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ABSTRACT

Vision-Language-Action (VLA) models have recently made significant advance
in multi-task, end-to-end robotic control, due to the strong generalization capabil-
ities of Vision-Language Models (VLMs). A fundamental challenge in develop-
ing such models is effectively aligning the vision-language space with the robotic
action space. Existing approaches typically rely on directly fine-tuning VLMs us-
ing expert demonstrations. However, this strategy suffers from a spatio-temporal
gap, resulting in considerable data inefficiency and heavy reliance on human la-
bor. Spatially, VLMs operate within a high-level semantic space, whereas robotic
actions are grounded in low-level 3D physical space; temporally, VLMs primarily
interpret the present, while VLA models anticipate future actions. To overcome
these challenges, we propose a novel training paradigm, ROSA, which leverages
robot state estimation to improve alignment between vision-language and action
spaces. By integrating robot state estimation data obtained via an automated pro-
cess, ROSA enables the VLA model to gain enhanced spatial understanding and
self-awareness, thereby boosting performance and generalization. Extensive ex-
periments in both simulated and real-world environments demonstrate the effec-
tiveness of ROSA, particularly in low-data regimes.

1 INTRODUCTION

In recent years, Vision-Language Models (VLMs) (Liu et al.,2023;|Karamcheti et al., 2024;|Alayrac
et al.| [2022) have achieved remarkable progress in visual-linguistic understanding, demonstrat-
ing strong performance and generalization capabilities. Building on this success, there is grow-
ing interest in extending VLMs to end-to-end robotic control by developing generalist robot poli-
cies—commonly referred to as Vision-Language-Action (VLA) models (Kim et al., 2024} |Brohan
et al., 2023} Black et al.||2024). A key challenge in this direction is aligning the vision-language rep-
resentation space with the robotic action space. To address this, a widely adopted approach (Brohan
et al., [2023) is to directly fine-tune pretrained VLMs using large-scale expert action data, mapping
visual observations and language instructions to the corresponding actions.

However, this direct fine-tuning paradigm suffers from significant limitations due to the spatial and
temporal domain gaps inherent in the alignment process, leading to substantial data inefficiency.
As shown on the left of Fig. [I] VLMs are typically pretrained on large-scale visual question an-
swering datasets, where their feature representations primarily capture high-level semantics—e.g.,
identifying an object as a "banana.” In contrast, robotic control, as illustrated on the right of Fig.
requires fine-grained spatial reasoning. For instance, beyond recognizing a banana, the model must
accurately infer its 3D position to enable successful grasping. This mismatch between high-level
semantic understanding and the need for precise spatial localization presents a significant challenge
in aligning VLMs with robotic tasks.

Furthermore, while VLMs excel at interpreting the current semantic content of an image, VLAs
must reason over time to forecast and plan future robotic actions. This introduces a current-to-future
temporal gap, further complicating the alignment process. Combined with the spatial gap, these
challenges necessitate large quantities of expert action data to effectively bridge the discrepancy
during VLM fine-tuning. Moreover, this heavy data requirement significantly increases the burden
of human data collection, impeding the rapid development of VLAs. In scenarios with limited expert
data, the risk of overfitting becomes more pronounced, potentially degrading generalization perfor-
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Figure 1: The spatial and temporal gaps in adapting VLMs to VLAs. VLMs are pretrained with
large-scale VQA datasets to observe current high-level semantics in images, while VLAs are de-
signed to predict low-level future actions in 3D space. The spatial-temporal gap poses challenges to
the alignment process and results in data inefficiency in developing VLAs.

mance and restricting the model’s applicability to novel tasks or environments. Recent works (Niu
et al.; Zheng et al.l 2024; [Li et al., 2025b) have made initial attempts to alleviate the fine-tuning
gap and reduce data requirements. Some (L1 et al., 2024c; [Niu et al.; |[Zheng et al.,|2024) introduce
additional supervision signals via extra annotation tools. Others (Wen et al.| 2025} [Li et al.| | 2025b)
reduce data dependency by adopting more lightweight networks. However, these approaches ei-
ther compromise model capacity or incur additional computational overhead from annotation tools,
limiting their scalability.

In this paper, to address the aforementioned spatial and temporal gaps, we propose a novel training
paradigm, ROSA—RObot State estimation for vision-language and action Alignment. ROSA de-
composes the alignment process into two complementary components: one dedicated to estimating
the robot’s current state, and the other focused on predicting future actions. Concretely, in addition
to using standard expert action data for future action prediction, we introduce a novel form of robot
state estimation data, which supervises the model to infer the robot’s current state from the given
image. The robot state includes the 3D position and orientation of the end-effector, as well as the
gripper’s open/closed status.

The robot state estimation task serves two key purposes. First, it explicitly enhances the model’s
ability to capture fine-grained spatial information. Second, it complements expert demonstrations
by covering a broader portion of the action space, including regions underrepresented in expert data.
This dual role helps bridge the spatial gap between pretrained VLMs and VLA models. Furthermore,
by requiring the model to infer the robot’s current state, ROSA provides a clearer and more structured
spatial context, which in turn facilitates more accurate forecasting of future actions—thereby helping
to close the temporal gap as well.

