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ABSTRACT

Aligning AI systems with human preferences typically suffers from the infamous
reward hacking problem, where optimization of an imperfect reward model leads
to undesired behaviors. In this paper, we investigate reward hacking in offline pref-
erence optimization, which aims to improve an initial model using a preference
dataset. We identify two types of reward hacking stemming from statistical fluc-
tuations in the dataset: Type I Reward Hacking due to subpar choices appearing
more favorable, and Type II Reward Hacking due to decent choices appearing less
desirable. We prove that many (mainstream or theoretical) preference optimiza-
tion methods suffer from both types of reward hacking. To mitigate Type I Reward
Hacking, we propose POWER, a new preference optimization method that com-
bines Guiaşu’s weighted entropy with a robust reward maximization objective.
POWER enjoys finite-sample guarantees under general function approximation,
competing with the best covered policy in the data. To mitigate Type II Reward
Hacking, we analyze the learning dynamics of preference optimization and de-
velop a novel technique that dynamically updates preference labels toward certain
“stationary labels”, resulting in diminishing gradients for untrustworthy samples.
Empirically, POWER with dynamic labels (DL) consistently outperforms state-
of-the-art methods on alignment benchmarks, achieving improvements of up to
13.0 points on AlpacaEval 2 and 11.5 points on Arena-Hard over DPO, while also
improving or maintaining performance on downstream tasks such as mathemati-
cal reasoning. Strong theoretical guarantees and empirical results demonstrate the
promise of POWER-DL in mitigating reward hacking.

1 INTRODUCTION

Aligning AI systems with human values is a core problem in artificial intelligence (Russell, 2022).
After training on vast datasets through self-supervised learning, large language models (LLMs)
typically undergo an alignment phase to elicit desired behaviors aligned with human values (Ouyang
et al., 2022). A main alignment paradigm involves leveraging datasets of human preferences, with
techniques like reinforcement learning from human feedback (Christiano et al., 2017) or preference
optimization (Rafailov et al., 2024b). These methods learn an (implicit or explicit) reward model
from human preferences, which guides the decision-making process of the AI system. This paradigm
has been instrumental in today’s powerful chat models (Achiam et al., 2023; Dubey et al., 2024).

However, these alignment techniques are observed to suffer from the notorious reward hacking prob-
lem (Amodei et al., 2016; Tien et al., 2022; Gao et al., 2023; Casper et al., 2023), where optimizing
imperfect learned reward leads to poor performance under the true reward—assuming an underlying
true reward exists (Skalse et al., 2022). One primary cause of the discrepancy between the learned
and true rewards arises because preference data do not encompass all conceivable choices, making
the learned reward model vulnerable to significant statistical fluctuations in areas with sparse data.
Consequently, the AI system might be swayed toward choices that only appear favorable under
the learned reward but are, in reality, subpar, or the system might be deterred from truly desirable
choices that do not seem favorable according to the learned rewards.
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Figure 1: (a) Example of Type I Reward Hacking. The initial model has a uniform distribution over
choices while the dataset has a high coverage on the high-reward choice and low coverage on a low-
reward choice. With a decent chance, the poorly-covered, low-reward choice is labeled as preferred,
causing PO methods to erroneously assign a high weight to it (Proposition 1). (b) Example of Type II
Reward Hacking. The initial model is aligned with the true rewards while dataset has a low coverage
on the high-reward choice. With a decent chance, the poorly-covered, high-reward choice is labeled
as rejected, leading to deterioration of the model post alignment (Proposition 2).

In this paper, we investigate reward hacking in offline preference optimization (PO), in which we are
provided with an initial AI system (initial model) and a preference dataset. We do not assume that
the preference dataset is necessarily constructed through sampling from the initial model, allowing
to leverage existing datasets collected from other models. Our objective is to dissect the roots of
reward hacking, analyze current methods, and introduce theoretically sound and practically strong
methods to mitigate reward hacking. Our contributions are as follows.

Types of reward hacking. We describe two types of reward hacking in preference optimization that
stem from high statistical fluctuations in regions with sparse data; see Figure 1 for an illustration.
Type I Reward Hacking manifests when poorly covered, subpar choices appear more favorable than
they truly are, leading the model to assign high weights to these subpar choices. Type II Reward
Hacking arises when decent choices with insufficient coverage appear worse than their true value
and that leads to deterioration of the initial model. Type I Reward Hacking relates closely to the
challenge of partial data coverage in offline RL, which can be addressed through the pessimism
principle (Kumar et al., 2020; Rashidinejad et al., 2021; Xie et al., 2021; Zhu et al., 2023). However,
pessimism typically involves underestimating rewards in the low-coverage areas, which may be
inadequate for Type II Reward Hacking since the issue itself arises from the undue underestimation.

PO methods provably suffer from reward hacking. We prove that several PO methods suffer
from both types of reward hacking (Propositions 1 and 2). A common countermeasure against
reward hacking is keeping the learned model close to the initial model through minimization of
divergence measures (Rafailov et al., 2024b; Azar et al., 2024; Huang et al., 2024). Yet, our analysis
reveals that divergence minimization does not induce sufficient pessimism to prevent Type I Reward
Hacking, nor does it mitigate deterioration of the initial model caused by Type II Reward Hacking.
Notably, reward hacking can occur even when divergence from the initial model is small.

POWER-DL: Against Type I and Type II Reward Hacking. To mitigate reward hacking, we inte-
grate a robust reward maximization framework with Guiaşu’s weighted entropy (Guiaşu, 1971). We
transform this objective into a single-step optimization problem (Proposition 3) leading to Prefer-
ence Optimization via Weighted Entropy Robust Rewards (POWER). We prove that POWER enjoys
finite-sample guarantees for general function approximation, improving over the best covered policy
and mitigating Type I Reward Hacking (Theorem 1). Due to the weighted entropy, POWER effec-
tively learns from well-covered choices in the dataset, even those with a large divergence against
the initial model, countering potential underoptimization in divergence-based methods. We next de-
velop Dynamic Labels to mitigate Type II Reward hacking, whereby preference labels are updated in
a way that diminishes gradients for untrustworthy data (Theorem 2). Our final algorithm combines
POWER with Dynamic Labels (POWER-DL), which interpolates robust rewards with maintaining
closeness to the initial model, allowing to trade off between reward hacking types.

POWER-DL consistently outperforms other methods across various settings. For aligning
LLMs, we implement POWER-DL and compare it against other preference optimization methods
across different datasets and two scenarios: one using an existing preference dataset and another
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with preference data generated through sampling from the initial model. POWER-DL consistently
outperforms state-of-the-art methods in alignment benchmarks, achieving improvements over DPO
of up to 13.0 points on AlpacaEval 2.0 and 11.5 points on Arena-Hard. Additionally, POWER-DL
improves or maintains performance on downstream tasks such as truthfulness, mathematical rea-
soning, and instruction-following, demonstrating robustness against reward hacking and achieving
a more favorable bias-variance trade-off compared to other methods.

2 BACKGROUND AND PROBLEM FORMULATION

2.1 LEARNING FROM HUMAN PREFERENCE

Contextual bandit formulation. We adopt the contextual bandits formulation described by a tu-
ple (X ,Y, r), where X is the space of contexts (e.g., prompts), Y is the space of actions (e.g.,
responses), and r : X × Y → R is a scalar reward function. A stochastic policy (e.g., model or
language model) π : X → ∆(Y) takes in a context x ∈ X and outputs an action according to
y ∼ π(·|x). We denote the set of all stochastic policies by Π := {π : X → ∆(Y)}.
Performance metric. We assume that there exists an underlying (unknown) true reward function
r⋆ : X ×Y → R. Given the true reward function r⋆ and a target distribution over contexts x ∼ ρ(·),
performance of a policy π is the expected true reward over contexts and actions

J(π) := Ex∼ρ,y∼π(·|x) [r
⋆(x, y)] . (1)

The Bradley-Terry model of human preferences. Consider a prompt x ∈ X and a pair of re-
sponses y0, y1 ∈ Y . For any reward function r, the Bradley-Terry (BT) model characterizes the
probability of preferring y1 over y0, denoted by l = 1, according to:

Pr(l = 1 | x, y1, y0) = σ
(
r(x, y1)− r(x, y0)

)
, (2)

where σ(z) := 1/(1 + exp(−z)) is the sigmoid function.

Offline preference optimization. We consider an offline learning setup, where we start from an
initial reference policy (model), denoted by πref or πθ0 , and an offline pairwise preference dataset
D = {(x, y0, y1, l)}, comprising of N iid samples. Prompt and response pairs are sampled ac-
cording to a data distribution: x, y0, y1 ∼ µ, and preferences label is sampled according to the BT
model corresponding to true rewards: l ∼ Pr⋆(·|x, y1, y0). Importantly, we do not assume that the
preference dataset is necessarily constructed through sampling from the initial model. To simplify
notation, we define y+ = ly1+(1− l)y0 and y− = (1− l)y1+ ly0 to denote the chosen and rejected
responses in the dataset, respectively. Appendix A presents additional notation.

2.2 DIRECT PREFERENCE OPTIMIZATION

A classical approach to learning from human preferences involves learning a reward model from
dataset, followed by finding a policy through maximizing the learned reward typically regularized
with a (reverse) KL-divergence to keep the learned policy closed to initial policy:

r̂ ∈ argmin
r

LBT(r) := −ED
[
log σ

(
r(x, y+)− r(x, y−)

)]
π̂ ∈ argmax

π
Ex∼ρ,y∼π[r̂(x, y)]− βDKL[π∥πref],

(3)

Here, DKL[π∥πref] := Ex∼ρ [DKL[π(·|x)∥πref(·|x)]] and LBT(r) is the negative log-likelihood ac-
cording to the BT model. Rafailov et al. (2024b) observed that the policy maximization step in (3)
can be computed in closed form and thus simplified the two-step process into a single minimization
objective. This method is called direct preference optimization (DPO) and has inspired a series of
works; see Tables 1 and 3 for several examples.

Some representative variants of DPO that we theoretically analyze are IPO (Azar et al., 2024), which
applies a nonlinear transformation to preferences to reduce overfitting, and SimPO (Meng et al.,
2024), which removes the reference policy from the DPO objective. We also analyze two recent
theoretical methods that come with finite-sample guarantees and aim at mitigating overoptimiza-
tion: χPO (Huang et al., 2024), which replaces the KL divergence in DPO with a stronger χ2+KL
divergence, and DPO+SFT (Liu et al., 2024; Cen et al., 2024), which adds a supervised finetuning
term that increases log-likelihood of chosen responses in the preference dataset.
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Table 1: Preference optimization objectives given data D = {(x, y+, y−)} and initial model πθ0 .

Method Objective

DPO π̂DPO ∈ argminθ −ED

[
log σ

(
β
(
log πθ(y

+|x)
πθ0

(y+|x) − log πθ(y
−|x)

πθ0
(y−|x)

))]
DPO+SFT π̂DPO+SFT ∈ argminθ −ED

[
log σ

(
β
(
log πθ(y

+|x)
πθ0

(y+|x) − log πθ(y
−|x)

πθ0
(y−|x)

))]
− ED [log πθ(y

+|x)]

IPO π̂IPO ∈ argminθ ED

[(
log πθ(y

+|x)
πθ0

(y+|x) − log πθ(y
−|x)

πθ0
(y−|x) −

1
2τ

)2]
SimPO π̂SimPO ∈ argminθ −ED

[
log σ

(
β
(

1
|y+| log πθ(y

+|x)− 1
|y−| log πθ(y

−|x)
)
− γ
)]

χPO π̂χPO ∈ argminθ −ED

[
log σ

(
clip2R

[
β
(
ϕ
(

πθ(y
+|x)

πθ0
(y+|x)

)
− ϕ

(
πθ(y

−|x)
πθ0

(y−|x)

))])]
; ϕ(z) := z + log(z)

3 REWARD HACKING IN PREFERENCE OPTIMIZATION

In this section, we investigate reward hacking in preference optimization. One driver of reward
hacking is statistical errors present in the dataset. Typically, preference datasets suffer from partial
coverage, lacking extensive samples across all possible options. As a result, preferences for poorly
covered choices are subject to high levels of statistical fluctuations, given the fact that preference
labels are Bernoulli random variables with probabilities described by the BT model (2). Subse-
quently, we describe two types of reward hacking, both originating from the presence of poorly
covered choices (actions) in the dataset.

3.1 TYPE I REWARD HACKING

Type I Reward Hacking occurs when poorly covered, subpar choices in the dataset appear more
favorable due to statistical errors, and that leads to a learned policy π̂ with a low expected true
reward J(π̂). In the following proposition, we prove that even in the favorable scenario that the
high-reward actions are well-covered in the dataset, the existence of a single sample on a low-
reward action can overwhelm many preference optimization algorithms, causing them to learn highly
suboptimal policies. Figure 1(a) provides an illustration of one of the failure instances analyzed in
this proposition and proof is presented in Appendix C.1.

Proposition 1 (Type I Reward Hacking in ⋆PO). Consider multi-armed bandits with bounded
rewards r⋆(a) ∈ [0, 1] and the following softmax policy class:

Πθ :=
{
πθ(y) = exp(θ(y))/Zθ

∣∣∣Zθ =
∑
y

exp(θ(y)), θ(y) ∈ [0, 1]
}
. (4)

Define the best-in-class policy πθ⋆ = maxπ∈Πθ
J(π). There exist three-armed bandit instances

with Πθ parameterization, high coverage of the optimal arms µ(a ∈ argmaxa r
⋆(a)) > 1/2, and

bounded KL-divergence DKL(πθ⋆ | πref), such that for any N ≥ 2, β > 0, γ, τ > 0, policy
π̂ ∈ {π̂DPO, π̂IPO, π̂χPO, π̂SimPO} suffers from a constant suboptimality J(πθ⋆)− J(π̂) > 0.15 with a
constant probability of at least (e(1 + e))−1.

Type I Reward Hacking and the failure result in Proposition 1 are closely connected to the challenge
of partial data coverage in offline RL (Levine et al., 2020), which can be robustly addressed through
the principle of pessimism in the face of uncertainty. Pessimism can be applied in various ways
such as reducing the rewards (values) of poorly covered actions (Kumar et al., 2020; Cheng et al.,
2022) or keeping the learned policy close to data collection policy (Nachum et al., 2019). Although
divergence-based methods such as DPO and IPO aim at keeping the learned policy close to the
initial policy, Proposition 1 shows that maintaining a small KL divergence from initial model does
not induce a sufficient amount of pessimism to prevent Type I Reward Hacking.1

1Proposition 1 does not contradict guarantees of Huang et al. (2024) as this work assumes that preference
data are collected from the initial policy. However, this assumption is restrictive, as it prevents using existing
preference datasets collected from other models, which is a common approach in practical pipelines such as
Wang et al. (2024e) and Tunstall et al. (2023).
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Remark 1. Failure result in Proposition 1 is rigorous and constructed under a realistic setting close
to practice: the policy class is a softmax with bounded rewards and the KL divergence between ini-
tial and best-in-class policy is bounded. This makes Proposition 1 stronger than prior arguments on
overoptimization in DPO, which rely on unbounded rewards (Azar et al., 2024), updates to model
parameters despite receiving no samples (hence, conclusion breaking in gradient-based optimiza-
tion) (Huang et al., 2024), or events with probabilities approaching zero (Song et al., 2024).

3.2 TYPE II REWARD HACKING

Type II Reward Hacking can occur when poorly covered, good choices in the dataset appear to be
less favorable than their true value due to statistical errors, leading to a poor policy under true reward.
An example of this type of reward hacking is illustrated in Figure 1(b), where the initial policy has a
high probability on the high-reward choice. Yet, due to the low coverage of the high-reward choice
in the data, by mere chance this choice can appear unfavorable, resulting in the deterioration of the
initial model. In the following proposition, we prove that many preference optimization methods
are susceptible to Type II Reward Hacking. Proof of this proposition can be found in Appendix C.2.
Proposition 2 (Type II Reward Hacking in ⋆PO). Consider the multi-armed bandits setting with
the softmax policy class Πθ, as defined in (4). Let πθ⋆ = maxπ∈Πθ

J(π) represent the best-in-class
policy. There exists a three-armed bandit problem with Πθ parameterization and πθ0 = πθ⋆ , such
that for any N ≥ 3, β > 0, η ≥ 0, γ and policy π̂ ∈ {π̂DPO, π̂DPO+SFT, π̂SimPO} or π̂ ∈ {π̂χPO, π̂IPO}
for 0 < β, τ ≤ 1, the following holds with a constant probability of at least (e(1 + e))−1:

J(πθ⋆)− J(π̂) > 0.1.

