better predict the various in-
operando performance metrics of carbon-based supercapacitors. More
specifically on the material side, porous carbon-active materials notably
boost the specific capacitance of carbon-based SCs, which can be suc-
cessfully predicted by ML methods [222,223]. Rahimi et al. [224]
develop a multilayer perceptron (MLP)-NN model to investigate in-
depth relations between the physio-chemical and operational
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properties of N/O co-doped, or named as heteroatom-doped [225], ACs
and AC-based electrodes of EDLCs with the textural parameters of
microstructural properties including SSA and PV, operational proper-
ties, and N/O-functional groups. Taking advantage of sensitivity anal-
ysis, they report that the performance is most significantly influenced by
micropore surface area and micropore volume. Functional groups con-
taining nitrogen and oxygen, such as carboxyl (OIII), pyridinic (N-6),
pyrrolic (N-5), and various oxidized nitrogen configurations (N-X),
contribute substantially to the electrochemical performance of EDLCs.
See Fig. 18(c) for the best design. Similarly, Mishra et al. [226] and
Reddy et al. [227] focus on the physiochemical properties using
regression and NN models, extraordinarily highlighting the presence of
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nitrogen doping and nitrogen/oxygen (at. %) as necessary descriptors doped graphene, and Chenwittayakhachon et al. [229] further demon-

for specific capacitance (F/g) in Fig. 18(d-e). In addition, for graphene- strate the synergistic effect arising from co-doping nitrogen, sulphur,
based ones, Saad et al. [228] examine though artificial NN model and and locate the optimized region for different co-doping elemental groups
reveal the great effect of the atomic percentage of nitrogen and oxygen in Fig. 18(h) with high capacitance and high retention rate. Both are
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judged by the SHAP values which assign importance values for each
feature presented in Fig. 18(f-g). Last but not least, Wang et al. [230]
construct a framework for data-driven design of SC device, starting from
the synthesis of 3DC with nitrogen source and etching to the choices of
electrolyte type and processing methods, summarized in Fig. 18(i).
Jamaluddin et al. [231] test biomass carbon materials in SCs and the
dominant factors are quite consistent with pure carbon-based ones. Lu
et al. [232] propose a ML strategy using carbonized metal-organic
frameworks (MOFs) and employ theoretical calculations for adsorption

and binding energy and verifies the outstanding performance of specific
MOFs.

5.3. Novel materials characterizations in SCs

With the increasing influence of AI and ML, explorations for new
materials for device applications have been emerging these years.
Coincidentally, demands for new electrode and electrolyte materials are
rapidly growing as the advanced studies of various carbon-based SCs.
Many review papers have covered on the functional designs of SCs
leveraging data science, which greatly assists new materials develop-
ment in this area [38,39]. Here, we present a thorough summary on
novel materials used in current-stage SCs and the indispensable role of
Al though this process.

Firstly, Lu et al. [233] focus on layered double hydroxides (LDHs) in
SCs benefiting from their unique layered structures and rich REDOX
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sites, where ML models like extreme gradient boosting aid the discovery
of LDHs with large basal spacing (dspacing) for the enhancement of F/g, as
displayed in Fig. 19(a), the predictions of new LDHs (Coq g7Feq 33[Fe
(CN)glo.11)e(OH)> with the largest dspacing of 12.40 A, increasing by
10.91 % compared to the maximum dgpacing Of Mgo.67Alg.33[Fe
(CN)glo.0s#(OH)2 with dspacing of 11.18 A that has ever been reported.
Additionally, Ghosh et al. [234] choose Cerium oxynitride as a SC
electrode to perform the data-driven predictions based on typical SC
features we have mentioned before to help with the effectivity, practi-
cality, and feasibility of this kind of novel material for SC device ap-
plications. See Fig. 19(b) for successful validations on the experimental
data of CeOxNy. Moreover, Jha et al. [235] predict specific capacitance
variation and retention of plant-derived lignin-based SCs listing as SC1,
2, and 3 acronyms referring to different weight percentages of lignin/
NiWo4 nanoparticles/ polyvinylidene fluoride combinations using five
ML methods for the most proper modeling (Fig. 19(c)), which shows
great alignment with experiments in Fig. 19(d).

6. Challenges and perspectives

In the realm of Al assisted energy storage devices research, the
quality of data is critical, directly impacting the performance of various
models. Without sufficient data, models presented less accurate results
and lost physical insights. To navigate these challenges, it is essential to
enhance data quality in terms of precision, variety, and volume, and to
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cerium oxynitride’s position on it with reference to the predicted value and other comparable materials present in literature. Reproduced from Ref. [234]. Copyright
2021, Elsevier. (c) Comparison of actual specific capacitance and test set predictions by artificial NN trained on a dataset of 1000 cycles of SC3 using a train/test split
of 80/20. (d) Predicted supercapacitor retention after 600 cycles by artificial NN compared to experimental values. Reproduced from Ref. [235]. Copyright 2021,

American Chemical Society.
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optimize Al models through improved structures and learning strategies.
Al and ML are instrumental in efficiently exploring chemical, formula-
tion, and operational spaces, significantly reducing the need for
exhaustive experimental and computational efforts. This efficiency is
further enhanced by emerging techniques like hybrid algorithms and
advanced learning strategies. These approaches could not only improve
the research of electrochemical devices but also have broader applica-
tions in material simulation, supporting the development of efficient
force fields and contributing to multiscale modeling.

Advanced ML techniques are crucial in energy storage R&D, as it
could accelerate the research cycle and provide additional insights to
traditional systems. These include identifying reaction mechanisms
from electrochemical results and potential applications in tomography
image segmentation for Non-Destructive Testing (NDT), development of
computational and experimental databases, high-throughput experi-
mentation, and text mining from literature. However, the journey of ML
in electrochemical energy storage devices research is fraught with core
challenges, including the selection of appropriate descriptors, data
scarcity, error determination, and the establishment of standards and
user-friendly tools. Furthermore, there is a need to bridge scales in
modeling and foster collaboration between Al specialists and battery
experts. As we move from current “weak AI” applications towards the
potential of “strong AL” ethical considerations become increasingly
important, particularly in ensuring effective human-machine collabo-
ration and the robustness of algorithms, which is closely tied to product
safety. Addressing these challenges and harnessing the full potential of
Al and ML will be pivotal in advancing the field of energy storage
research and development.
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