Collecting robot state data can be fully automated with virtually no additional human labor. Specif-
ically, the robot performs plausible random actions via automated scripts within a predefined envi-
ronment, during which observations and corresponding states are recorded. To enable joint training
with expert data in VLA models, we structure the robot state estimation data to share the same for-
mat as expert demonstrations. This low-cost and easily scalable data acquisition approach makes
ROSA a practical and scalable solution for aligning vision-language and action spaces, facilitating
more data-efficient training of VLAs and ultimately improving performance.

We conduct extensive experiments to evaluate the effectiveness of ROSA. Using a standard VLA
model, we perform controlled studies in both the RLBench simulation environment and on a real-
world WidowX robot platform. Our results show that ROSA significantly enhances VLA perfor-
mance and generalization ability. The improvement is especially significant in real-world low-data
scenarios, where ROSA even doubles the success rate compared to the baseline.
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To summarize, our contributions are as follows:

* We propose a novel training paradigm named ROSA that harnesses robot state estimation
data to achieve better alignment between the vision-language and action spaces.

* We propose a simple yet effective solution to create the robot state estimation data that
significantly enhances VLA’s data efficiency without requiring additional human collection
efforts.

* We conduct extensive experiments on both the RLBench simulation and a real-world Wid-
owX platform, demonstrating that ROSA effectively enhances current VLA models and
achieves superior performance compared to previous methods.

2 RELATED WORKS

2.1 VISION-LANGUAGE-ACTION MODELS.

Building a generalist policy (Mees et al.l [2024; [Shridhar et al.l 2023} Brohan et al.| 2022)) has long
been a central goal in robotic manipulation. In recent years, the impressive performance and gener-
alization capabilities demonstrated by Vision-Language Models (VLMs) (Liu et al., [2023} |Li et al.,
2024a}; |Alayrac et al.l 2022) have inspired researchers to develop robot policies based on VLMs,
commonly referred to as Vision-Language-Action (VLA) models (Li et al., [2024bj Vuong et al.,
2023} Zhou et al.l 2025} |Belkhale et al., |2024; |Li et al., |2024d). These models have shown great
promise in enabling robots to perform a wide range of tasks with enhanced generalization ability.
Among them, RT-2 (Brohan et al.| [2023)) stands out as a typical pioneering work, which is jointly
trained on web-scale VQA data and robotic demonstrations, showcasing impressive performance.
Following it, OpenVLA (Kim et al.| 2024)adopts a similar approach as one of the earliest open-
source VLA models, trained on the large-scale OpenX-Embodiment dataset (Vuong et al., |2023).
LLARVA (Niu et al) collects trajectory annotations as auxiliary tasks to enhance the accuracy
of action prediction. CogACT (Li et al [2024b)) introduces architectural modifications to generate
continuous action chunks, employing a large diffusion action head.

2.2  DATA-EFFICIENT VISION-LANGUAGE-ACTION MODELS.

The high data demand of VLA models is a well-recognized challenge. Some prior works (Brohan
et al., 2023 [Vuong et al., |[2023) aim to address this issue by incorporating large amount of expert
demonstrations. For example, RT-X (Vuong et al., 2023) collects large-scale cross-platform ex-
pert trajectories with great human labor to train a general and high-performing VLA model. Some
works (Zheng et al., [2024} |Li et al., 2024c) introduce additional annotated data to help with the
training. For instance, TraceVLA (Zheng et al.l 2024)) injects additional supervision by introduc-
ing external detectors to generate visual trajectory annotations. LLaRA (Li et al.l [2024c])) leverages
meta annotations such as the bounding boxes to construct auxiliary spatial reasoning tasks, thereby
improving model performance under low-data conditions. Another line of works (Wen et al.| 2025}
Li et al.| 2025b; Zhang et al., 2025) reduce the model size to mitigate data dependency. For exam-
ple, TinyVLA (Wen et al.| 2025) focuses on building a fast VLA with one billion LLM backbone.
In addition, works like (Li et al., [2025a) adopts atomic skill library construction to improve data
efficiency by decomposing complex tasks into reusable primitive skills. Our approach is also data-
efficient, but with a key difference: we do not rely on any additional human labor for collection or
extra labeling modules, nor do we compromise model capacity.

2.3 ROBOT STATE ESTIMATION

Robot state estimation is a task in which, given input RGB images or other information such as
depth, the model is required to estimating the position and orientation of a robot or its components
in 3D space. This is a critical topic in both robotics and computer vision, such as autonomous
navigation (Kothari et al.| 2017} [Prusak et al., 2008) and human-robot interaction (Christen et al.,
2023} |Svenstrup et al., [2009; Xia et all [2020), with several representative works (Heindl et al.,
2019; Miseikis et al.l 2018; Xu et al, 2022} Ban et al.l 2024). Our work draws inspiration from
this task but with difference in the objectives and applications. Specifically, our model only needs
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Figure 2: Illustration of the two types of data used by ROSA to train VLA models. (a). Expert action
prediction data, which requires human effort to collect. (b). Robot state estimation data, which is
obtained automatically without human collection by letting the robot move randomly.

to predict the pose of the end-effector and the gripper’s open-close status that are necessary for
robot manipulation tasks, without needing to estimate full-body configurations. Furthermore, the
goal of our estimation is not for this task itself, but rather to serve as auxiliary supervision for our
downstream robot control task, which enhances the spatial awareness of VLAs, improving VLAs’
performance in action prediction.