Proposition 2 states that even with a strong initial model, a preference dataset that poorly covers
high-reward actions can lead to substantial deterioration of the initial model in existing approaches,
despite the incorporation of divergence-minimization. We note that the above setting is beyond the
guarantees of traditional pessimistic offline RL, as those techniques typically do not consider access
to an initial model and guarantee competing with the best covered policy in the data. Despite this,
as we show in Section 5, there may be hope to mitigate degradation of the initial model and better
control the trade off between Type I and Type II Reward Hacking.

4 AGAINST TYPE I REWARD HACKING: WEIGHTED ENTROPY ROBUST
REWARD MAXIMIZATION

4.1 WEIGHTED ENTROPY REWARD MAXIMIZATION

We demonstrated that approaches involving divergence minimization remain vulnerable to reward
hacking. Moreover, maintaining a small divergence can inadvertently lead to underoptimizing the
preference dataset, as it may risk overlooking policies that, although well-covered, deviate signifi-
cantly from the initial policy.2 These reasons motivate us to explore an alternative route and consider
regularizing the reward maximization objective with the concept of weighted entropy.
Definition 1 (Weighted Entropy; Guiaşu (1971)). The weighted entropy of a (discrete) distribution
p(·) with non-negative weights w(y) is defined as Hw(p) := −

∑
y w(y)p(y) log p(y).

Weighted entropy extends Shannon’s entropy by incorporating weights associated with each out-
come, reflecting attributes such as favorableness or utility toward a specific goal (Guiaşu, 1971).
Building on this, we consider a weighted-entropy reward (WER) maximization objective:

max
π∈Π

Ex∼ρ,y∼π [r(x, y)] + βHw(π), (5)

where Hw(π) := Ex∼ρ[Hw(π(·|x))]. This objective expresses the principle of maximum (weighted)
entropy (Jaynes, 1957; Guiasu & Shenitzer, 1985), promoting the selection of policies with maxi-
mum entropy—thus favoring the most uniform or unbiased policies—among those compatible with
the constraints, such as achieving high rewards. Objective (5) extends the well-established maxi-
mum entropy framework in RL, used in various settings such as exploration (Haarnoja et al., 2018),
inverse RL (Ziebart et al., 2008), and robust RL (Eysenbach & Levine, 2022).

2Simply reducing β to alleviate underoptimization may not always be viable. For example, reducing β may
reduce underoptimization in one state while inadvertently amplify overoptimization in another state.
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4.2 POWER: PREFERENCE OPTIMIZATION WITH WEIGHTED ENTROPY ROBUST REWARDS

To mitigate reward hacking, we integrate the WER objective (5) with a robust (adversarial) reward
framework, inspired by favorable theoretical guarantees (Liu et al., 2024; Cen et al., 2024; Fisch
et al., 2024). Specifically, we find a policy that maximizes WER (5) against an adversarial reward,
which seeks to minimize WER while fitting the preference dataset:

max
π∈Π

min
r∈R

LBT(r)︸ ︷︷ ︸
negative log-likelihood

+η
(

Ex∼ρ,y∼π [r(x, y)]− Ex∼ρ,y′∼π′ [r(x, y′)] + βHw(π)
)

︸ ︷︷ ︸
WER minus baseline

, (6)

where η ≥ 0, R is a reward function class, and LBT(r) is the negative log-likelihood of the BT
model. We subtracted a baseline Ex∼ρ,y′∼π′ [r(x, y′)] that computes the average reward with respect
to some policy π′, as the preference data under the BT model only reveal information on reward
differences (Zhan et al., 2023a). This baseline plays a crucial role in simplifying the objective and
establishing finite-sample guarantees, and we subsequently discuss reasonable choices for π′.

Under some regularity conditions (detailed in Appendix D.2), the objective (6) can be equivalently
expressed as a minimax problem, which leads to a single-step preference objective presented in the
proposition below; see Appendix D.3 for the derivation and proof.

Proposition 3 (POWER Objective). Let w(y) > 0 denote the weights in the weighted entropy
Hw(π) and πr denote the policy that maximizes the objective (5). Under certain regularity condi-
tions on R (Assumption 1) and for any β > 0, solving the maximin objective (6) is equivalent to
solving the following optimization problem:

min
r∈R

LBT

(
β
(
w(y) log πr(y|x) + w(y)

))
− ηEx∼ρ,y′∼π′

[
βw(y′) log πr(y

′|x)
]
. (7)

We call the above objective preference optimization via weighted entropy robust rewards, or
POWER. The first term in the above objective is the Bradley-Terry loss with rewards set to
w(y) log πr(y|x) + w(y), resulting in a reward gap expressed as a weighted difference of log
probabilities of chosen and rejected responses. The second expectation is a weighted negative log-
likelihood (a.k.a. supervised fine-tuning, or SFT) regularizer over the baseline policy π′.

Remark 2. Liu et al. (2024); Cen et al. (2024) propose an adversarial objective similar to (6) that
uses KL divergence instead of weighted entropy. From a theoretical perspective, our approach with
weighted entropy improves over this work, such as mitigating underoptimization; see Section 4.3 for
details. Moreover, our final algorithm—the reference-free objective (8) with length-normalization
integrated with dynamic labels in (11)—is considerably different from the DPO+SFT objective (Liu
et al., 2024; Pal et al., 2024) and significantly outperforms empirically as shown in Section 6.

4.3 FINITE-SAMPLE GUARANTEES AND THEORETICAL BENEFITS OF POWER

The following theorem shows that POWER enjoys finite-sample guarantees on performance.

Theorem 1 (Finite-Sample Performance Guarantees of POWER). Given a competing policy
π ∈ Π, assume a bounded concentrability coefficient Cπ

µ (R, π′) < ∞ as defined in Definition 2.
Furthermore, assume realizability of the true reward function r⋆ ∈ R, boundedness of rewards
∀r ∈ R : r(x, y) ∈ [0, R], and that the reward function class has a finite ϵ-covering number
Nϵ under the infinity norm. Define R̃ := 1 + exp(R), ϵ ≍ (R̃N)−1, ι =

√
log(Nϵ)/δ. Set

η ≍ ι/(R̃2
√
N) and β = 1/

√
N in the objective (6). Then with a probability of at least 1 − δ,

policy π̂POWER that solves (6) satisfies the following

J(π̂POWER) ≳ J(π)− 1√
N

((
[Cπ

µ (R, π′)]
2
+ 1
)
R̃2ι+Hw(π)

)
.

Furthermore, let L denote the maximum response length. Selecting w(y) = 1/|y| to be the inverse
response length, one has

J(π̂POWER) ≳ J(π)− 1√
N

((
[Cπ

µ (R, π′)]
2
+ 1
)
R̃2ι+ log|V|+ logL

)
.
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Proof of the above theorem can be found in Appendix E.2. Below, we discuss the implications of
the above theorem and the guidelines it offers for practical choices.

Guarantees against Type I Reward Hacking. Theorem 1 shows that the policy learned by POWER
competes with the best policy covered in the dataset, where the notion of coverage is characterized
by single-policy concentrability, considered the gold standard in offline RL (Rashidinejad et al.,
2021; Xie et al., 2021; Zhan et al., 2023a). This implies that as long as a favorable policy is covered
in the preference data, POWER is robust to existence of poorly covered, subpar policies and thus
mitigates Type I Reward Hacking. Moreover, as Theorem 1 does not impose a parametric form on
the classR, guarantees hold for general function classes.

Benefits of weighted entropy and choice of weights. A non-zero weighted entropy term (β > 0)
is essential in obtaining the one-step optimization problem in (7) and establishing its equivalence to
the maximin problem, as this term induces strict concavity in the objective (5). Moreover, using KL-
regularization leads to rates that grow with the divergence of competing policy and initial policy (Liu
et al., 2024), which can be large or even unbounded. However, weighted entropy ensures bounded
rates and thus mitigates underoptimization. Theorem 1 suggests that a particularly appealing choice
for weights is the inverse response length w(y) = 1/|y|, which intuitively discourages learning poli-
cies that generate lengthy responses. Theoretically, while using Shannon entropy (w(y) = 1) results
in a convergence rate that grows linearly with response length, with weights w(y) = 1/|y| conver-
gence rate only depends on the logarithm of the vocabulary (token) size and logarithm of response
length. Other choices for weights include response preference scores and per-sample importance
weights.

Choice of the baseline policy. The rate in Theorem 1 is influenced by the concentrability coefficient
Cπ

µ (R, π′), which is impacted by the baseline policy π′. Inspecting the definition of concentrabil-
ity coefficient in Definition 2, a reasonable choice to make this coefficient small is selecting the
distribution of chosen responses in the dataset (Zhan et al., 2023a; Liu et al., 2024).

With the above choices applied to objective 7, a practically appealing version of POWER becomes:

max
θ

ED

[
log σ

[
β

[
log πθ(y

+|x)
|y+| − log πθ(y

−|x)
|y−| +

1

|y+| −
1

|y−|

] ]]
+ ηβED

[
log πθ(y

+|x)
|y+|

]
(8)

Remark 3. Objective (8) shares similarities to SimPO (Meng et al., 2024) but has important differ-
ences. First, objective (8) includes a length-normalized SFT term, which is key in mitigating Type
I Reward Hacking (Theorem 1, Proposition 4), from which SimPO suffers (Proposition 1). Second,
our approach analytically leads to the margin 1/|y+|−1/|y−| while SimPO uses a fixed hyperpa-
rameter. Lastly, our objective is rooted in theory and enjoys finite-sample guarantees.

4.4 POWER FACED WITH HARD INSTANCES AND THE ROLE OF PARTITION FUNCTION

In the following proposition, we analyze the POWER objective (8) in the hard reward hacking
instances of Proposition 1 and Proposition 2. Proof is presented in Appendix C.3.
Proposition 4. (I) Consider the three-armed bandit instance in Proposition 1. Then, for any β > 0

and η > (2+e)
N−(2+e) , POWER policy π̂POWER that solves the objective (8) is the best-in-class policy:

π̂POWER = πθ⋆ . (II) Consider the three-armed bandit instance in Proposition 2. Then, for any
β > 0, η ≥ 0, policy π̂POWER that solves the objective (8) suffers from a constant suboptimality
J(πθ⋆)− J(π̂POWER) > 0.2.

Proposition 4 confirms that POWER robustly (for any β > 0 and η ≳ 1/N ) prevents Type I Reward
Hacking in the hard instance of Proposition 1, where other preference optimization algorithms DPO,
SimPO, IPO, and χPO fail. Yet, the above proposition shows that POWER suffers from Type II
Reward Hacking, which the design dynamic labels in the following section.

5 AGAINST TYPE II REWARD HACKING: DYNAMIC LABELS

We now turn our focus to mitigating Type II Reward Hacking, based on the following intuition:
keeping the model’s internal preferences close to initialization in the low-coverage regions (trust the

7
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preference labels less) while learning from the data in the high-coverage regions (trust the preference
labels more).

For this purpose, we analyze the learning dynamics of preference optimization in the bandits setting
with softmax parameterization πθ(y) ∝ exp(θ(y)). We denote the dataset byD = {(y0, y1, l)}with
labels l ∼ Pr⋆(·|y0, y1). We use µ̂0,1 to indicate the empirical probability of comparing y0 with y1,
and µ̂1≻0 the empirical probability of preferring y1 over y0. To simplify presentation, we consider
POWER with w(y) = 1, η = 0, β = 1; a similar analysis can be extended to other objectives.

Reverse engineering label updates based on learning dynamics. Rather than using static pref-
erence labels, we allow the labels lt to evolve across gradient updates. Denote the parameter gap
corresponding to two actions y0, y1 by dθt(y

1, y0) := θt(y
1) − θt(y

0). We show in Appendix F.1
that isolated (batch) gradient updates on y0 and y1 is:

dθt+1
(y1, y0) = dθt(y

1, y0) + αµ̂0,1

[
(µ̂1≻0 − µ̂0≻1)lt − (σ

(
dθt(y

1, y0)
)
− µ̂0≻1)

]
(9)

We design labels lt so that gradient updates are rapidly diminished for poorly covered preference
pairs, ensuring that preferences for such pairs remain close to initialization. To achieve this, we first
directly set the gradient in (9) to zero and derive a “stationary” label l̄t:

(µ̂1≻0 − µ̂0≻1)lt − (σ(dθt(y
1, y0))− µ̂0≻1) = 0 ⇒ l̄t =

σ
(
dθt(y

1, y0)
)
− µ̂0≻1

µ̂1≻0 − µ̂0≻1
. (10)

l̄t represents the ratio between a learned preference gap and the empirical preference gap, and we
have l̄t = 1 when learned and empirical preferences are equal. To implement dynamic preference
labels, we employ the following update rule for lt, where γ ranges between 0 and 1:

lt+1 = (1− γ)lt + γl̄t, l0 = 1. (11)

In the following theorem, we analyze the coupled dynamical systems described by equations (11)
and (9); see Appendix F.2 for the proof.
Theorem 2 (Learning Dynamics with Label Updates). Consider the following set of differential
equations with initial values l0 = 1 and any d0:

ḋt = αµ̂0,1

(
(µ̂1≻0 − µ̂0≻1)lt − (σ(dt)− µ̂0≻1)

)
l̇t = −

γ

µ̂1≻0 − µ̂0≻1

(
(µ̂1≻0 − µ̂0≻1)lt − (σ(dt)− µ̂0≻1)

) (12)

Assume µ̂1≻0 > 1/2 and let c = min{σ(d0)(1 − σ(d0), µ̂1≻0µ̂0≻1}. For any ϵl ≪ 1, fix
µl, µh, T, γ, µ̂0,1, α such that αµl/ϵl ≤ γ ≤ 1/2 exp(−1/4)αµh ≤ 1 and αµ̂1≻0T ≥ 1.

1. (Low Coverage Case) When µ̂0,1 ≤ µl, we have |σ(dT )− σ(d0)|≤ |dT − d0|≤ ϵl.

2. (High Coverage Case) When µ̂0,1 ≥ µh, we have (σ(dT )− µ̂1≻0)
2 ≤ exp (− αcµ̂0,1T ).

The above theorem shows that for poorly covered pairs (small µ̂1,0), learned preferences σ(dT ) re-
main close to initialization, while for high coverage pairs (large µ̂1,0), learned preferences converge
to empirical preferences. In a sense, γ determines the level of conservatism, adjusting the threshold
of what considered poor coverage. Moreover, the convergence rate in the high-coverage case is im-
pacted by empirical preferences through c. In the case of nearly equal preferences µ̂1≻0 ≈ 1/2, the
convergence rate is faster, whereas in the case of strong preference with µ̂1≻0 → 1, the convergence
rate is slower suggesting that more updates are required to further distinguish the two choices.
Remark 4 (Related work on soft labels in RLHF). In preference optimization, Mitchell (2024)
considers noisy preference labels and incorporates constant soft labels through linear interpolation.
Concurrent work by Furuta et al. (2024) develop a geometric averaging approach, in which samples
are weighted according to the preference gap using scores from a reward model. In the context of
reward learning, Zhu et al. (2024) propose iterative data smoothing that updates labels toward
learned preferences. In contrast to these methods, our approach is rooted in updating labels to
shrink gradients of poorly covered pairs via a general recipe whereby dynamic labels are smoothly
updated toward labels that set the gradient to zero. This approach goes beyond constant soft labels
and does not require scores from an extra reward or preference model. Moreover, label updates in
prior works do not guarantee remaining close to a (non-uniform) initial model in the low coverage
areas, which aims at mitigating Type II Reward Hacking in the offline alignment setting.
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POWER with Dynamic Labels. Our final algorithm POWER-DL (Algorithm 1) integrates the
POWER objective with dynamic labels against reward hacking. In untrustworthy regions, POWER-
DL interpolates between the initial model and robust rewards, allowing to trade off the two types of
reward hacking through adjusting conservatism parameters η and γ, reflecting relative quality of the
initial model compared to preference data and up to removing conservatism completely by setting
η = γ = 0. We highlight the fact that divergence-based methods aim at keeping the learned model
close to the initial model wherever the learned model has a decent probability, regardless of data
coverage. In contrast, the dynamic label procedure aims at keeping the learned model close to the
initialization only in the untrustworthy regions while learning from the data in high coverage region,
which can alleviate potential over-pessimism. All these factors can lead to a better performance, as
supported by our empirical evaluations in Section 6. See Appendix B.3 for further discussion.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

We conduct experiments to assess different PO methods on aligning LLMs across four settings,
varying in dataset size and level of distribution shift between the initial model and data. We fol-
low two pipelines: Helpsteer2 (Wang et al., 2024e), which employs smaller datasets, and Zephyr
(Tunstall et al., 2023) with significantly larger datasets. We implement two distinct setups similar
to Meng et al. (2024): the base setup that uses an existing preference dataset and the instruct setup
that constructs a preference dataset by sampling from the initial model. These two setups allow
evaluating across different levels of distribution shift between the initial model and preference data.

Helpsteer2 setups. In the base setup, we train Llama-3-8B on the OpenAssistant2 dataset (Köpf
et al., 2024) to create the initial model. We conduct preference optimization using the Helpsteer2
dataset (Wang et al., 2024e), selecting responses based on helpfulness scores and discarding ties,
yielding about 7K samples. In the instruct setup, we use Llama-3-8B-Instruct as the initial model and
generate a preference dataset from Helpsteer2 prompts. Following Wang et al. (2024e), we generate
10 responses per prompt with temperature 0.7. We then score them with Armo reward model (Wang
et al., 2024c) and select the highest and lowest score responses as y+ and y−, respectively.

Zephyr setups. In the base setup, we obtain the initial model by training Llama-3-8B base model
on the UltraChat-200K dataset (Ding et al., 2023). We then perform preference optimization on
the UltraFeedback dataset (Cui et al., 2024), comprising approximately 61K samples. In the instruct
setup and following Meng et al. (2024), we start from Llama-3-8B-Instruct and generate 5 responses
with temperature 0.8 per prompt in the UltraFeedback dataset. As before, the highest and lowest
score responses are selected as preference response pairs.

Evaluation benchmarks. We primarily assess preference methods by evaluating the trained models
on standard instruction-following benchmarks: AlpacaEval 2.0 (Li et al., 2023a; Dubois et al., 2024)
and Arena-Hard (Li et al., 2024), which evaluate the quality of the model responses. Following
standard guidelines, for Arena-Hard, we report the win rate (WR) of the model’s responses against
responses from GPT-4-Turbo. For AlpacaEval 2.0, in addition to the WR against GPT-4-Turbo, we
report the length-controlled (LC) win rate, designed to mitigate bias toward verbosity. We further
evaluate the performance of models on MT-Bench (Zheng et al., 2023) and downstream tasks such
as mathematics, reasoning, truthfulness, and instruction-following (Beeching et al., 2023).

Preference optimization methods. We compare POWER-DL against various baselines; see Ap-
pendix H.1 for details. These include divergence-base methods DPO (Rafailov et al., 2024b), IPO
(Azar et al., 2024), offline SPPO (Wu et al., 2024b), and χPO (Huang et al., 2024), along with robust
variants such as conservative DPO (cDPO) (Mitchell, 2024), robust preference optimization (ROPO)
(Liang et al., 2024), R-DPO (Park et al., 2024), and DPO+SFT (Pal et al., 2024; Liu et al., 2024). We
also evaluate against reference-free methods CPO (Xu et al., 2024a), SLiC-HF (Zhao et al., 2023),
RRHF (Yuan et al., 2024a), ORPO (Hong et al., 2024), and SimPO (Meng et al., 2024).

6.2 BENCHMARK RESULTS

POWER-DL outperforms SoTA methods on alignment benchmarks. Table 2 presents the results
on alignment benchmarks. POWER-DL consistently outperforms other methods in both Helpsteer2
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Table 2: AlpacaEval 2 and Arena-Hard results on Helpsteer2 and Zephyr settings.
Method Helpsteer2 Zephyr

Llama3-8B-Base Llama3-8B-Instruct Llama3-8B-Base Llama3-8B-Instruct
AlpacaEval Arena-Hard AlpacaEval Arena-Hard AlpacaEval Arena-Hard AlpacaEval Arena-Hard

LC(%) WR(%) WR(%) LC(%) WR(%) WR(%) LC(%) WR(%) WR(%) LC(%) WR(%) WR(%)

Initial Model 8.02 5.42 2.4 33.41 32.40 23.0 4.76 2.83 2.0 33.41 32.40 23.0

DPO 18.52 14.99 10.0 40.87 39.05 29.6 22.53 17.84 13.3 44.20 43.63 38.4
DPO+SFT 18.33 12.93 7.9 39.85 37.51 27.0 19.11 14.69 9.5 45.98 44.07 39.0
cDPO 19.06 14.65 8.5 42.27 40.36 34.4 21.06 16.33 11.4 44.96 44.37 39.5
R-DPO 11.03 15.20 8.3 33.67 33.89 25.7 18.66 17.88 9.5 44.13 44.94 37.5
IPO 20.11 14.60 9.4 42.95 40.76 30.8 10.55 8.04 7.2 36.63 35.30 24.5
χPO 11.06 7.67 5.1 42.10 39.65 35.8 13.16 10.87 8.9 44.25 42.41 34.7
SPPO 26.23 18.12 11.8 42.01 39.46 29.5 16.08 15.52 9.1 42.64 39.68 35.9
CPO 15.07 16.78 8.3 35.90 35.20 26.8 7.01 6.84 3.0 36.39 35.40 22.8
RRHF 8.25 7.15 5.8 35.15 34.07 25.7 6.61 6.39 3.0 35.56 34.56 23.1
SLiC-HF 15.19 18.77 10.1 37.76 39.68 32.2 19.35 21.81 11.2 41.74 45.05 38.2
ORPO 23.99 16.91 11.2 43.01 35.68 27.1 23.20 19.43 14.7 45.51 40.95 33.3
SimPO 25.35 19.30 13.7 43.23 36.89 32.6 24.38 21.21 16.4 43.24 37.34 26.8
ROPO 21.24 17.66 9.5 41.03 36.32 31.5 22.91 19.67 10.9 45.55 45.58 33.7

POWER-DL 31.52 31.44 21.5 47.16 43.08 34.8 27.00 22.57 17.3 48.97 43.75 41.5
POWER 29.57 30.00 19.0 43.52 40.19 31.5 23.72 21.26 16.0 46.93 42.02 38.0

and Zephyr pipelines and across base and instruct settings. These improvements can largely be
attributed to the integration of weighted entropy, which effectively counters underoptimization, and
mitigation of reward hacking. Notably, POWER-DL surpasses other robust methods such as cDPO
and ROPO demonstrating its efficacy in handling poorly covered samples. Additionally, POWER-
DL improvements are more pronounced in the base setting, which is more susceptible to reward
hacking due to higher levels of distribution shift. Comparing POWER-DL with POWER shows that
incorporating dynamic labels further improves performance. See Appendix I and Appendix J for
results on the Mistral family, MT-Bench, sample responses, and hyperparameter robustness.

POWER-DL improves or maintains performance on downstream tasks. One of the challenges
of the alignment step is possible degradation of performance on downstream tasks, which can
be attributed to reward hacking (Xu et al., 2024b). We evaluate the trained models on the LLM
Leaderboard (Beeching et al., 2023), which encompass a variety of tasks, including language under-
standing and knowledge benchmarks MMLU (Hendrycks et al., 2020), MMLU-PRO (Wang et al.,
2024d), and ARC-Challenge (Clark et al., 2018), commonsense reasoning assessments like Hel-
laSwag (Zellers et al., 2019) and Winogrande (Sakaguchi et al., 2021), factual accuracy evaluations
on TruthfulQA (Lin et al., 2022), instruction-following capabilities measured on IFEval (Zhou et al.,
2023), and mathematical reasoning evaluated on the GSM8K dataset (Cobbe et al., 2021).

Tables 4 and 5 present the downstream task results. POWER-DL consistently improves or maintains
performance across all tasks, effectively mitigating reward hacking. Notably, while PO methods
vary in results on the GSM8K benchmark, with some like SimPO significantly degrading the initial
model, POWER-DL consistently maintains or enhances performance, achieving up to a 7.0 point
gain. Other tasks with notable variation include IFEval and TruthfulQA benchmarks. In TruthfulQA,
POWER-DL significantly outperforms DPO, with up to a 12.8 point improvement over initial model.
In the IFEval, methods like DPO and SLiC-HF sometimes degrade performance of the initial model,
whereas POWER-DL consistently maintains or improves it by up to 11.7 points.

7 DISCUSSION

We studied reward hacking in offline preference optimization. We identified two types of reward
hacking stemming from statistical fluctuations of preference data. We demonstrated that many exist-
ing methods are vulnerable to both types of reward hacking, despite maintaining a small divergence
from the initial model. To mitigate reward hacking, we introduced POWER-DL, a practical algo-
rithm based on a weighted entropy robust reward framework augmented with dynamic preference
labels. POWER-DL enjoys theoretical guarantees and achieves strong empirical performance. Fu-
ture research directions include applications of dynamic labels to out-of-distribution robustness and
investigating the interplay between statistical errors and reward misspecification in reward hacking.
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A ADDITIONAL NOTATION

We use calligraphy letters to denote sets, e.g., X ,Y . Given a response y, we write |y| to denote
the length of the response in the number of tokens. We denote by V the vocabulary set and write
|V| to denote the cardinality of the token space. We write x ≲ y when there exists a constant c
such that x ≤ cy and similarly, write x ≍ y when there exists a constant c such that x = cy. We
write y1 ≻ y0 denoting that y1 is preferred over y0 in the dataset. For any two discrete probability
distributions π and π′ over Y , we define the KL divergence DKL(π∥π′) := Ey∼π[log

π(y)
π′(y) ]. The

probability simplex over a set X is denoted by ∆(X ). We write 1{x = c} to denote the indicator
function, which is equal to 1 when x = c and zero otherwise. We write ED to denote the empirical
average over data.

B RELATED WORK

B.1 RLHF AND PREFERENCE OPTIMIZATION

Earlier works on reinforcement learning from human preferences mainly focused on the continu-
ous control domain (Wirth et al., 2017) such as Atari games (Christiano et al., 2017). Recently,
RLHF has been extensively applied in the natural language domain (Ziegler et al., 2019) to im-
prove alignment of LLMs with human preferences in various areas such as summarization (Stiennon
et al., 2020; Wu et al., 2021), information accuracy (Menick et al., 2022), and instruction following
(Ouyang et al., 2022).

Classical RLHF pipeline includes two steps of reward learning and policy optimization using RL,
commonly using variants of proximal policy optimization (PPO) algorithm (Schulman et al., 2017)
that involves on-policy sampling. Direct preference optimization (Rafailov et al., 2024b) simplifies
the two-step process into a single-step offline optimization of the policy, reducing computational
burden and training instabilities of PPO. DPO has inspired development of new preference opti-
mization objectives from a practical perspective such as IPO (Azar et al., 2024), RRHF (Yuan et al.,
2024a), SLiC-HF (Zhao et al., 2023), CPO (Xu et al., 2024a), ORPO (Hong et al., 2024), R-DPO
(Park et al., 2024), SimPO (Meng et al., 2024), and general preference optimization (Tang et al.,
2024) and theoretical perspective such as χPO (Huang et al., 2024) and RPO (DPO+SFT) (Liu
et al., 2024). Our approach also falls under the category of offline preference optimization. We
theoretically analyzed several of the mentioned methods and demonstrated theoretical benefits of-
fered by our approach POWER-DL. We also showed that POWER-DL outperforms prior methods
empirically across a variety of settings.

Going beyond the Bradley-Terry model of human preferences, some works consider general prefer-
ence models (Munos et al., 2023; Swamy et al., 2024; Rosset et al., 2024; Choi et al., 2024; Wu et al.,
2024b), and develop algorithms by finding Nash equilibrium. Recently Huang et al. (2024) showed
that this generalization comes at a cost of an information-theoretic limit, where no statistically effi-
cient algorithm exists to solve RLHF with general preferences under single-policy concentrability.
Another line of work focuses on iterative, online improvement of language models through self-play
(Chen et al., 2024b; Wu et al., 2024b; Xu et al., 2023; Yuan et al., 2024b). In this work, we compare
our approach with offline variants of one of these works SPPO (Wu et al., 2024b).

B.2 UNDERSTANDING REWARD HACKING

The phenomenon of reward hacking in training AI models has been observed in a variety of domains,
ranging from games (Ibarz et al., 2018) to natural language (Paulus et al., 2018) to autonomous driv-
ing (Knox et al., 2023). In the language modeling domain, existing RLHF algorithms are observed
to be susceptible to reward hacking (Gao et al., 2023; Casper et al., 2023; Amodei et al., 2016;
Lambert & Calandra, 2023). Reward hacking in LLMs manifests in different ways such as verbosity
(Shen et al., 2023; Singhal et al., 2023; Wang et al., 2023a), refusing to follow instructions (Röttger
et al., 2024), lazy generations (Lambert & Calandra, 2023), emergence of language (Lewis et al.,
2017), degradation of performance on downstream tasks such as reasoning (Xu et al., 2024b), and
other problems such as hedging and self-doubt (Schulman, 2023).
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Origins of reward hacking. In RL/RLHF, reward hacking can originate from various factors such
as reward misspecification (Amodei et al., 2016; Hadfield-Menell et al., 2017; Knox et al., 2023),
diversity and inconsistencies in human preferences (Chakraborty et al., 2024), labeling noise (Wang
et al., 2024a), human labeler bias (Bansal et al., 2024), and statistical errors (Liu et al., 2024). Pan
et al. (2022) study reward hacking due to human misspecification of the reward model and empiri-
cally assess the impact of model size, optimization, and training on reward hacking, given synthetic
misspecified reward models. Wei et al. (2024) attribute failure modes of LLM safety training to
conflicts between model’s capabilities and safety goals. Bansal et al. (2024) study mismatch arising
from annotator bias in different types of human rating data. Peng et al. (2023) explain that variations
of reward distribution across different tasks can lead to reward hacking. Rame et al. (2024) attribute
reward hacking in classical RLHF to distribution shift and human preference inconsistencies. Tien
et al. (2023) conduct an empirical study, revealing that non-causal distractor features, human bias
and noise, and partial observability exacerbate reward misidentification.

Lambert & Calandra (2023) argue that objective mismatch in RLHF originates from learning reward
model, policy training, and evaluation, and links between each pair, and suggest further research is
needed to understand objective mismatch in preference optimization due to entanglement of policy
and reward. Rafailov et al. (2024a) conduct an empirical study of reward hacking in direct pref-
erence optimization methods, showing that in larger KL regimes, preference optimization methods
suffer from degradations reminiscent of overoptimization in RLHF. In contrast to the above works,
we focus on reward hacking in offline preference optimization that originates from statistical fluc-
tuations due to partial data coverage. Furthermore, the mentioned works conduct empirical studies,
whereas here we present statistical learning theory characterizations of reward hacking.

B.3 REWARD HACKING TYPES AND COMPARISON WITH PESSIMISM IN OFFLINE RL

We now highlight the differences between the setting considered in this paper and conventional of-
fline RL, explaining usefulness of defining two types of reward hacking. In the practice of RLHF
fine-tuning of LLMs, we typically have access an initial model, which already has decent perfor-
mance on many downstream tasks, and a previously-collected preference data, which may not have
been sampled from initial model (Xu et al., 2024b; Wang et al., 2024e). In this setting, we face
two sources of distribution shift: one between the final model and data distribution, and the other
between the initial model and data distribution. This setting is different from conventional offline
RL, which considers access to an offline dataset (with possibly known data collection policy) and
is only concerned with distribution shift between final model and data distribution (Levine et al.,
2020).

Due to the existence of two sources of distribution shift, we find it useful to define Type I and
Type II reward hacking. These definitions motivate the design of our algorithm that achieves strong
empirical performance. Furthermore, our empirical results removing dynamic labels (POWER vs.
POWER-DL) as well as removing the SFT term (Appendix I.2) shows that the two components
contribute in achieving the best empirical performance. Liu et al. (2024) and Huang et al. (2024)
also consider reward hacking due to partial data coverage. However, Huang et al. (2024) assume
preference data are collected from the initial model, which eliminates the distribution shift between
initial model and data distribution. Liu et al. (2024) propose DPO+SFT to handle the distribution
shift between the final model and data distribution, yet; reward hacking due to degradation of the
initial model is not considered. In this paper, we present separate analysis for POWER (Theorem 1)
and dynamic labels (Theorem 2). Combining these two results into a unified analysis of POWER-DL
is challenging due to extending the analysis of dynamic labels to general function approximation,
which we leave for future work.

B.4 MITIGATING REWARD HACKING

Various approaches have been proposed to mitigate reward hacking from applied and theoretical
perspectives. Michaud et al. (2020) propose using interpretability techniques for probing whether
learned rewards are aligned with human preferences. To mitigate reward hacking, several methods
leverage multiple reward models. Moskovitz et al. (2024); Xu et al. (2024b) develop constrained
policy optimization frameworks that leverage multiple reward models and assign weights to each
of the reward models to mitigate reward hacking. Reward model ensembles (Coste et al., 2024;
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Zhai et al., 2023) aim to characterize uncertainty and can alleviate reward hacking; however, empir-
ical investigations observe that they are not sufficient (Eisenstein et al., 2023). Rame et al. (2024)
propose averaging the weights of multiple trained reward models instead of ensembles to improve
efficiency and performance. In contrast to these methods, our approach does not require access
to or training multiple reward models. To reduce the computational costs of ensemble methods,
Zhang et al. (2024) construct lightweight uncertainty estimation via linear approximation that yields
a pessimistic reward model. However, such uncertainty quantification requires restrictive neural tan-
gent kernel and approximately linear assumptions while the guarantees for our approach hold under
general function approximation.