3 METHOD

In this section, we present a comprehensive overview of our proposed ROSA. We first introduce the
training data ROSA use in Sec. [3.1] especially the robot state estimation data. Then we provide the
model architecture of ROSA in Sec. 3.2

3.1 ROSA TRAINING DATA

The primary objective of ROSA is to effectively adapt a pretrained VLM to the robotic action space,
enabling the model to directly generate control signals for manipulating robots based on visual ob-
servations and language instructions. To better align vision-language representations with robot
actions, ROSA addresses the alignment problem through two complementary components: one for
anticipating upcoming actions, and the other for accurately capturing the robot’s current state. This
decomposition explicitly encourages the model to develop a strong capability for 3D spatial under-
standing and accurate self-perception, both of which are essential foundations for effective action
prediction. As illustrated in Fig. 2] ROSA leverages two distinct types of data including the expert
action prediction data and the robot state estimation data to jointly fine-tune the pretrained VLM.

Expert action data: As shown in Fig. [2] (a), to obtain expert actions, human operators
are required to carefully collect demonstrations by manually guiding the robot to target po-
sitions to complete different tasks. Formally, we assume an expert action dataset D =
{D1,Ds,...,Dy,} of m demonstrations across various tasks, where each demonstration D; =
{(o%,at,1%), (0b,ab,1%), ... (oi,al,1'),...} contains a variable number of instruction-observation-
action pairs. Here, o, al,l* denote the visual observation, expert action and language instruction
for the i-th demonstration at timestep ¢, respectively. The action a; consists of a 7-DoF (degrees
of freedom) control signal required to manipulate the robot’s end-effector, including 3D position,
orientation, and the gripper’s open/close status:

ar = [xvyazvd)aeawag]a (D

where (z,y, z) denotes the gripper’s position, (¢, 6, ) denotes the Euler angles, and g € {0,1}
denotes the opening status of the gripper (1 for open).

Robot State Estimation Data: While expert action data can directly supervise the VLA model to
learn the action prediction objective, collecting such data is costly and labor-intensive. In contrast,
we propose to collect the robot state estimation through a fully automated pipeline. This type of data
can complement expert action data in training the VLA model without requiring additional human
effort, reducing the model’s reliance on large amounts of manually collected demonstrations.
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Figure 3: Overview of the ROSA architecture. ROSA adopts a classic VLM architecture. Image
observations are encoded into image tokens by a vision encoder and a projector. These image tokens
are combined with text tokens and fed into an LLM. The model is trained with an autoregressive
next-token prediction objective.

Our robot state data collection pipeline proceeds as follows (Fig.|2|(b)). We first initialize a specific
scene configuration—for example, placing a plate and a banana randomly on the table for a put-
banana-into-plate configuration. Based on the scene setup, we choose a feasible action space to
ensure that the robot’s movements remain within safe bounds, avoiding collisions with objects in
the environment that may lead to positioning errors. We then allow the robot to perform random
movements within this constrained space and record robot’s states at each time step. Concretely,
we discretize the feasible 3D action space into uniform grids of resolution n, yielding n3 candidate
waypoints, from which we uniformly sample targets. For each sampled waypoint, the controller
moves the robot’s end-effector to the target pose, and we record the corresponding image at the
target pose and the waypoint as the current state. By repeating this process, we collect diverse robot
state data that uniformly covers the action space, forming a robot state estimation dataset.

To ensure that the robot state data can be effectively integrated with expert action data for joint
training of the VLA model, we collect robot states that capture the same 7 degrees of freedom as
the expert actions, including the end-effector’s position, orientation, and gripper status. Therefore,
in terms of format, the action and the state are identical. The key difference lies in their semantics:
the action represents the target state that the robot should reach at the next time step, while the
state means the robot states at current time step. The structural homogeneity between state data
and expert action data ensures that the model is trained with a consistent target domain across both
data types. Moreover, to construct a structurally consistent dataset, we pair each robot state sample
with a uniform language instruction: “What is the current state of the robot?”, ensuring that the
format mirrors that of the expert action data and enabling unified training under the VLA framework.
Formally, we construct a robot state estimation dataset S = {ej,ea,...,ex} of k pairs, where
et = (0t St, lstate)» and oy, S, lyare TEpresent the observation, robot state at timestep ¢ and the state
language instruction, respectively.

3.2 MODEL ARCHITECTURE

In this section, we detail the model architecture of ROSA, which is built upon standard LLaVA (Liu
et al.,[2023)). We elaborate on three key components: the vision-language modules, robotic tokeniza-
tion and de-tokenization, and the training objective.