Other works use additional data to reduce reward hacking. Rita et al. (2024) leverage additional
human demonstrations to calibrate the reward model and Shen et al. (2024) propose methods that
leverage data augmentation to improve consistency of the reward model. RaFT (Dong et al., 2023)
reduce instabilities of RLHF through iterative supervised finetuning that only keeps the highest
ranked responses from a reward model. Peng et al. (2023) propose using advantage models instead
of values. We propose theoretically-founded methods to mitigate reward hacking, focusing on the
offline setting. Our approaches are implemented with simple modifications to objective of DPO
and directly leverage previously-collected dataset; without requiring training any additional models,
generating or augmenting data, or computationally expensive operation.

Among preference optimization methods, the most common approach is divergence regularization
that aims at keeping the learned model close to the initial model, through metrics such as KL diver-
gence (Rafailov et al., 2024b), f -divergence (Wang et al., 2024b), or Chi-squared divergence (Huang
et al., 2024). βDPO (Wu et al., 2024a) calibrates β, which is the strength of divergence minimiza-
tion, based on the implicit reward gap and dynamically subsamples each batch to increase robust-
ness with respect to outliers. Other methods such as conservative DPO (Mitchell, 2024) and ROPO
(Liang et al., 2024) design robust variants of DPO. We proved that many divergence-based methods
still suffer from reward hacking and showed that our proposed methods outperform divergence-based
and prior robust methods empirically.

B.5 MITIGATING SPECIFIC MANIFESTATIONS OF REWARD HACKING

Several works focus on mitigating specific artifacts of reward hacking such as verbosity through var-
ious designs. Design of length-controlled winrate Alpaca-Eval (Dubois et al., 2024) aims at making
the evaluation more robust against length exploitation, through estimation of controlled direct effect
(VanderWeele, 2011). ODIN (Chen et al., 2024a) enforces disentanglement of preference estima-
tion and response length by using two linear heads. In preference optimization, length-normalization
(Meng et al., 2024; Grinsztajn et al., 2024; Yuan et al., 2024a) and length regularization (Park et al.,
2024) are used to mitigate length exploitation.

In this paper, we consider reward hacking due to partial data coverage that can manifest in many
different ways and not just length. Our weighted entropy approach provides a general framework
for handling specific manifestations of reward hacking by selecting weights w(y) that are smaller for
undesirable response properties, such as inverse response length or preference scores. Furthermore,
our approach provides a theoretically-sound way of incorporating such weights into preference opti-
mization objective (Proposition 3), that is different from previous methods. For example, compared
to SLiC-HF and SimPO, our approach results in a weight gap in the preference optimization objec-
tive and a weighted SFT term. In our practical implementation, we used inverse response length
as weights, which we show in Theorem 1 prevents sample complexity to depend linearly on the
response length.

Another potential benefit of our weighted entropy approach is disentangling entropy (controlled
through β) and conservatism components (controlled through η and γ). Adjusting the level of
stochasticity of final learned model through β may result in alleviating the notorious overconfidence
challenge, in which RLHF-finetuned models become overconfident and have sharpened output prob-
ability (Leng et al., 2024; Kadavath et al., 2022). In contrast, in DPO, β is the coefficient of the KL
divergence, which impacts both pessimism and stochasticity of the learned model.
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B.6 THEORY OF RLHF AND PREFERENCE OPTIMIZATION

A series of works study theoretical foundations for RLHF and preference optimization under dif-
ferent settings (Zhu et al., 2023; Xiong et al., 2023; Zhu et al., 2024; Liu et al., 2024; Huang et al.,
2024; Song et al., 2024; Fisch et al., 2024). Xiong et al. (2023); Zhu et al. (2023) propose provable
pessimistic offline RLHF algorithms either through confidence regions or lower confidence bounds,
but are restricted to the linear family of models. Zhu et al. (2023) show that maximum entropy IRL is
similar to the maximum likelihood under the Plackett-Luce models; however, entropy in maximum
entropy IRL is different from our use of weighted entropy in objective (6), which goes beyond opti-
mizing the Bradley-Terry loss. Other works that develop provable algorithms with general function
approximation (Chen et al., 2022; Zhan et al., 2023a;b; Wang et al., 2023b; Li et al., 2023b) involve
intractable computation. Exceptions include χPO (Huang et al., 2024) and DPO+SFT (Liu et al.,
2024; Cen et al., 2024), which we have compared with POWER-DL from theoretical and empirical
fronts.

C PROOFS FOR REWARD HACKING

C.1 TYPE I REWARD HACKING: PROOF OF PROPOSITION 1

We first construct a multi-armed bandit (MAB) problem and then analyze each algorithm for this
problem.

C.1.1 MAB INSTANCES FOR TYPE I REWARD HACKING

We construct a three-armed bandit problem, with true rewards r⋆(1) = 1, r⋆(3) = 0, and all actions
having length one |y|= 1. We consider a preference data distribution that has high coverage on
the high reward arms, where the probability of comparing arms 1 and 2 is µ1,2 = 1− 1/N and the
probability of comparing arms 1 and 3 is µ1,3 = 1/N . In this scenario, there is a constant probability
that arm 3 is compared with arm 1 exactly once. To demonstrate this, let N(i, j) denote the number
of comparisons between arms i and j. We have P(N(1, 3) = 1) = N(1 − µ1,3)

N−1µ1,3 =
(1− 1/N)N−1. For any N ≥ 2, the above probability is bounded below according to

P(N(1, 3) = 1) = (1− 1/N)N−1 ≥ 1/e. (13)
Conditioned on the event N(1, 3) = 1, there is a constant probability that arm 3 is preferred over
arm 1 according to the Bradley-Terry model:

Pr⋆(3 ≻ 1) = σ(r⋆(3)− r⋆(1)) = σ(−1) = 1/(1 + e). (14)
Throughout the rest of the proof, we condition on the event E = {N(1, 3) = 1 and 3 ≻ 1} which
occurs with a probability of at least 1/e(1 + e). We further consider two special instances of the
above MAB problem, with the following specifications for the initial model parameters and the
reward of the second arm:

• Instance 1: True reward of the second arm is r⋆(2) = 0 and initial parameters are θ0(1) =
θ0(2) = θ0(3) = 1. In this case, the best-in-class softmax policy has parameters θ⋆(1) =
1, θ⋆(2) = θ⋆(3) = 0.

• Instance 2: True reward of the second arm is r⋆(2) = 1 and initial parameters are θ0(1) =
θ0(2) = 1, θ0(3) = 0. In this case, the best-in-class softmax policy has parameters θ⋆(1) =
θ⋆(2) = 1, θ⋆(3) = 0.

We additionally consider a favorable scenario, in which an oracle reveals the best-in-class values of
the first two arms θ⋆(1), θ⋆(2). This simplifies the preference optimization objectives as it remains
for the preference optimization algorithm to find θ(3).

C.1.2 ANALYSIS OF ⋆PO METHODS IN THE MAB INSTANCES IN SECTION C.1.1

We first record the following expression for the difference of the log probabilities of any two arms
in the softmax policy class:

log πθ(y)− log πθ(y
′) = log exp(θ(y))− logZθ − log exp(θ(y′)) + logZθ

= θ(y)− θ(y′).
(15)
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Suboptimality of DPO. We show that DPO fails in both instances constructed in Section C.1.1.
Since parameters θ(1) and θ(2) are revealed by the oracle, the optimization problem solved by DPO
simplifies to

max
θ(3)∈[0,1]

1

N

[
log σ

(
β

(
log

πθ(3)

πθ0(3)
− log

πθ(1)

πθ0(1)

))]
= max

θ(3)∈[0,1]
log σ (β (θ(3)− θ0(3)− θ(1)− θ0(1)))

= max
θ(3)∈[0,1]

log σ (β (θ(3)− θ0(3)))

The first equality is due to (15) and the second equality is because θ0(1) = θ(1) = 1. For β > 0
and regardless of θ0(3), the above function is increasing in θ(3), and thus the maximum occurs at
θ(3) = 1. As a result, DPO fails in both instances constructed in Section C.1.1, learning a policy
with constant suboptimality:

Instance 1: J(π⋆)− J(π̂DPO) = Ey∼πθ⋆
[r⋆(y)]− Ey∼π̂DPO [r

⋆(y)] =
e

2 + e
− e

1 + 2e
> 0.15

Instance 2: J(π⋆)− J(π̂DPO) = Ey∼πθ⋆
[r⋆(y)]− Ey∼π̂DPO [r

⋆(y)] =
2e

1 + 2e
− 2

3
> 0.15

Suboptimality of IPO. We show that IPO fails in Instance 1 constructed in Section C.1.1. Lever-
aging uniform initialization and the logit gap expression (15), the IPO objective can be simplified as
follows:

min
θ

ED

[(
log

πθ(y
+)

πθ0(y
+)
− log

πθ(y
−)

πθ0(y
−)
− 1

2τ

)2
]
= min

θ
ED

[(
θ(y+)− θ(y−)− 1

2τ

)2
]

Since θ(1) = θ(2) are revealed by an oracle, the IPO objective can be further simplified to

min
θ(3)∈[0,1]

1

N

(
θ(3)− θ(1)− 1

2τ

)2

= min
θ(3)∈[0,1]

(
θ(3)− 1− 1

2τ

)2

Over the interval of θ(3) ∈ [0, 1] and for any τ > 0, this objective is decreasing in θ(3) and therefore
the optimum is found at θ(3) = 1. Thus, the policy found by IPO suffers from the following
subpoptimality:

J(πθ⋆)− J(π̂IPO) = Ey∼πθ⋆
[r⋆(y)]− Ey∼π̂IPO [r

⋆(y)] =
e

2 + e
− e

1 + 2e
> 0.15

Suboptimality of SimPO. We show that SimPO suffers from Type I Reward Hacking in both
instances detailed in Section C.1.1. Following the same steps as in our analysis of DPO and since
θ(1) = θ(2) = 1 are assumed to be revealed by an oracle, SimPO objective simplifies to

max
θ(3)∈[0,1]

1

N
log σ (β (θ(3)− θ(1)− γ)) .

Regardless of the value of γ and for any β > 0, the function log σ (β (θ(3)− θ(1)− γ)) is increas-
ing in θ(3) and thus optimizing this objective over θ(3) ∈ [0, 1] finds θ(3) = 1. Therefore, policies
found by SimPO in both instances in Section C.1.1 suffer from constant suboptimality:

Instance 1: J(π⋆)− J(π̂SimPO) = Ey∼πθ⋆
[r⋆(y)]− Ey∼π̂SimPO [r

⋆(y)] =
e

2 + e
− e

1 + 2e
> 0.15

Instance 2: J(π⋆)− J(π̂SimPO) = Ey∼πθ⋆
[r⋆(y)]− Ey∼π̂SimPO [r

⋆(y)] =
2e

1 + 2e
− 2

3
> 0.15
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Suboptimality of χPO. We analyze χPO for Instance 2 constructed in Section C.1.1. The χPO
objective is given by

max
θ(3)∈[0,1]

(
1− 1

N

)[
µ̂1≻2 log

(
σ

(
clip2

[
β

(
log

πθ(1)

πθ0(1)
− log

πθ(2)

πθ0(2)
+

πθ(1)

πθ0(1)
− πθ(2)

πθ0(2)

)]))

+ µ̂2≻1 log

(
σ

(
clip2

[
β

(
log

πθ(2)

πθ0(2)
− log

πθ(1)

πθ0(1)
+

πθ(2)

πθ0(2)
− πθ(1)

πθ0(1)

)]))]

+
1

N

[
log

(
σ

(
clip2

[
β

(
log

πθ(3)

πθ0(3)
− log

πθ(1)

πθ0(1)
+

πθ(3)

πθ0(3)
− πθ(1)

πθ0(1)

)]))]
(16)

By construction, θ0(1) = θ0(2), πθ0(1) = πθ0(2), and θ(1) = θ(2) = 1 are known, and therefore
the first two terms in (16) are equal to zero:

log
πθ(1)

πθ0(1)
− log

πθ(2)

πθ0(2)
+

πθ(1)

πθ0(1)
− πθ(2)

πθ0(2)

= θ(1)− θ0(1)− θ(2) + θ0(2) +
1

πθ0(1)

(
exp(θ(1))

Zθ
− exp(θ(2))

Zθ

)
= 0.

Thus the maximization problem in (16) is simplified to

max
θ(3)∈[0,1]

log σclip2β

(
log

πθ(3)

πθ0(3)
− log

πθ(1)

πθ0(1)
+

πθ(3)

πθ0(3)
− πθ(1)

πθ0(1)

)
= max

θ(3)∈[0,1]
log σclip2β

(
θ(3)− θ0(3)− θ(1) + θ0(1) + (1 + 2e)

(
exp(θ(3))

Zθ
− exp(θ(1))

eZθ

))
= max

θ(3)∈[0,1]
log σclip2β

(
θ(3) + (1 + 2e)

(
exp(θ(3))− 1

exp(θ(3)) + 2e

))
It is straightforward to check that the above function is strictly increasing over θ(3) ∈ [0, 1] and the
maximization step finds θ(3) = 1. This results in χPO finding the uniform policy θ(1) = θ(2) =
θ(3) = 1 and thus suffering from the following suboptimality:

J(πθ⋆)− J(π̂χPO) = Ey∼πθ⋆
[r⋆(y)]− Ey∼π̂χPO [r

⋆(y)] =
2e

2e+ 1
− 2

3
> 0.15.

C.2 TYPE II REWARD HACKING: PROOF OF PROPOSITION 2

C.2.1 MAB INSTANCE FOR TYPE II REWARD HACKING

We construct a three-armed bandit problem with the following true reward structure: r⋆(1) =
r⋆(2) = 0, r⋆(3) = 1. This reward function implies the following parameters for the best-in-class
policy: θ⋆(1) = θ⋆(2) = 0, θ⋆(3) = 1, leading to the following policy:

πθ⋆(1) = πθ⋆(2) =
1

2 + e
, πθ⋆(3) =

e

2 + e
.

The performance of the above policy is J(πθ⋆) = r⋆(3)πθ⋆(3) = e/(2+e). We further consider the
following initialization: θ0(1) = θ0(2) = 0, θ0(3) = 1. Suppose that the comparison probabilities
between the arms are µ1,2 = 1− 1/N and µ1,3 = 1/N . Following the same argument as in Section
C.1.1, there is a constant probability that arm 3 is compared with arm 1 exactly once and that arm 1
is preferred to arm 3. Throughout the rest of the proof, we condition on the event {N(1, 3) = 1, 1 ≻
3}. We further consider a favorable case where the optimal parameters corresponding to arms 1 and
2 are revealed by an oracle θ(1) = θ(2) = 0, leaving only θ(3) to be estimated.

C.2.2 ANALYSIS OF ⋆PO METHODS IN THE MAB INSTANCE C.2.1

Suboptimality of the DPO+SFT policy. We show that DPO+SFT suffers from reward hacking
for any η ≥ 0, and hence the argument also shows reward hacking in DPO as a special case. The
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objective of DPO+SFT is given by

max
θ

E

[
log σ

(
β

(
log

πθ(y
+)

πθ0(y
+)
− log

πθ(y
−)

πθ0(y
−)

))]
+ ηβE

[
log πθ(y

+)
]

Since θ(1) = θ(2) = 0 are revealed by an oracle, we focus on the terms that involve θ(3) in the
objective:

max
θ(3)∈[0,1]

1

N

[
log σ

(
β

(
log

πθ(1)

πθ0(1)
− log

πθ(3)

πθ0(3)

))]
:= T1

+ ηβ

(
1− 1

N

)
[µ̂1≻2 log πθ(1) + µ̂2≻1 log πθ(2)] + η

1

N
log πθ(3) := T2

Applying the softmax policy parameterization and using the fact that θ(1) = θ0(1) = 0 and θ0(3) =
1, term T1 simplifies to

T1 =
1

N
log (σ (β (θ(1)− θ0(1)− θ(3) + θ0(3)))) =

1

N
log (σ (β (1− θ(3))))

The term T2 can also be simplified by substituting values θ(1) = θ(2) = 0:

T2 = ηβ

(
1− 1

N

)
[µ̂1≻2(θ(1)− logZθ) + µ̂2≻1(θ(2)− logZθ)] + ηβ

1

N
(θ(3)− logZθ)

= ηβ

(
1

N
θ(3)− logZθ

)
= ηβ

(
1

N
θ(3)− log(exp(θ(1)) + exp(θ(2)) + exp(θ(3)))

)
= ηβ

(
1

N
θ(3)− log(exp(θ(3)) + 2)

)
Combining terms T1 and T2, the objective becomes

max
θ(3)∈[0,1]

1

N
log (σ (β (1− θ(3)))) + ηβ

(
1

N
θ(3)− log(exp(θ(3)) + 2)

)
We show that for any N > 3 the above function is decreasing in θ(3) for any β, η and θ(3) ∈
[0, 1]. Since the first function 1

N log (σ (β (1− θ(3)))) is decreasing in θ(3), it is sufficient to show
1
N θ(3)− log(exp(θ(3)) + 2) is decreasing in θ(3). Derivative of this function is over θ(3) ∈ [0, 1]
and N ≥ 3 is bounded by

1

N
− exp(θ(3))

exp(θ(3)) + 2
≤ 1

N
− 1

3
< 0.