Vision-language Modules: As illustrated in Fig. (3| the model takes two types of input: a language
instruction [ that specifies the task the robot is expected to perform and a visual observation oy
consisting of a single front view RGB image. The language instruction is encoded by a text encoder
into a sequence of text tokens Z;. Meanwhile, the visual observation is processed by a vision encoder
fuis to extract visual features H,. These visual features are then mapped into the same embedding
space as the text tokens by a projector fp , resulting in visual tokens Z,. The visual tokens and
text tokens are then concatenated together and fed into a large language model fj,, which performs
causal reasoning over the input tokens and outputs a sequence of robot tokens 2. The whole process
can be formulated as follows:

R= fllm([Zm Zt])7 Z'U = fproj(fvis(ot))' (2)
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Robotic Tokenization and De-tokenization: To allow the large language model to predict robot
actions and states, we convert continuous robot actions and states into discrete values that serve
as the LLM’s output tokens. Take the robot’s position along the x-axis as an example, given
Z; € [Tmin, Tmax), We apply a linear quantization function to map it to an integer token X; €
{0,1,...,bin_size — 1} as follows:

X, = L(x_xm) x (bin_size — 1)J 3)
Tmax — Tmin

For instance, if bin_size = 256, a possible action sequence will be *183 180 36 0 127 49 255°.

During inference, we de-tokenize the predicted token to recover the continuous action or state values

by performing the inverse mapping:

i

. 4
bin_size — 1 X (Tmax CCmm) )

i = Tmin +
Training Objective: We jointly train the model using both expert action data D and robot state
data S. For both types of data, we employ a unified training objective: the next-token-prediction
cross-entropy loss, defined as follows:

£=-Ylog Py | yi,0,L;w) ©)

where y; represents the i-th token and w demotes the parameters of the model.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

We evaluate ROSA in both the RLBench (James et al.l 2020) simulation environment and on a
real-world WidowX robot.

RLBench. We train and evaluate ROSA on 12 RLBench tasks, using a fixed front-facing RGB
camera with a resolution of 336 x 336 to capture the visual input and a Franka Panda robot equipped
with a parallel gripper. Following prior work (Shridhar et al., [2023), we evaluate performance over
25 episodes per task and report the average success rate (SR). Each evaluation is repeated three times
to obtain the final score. More details are provided in the Appendix.

Real-World WidowX Robot. We use a WidowX 250S robot for real-world experiments. We eval-
uate on four seen tasks and four generalization tasks. The seen tasks include three short-range
tasks—Banana in Plate, Strawberry in Bowl, Starfruit in Plate—and one long-range task: Banana
and Strawberry in Bowl. The generalization tasks consist of Cube in Plate (unseen object), Straw-
berry in Box (unseen container), Cube in Box (unseen object and container), and Strawberry in Bowl
(with distractors). Each task is evaluated over 10 trials. More details are described in the Appendix.

4.2 QUANTITATIVE RESULTS
4.2.1 EFFECTIVENESS OF ROSA

We conduct experiments to show the performance of ROSA on RLBench and the real-robot across
different data scales of expert action data. For simulation evaluation, as shown in Tab. [T} given
the same amount of expert action data, ROSA consistently outperforms the baseline model at all
scales, with particularly large gains when expert data is limited. Notably, with only 50 or 100
expert demonstrations, ROSA achieves a 7.1% and 11.4% improvement in average SR on RLBench,
respectively. On real robot, as show in Fig. 4] the effectiveness is more pronounced with a 35%
average SR improvement on the real robot. We attribute this to the greater variability present in real-
world environments, such as cluttered backgrounds and lighting changes. By leveraging diverse
state samples, ROSA enhances robustness under such challenging conditions.

Sufficient Data Scenarios. As shown in Tab. [I] the performance of VLA models consistently
improves with increasing data scale. Nevertheless, even when the amount of expert action data is
sufficiently large (i.e., 500 episodes per task), ROSA still achieves a 1.6% improvement in average
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Figure 4: Comparison of performance between ROSA and the baseline under varying data scales on
real robot. The x-axis represents the number of expert action samples per task used during training,
and the y-axis shows the corresponding success rate (%). It can be observed that ROSA consistently
outperforms the baseline in different data scales.

Table 1: Comparison of performance (success rate %) Table 2: One-shot performance (success

under varying data scales on 12 RLBench tasks. rate %) comparison on 3 RLBench tasks.
Method 50 100 200 400 500 Method | Turn Tap | Put Money in Safe | Push Buttons
Baseline 18.6 523 78.8 86.1 90.5 Baseline 0 0 0
ROSA | 25.7(+7.1) | 63.7(+11.4) | 80.1(+13) | 88.0(+1.9) | 92.1(+1.6) ROSA 4 4 32

SR. This result further highlights the effectiveness of ROSA, demonstrating its benefits even in
high-data regimes.

One-Shot Scenarios. Another important question is whether ROSA remains effective under ex-
tremely low-data conditions. To investigate this, we design a one-shot experiment in which only
a single expert action sample is provided during training. Remarkably, as shown in Tab. |2 ROSA
achieves non-zero success rates on three tasks, whereas the baseline model fails on all of them. This
experiment demonstrates ROSA’s strong data efficiency and its ability to enhance the VLA model’s
understanding of 3D spatial structures and action semantics, even in highly data-scarce settings.