Therefore, optimizing over θ(3) ∈ [0, 1] finds θ(3) = 0. This leads DPO+SFT to find a uniform
policy, which suffers from a constant suboptimality:

J(πθ⋆)− J(π̂DPO+SFT) =
e

2 + e
− 1

3
> 0.2.

Suboptimality of the IPO policy. Similar to the analysis of DPO+SFT, for the IPO objective, we
only focus on the terms that include θ(3):

min
θ(3)∈[0,1]

1

N

(
log

πθ(1)

πθ0(1)
− log

πθ(3)

πθ0(3)
− 1

2τ

)2

= min
θ(3)∈[0,1]

(
1− 1

2τ
− θ(3)

)2

Since τ > 0, solution to the above minimization is

θ(3) = max

{
0, 1− 1

2τ

}
Therefore, the suboptimality of the IPO policy is given by

J(πθ⋆)− J(π̂IPO) =
e

2 + e
− exp(max{0, 1− 1/(2τ)})

2 + exp(max{0, 1− 1/(2τ)})
And for the regime with τ < 1, we have J(πθ⋆)− J(π̂IPO) > 0.1.
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Suboptimality of the SimPO policy. The objective optimized by SimPO over the term that in-
volve θ(3) is given by

max
θ(3)∈[0,1]

1

N
log σ (β (log πθ(1)− log πθ(3)− γ))

= max
θ(3)∈[0,1]

log σ (β (−θ(3)− γ))

The above function is decreasing in θ(3) therefore SimPO finds θ(3) = 0 and suffers from the
followingg suboptimality

J(πθ⋆)− J(π̂SimPO) =
e

2 + e
− 1

3
> 0.2.

Suboptimality of the χPO policy. The objective optimized by χPO is given by

max
θ(3)∈[0,1]

(
1− 1

N

)[
µ̂1≻2 log

(
σ

(
clip2

[
β

(
log

πθ(1)

πθ0(1)
− log

πθ(2)

πθ0(2)
+

πθ(1)

πθ0(1)
− πθ(2)

πθ0(2)

)]))

+ µ̂2≻1 log

(
σ

(
clip2

[
β

(
log

πθ(2)

πθ0(2)
− log

πθ(1)

πθ0(1)
+

πθ(2)

πθ0(2)
− πθ(1)

πθ0(1)

)]))]

+
1

N

[
log

(
σ

(
clip2

[
β

(
log

πθ(1)

πθ0(1)
− log

πθ(3)

πθ0(3)
+

πθ(1)

πθ0(1)
− πθ(3)

πθ0(3)

)]))]
(17)

By construction, πθ0(1) = πθ0(2) = 1/(2 + e), and θ(1) = θ(2) = 0 revealed by an oracle, and
therefore the first two lines in (16) are equal to zero:

log
πθ(1)

πθ0(1)
− log

πθ(2)

πθ0(2)
+

πθ(1)

πθ0(1)
− πθ(2)

πθ0(2)

= θ(1)− θ0(1)− θ(2) + θ0(2) + (2 + e)

(
exp(θ(1))

Zθ
− exp(θ(2))

Zθ

)
= 0.

The objective (17) can therefore be simplified to

max
θ(3)∈[0,1]

1

N

[
log

(
σ

(
clip2

[
β

(
log

πθ(1)

πθ0(1)
− log

πθ(3)

πθ0(3)
+

πθ(1)

πθ0(1)
− πθ(3)

πθ0(3)

)]))]
= max

θ(3)∈[0,1]
log

(
σ

(
clip2

[
β

(
θ(1)− θ0(1)− θ(3) + θ0(3) +

πθ(1)

πθ0(1)
− πθ(3)

πθ0(3)

)]))
= max

θ(3)∈[0,1]
log

(
σ

(
clip2

[
β

(
1− θ(3) +

πθ(1)

πθ0(1)
− πθ(3)

πθ0(3)

)]))
= max

θ(3)∈[0,1]
log σ

(
clip2

[
β

(
1− θ(3) +

2 + e

2 + exp(θ(3))
(1− exp(θ(3)− 1))

)])
The last equation applies the definition of πθ and substitutes values for θ0(1), θ0(3), θ(1). It is
straightforward to check that the function

β

(
1− θ(3) +

2 + e

2 + exp(θ(3))
(1− exp(θ(3)− 1))

)
is decreasing for β > 0 and for any β ≤ 1 and θ(3) ∈ [0, 1], the above function remains between 0
and 2 so the clipping function clip2 will not be factored in. As a result, the maximization problem
leads to θ(3) = 0. Thus, χPO finds the uniform policy π̂χPO = Unif({1, 2, 3}), which suffers from
a constant suboptimality:

J(πθ⋆)− J(π̂χPO) =
e

2 + e
− 1

3
> 0.2.
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C.3 PROOF OF PROPOSITION 4

Policy learned by POWER in the MAB instances in C.1.1. We show that when faced with
the Type I Reward Hacking MAB instances of C.1.1, a more general variant of POWER mitigates
reward hacking. Let g(x) be an increasing function with bounded derivative: g′(x − 1) ≤ Bg for
any x ∈ [0, 1]. We consider the following objective:

max
θ

ED
[
g
(
w(y+) log πθ(y

+|x)− w(y−) log πθ(y
−|x) + w(y+)− w(y−)

)]
+ ηβED [w(y) log πθ(y)]

The POWER objective is a special case of the above objective with g(·) = log σ(·). Note that we
have g′(x− 1) = σ(−(x− 1)) ≤ 1, and therefore the bounded derivative assumption is satisfied.

For the MAB instances in C.1.1, the optimization problem simplifies to

max
θ(3)∈[0,1]

1

N
(g(θ(3)− 1) + ηθ(3))− η log (exp(θ(3)) + e+ 1) .

We show that for any η >
Bg(2+e)
N−(2+e) the derivative of above function is negative. This is because for

any θ(3) ∈ [0, 1], we have

1

N
(g′(θ(3)− 1) + η)− η

exp(θ(3))

exp(θ(3)) + e+ 1
≤ 1

N
(Bg + η)− η

2 + e

=
Bg

N
− η

(
1

2 + e
−N

)
<

Bg

N
− Bg(2 + e)

N − (2 + e)

(
1

2 + e
−N

)
≤ 0.

Because the function is decreasing in θ(3) the optimum is at θ(3) = 0 and thus the algorithm finds
π̂ = πθ⋆ . Finally, the conclusion also holds for POWER as a special case and thus π̂POWER = πθ⋆ .

Policy learned by POWER in the MAB instance in C.2.1. The POWER objective with response
lengths equal to one is given by

max
θ

E
[
log σ

(
β
(
log πθ(y

+)− log πθ(y
−)
))]

+ ηβE
[
log πθ(y

+)
]

With a similar argument as in our analysis of DPO+SFT, we obtain the following objective:

max
θ(3)∈[0,1]

1

N
log (σ (β (−θ(3)))) + ηβ

(
1

N
θ(3)− log(exp(θ(3)) + 2)

)
It is easy to check that the above function is decreasing in θ(3). Therefore, optimization leads to
θ(3) = 0 and the policy learned by POWER suffers from a constant suboptimality

J(πθ⋆)− J(π̂POWER) =
e

2 + e
− 1

3
> 0.2.

D POWER OBJECTIVE DERIVATION

This section is organized as follows. In Section D.1 we record a useful proposition that captures
properties of the optimal policy to the WER objective. This result comes in handy for deriving our
preference optimization objective—which relies on the equivalence between minimax and maximin
objectives as well as finding a closed-form solution for the inner maximization problem. In Section
D.2, we prove that under certain regularity conditions on reward class R, the maximization and
minimization steps in objective (6) can be interchanged. With these two results at hand, we prove
Proposition 5 in Section D.3, which gives the POWER objective.

D.1 OPTIMAL POLICY FOR WEIGHTED ENTROPY REWARD MAXIMIZATION

For the WER objective, we have the following proposition which shows the uniqueness of the op-
timal WER policy on the support of prompt distribution, and connects this policy to the reward
gap.
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Proposition 5 (WER Policy). For any β > 0, reward function r, any x ∈ X with ρ(x) > 0, and
any action pairs y, y′ ∈ Y , the policy πr that maximizes the WER objective (5) satisfies the following
statements:

1. For any β > 0, policy πr is unique on the support of ρ.

2. Policy πr satisfies the following equation:

r(x, y)− r(x, y′) = β
(
w(y) log πr(y|x)− w(y′) log πr(y

′|x) + (w(y)− w(y′))
)

(18)

Proof of Proposition 5. The WER objective solves the following optimization problem:

max
π

Ex∼ρ

[∑
y

π(y|x) [r(x, y)− βw(y) log π(y|x)]

]
∑
y

π(y|x) = 1 ∀x ∈ X
(19)

We find the optimal policy for each context in the support of ρ independently. For any such x, we
rewrite the constrained optimization problem using Lagrange multipliers:∑

y

π(y|x) [r(x, y)− βw(y) log π(y|x)]− λx

(∑
y

π(y|x)− 1

)
Notice that the above function is concave in π(y|x) due to w(y), β > 0 and thus the solution is
unique on the support of ρ and the stationary point is the maximizer. Taking the derivative with
respect to π(y|x) and setting it to zero finds an equation governing the optimal policy πr

r(x, y) = βw(y) log πr(y|x) + βw(y) + λx

Thus for any y, y′, one has

r(x, y)− r(x, y′) = β
(
w(y) log πr(y|x) + w(y)− w(y′) log πr(y

′|x)− w(y′)
)
,

which concludes the proof.

D.2 MINIMAX OBJECTIVE EQUIVALENCE TO MAXIMIN OBJECTIVE

In this section, we show that that the maximin objective (6) can be written as a minimax objective
under certain regularity conditions. Define the following notation to denote the weighted-entropy
robust reward objective for any π ∈ Π and r ∈ R:

ϕ(π, r) := LBT(r) + η
(

Ex∼ρ,y∼π [r(x, y)]− Ex∼ρ,y′∼π′ [r(x, y′)] + βHw(π)
)

(20)

We follow the approach of Liu et al. (2024) and impose regularity conditions on the classR, which
is contingent upon our definition of ϕ, to show the maximin and minimax equivalence. Formally,
we make the following assumption.
Assumption 1 (Regularity of the Reward Class). We assume that classR satisfies the following:

1. The spaceR is a non-empty compact topological space;

2. The function ϕ defined in (20) is convex-like in R; that is, for any r1, r2 ∈ R, π ∈ Π, and
α ∈ [0, 1], there exists r3 ∈ R such that

ϕ(π, r3) ≤ αϕ(π, r1) + (1− α)ϕ(π, r2).

The above condition is satisfied in several special cases. For example, it is satisfied when R is
convex such as a linear class (Xiong et al., 2023; Fisch et al., 2024). As a more general case, if R
is a Lipschitz continuous class, we can conclude function ϕ(π, ·) to be convex overR as ϕ(π, ·) is a
sum of a linear term in r and a convex term LBT(r).

Under this assumption, we have the following proposition showing the equivalence between max-
imin and minimax objectives.
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Proposition 6 (Equivalence of Maximin and Minimax Algorithms). For the policy class Π =
{π : X → ∆(Y)} and reward class R satisfying Assumption 1, define policy πr̂ to be the optimal
policy corresponding to the minimax reward function, i.e.,

πr̂ ∈ argmax
π∈Π

ϕ(π, r̂) where r̂ ∈ argmin
r∈R

max
π∈Π

ϕ(π, r)

Then, policy πr̂ is also the optimal solution to the maximin objective, i.e.

πr̂ ∈ argmax
π∈Π

min
r∈R

ϕ(π, r).

Proof. We begin by recording the following lemma that shows the equivalence of the maximin and
minimax objectives under the assumptions on R. Proof of this lemma is deferred to the end of this
section.

Lemma 1 (Equivalence of Maximin and Minimax Objectives). Given the policy class Π : {π : X →
∆(Y)} and reward class R satisfying Assumption 1, the following statement holds for ϕ defined in
(20):

max
π∈Π

min
r∈R

ϕ(π, r) = min
r∈R

max
π∈Π

ϕ(π, r).

Denote the policy solving the maximin problem by π̂ ∈ argmaxπ∈Π minr∈R ϕ(π, r). The duality
gap of r̂, π̂ is given by

dual(r̂, π̂) := max
π∈Π

ϕ(π, r̂)−min
r∈R

ϕ(π̂, r)

= max
π∈Π

ϕ(π, r̂)−min
r∈R

max
π∈Π

ϕ(π, r) + min
r∈R

max
π∈Π

ϕ(π, r)−min
r∈R

ϕ(π̂, r)

= max
π∈Π

ϕ(π, r̂)−min
r∈R

max
π∈Π

ϕ(π, r) + max
π∈Π

min
r∈R

ϕ(π, r)−min
r∈R

ϕ(π̂, r)

= 0

(21)

In the penultimate equation, we applied Lemma 1 and the last equation uses the definition of r̂ and
π̂. The duality gap is also equal to

dual(r̂, π̂) = max
π∈Π

ϕ(π, r̂)− ϕ(π̂, r̂) + ϕ(π̂, r̂)−min
r∈R

ϕ(π̂, r) (22)

Comparing (21) and (22), we conclude that maxπ ϕ(π, r̂) = ϕ(π̂, r̂) which means π̂ ∈
argmaxπ∈Π ϕ(r̂, π). Recall that by definition, we also have πr̂ ∈ argmaxπ∈Π ϕ(r̂, π). By the
uniqueness of the WER optimal policy over ρ as established in Proposition 5, we conclude that
πr̂(·|x) = π̂(·|x) for any x with ρ(x) > 0. Since ϕ(π, r) depends on π only through its value on the
support of ρ, we conclude that πr̂ ∈ argmaxπ∈Π minr∈R ϕ(π, r), which completes the proof.

Proof of Lemma 1. This result relies on a minimax theorem by Fan (1953) presented in Lemma 2.
We prove that all the requirements of this theorem are satisfied. First, by definition, policy class
Π is a non-empty convex set and by Assumption 1, the reward class R is a non-empty compact
topological space. Second, function ϕ(π, r) is concave on Π because it is a sum of a linear function
in π and (weighted) entropy of π. Lastly, by Assumption 1, function ϕ(π, r) is continuous and
convex-like on R. Therefore, we apply Lemma 2 to conclude the equivalence of maximin and
minimax problems on ϕ.

D.3 PROOF OF PROPOSITION 3

We start by deriving the objective (8) by changing the order of maximization and minimization in
the maximin objective (6), which is valid on the account of Proposition 6. Writing the minimax
objective and rearranging some terms yields

min
r

LBT(r) + ηmax
π

(Ex∼ρ,y∼π,y′∼π′ [r(x, y)− r(x, y′)] + βHw(π)) (23)

The inner maximization problem over π is the same as the weighted entropy reward maximization
objective (5) minus a baseline term, which is independent of π.
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We apply the reward gap expression provided by Proposition 5 that governs the maximizer policy
πr as well as the definition of weighted entropy in Definition 1 to find the maximum value of the
inner optimization problem:

max
π

Ex∼ρ,y∼π,y′∼π′ [r(x, y)− r(x, y′)] + βHw(π)

= βEx∼ρ,y∼π,y′∼π′ [w(y) log πr(y|x)− w(y′) log πr(y
′|x) + (w(y)− w(y′))− w(y) log πr(y|x)]

= −βEx∼ρ,y∼π,y′∼π′ [w(y′) log πr(y
′|x)− (w(y)− w(y′))]

We substitute the above expression back in the minimax objective (23):

min
r

LBT(r)− ηβEx∼ρ,y∼π,y′∼π′ [w(y′) log πr(y
′|x)− (w(y)− w(y′))] (24)

= min
r

LBT(r)− ηβEx∼ρ,y′∼π′ [w(y′) log πr(y
′|x)] (25)

The above equation uses the fact that (w(y)− w(y′)) is independent of r. To obtain the final ob-
jective, we replace the reward gap expression from Proposition 5 in LBT(r), which cocludes the
proof.