4.2.2 GENERALIZATION ABILITY OF ROSA

We evaluate the generalization ability of ROSA using four real-world tasks involving unseen objects,
unseen containers, and the presence of distractors. As shown in Tab. 3] ROSA significantly outper-
forms the baseline across all four tasks in terms of success rate. While the baseline benefits from the
prior knowledge provided by VLM pretraining and exhibits some generalization ability—for exam-
ple, achieving a 50% success rate in grasping the unseen cube—it performs worse compared to seen
objects such as bananas or strawberries. The performance drop becomes even more pronounced in
novel scenarios involving both unseen objects and containers, where the success rate falls to around
20%. In contrast, ROSA consistently demonstrates strong generalization performance. Notably, on
the Cube in Box task, ROSA exceeds the baseline by 60%. Furthermore, ROSA achieves a 90%
success rate on Strawberry in Bowl (with distractors), which is 30% higher than the baseline, high-
lighting its robustness to distracting objects.

4.2.3 COMPARISON WITH PREVIOUS METHODS

We compare ROSA with previous methods. As shown in Tab. |4} on RLBench, compared to the VLA-
based method LLARVA, ROSA achieves a 16-point improvement in success rate, despite LLARVA
using 800 expert demonstrations per task—eight times more data than ROSA. This result highlights
both the strong performance and high data efficiency of ROSA. Additionally, compared to the non-
VLA method PerACT, ROSA achieves higher performance, even though PerACT utilizes multiple
cameras and depth information. On real robots, as shown in Tab [5} we compare our method with
state-of-the-art VLA approaches, 70 and CogAct. It is evident that ROSA demonstrates a signifi-
cant performance advantage—for instance, achieving a 33% gain over w0. This highlights ROSA’s
superior effectiveness in low-data real-world robotic settings.

Table 3: Performance on unseen tasks for real robot.
Method | Cube in Plate | Strawberry in Box | Cubein Box | Strawberry in Bowl(dist) | Average SR
Baseline 50% 40% ‘ 20% ‘ 60% 43%

ROSA 90% 80% 80% 90% 85%
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Table 4: Comparison with previous methods on RLBench. We compare the success rate (%) on 12
different tasks. ROSA shows superior performance compared with these related methods.

Method | Method Type | Average SR | Opendrawer | Slide block | Sweep dustpan | Meat off grill |  Turn tap
Image-BC (CNN) (Jang et al.}|2022} non-VLA 2.3 4 4 0 0 8
Image-BC (ViT) (Jang et al.[2022) non-VLA 1.3 0 0 0 0 16
C2FARM-BC (James et al.|[2022) non-VLA 22.3 20 16 0 20 68
PerAct (Shridhar et al.[[2023) non-VLA 57.3 80 72 56 84 80
LLARVA(Nw et al.} VLA 47.7 60 100 84 80 56
ROSA VLA 63.7£0.6 66.7+4.8 74.7+4.8 82.7+4.8 65.3+1.3 66.7+5.3
Method | Putitem | Closejar | Reachanddrag | Putmoney | Place wine | Push buttons | Put groceries
Image-BC (CNN) (Jang et al.; 12022} 8 0 0 4 0 0 0
Image-BC (ViT) (Jang et al.[[2022] 0 0 0 0 0 0 0
C2FARM-BC (James et al.|[2022) 4 24 24 12 8 72 0
PerAct (Shridhar et al.[[2023) 68 60 68 44 12 48 16
LLARVA (Niu et al.) 0 28 52 44 12 56 0
ROSA 70.7 £ 1.3 733+£7.1 77.3%+1.3 60.0 £4.6 46.7 £ 1.3 65.3 £4.8 8.0+23

Table 5: Comparison with previous methods on real robot.

Method B in plate | Strawberry in Bowl | Starfruit in Plate | B &Strawberry in Bowl | Average SR
"o (Black et al.[[2024) 50% 30% 40% 20% 35%

CogACT (L1 et al.|[2024b) 40% 30% 30% 20% 30%

ROSA 90% 70% 70% 40% 68%

4.2.4 GENERALITY OF ROBOT STATE ESTIMATION

To verify the universality of robot state estimation for ROSA, we incorporate robot state data into
the training of another VLA model, CogACT, and measure the resulting performance improvements.
As shown in Tab.[6] adding robot state data significantly boosts the performance of vanilla CogACT,
demonstrating that ROSA can be seamlessly applied to different VLA frameworks and bring con-
sistent performance gains.

Table 6: Impact of incorporating ROSA into CogACT on real-robot performance.

Method [ Banana in plate | Strawberry in Bowl | Starfruit in Plate | B &Strawberry in Bowl | Average SR
CogACT (Li et al.|2024b) | 40% 30% 30% | 20% 30%
CogACT + State Estimation 60% 70% 80% 50% 65%

4.2.5 ANALYSIS OF ROSA

To better understand how ROSA works, we conducted controlled studies in the RLBench simulation
environment. All experiments used 100 expert action samples per task.

How much robot state data is needed? We investigate the effect of incorporating different amounts
of robot state data, as shown in Tab. [/} Starting with expert action data only, adding just one-eighth
of the state data yields a 3.7% improvement in success rate. Increasing the proportion to one-
quarter leads to a further 7.7% gain. Using larger amounts of state data degrades performance,
likely due to distributional shifts that impair the model’s ability to predict future actions. These
results suggest that incorporating a relatively small amount of robot state data is sufficient to yield
substantial performance improvements, indicating the effectiveness of introducing robot state data.

How should the environment be configured for state data collection? We study the impact of
scene type and scene quantity. Specifically, we consider two types of scenes: (1) relevant scenes,
which share the same setup as the evaluation tasks, and (2) irrelevant scenes, which feature unrelated
configurations without the evaluation subjects. Fig.[5](b) provides visualizations of these two scene
types. Scene quantity refers to the number of distinct spatial arrangements within a given scene
setup.

Tab. [§] presents the results of our analysis. We find that scene relevance is not critical—both relevant
and irrelevant scenes lead to comparable improvements in performance. This finding suggests that,
in practice, environments originally used for collecting expert action data can be effectively reused
for robot state data collection, avoiding the need to design new scenes. Additionally, we observe that
a moderate scene quantity (e.g., 100 distinct scenes) is sufficient to achieve optimal performance.

3D understanding capability of ROSA. To evaluate whether robot state data truly enhances the
alignment between a pre-trained VLM and robot-specific representations, we conduct a linear prob-
ing analysis. Specifically, we add a linear layer on top of the LLM and train it on a newly constructed
3D spatial understanding dataset. The task requires the model to predict the 3D position and orien-
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RLBench Tasks Relevant Scenes
-~ -~ -y
- - -
Open the top drawer Slide the block to pink target
Real Robot Tasks Close Jar Push Buttons

Irrelevant Scenes

Put the banana on the plate
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d hE i
Put the strawberry into the bowl Change Clock  Setup Checkers

(a) Visual examples on RLBench and real-world robot tasks (b) Examples of robot state data

Figure 5: Visualization results. (a). Examples of ROSA on RLBench and real-world robot tasks.
(b). Examples of robot state data for relevant secenes and irrelevant scenes

Table 7: Ablation on the Table 8: Ablation on scene types Table 9: Liner-prob evaluation

data ratio. and quantity of robot state data. on 3D understanding.
State/Action Ratio | SR Scene Type | # Scenes | SR Method | Acc. % | Error
l(/)8 gég Relevant 50 | 581 VLM 0 [ 52
4 P Relevant 100 63.7 Blgg)eélge g; ?411
12 587 Relevant 200 62.9 :
Irrelevant 100 63.7

tation of the robot’s end-effector based on a single image. We compare three models: the pre-trained
VLM, a baseline VLA model trained only with expert action data, and ROSA. We use mean squared
error (MSE) and prediction accuracy under a fixed error threshold as evaluation metrics.

As shown in Tab. [0} the pre-trained VLM achieves 0% accuracy, indicating a lack of 3D spatial
understanding. The baseline VLA model attains 61% accuracy, suggesting some capacity to perceive
3D information. ROSA achieves the highest accuracy of 92%, demonstrating significantly improved
3D spatial reasoning. These results indicate that ROSA effectively bridges the spatial representation
gap between VLMs and robot-specific learning.

4.3 QUALITATIVE RESULTS

Visualizations of Robot State Data: The robot state data is collected by allowing the robotic
arm to perform random movements within its valid action space. We set up different scenarios for
collecting such data and the examples are illustrated in Fig. [5] (b) . For relevant scenes, the robot
state data is collected in the same scenes as evaluation data but the movements are random. For
irrelevant scenes, we choose completely different task settings from RLbench.

Examples of ROSA on Simulation and Real Robot Tasks: Fig.[3](a) illustrates ROSA’s perfor-
mance on several tasks in both simulation and real-world environments. The top roll in Fig. [5] (a)
presents results on two RLBench tasks: Open Drawer and Slide Block to Color Target. It can be ob-
served that the model accurately predicts the actions and effectively manipulates the target objects.
Real-robot task executions are also shown in Fig. [5] (a), where ROSA precisely localizes the target
objects and their corresponding containers, and successfully place the objects into the containers.

5 CONCLUSION

We propose ROSA, a novel framework that leverages robot state estimation data to better align
vision-language and action spaces in VLA models. By improving the model’s understanding of its
own 3D state, ROSA enables more accurate future action prediction. We also introduce an auto-
mated data collection method that requires nearly no human efforts. Extensive experiments in both
simulation and real-world settings demonstrate ROSA’s effectiveness, showing strong performance
and generalization ability. In future work, ROSA can be extended to a wider range of tasks and
architectures, even applied to cross-platform or cross-robot scenarios.
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APPENDIX

In the appendix, we provide more experimental details and qualitative visualizations of ROSA. We
also discuss the current limitations and outline promising directions for future work.

A MORE IMPLEMENTATION DETAILS

A.1 MODEL AND TRAINING DETAILS

We build ROSA based on the Qwen-2.5-7B (Yang et al.| 2024)) model as the LLM backbone, CLIP
ViT-L/14 (Radford et al.,[2021) as the vision encoder, and a two-layer MLP as the projector. In our
initial experiments, we observed that using a stronger language model led to better overall perfor-
mance on VLA tasks. We compared two strong LLMs—Qwen2.5-7B and LLaMA3-8B[10]—and
found that Qwen2.5 achieved a 6% relative improvement after finetuning, while also having fewer
parameters. Based on these results, we selected Qwen2.5 as our base LLM, as its strong capability
in domain-specific applications offers a solid starting point for VLA models. Ongoing advances
in LLMs and VLMs are expected to further enhance ROSA’s overall performance. ROSA mix the
robot state data and the expert action data in a fixed ratio of 1:4 and performs joint training. We fully
fine-tune all layers for 6 epoches on RLbench and 9 epoches on real robot. A learning rate of 2e-5 is
adopted with a warmup and cosine-decay scheduler. All experiments are conducted on 8 NVIDIA
A100 GPUs.