D.4 AUXILIARY LEMMAS

Lemma 2 (Minimax Theorem; Fan (1953)). Let X be a nonempty (not necessarily topologized)
set and Y be a nonempty compact topological space. Let f : X × Y → R be lower semicontinuous
on Y . Suppose that f is concave-like on X and convex-like on Y , i.e., for any x1, x2 ∈ X , y ∈ Y ,
α ∈ [0, 1], there exists x3 ∈ X such that

f(x3, y) ≥ α · f(x1, y) + (1− α) · f(x2, y),

and for any y1, y2 ∈ Y, x ∈ X , β ∈ [0, 1], there exists y3 ∈ Y such that

f(x, y3) ≤ β · f(x, y1) + (1− β) · f(x, y2).

Then the following holds:

max
x∈X

min
y∈Y

f(x, y) = min
y∈Y

max
x∈X

f(x, y).

E FINITE-SAMPLE ANALYSIS OF POWER

This section is organized as follows. We begin by presenting the definition of single-policy con-
centrability for offline preference optimization, which characterizes the coverage of the competing
policy in the dataset, in Section E.1. In Section E.2, we prove the finite-sample guarantees for
POWER.

E.1 SINGLE-POLICY CONCENTRABILITY IN PREFERENCE OPTIMIZATION

Definition 2 (Single-Policy Concentrability; Zhan et al. (2023a)). Given a policy π and ground
truth reward r⋆, the concentrability coefficient of offline data distribution µ with respect to the
reward model classR and the baseline policy π′ is defined as

Cπ
µ (R, π′) := max

0, sup
r∈R

Ex∼ρ,y∼π,y′∼π′ [r⋆(x, y)− r⋆(x, y′)− (r(x, y)− r(x, y′))]√
Ex,y,y′∼µ

[
(r⋆(x, y)− r⋆(x, y′)− (r(x, y)− r(x, y′)))2

]
 . (26)

Single-policy concentrability coefficient in offline RL quantifies the extent to which a target com-
peting policy π is covered by an offline data collection distribution µ. In the offline RLHF setting,
single-policy concentrability as defined in the work Zhan et al. (2023a) also depends on a baseline
policy π′.
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E.2 PROOF OF THEOREM 1

To prove finite-sample guarantees, we use a similar argument to Liu et al. (2024), adapted to the
weighted-entropy objective and combined with the bounds on weighted entropy and the special
weights as inverse response lengths. Suboptimality of the learned policy π̂ := π̂POWER with respect
to a competing policy π can be decomposed into three terms:

J(π)− J(π̂) = Ex∼ρ,y∼π [r
⋆(x, y)]− Ex∼ρ,y∼π̂ [r

⋆(x, y)] = T1 + T2 + T3.

where T1 is defined as

T1 := Ex∼ρ,y∼π,y′∼π′ [r⋆(x, y)− r⋆(x, y′)− βHw(π)]

− η−1 min
r∈R

{
ηEx∼ρ,y∼π̂,y′∼π′ [r(x, y)− r(x, y′)− βHw(π)] + LBT(r)

}
,

(27)

T2 is defined as

T2 := η−1 min
r∈R

{
ηEx∼ρ,y∼π̂,y′∼π′ [r(x, y)− r(x, y′)− βHw(π)] + LBT(r)

}
− Ex∼ρ,y∼π̂,y′∼π′ [r⋆(x, y)− r⋆(x, y′)− βHw(π)] ,

(28)

and T3 is defined as

T3 := β [Hw(π)−Hw(π̂)] . (29)

We will prove in the subsequent section that for weighted entropy Hw(π) with general weights,
terms T1 + T2 and T3 are bounded according to:

T1 + T2 ≲
(Cπ

µ (R, π′) + 1)R̃2ι
√
N

, (30)

T3 ≲
Hw(π)√

N
. (31)

Summing the above bounds, we conclude the first claim:

J(π)− J(π̂) ≲
1√
N

((
[Cπ

µ (R, π′)]
2
+ 1
)
R̃2ι+Hw(π)

)
.

Furthermore, in the special case of w(y) = 1/|y|, we have the following bound on T3:

T3 ≲
log|V|√

N
, (32)

The above bound combined with (30) leads to the following rate

J(π)− J(π̂) ≲
1√
N

((
[Cπ

µ (R, π′)]
2
+ 1
)
R̃2ι+ log|V|

)
.

E.2.1 PROOF OF THE BOUND (30) ON T1 + T2

Bounding T1. π̂ is the maximizer to the following objective

π̂ ∈ argmax
π∈Π

min
r∈R

ηEx∼ρ,y∼π̂,y′∼π′ [r(x, y)− r(x, y′)− βHw(π)] + LBT(r)

We use this fact to bound the term T1 according to

T1 ≤ Ex∼ρ,y∼π,y′∼π′ [r⋆(x, y)− r⋆(x, y′)− βHw(π)]

− η−1 min
r∈R

{
ηEx∼ρ,y∼π,y′∼π′ [r(x, y)− r(x, y′)− βHw(π)] + LBT(r)

}
,

= max
r∈R

{
Ex∼ρ,y∼π,y′∼π′ [r⋆(x, y)− r⋆(x, y′)− (r(x, y)− r(x, y′))]− η−1LBT(r)

}
(33)

Bounding T2. By realizability of the true reward function r⋆ ∈ R we bound the term T2:

T2 ≤ Ex∼ρ,y∼π,y′∼π′ [r⋆(x, y)− r⋆(x, y′)− βHw(π)] + η−1LBT(r
⋆)

− Ex∼ρ,y∼π̂,y′∼π′ [r⋆(x, y)− r⋆(x, y′)− βHw(π)]

= η−1LBT(r
⋆) (34)
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Bounding T1 + T2. Combing the bound (33) on T1 and to bound (34) on T2, it remains the bound
the following:

T1 + T2 ≤ max
r∈R

{
Ex∼ρ,y∼π,y′∼π′ [r⋆(x, y)− r⋆(x, y′)− (r(x, y)− r(x, y′))] := T1,1

+ η−1
(
LBT(r

⋆)− LBT(r)
)
:= T1,2

} (35)

Define the following notation:

∆r :=

√
Ex,y,y′∼µ

[
(r⋆(x, y)− r⋆(x, y′))− (r(x, y)− r(x, y′))

2
]

(36)

Term T1,1 is directly bounded by Cπ
µ (R, π′)∆r based on the Definition 2 of single-policy concen-

trability, and we subsequently prove a bound on T1,2 according to:
T1,1 ≤ Cπ

µ (R, π′)∆r (37)

T1,2 ≤ −2
∆2

r

ηR̃2
+

3ι

ηN
, (38)

where R̃ = 1 + exp(R) and ι =
√

log(Nϵ)/δ. Adding the bounds on T1,1 and T1,2 and taking the
maximum over r, the bound on T1 + T2:

T1 + T2 ≤ max
r

{
Cπ

µ (R, π′)∆r − 2
∆2

r

ηR̃2

}
+

3ι

ηN
(39)

≤
[
Cπ

µ (R, π′)
]2

ηR̃2

8
+

3ι

ηN
(40)

The last inequality uses the fact that az − bz2 ≤ a2/4b for any z ∈ R. By the choice of η =√
6ι/(R̃2

√
N), the above bound becomes:

T1 + T2 ≲
(
[
Cπ

µ (R, π′)
]2

+ 1)R̃2ι
√
N

.

Proof of the bound (38) on T1,2. In the view of the uniform concentration result in Liu et al. (2024,
Lemma A.1), with probability at least 1 − δ setting ϵ = (6R̃N)−1, the following bound holds for
any r ∈ R

LBT(r
⋆)− LBT(r) ≤ −2Ex,y,y′∼µ

[
D2

Hellinger (Pr⋆(·|x, y, y′)∥Pr(·|x, y, y′))
]
+

3ι

N
, (41)

where Pr(·|x, y, y′) is the Bradley-Terry preference probability given a reward model r as defined
in (2). The Hellinger distance can be bounded by total variation (TV) distance according to

D2
Hellinger (Pr⋆(·|x, y, y′)∥Pr(·|x, y, y′))
≥ D2

TV (Pr⋆(·|x, y, y′)∥Pr(·|x, y, y′))

=
1

2

∣∣∣σ(r⋆(x, y)− r⋆(x, y′))− σ(r(x, y)− r(x, y′))
∣∣∣

+
1

2

∣∣∣σ(r⋆(x, y′)− r⋆(x, y))− σ(r(x, y′)− r(x, y))
∣∣∣

=
∣∣∣σ(r⋆(x, y)− r⋆(x, y′))− σ(r(x, y)− r(x, y′))

∣∣∣
≥ 1

R̃2

∣∣∣(r⋆(x, y)− r⋆(x, y′))− (r(x, y)− r(x, y′))
∣∣∣ (42)

The penultimate equation uses the fact that σ(−x) = 1 − σ(x) and the last inequality is due to bi-
Lipschitz continuity of the sigmoid function over [−R,R]; see e.g., Liu et al. (2024, Lemma A.2).
Applying the bound in (42) to (41), we have

LBT(r
⋆)− LBT(r) ≤ −2Ex,y,y′∼µ

[∣∣∣(r⋆(x, y)− r⋆(x, y′))− (r(x, y)− r(x, y′))
∣∣∣2]+ 3ι

N

= −2∆r

R̃2
+

3ι

N
.

where the last equation uses the definition of ∆r provided in (36), completing the proof.
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E.2.2 PROOF OF THE BOUNDS (31) AND (32) ON T3

In this section, we prove the bounds on T3 as delineated in inequalities (31) and (32) through bound-
ing weighted entropy. The key bounds are encapsulated in the following lemma which asserts that
weighted entropy is non-negative and for special case of weights w(y) = 1/|y| it can be bounded
from above. The proof of this lemma is presented at the end of this section.
Lemma 3 (Bounds on Weighted Entropy). For any weight function w(y) ≥ 0 and any probability
distribution p(y), the weighted entropy satisfies Hw(p) ≥ 0. Furthermore, when weights are as-
signed according to w(y) = 1/|y|, with |y| denoting the response length, the weighted entropy is
bounded by Hw(p) ≤ log|V|, where |V| is the size of the vocabulary.

Based on Lemma 3, weighted entropy is nonnegative. Setting β ≍ 1/
√
N immediately gives the

bound (31) on T3:

T3 = β [Hw(π)−Hw(π̂)] ≤
Hw(π)√

N
(43)

Moreover, when w(y) = 1/|y| by Lemma 3, we have

T3 ≤
Hw(π)√

N
≤ log|V|√

N
.

Proof of Lemma 3. First consider the case for any general non-negative weight function w(y) > 0.
This ensures that the weighted entropy is non-negative because:

Hw(p) = −
∑
y

w(y)p(y) log p(y) =
∑
y

w(y)p(y) log
1

p(y)
≥ 0.

Next, we provide an upper bound on the weighted entropy when w(y) = 1/|y|. Define z to be a
random variable denoting the length of a response. The weighted entropy can be decomposed as
follows

−
∑
y

1

|y|
p(y) log p(y) = −

∑
y

1

|y|
pz(z = |y|)p(y | |y|= z) log pz(z = |y|)p(y | |y|= z)

= −
∑
y

1

|y|
pz(z = |y|)p(y | |y|= z)

[
log pz(z = |y|) + log p(y | |y|= z)

]
= −

∑
z

1

|y|
pz(z = |y|)

∑
y||y|=z

p(y | |y|= z) log p(y | |y|= z) := T3,1

−
∑
z

1

|y|
pz(z = |y|) log pz(z = |y|)

∑
y||y|=z

p(y | |y|= z) := T3,2

For the term T3,1, we have

T1 =
∑
z

pz(z = |y|) 1

|y|
· −

∑
y s.t. |y|=z

py|z(y | z = |y|) log py|z(y | z = |y|)

The sum−
∑

y py|z(y | z = |y|) log py|z(y | z = |y|) is the Shannon entropy of a conditional distri-
bution, which reaches its maximum when the distribution is uniform. Consequently, the maximum
of this conditional entropy for a fixed length |y| is given by log |V||y| = |y|log|V|. Substituting this
bound back to T1 gives:

T3,1 ≤
∑
z

pz(z = |y|) 1

|y|
|y|log|V|= log|V|

For the term T3,2, first note that
∑

y||y|=z p(y | |y|= z) = 1. Therefore, with the maximum response
length denoted by L and since |y|≥ 1, we have

T3,2 =
∑
z

1

|y|
pz(z = |y|) log 1

p(y | |y|= z)
≤
∑
z

pz(z = |y|) log 1

p(y | |y|= z)
≤ logL.

Combining the bounds on T3,1 and T3,2, the upper bound on weighted entropy when using inverse
response length as weights is log|V|+ logL, which concludes the proof.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

F DERIVATIONS AND PROOFS FOR DYNAMIC LABELS

F.1 DERIVATION OF THE LEARNING DYNAMICS

In this section we compute the learning dynamics of POWER over preference dataset D =
{(x, y0, y1, l)}with the label notation defined in 2.1. Here, l = 0 indicates that y0 was preferred and
l = 1 indicates that l = 1 was preferred. With this notation, the POWER objective from Proposition
(3) is given by

max
π

ED

[
l log σ

(
β
[
w(y1) log πθ(y

1|x)− w(y0) log πθ(y
0|x) +

(
w(y1)− w(y0)

)])
(1− l) log σ

(
β
[
w(y0) log πθ(y

0|x)− w(y1) log πθ(y
1|x) +

(
w(y0)− w(y1)

)])]
+ηβED

[
lw(y1) log πθ(y

1|x) + (1− l)w(y0) log πθ(y
0|x)

]
To simplify presentation, we consider the softmax MAB setting with β = 1, w(y) = 1, η = 0. In
this case, the objective simplifies to

min
θ
−ED

[
l log σ(log πθ(y

1)− log πθ(y
0)) + (1− l) log σ(log πθ(y

0)− log πθ(y
1))
]

= min
θ
−ED

[
l log σ(log exp(θ(y1))− logZθ − log exp(θ(y0)) + logZθ)

+ (1− l) log σ(log exp(θ(y0))− logZθ − log exp(θ(y1)) + logZθ

]
= min

θ
−ED

[
l log σ(θ(y1)− θ(y0)) + (1− l) log σ(θ(y0)− θ(y1))

]
.

To understand the updates to the model parameters, consider the empirical probabilities derived
from dataset comparisons: µ̂0,1 is the empirical probability of comparing y0 and y1, and µ̂1≻0 is the
empirical probability of preferring y1 over y0, conditioned on their comparison. Isolate the updates
to the parameters θ(y1) and θ(y0) based on comparisons between y0 and y1 and through batch
gradient descent. We allow the preference labels lt to change across gradient steps and thus updates
to the parameter gap at step t and with a learning rate α is given by

θt+1(y
1)− θt+1(y

0)

= θt(y
1)− θt(y

0) + αµ̂0,1

[(
µ̂1≻0lt + µ̂0≻1(1− lt)

)
σ(θt(y

0)− θt(y
1))

−
(
µ̂0≻1lt + µ̂1≻0(1− lt)

)
σ(θt(y

1)− θt(y
0))

]
.

We used the fact that ∂(log σ(x))/∂x = σ(−x). Since σ(x) = 1 − σ(−x) and µ̂1≻0 + µ̂0≻1 = 1,
the learning dynamics simplify to:

θt+1(y
1)− θt+1(y

0)

= θt(y
1)− θt(y

0) + αµ̂0,1

[
(µ̂1≻0 − µ̂0≻1)l −

(
σ
(
θt(y

1)− θt(y
0)
)
− µ̂0≻1

)]
.

F.2 PROOF OF THEOREM 2

The proof is organized as follows. We start by establishing a lower bound on the dynamic labels.
We subsequently use this lower bound to prove bounds on the parameter gap in low-coverage and
high-coverage cases separately.

Lower bound on dynamic labels. The dynamics of labels are described by the following equa-
tion:

l̇t = γ
(σ(dt)− (1− µ̂1≻0)

µ̂1≻0 − (1− µ̂1≻0)
− lt

)
(44)
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Without loss of generality, we assumed that µ̂1≻0 > 1/2. This condition is easily met by appropri-
ately ordering the responses. Define:

κ :=
1− µ̂1≻0

µ̂1≻0 − (1− µ̂1≻0)
(45)

Given that 0 ≤ σ(dt) ≤ 1 and the assumption µ̂1≻0 − (1 − µ̂1≻0) = 2µ̂1≻0 − 1 > 0, we find the
following lower bound on l̇t:

l̇t = γ
(σ(dt)− (1− µ̂1≻0)

µ̂1≻0 − (1− µ̂1≻0)
− lt

)
≥ γ

( −(1− µ̂1≻0)

µ̂1≻0 − (1− µ̂1≻0)
− lt

)
= γ (−κ− lt)

The subsequent lemma establishes a lower bound on lt using Grönwall’s inequality, with its proof
provided at the end of this section.