A.2 RLBENCH SETUPS

RLBench is a widely used simulation benchmark for robotic manipulation, encompassing a diverse
set of tasks with varying levels of difficulty. In our experiments, we select 12 representative tasks to
evaluate the multi-task performance of ROSA. Each task contains multiple varia- tions during data
collection but remains consistent during evaluation to enable one-to-one compar- isons. For training,
we follow the data generation pipeline from PerAct (Shridhar et al., [2023) to create demonstrations
for each task. Detailed descriptions of the selected tasks are provided below.

Open Drawer: The task involves a drawer with upper, middle, and lower compartments. The task
is to pull out the correct drawer specified by the instruction beyond a set distance.

Slide Block: The scene includes four colored square stickers and a cube block. The task is to slide
the block to the target region of correct color.

12
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Sweep Dustpan: The scene contains one large and one small dustpan, with debris scattered between
them. The task is to grab the broom, sweep it at an angle, and push all debris into the specified
dustpan. Success is defined as the complete removal of all debris in the correct dustpan.

Meat off Grill: The scene contains two types of meat on the grill: steak and chicken leg. The task
is to pick up the specified meat and place it on the metal rack next to the oven.

Turn Tap: The objective of this task is to rotate either the left or right handle of a faucet, with the
left and right sides determined by the faucet’s orientation.

Put Item: The drawer has upper, middle , and lower compartments, with a small block placed on
top. The task is to pick up the block and place it into the target drawer.

Close Jar: The task scenario includes two jars with different colors and a lid. The task is considered
successful if the lid is placed on the correct jar and the robot gripper is empty.

Reach and Drag: The scene contains a rod-shaped tool, a movable block, and four colored target
zones. The task is to grasp the rod and push the block into the correct colored area.

Put Money: The scene features a three-layer safe with a bundle of US dollar bills on top. The task
is to grasp the bill and place it accurately in the specified compartment of the safe.

Place Wine: The scene includes a red wine bottle and a wine rack. The task is to grasp the bottle
by the neck and securely place it in the correct position on the rack.

Push Buttons: The scene involves multiple buttons of different colors. An example instruction is
”push the maroon button, then push the green button”. The task is to push buttons of different colors
in the order specified by the instruction.

Put Groceries: The scene contains nine grocery items and one cupboard. The task is to correctly
place the item specified by the language instruction into the cupboard.

A.3 REAL ROBOT SETUPS

Hardware Setup: We conduct real-robot experiments using a Trossen WidowX 250s 6-DOF
robotic arm. We use an Intel RealSense D435i camera mounted on a tripod at a fixed angle to
capture visual observations including both the manipulator and objects on the tabletop, as shown in
Fig.[f] The camera provides images at a resolution of 1280x720 and a frame rate of 30 Hz.

WidowX 250s

Figure 6: Real-robot setup with WidowX 250s and D435i.

Data Collection: We developed a custom system for data collection. A human operator controls
the robotic arm using a gamepad to perform various tasks. Meanwhile, a camera records real-time
images, and the data collection program logs the real-time pose of the end-effector and the gripper
state. For the pose, we record the end-effector’s position and orientation relative to the robot base
coordinate system; for the gripper state, we record the distance between the two fingers of the
gripper. During data collection, the operator randomly places objects within a reasonable range to
gather diverse data. To improve training stability, we additionally collected a set of auxiliary tasks
that differ from the evaluation tasks. These tasks serve as supplemental training data—for example,
”Put Eggplant in Plate”.
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A.3.1 SEEN TASKS

We evaluated ROSA on four seen tasks which are included during training. The details of these
tasks are as follows.

Banana in Plate: The scene contains a banana and a plastic plate on the table. The task is to pick
up the banana and place it onto the plate.

Strawberry in Bowl: The scene has a strawberry and a bowl on the table. The objective of this
task is to grasp the strawberry and place it safely into the bowl.

Starfruit in Plate: The scene contains a starfruit and a plate on the table. The task involves picking
up the starfruit and placing it on the plate.

Banana and Strawberry in Bowl: The scene contains a strawberry, a banana and a bowl on the
table. The task is considered successful if both the banana and the strawberry are successfully placed
into the bowl, regardless of the order.

A.3.2 UNSEEN TASKS

To evaluate the generalization and robustness of the model under novel disturbances, we introduced
a set of “unseen tasks” that are never encountered during training. In addition to measuring success
rates on four representative unseen tasks, we further extended the evaluation to a broader range of
scenarios involving novel objects, containers, and environmental variations, as shown in Sec.
These experiments demonstrate the strong generalization ability and robustness of ROSA.

Cube in Plate: This scene contains a cube and a plate on the table. The task is to pick up the cube
and put it on the plate.

Cube in Box: This scene contains four cubes with different colors including blue, red, yellow and
green and a paper box. The target of the task is to pick the red cube into the paper box. The task is
considered successful if the robot arm selects the cube of the correct color and successfully places it
into the paper box.

Strawberry in Box: The scene has a strawberry and a paper box. The task is to pick up the
strawberry and put it to the paper box.

Marker in Plate: This scene contains a marker pen and a plate on the table. The target of this task
is to put the marker pen on the plate.

Put Banana in Colored Region: This scene contains four colored regions and a banana on the
table. The target of this task is to put the banana in the region of the correct color.

Put Cube in Cup: This scene contains four cubes of different colors and a blue cup on the table.
The target of this task is to choose the cube of the correct color and put it into the blue cup.

Put Multiple Cubes in Plate: The scene has two or more cubes on the table, the target of this task
is to put all the cubes on the plate.

Strawberry in Bowl (dist): The scene has a strawberry, a bowl, and many different fruits or veg-
etables as distractors, such as grapes and corn. The objective of this task is to place the strawberry
into the bowl in the presence of multiple distractor objects. The task is considered successful if the
strawberry is placed inside the bowl without picking up any distractors.

Banana and Strawberry in Bowl (dist): The scene contains a banana, strawberry, a bowl, and
other different fruits or vegetables as distractors. The objective of this task is to place the banana
and strawberry into the bowl no matter of the order without picking up any distractors.

A.4 KEYFRAME EXTRACTION

For both RLBench and real robot experiments, we follow PerAct(Shridhar et al., 2023) to extract
keyframes and their corresponding key actions based on the end-effector pose, gripper state, and
joint velocity. Specifically, an action is considered a keyframe if (1) the joint velocities are close to
zero and (2) the gripper’s open state changes abruptly. We estimate the velocity of the robotic arm by
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computing the change in the end-effector’s position between consecutive frames and always include
the first and last frames as keyframes. The detailed process is illustrated in the pseudo codelI]

Algorithm 1 Keyframe Extraction

Input: Trajectory D = {dy,ds,...,d,}, where each d; has position p; and gripper state g;
Output: Keyframe set K

K + {do,d,} > Include first and last frames
Initialize recent_buffer as empty list
fori =1ton —1do
Ap < |Ipi — pi—1ll + |piv1 — pill
if Ap < e and no static frame in recent_buffer then
K+ Ku{d;}
Append d; to recent_buffer (keep size < 4)
end if
ifgl 75 g;—1 0r g; 7£ gi+1 then
end if
end for
return K

Seen Task

~ Put banana and sﬁwberry?ﬁto the bowl

Put starfruit on the plate

Figure 7: Visual examples of ROSA on seen tasks on real-world robot.

B MORE VISUALIZATIONS

We qualitatively showcase ROSA’s diverse capabilities through more visualizations. We use a hand-
held third-party camera to record the demos during evaluation and provide a video in MP4 format,
named “demo.mp4”, which is attached to this file. We also provide video frames in this appendix.
As shown in Fig. [/, ROSA performs well on the tasks it has been trained on. More importantly, it
demonstrates strong generalization and robustness on unseen tasks, as illustrated in Fig. [§] ROSA
can successfully manipulate novel objects it has never encountered during training—for example, it
can distinguish and grasp cubes specified by color, and it can also handle unfamiliar objects such
as a marker pen. Furthermore, ROSA generalizes to unseen containers, such as paper box and even
more abstract targets like colored regions. Remarkably, even when both the object and the target
container are entirely novel, ROSA can still accomplish the task successfully. In addition, ROSA is
capable of handling long-horizon unseen tasks, such as sequentially placing three cubes into a plate
as shown in Fig.[9] Beyond object-level generalization, ROSA also shows robustness to distractors.
As depicted in Fig.[T0] even in cluttered scenes filled with unseen distracting items like various fruits
and vegetables, ROSA is able to identify and manipulate the correct target objects and place them
into the appropriate container. These visualizations collectively demonstrate that ROSA acts as a
powerful generalist policy.
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(a) Unseen Task — Unseen objects

Put red cube on ihe plate

* Put marker on the plafe

(b) Unseen Task — Unseen Targets

Put strawberry into the paper box

Put red cube into the blue cup

Figure 8: Visual examples of ROSA on unseen tasks on real-world robot.

Long-horizon Unseen Task

p— L \_/! -— ] L — L &= L] -~ L] - I -~ - &~

Put all 2 cubes on the plate

| — 3 — =
Put all 3 cubes on the plate

Figure 9: Visual examples of ROSA on long-horizon unseen tasks on real-world robot.
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Interference Task

Put strawberry in the bowl(fruits interference)

Put banana and strawberry on the plate(fruits interference)

Figure 10: Visual examples of ROSA on interference tasks on real-world robot.

C LIMITATIONS

While ROSA provides a scalable and data-efficient training paradigm with minimal reliance on
additional human labor, certain limitations remain. Despite surpassing existing VLA methods, a
noticeable performance gap persists in low-data regimes when compared with 3D-based non-VLA
approaches (Goyal et all, 2023} [Ke et al. 2024), reflecting a broader common challenge faced by
current VLA models. Incorporating multi-view or depth information offers a promising direction to
narrow this gap. Moreover, our current setup assumes a fixed relative pose between the camera and
the robot; extending ROSA to more dynamic settings, such as in cross-camera or mobile-camera
deployments, represents another compelling avenue for future research.

D LLM USAGE

We used LLM solely for checking grammar and polishing the writing.
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