Lemma 4. Suppose that lt satisfies the following inequality l̇t ≥ γ(−κ − lt) with initial value
l0 = 1. Then, we have the following lower bound lt ≥ −κ+ (κ+ 1) exp(−γt).

We proceed by separately analyzing the scenarios of low coverage and high coverage.

Low coverage case. The coupled dynamical system in (12) satisfies the following equation:

γ

2µ̂1≻0 − 1
ḋt + αµ̂0,1 l̇t = 0

Upon integrating the equation above and considering the initial condition l0 = 1, it follows that

γ

2µ̂1≻0 − 1
(dt − d0) = αµ̂0,1 (1− lt)

Applying the lower bound from Lemma 4 yields:

γ

2µ̂1≻0 − 1
(dt − d0) = αµ̂0,1 (1− lt)

≤ αµ̂0,1(1 + κ− (1 + κ) exp(−γt))

Consequently, we conclude that

|dt − d0| ≤
αµ̂0,1(2µ̂1≻0 − 1)

γ

(
1 + κ− (1 + κ) exp(−γt)

)
≤ αµ̂0,1µ̂1≻0

γ
≤ αµl

γ
≤ ϵl,

where we used the definition of κ and the fact that by assumption αµl/ϵl ≤ γ.

High coverage case. We extend the argument by Zhu et al. (2024) for a general initialization d0
and establish the final convergence rate for proper choices of hyperparameters. Consider a Lyapunov
function Vt = (σ(dt)− µ̂1≻0)

2. Derivative of Vt is given by

V̇t = 2
(
σ(dt)− µ̂1≻0

)
σ(dt)σ(−dt)ḋt

= 2αµ̂0,1

(
σ(dt)− µ̂1≻0

)
σ(dt)σ(−dt)

(
(2µ̂1≻0 − 1)lt + 1− µ̂1≻0 − σ(dt)

)
= −2αµ̂0,1σ(dt)σ(−dt)

(
σ(dt)− µ̂1≻0

)2
+ 2αnσ(dt)σ(−dt)

(
σ(dt)− µ̂1≻0

)
(2µ̂1≻0 − 1)(lt − 1)

= 2αµ̂0,1σ(dt)σ(−dt)
(
Vt − (σ(dt)− µ̂1≻0)(2µ̂1≻0 − 1)(lt − 1)

)
Let ϵ = ϵ0αµ̂0,1T ≥ γT . We find an upper bound on V̇t by applying the bound on lt given in
Lemma 4 and using the fact that µ̂1≻0, σ ∈ [0, 1]:

V̇t ≤ αµ̂0,1σ(dt)σ(−dt)
(
− Vt + (κ+ 1)(1− exp(−γt))

)
(46)

≤ αµ̂0,1σ(dt)σ(−dt)
(
− Vt + (κ+ 1)(1− exp(−ϵ))

)
(47)
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Now consider two cases. The first case is that for any 0 ≤ t ≤ T , we have Vt ≥ 2(κ + 1)(1 −
exp(−ϵ)). In such a scenario, Vt is a non-increasing function because

V̇t ≤ 2αµ̂0,1σ(dt)σ(−dt)
(
− Vt + (κ+ 1)(1− exp(−ϵ))

)
≤ −αµ̂0,1σ(dt)σ(−dt)Vt ≤ 0. (48)

Next, we analyze the term σ(dt)σ(−dt). We establish a bound on σ(dt)σ(−dt) for the case of
σ(d0) ≤ µ̂1≻0; the case of σ(d0) ≥ µ̂1≻0 can be proved with a similar argument.

We prove that when σ(d0) ≤ µ̂1≻0, then we must have σ(dt) ≤ µ̂1≻0 for any t. Assume otherwise
that there exists some t0 where σ(dt0) > µ̂1≻0. By continuity of σ(dt) and since σ(d0) ≤ µ̂1≻0,
there exists t1 ≤ t0 such that σ(dt1) = µ̂1≻0. However, this results in Vt1 = 0 < Vt0 , which
contradicts the fact that Vt is non-increasing. Therefore, we have σ(dt) ≤ µ̂1≻0. Moreover, since
Vt is non-increasing, we also have σ(d0) ≤ σ(dt). Thus, we have σ(d0) ≤ σ(dt) ≤ µ̂1≻0 and we
use this fact to find the following bound:

σ(dt)σ(−dt) = σ(dt)(1− σ(dt)) ≥ min
{
σ(d0)(1− σ(d0)), µ̂1≻0(1− µ̂1≻0)

}
= c. (49)

Applying bound (49) to (48) and integrating over t on both sides, we have
Vt ≤ exp(−cαµ̂0,1t)V0 ≤ exp(−cαµ̂0,1t). (50)

We now consider the case where for some t0, we have Vt0 < 2(κ + 1)(1 − exp(−ϵ)). We show
that in this case we must have VT ≤ 2(κ + 1)(1 − exp(−ϵ)). Assume otherwise that VT > 2(κ +
1)(1 − exp(−ϵ), then by continuity there must be t1 such that Vt1 = 2(κ + 1)(1 − exp(−ϵ)).
However, inequality (48) implies that for any t ∈ [t1, T ], Vt is non-increasing, leading to VT ≤
2(κ+ 1)(1− exp(−ϵ)), which contradicts our assumption. Therefore, we know that

VT ≤ 2(κ+ 1)(1− exp(−ϵ)) (51)
Combining the two bounds (50) and (51) on VT , we have:

VT ≤ max {2(κ+ 1)(1− exp(−ϵ)), exp(−cαµ̂0,1T )} . (52)

Subsequently, we show that 2(κ+1)(1−exp(−ϵ)) ≤ exp(−cαµ̂0,1T ) provided that ϵ0 ≤ exp(−1/4)
2(κ+1) .

Utilizing the inequality exp(−x) ≥ 1− x, we have

exp(−ϵ0) ≥ 1− ϵ0 ≥ 1− exp(−1/4)
2(κ+ 1)

exp(−1/4)

Using the fact that c ≤ 1/4, κ ≥ 0 and that µ̂0,1αT ≥ 1, we conclude
2(κ+ 1) ≤ 2(κ+ 1) exp(−ϵ0) + exp(−1/4)

≤ 2(κ+ 1) exp(−ϵ0) + exp(−c)
≤ 2(κ+ 1) exp(−ϵ0αµ̂0,1T ) + exp(−cαµ̂0,1T )

≤ 2(κ+ 1) exp(−ϵ0αµ̂0,1T ) + exp(−cαµ̂0,1T ).

This leads to the bound VT ≤ exp(−cαµ̂0,1T ).

Proof of Lemma 4. The result can be shown using Grönwall’s inequality. Rewriting the inequality
as l̇t + γlt ≥ −γκ and multiplying both sides by exp(γt) gives:

exp(γt)l̇t + γ exp(γt)lt ≥ −γκ exp(γt).
Notice that the left-hand side is the derivative of lt exp(γt). This yields

∂

∂t
(lt exp(γt)) ≥ −γκ exp(γt)⇒

∫ t

0

∂

∂t
(lt exp(γt)) ≥

∫ t

0

−γκ exp(γt). (53)

The left-hand side and using the fact that l0 = 1 is given by∫ t

0

∂

∂t
(lt exp(γt)) = lt exp(γt)− l0 exp(γ · 0) = lt exp(γt)− 1.

The right-hand side is ∫ t

0

−γκ exp(γt) = −κ(exp(γt)− 1). (54)

Substituting equations (54) and (54) in (53), we have
lt exp(γt)− 1 ≥ −κ(exp(γt)− 1)⇒ lt exp(γt) ≥ −κ exp(γt) + κ+ 1. (55)

Multiplying both sides with exp(−γt) gives the final lower bound on lt.
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G POWER-DL PSEUDOCODE

Algorithm 1 POWER with Dynamic Labels

1: Inputs: Dataset D = {(xi, y
+
i , y

−
i )}ni=1, hyperparameters η, β, γ, learning rate α, weight func-

tion w(y) (e.g., w(y) = 1/|y|), initial model πθ0

2: Initialize l0i = 0 for all (xi, y
+
i , y

−
i ).

3: for t ∈ {1, . . . , T}: do
4: Objective function:

LPOWER−DL(l
t; θ) = ED

[
ltiLPOWER(x, y

+
i , y−

i ) + (1− lti)LPOWER(x, y
−
i , y+

i )
]

LPOWER(x, y
+, y−) := log

(
σ
(
β
[
w(y+) log πθ(y

+|x)− w(y−) log πθ(y
−|x) + w(y+)− w(y−)

] )
+ ηβw(y+) log π(y+|x)

5: Update policy with stop gradient on labels: θt ← θt−1 + α∇sg(lt)LPOWER−DL(l
t; θ)

6: Update dynamic labels:

lti = (1− γ)lt−1
i + γ

σ(w(y+
i ) log πθ(y

+|x)− w(y−
i ) log πθ(y

−|x) + w(y+
i )− w(y−

i ))− µ̂
y−
i ≻y+

i

µ̂
y+
i ≻y−

i
− µ̂

y−
i ≻y+

i

7: Return: πθT . =0

H EXPERIMENTAL DETAILS

H.1 PREFERENCE OPTIMIZATION OBJECTIVES

We compare POWER with a variety of preference optimization methods as baselines, summarized
in Table 3. Several of these methods include divergence minimization (typically KL divergence)
against the reference models, such as DPO (Rafailov et al., 2024b), IPO (Azar et al., 2024), which
considers a different loss function on preferences, and χPO (Huang et al., 2024), which combines
Chi-Squared with KL divergence for stronger pessimism. We also implement an offline variant of
SPPO (Wu et al., 2024b), derived based on a self-play mechanism to improve upon the initial model.

We additionally consider several objectives that do not include the reference model. These include
CPO (Xu et al., 2024a), which considers DPO with a uniform initial model; SLiC-HF (Zhao et al.,
2023), which uses a hinge loss; RRHF (Yuan et al., 2024a), which applies a hinge loss with length-
normalization on the contrastive term; and ORPO (Hong et al., 2024), which proposes odd ratio
terms without initial models to contrast the chosen and rejected responses. Finally, SimPO (Meng
et al., 2024) that removes the reference model from DPO and adds length-normalization and a mar-
gin. We implement POWER-DL by combining the objective in (8) with dynamic labels (11), where
we estimate the empirical preferences with µ̂1≻0 = l. We also compare against POWER, which
corresponds to γ = 0, removing the dynamic labels.

H.2 INSTRUCTION-FOLLOWING BENCHMARKS

Benchmark details. We select the default choices in benchmark as baselines. In particular, for
AlpacaEval 2.0 benchmark, we use GPT-4-Preview-1106 as comparison baseline model, and GPT-4
as the judge model. AlpacaEval 2.0 then compares responses generated by our PO trained models
with responses from the baseline model, and length-controlled (LC) and raw winrate (WR) are
computed as metrics. For Arena Hard benchmark, we use the GPT-4-0314 as the baseline model,
and GPT-4 as the judge model, and the reported metric is winrate againts the baseline model.

Decoding hyperparameters. We follow Meng et al. (2024) and use a sampling decoding strategy
with a temperature 0.9 on AlpacaEval 2.0 for all methods. For Arena Hard, we use the default
approach of greedy generation.
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Table 3: Different preference optimization objectives and hyperparameter search range.
Method Objective (Min) Hyperparameter Range

DPO − log σ
(
β log πθ(y

+|x)
πθ0

(y+|x) − β log πθ(y
−|x)

πθ0
(y−|x)

)
β ∈ {0.001, 0.005, 0.01, 0.05, 0.1}

IPO
(
log πθ(y

+|x)
πθ0

(y+|x) − log πθ(y
−|x)

πθ0
(y−|x) −

1
2τ

)2
τ ∈ {0.001, 0.005, 0.01, 0.1, 1.0}

χPO − log
(
σ
(
clip2R

[
βϕ
(

πθ(y
+|x)

πθ0
(y+|x)

)
− βϕ

(
πθ(y

−|x)
πθ0

(y−|x)

)]))
β ∈ {0.001, 0.01, 0.1}

ϕ(z) := z + log(z) R ∈ {0.1, 0.5, 1, 5, 10}

R-DPO − log σ
(
β log πθ(y

+|x)
πθ0

(y+|x) − β log πθ(y
−|x)

πθ0
(y−|x) − (α|y+|−α|y−|)

) α ∈ {0.005, 0.01, 0.05, 0.1, 0.5}
β ∈ {0.001, 0.005, 0.01, 0.05, 0.1}

SPPO (offline)
(
β log πθ(y

+|x)
πθ0

(y+|x) −
1
2

)2
+
(
β log πθ(y

−|x)
πθ0

(y−|x) +
1
2

)2
β ∈ {0.1, 1, 10, 100, 1000, 10000}

CPO − log σ (β log πθ(y
+|x)− β log πθ(y

−|x))− λ log πθ(y
+|x)

λ = 1.0

β ∈ {0.001, 0.01, 0.1, 1, 10}

RRHF
max

{
0,− 1

|y+| log πθ(y
+|x) + 1

|y−| log πθ(y
−|x)

}
−λ log πθ(y

+|x)
λ ∈ {0.01, 0.05, 0.1, 0.5, 1, 10}

SLiC-HF max (0, β − log πθ(y
+|x) + log πθ(y

−|x))− λ log πθ(y
+|x)

λ ∈ {0.01, 0.05, 0.1, 0.5, 1, 10}
β ∈ {0.1, 0.5, 1.0, 2.0}

DPO+SFT − log σ
(
β log πθ(y

+|x)
πθ0

(y+|x) − β log πθ(y
−|x)

πθ0
(y−|x)

)
− λ log πθ(y

+|x)
β ∈ {0.001, 0.005, 0.01, 0.05, 0.1}
λ ∈ {0.0005, 0.001, 0.01, 0.1, 1}

ORPO
− log pθ(y

+|x)− λ log σ
(
log pθ(y

−|x)
1−pθ(y−|x) − log pθ(y

+|x)
1−pθ(y+|x)

)
λ ∈ {0.1, 0.5, 1.0, 2.0}

pθ(y|x) := exp
(

1
|y−| log πθ(y

−|x)
)

SimPO − log
(

β
|y−| log πθ(y

+|x)− β
|y−| log πθ(y

−|x)− γ
)

β ∈ {1, 2, 10, 20}
γ ∈ {0.3, 0.5, 0.8, 1.0}

cDPO −(1− c) log σ
(
β log πθ(y

+|x)
πθ0

(y+|x) − β log πθ(y
−|x)

πθ0
(y−|x)

)
β ∈ {0.001, 0.005, 0.01, 0.05, 0.1}

−c log σ
(
β log πθ(y

−|x)
πθ0

(y−|x) − β log πθ(y
+|x)

πθ0
(y+|x)

)
c ∈ {0.05, 0.1, 0.15, 0.2, 0.3}

ROPO −α log σ
(
β log πθ(y

+|x)
πθ0

(y+|x) − β log πθ(y
−|x)

πθ0
(y−|x)

)
β ∈ {0.001, 0.005, 0.01, 0.05, 0.1}

+γσ
(
β log πθ(y

−|x)
πθ0

(y−|x) − β log πθ(y
+|x)

πθ0
(y+|x)

)
γ = 0.1, α ∈ {0.2, 2, 20, 200, 2000}

H.3 TRAINING AND HYPERPARAMETER DETAILS

Hyperparameters for training reference models in the base setting. We train initial reference
models in the base setups. In the Helpsteer2 setting (Wang et al., 2024e), we train a model through
supervised instruction finetuning on the (English only) OpenAssistant2 dataset (Köpf et al., 2024).
In the Zephyr setting (Tunstall et al., 2023), we conduct supervised finetuning on the UltraChat-
200K dataset (Ding et al., 2023). We use the following hyperparameters for both cases: a train
batch size of 256, learning rate of 2e-5 with a cosine learning rate schedule with 10% warmup, right
padding, and a max sequence length of 2048. We train the models with Adam optimizer for 1 epoch.

General hyperparameters for preference optimization. We use a fixed batch size of 128 and a
maximum sequence length of 2048 for all methods. For learning rate, we search over {3e-7,5e-7}
separately for each method and use a cosine learning rate schedule with a 10% warmup. We use
Adam optimizer for all the approaches. In the Helpsteer2 setting and following Wang et al. (2024e),
we train the models for up to 7 epochs, and in the Zephyr setting, we train the models for up to 3
epochs, and select the best number of epochs for each method according to validation. We use right
padding for preference optimization following the recommendation of Hu et al. (2024).

Specific hyperparameters for preference optimization. For the hyperparameters specific to each
preference optimization objective, we conduct hyperparameter search according to the values in
Table 3. In each setting, we select the best model according to the ranking performance on the
validation set. For POWER-DL, we conduct hyperparameter search over β ∈ {1, 2, 10, 20}, η ∈
{0.0005, 0.001}, and γ ∈ {0.1, 0.3}. For Helpsteer2, we select β = 10, η = 0.001, γ = 0.1, 5
epochs, and learning rate of 5e-7 in the base setting and β = 20, η = 0.0005, γ = 0.1, 4 epochs
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and learning rate of 3e-7 in the instruct setting. For Zephyr, we select β = 1, η = 0.001, γ = 0.1, 2
epochs, and learning rate of 3e-7 in the base setting, and β = 2, η = 0.0005, γ = 0.3, 2 epochs, and
learning rate of 3e-7 in the instruct setting.

Computation environment. All experiments are conducted on 8×A100 GPUs based on the
OpenRLHF repository (Hu et al., 2024).
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I ADDITIONAL EXPERIMENTAL RESULTS ON LLAMA FAMILY

I.1 PERFORMANCE ON ACADEMIC BENCHMARKS

Tables 4 and 5 present the benchmark scores for the Helpsteer2 and Zephyr pipelines across a variety
of downstream tasks. Considering the average benchmark score, POWER-DL consistently improves
over the initial model and ranks within the top two or three methods across all four settings, despite
significantly outperforming other methods in alignment benchmarks AlpacaEval 2.0 and Arena-
Hard as detailed in Table 2. Achieving a high score on instruction-following benchmarks AlpacaEval
2.0 and Arena-Hard while maintaining a good performance on downstream tasks is considered key
empirical evidence for mitigating reward hacking in practice (Xu et al., 2024b).

Table 4: Downstream task evaluation results of the models trained on the Helpsteer2 pipeline. The
arrows show improvement or degradation of performance with respect to the initial model. The top
three average scores are shown in bold.

Task MMLU ARC HellaSwag TruthfulQA Winogrande GSM8K IFEval MMLU-PRO Average

Helpsteer2 Llama3-8B-Base
Initial Model 62.6 ↓0.0 58.4 ↓0.0 80.0 ↓0.0 49.5 ↓0.0 77.4 ↓0.0 37.1 ↓0.0 33.6 ↓0.0 29.8 ↓0.0 53.5 ↓0.0

DPO 61.2 ↓1.4 57.5 ↓0.9 81.1 ↑1.1 51.0 ↑1.5 75.6 ↓1.8 32.5 ↓4.6 41.1 ↑7.5 29.8 ↓0.0 53.7 ↑0.2

DPO+SFT 62.1 ↓0.5 60.5 ↑2.1 81.9 ↑1.9 52.9 ↑3.4 77.0 ↓0.4 42.1 ↑5.0 42.5 ↑8.9 30.5 ↑0.7 56.2 ↑2.7
cDPO 62.0 ↓0.6 60.9 ↑2.5 82.9 ↑2.9 53.9 ↑4.4 76.6 ↓0.8 37.9 ↑0.8 42.6 ↑9.0 30.5 ↑0.7 55.9 ↑2.4

R-DPO 62.8 ↑0.2 58.2 ↓0.2 80.3 ↑0.3 52.9 ↑3.4 77.4 ↓0.0 43.2 ↑6.1 38.7 ↑5.1 30.1 ↑0.3 55.5 ↑2.0

IPO 62.7 ↑0.1 60.6 ↑2.2 81.7 ↑1.7 52.5 ↑3.0 78.1 ↑0.7 43.8 ↑6.7 42.3 ↑8.7 30.3 ↑0.5 56.5 ↑3.0
χPO 62.9 ↑0.3 59.0 ↑0.6 81.0 ↑1.0 51.7 ↑2.2 78.1 ↑0.7 41.7 ↑4.6 38.0 ↑4.4 30.1 ↑0.3 55.3 ↑1.8

SPPO 62.8 ↑0.2 60.9 ↑2.5 83.0 ↑3.0 54.2 ↑4.7 77.1 ↓0.3 38.8 ↑1.7 42.7 ↑9.1 30.6 ↑0.8 56.3 ↑2.8
CPO 62.6 ↓0.0 59.0 ↑0.6 80.2 ↑0.2 54.2 ↑4.7 77.0 ↓0.4 44.2 ↑7.1 41.4 ↑7.8 30.4 ↑0.6 56.1 ↑2.6

RRHF 62.6 ↓0.0 57.7 ↓0.7 79.0 ↓1.0 51.1 ↑1.6 77.2 ↓0.2 37.2 ↑0.1 34.2 ↑0.6 29.8 ↓0.0 53.6 ↓0.1

SLiCHF 62.6 ↓0.0 59.0 ↑0.6 79.9 ↓0.1 55.0 ↑5.5 76.8 ↓0.6 43.7 ↑6.6 40.1 ↑6.5 30.2 ↑0.4 55.9 ↑2.4

ORPO 61.5 ↓1.1 57.6 ↓0.8 79.0 ↓1.0 61.4 ↑11.9 77.7 ↑0.3 15.6 ↓21.5 40.4 ↑6.8 29.6 ↓0.2 52.9 ↓0.7

SimPO 61.3 ↓1.3 59.0 ↑0.6 80.6 ↑0.6 59.6 ↑10.1 77.7 ↑0.3 23.4 ↓13.7 40.5 ↑6.9 30.2 ↑0.4 54.0 ↑0.5

ROPO 61.5 ↓1.1 60.9 ↑2.5 82.1 ↑2.1 52.5 ↑3.0 76.6 ↓0.8 37.5 ↑0.4 41.4 ↑7.8 30.1 ↑0.3 55.3 ↑1.8

POWER-DL 62.0 ↓0.6 59.6 ↑1.2 82.0 ↑2.0 61.0 ↑11.5 78.1 ↑0.7 36.5 ↓0.6 40.3 ↑6.7 30.5 ↑0.7 56.3 ↑2.8
POWER 61.9 ↓0.7 60 ↑1.6 82.0 ↑2.0 61.0 ↑11.5 77.9 ↑0.5 35.3 ↓1.8 40.1 ↑6.5 30.4 ↑0.6 56.1 ↑2.6

Helpsteer2 Llama3-8B-Instruct
Initial Model 65.7 ↓0.0 62.0 ↓0.0 78.8 ↓0.0 51.7 ↓0.0 76.0 ↓0.0 75.3 ↓0.0 54.4 ↓0.0 36.0 ↓0.0 62.5 ↓0.0

DPO 65.9 ↑0.2 63.4 ↑1.4 79.5 ↑0.7 52.7 ↑1.0 75.9 ↓0.1 76.4 ↑1.1 54.1 ↓0.3 36.3 ↑0.3 63.0 ↑0.5

DPO+SFT 65.9 ↑0.2 61.0 ↓1.0 73.6 ↓5.2 54.7 ↑3.0 71.2 ↓4.8 74.7 ↓0.6 48.2 ↓6.2 37.0 ↑1.0 60.8 ↓1.7

cDPO 66.0 ↑0.3 65.4 ↑3.4 79.5 ↑0.7 57.0 ↑5.3 74.6 ↓1.4 76.9 ↑1.6 49.9 ↓4.5 36.9 ↑0.9 63.3 ↑0.8
R-DPO 65.8 ↑0.1 62.8 ↑0.8 74.8 ↓4.0 54.6 ↑2.9 72.6 ↓3.4 77.7 ↑2.4 51.0 ↓3.4 36.6 ↑0.6 62.0 ↓0.5

IPO 66.0 ↑0.3 64.9 ↑2.9 79.2 ↑0.4 58.4 ↑6.7 73.8 ↓2.2 75.8 ↑0.5 49.8 ↓4.6 37.1 ↑1.1 63.1 ↑0.6
χPO 65.8 ↑0.1 63.7 ↑1.7 75.6 ↓3.2 59.1 ↑7.4 72.4 ↓3.6 75.2 ↓0.1 52.4 ↓2.0 37.2 ↑1.2 62.7 ↑0.2

SPPO 66.0 ↑0.3 63.0 ↑1.0 76.7 ↓2.1 55.7 ↑4.0 72.9 ↓3.1 75.7 ↑0.4 49.6 ↓4.8 37.1 ↑1.1 62.1 ↓0.4

CPO 65.7 ↓0.0 62.2 ↑0.2 78.0 ↓0.8 52.2 ↑0.5 74.1 ↓1.9 75.7 ↑0.4 49.9 ↓4.5 36.0 ↓0.0 61.9 ↓0.6

RRHF 65.9 ↑0.2 62.0 ↓0.0 77.5 ↓1.3 51.5 ↓0.2 73.8 ↓2.2 76.7 ↑1.4 51.2 ↓3.2 36.4 ↑0.4 61.9 ↓0.6

SLiCHF 65.7 ↓0.0 62.9 ↑0.9 78.0 ↓0.8 53.9 ↑2.2 74.2 ↓1.8 76.7 ↑1.4 47.6 ↓6.8 36.1 ↑0.1 62.3 ↓0.2

ORPO 65.7 ↓0.0 62.1 ↑0.1 74.0 ↓4.8 56.7 ↑5.0 71.5 ↓4.5 75.9 ↑0.6 51.3 ↓3.1 37.2 ↑1.2 61.9 ↓0.6

SimPO 65.8 ↑0.1 61.9 ↓0.1 75.0 ↓3.8 58.3 ↑6.6 72.3 ↓3.7 74.3 ↓1.0 54.1 ↓0.3 37.2 ↑1.2 62.3 ↓0.2

ROPO 65.4 ↓0.3 62.0 ↓0.0 76.9 ↓1.9 54.1 ↑2.4 73.7 ↓2.3 73.9 ↓1.4 50.2 ↓4.2 36.2 ↑0.2 61.8 ↓0.7

POWER-DL 66.0 ↑0.3 64.3 ↑2.3 79.5 ↑0.7 53.1 ↑1.4 76.0 ↓0.0 76.3 ↑1.0 53.5 ↓0.9 36.6 ↑0.6 63.2 ↑0.7
POWER 65.8 ↑0.1 63.9 ↑1.9 79.6 ↑0.8 53.1 ↑1.4 76.1 ↑0.1 76.6 ↑1.3 52.5 ↓1.9 36.4 ↑0.4 63.0 ↑0.5
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Table 5: Downstream task evaluation results of the model trained on the Zephyr pipeline. The arrows
show improvement or degradation of performance with respect to the initial model. The top three
average scores are shown in bold.

Task MMLU ARC HellaSwag TruthfulQA Winogrande GSM8K IFEval MMLU-PRO Average

Zephyr Llama3-8B-Base
Initial Model 61.6 ↓0.0 58.2 ↓0.0 78.6 ↓0.0 52.1 ↓0.0 75.9 ↓0.0 47.3 ↓0.0 38.1 ↓0.0 29.4 ↓0.0 55.2 ↓0.0

DPO 61.9 ↑0.3 62.4 ↑4.2 81.6 ↑3.0 63.0 ↑11.0 74.4 ↓1.4 52.8 ↑5.5 50.6 ↑12.5 31.2 ↑1.7 59.7 ↑4.6
DPO+SFT 62.0 ↑0.3 62.0 ↑3.8 80.9 ↑2.3 61.6 ↑9.5 75.1 ↓0.7 55.0 ↑7.7 48.7 ↑10.6 31.0 ↑1.6 59.5 ↑4.4

cDPO 61.9 ↑0.3 61.9 ↑3.7 81.4 ↑2.7 62.3 ↑10.2 75.3 ↓0.5 54.7 ↑7.4 49.3 ↑11.2 31.0 ↑1.6 59.7 ↑4.6
R-DPO 61.9 ↑0.2 59.5 ↑1.3 80.1 ↑1.5 62.0 ↑9.9 75.0 ↓0.9 52.8 ↑5.5 45.3 ↑7.2 30.5 ↑1.1 58.4 ↑3.2

IPO 61.8 ↑0.1 58.3 ↑0.1 78.7 ↑0.1 53.5 ↑1.4 76.7 ↑0.9 46.8 ↓0.5 39.5 ↑1.3 29.7 ↑0.3 55.6 ↓0.0

χPO 62.1 ↑0.4 60.8 ↑2.6 80.2 ↑1.6 57.9 ↑5.8 75.3 ↓0.5 54.8 ↑7.5 48.8 ↑10.7 30.2 ↑0.7 58.7 ↑3.6

SPPO 61.5 ↓0.1 61.9 ↑3.7 81.2 ↑2.6 62.0 ↑10.0 73.4 ↓2.4 51.9 ↑4.6 50.7 ↑12.6 30.7 ↑1.3 59.2 ↑4.0

CPO 61.6 ↓0.0 56.1 ↓2.1 77.8 ↓0.8 51.5 ↓0.6 75.9 ↓0.0 40.2 ↓7.1 37.3 ↓0.8 29.3 ↓0.2 53.4 ↓1.8

RRHF 61.7 ↑0.1 55.8 ↓2.4 77.7 ↓0.9 51.3 ↓0.8 75.6 ↓0.2 39.1 ↓8.2 36.6 ↓1.6 29.3 ↓0.2 53.4 ↓1.8

SLiCHF 61.8 ↑0.2 57.9 ↓0.3 79.4 ↑0.8 60.2 ↑8.2 75.6 ↓0.2 49.4 ↑2.1 42.3 ↑4.2 30.3 ↑0.9 57.1 ↑2.0

ORPO 61.8 ↑0.1 62.5 ↑4.3 81.2 ↑2.6 63.9 ↑11.9 76.7 ↑0.9 48.9 ↑1.6 56.1 ↑18.0 30.8 ↑1.4 60.2 ↑5.1
SimPO 61.9 ↑0.3 62.4 ↑4.2 81.6 ↑3.0 63.0 ↑11.0 74.4 ↓1.4 42.8 ↓4.5 50.6 ↑12.5 31.2 ↑1.7 58.5 ↑3.3

ROPO 61.5 ↓0.2 61.7 ↑3.5 81.4 ↑2.8 64.8 ↑12.8 73.8 ↓2.1 54.4 ↑7.1 49.9 ↑11.8 30.9 ↑1.4 59.8 ↑4.6

POWER-DL 61.5 ↓0.2 61.7 ↑3.5 81.4 ↑2.8 64.8 ↑12.8 73.8 ↓2.1 54.4 ↑7.1 49.9 ↑11.8 30.9 ↑1.4 59.8 ↑4.6
POWER 61.8 ↑0.2 61.8 ↑3.6 80.6 ↑2.0 59.8 ↑7.7 76.6 ↑0.8 46.3 ↓1.1 53.7 ↑15.6 30.4 ↑1.0 58.9 ↑3.7

Zephyr Llama3-8B-Instruct
Initial Model 65.7 ↓0.0 62.0 ↓0.0 78.8 ↓0.0 51.7 ↓0.0 76.0 ↓0.0 75.3 ↓0.0 54.4 ↓0.0 36.0 ↓0.0 62.5 ↓0.0

DPO 66.0 ↑0.3 63.0 ↑0.9 76.7 ↓2.1 55.7 ↑4.0 72.9 ↓3.1 75.7 ↑0.4 49.6 ↓4.8 37.1 ↑1.1 62.1 ↑0.5

DPO+SFT 66.0 ↑0.3 66.6 ↑4.5 79.2 ↑0.5 59.9 ↑8.2 75.0 ↓1.0 75.7 ↑0.4 51.8 ↓2.6 37.3 ↑1.3 64.2 ↑1.7
cDPO 66.0 ↑0.3 67.8 ↑5.8 80.5 ↑1.8 59.0 ↑7.3 75.1 ↓1.0 76.9 ↑1.6 51.2 ↓3.2 37.3 ↑1.4 64.2 ↑1.7
R-DPO 65.7 ↑0.0 66.0 ↑4.0 78.2 ↓0.6 58.9 ↑7.2 74.5 ↓1.5 75.8 ↑0.5 50.7 ↓3.7 36.9 ↑0.9 63.3 ↑0.8

IPO 65.8 ↑0.1 62.1 ↑0.1 78.7 ↓0.0 51.8 ↑0.1 75.9 ↓0.2 75.8 ↑0.5 54.0 ↓0.5 35.8 ↓0.1 62.2 ↑0.3

χPO 66.2 ↑0.5 65.4 ↑3.3 80.5 ↑1.7 54.2 ↑2.6 76.2 ↑0.1 76.8 ↑1.5 54.6 ↑0.1 37.1 ↑1.1 64.0 ↑1.2
SPPO 66.1 ↑0.4 65.8 ↑3.8 78.7 ↓0.1 58.6 ↑6.9 74.1 ↓1.9 74.0 ↓1.3 55.2 ↑0.7 37.4 ↑1.4 63.7 ↑1.1
CPO 65.4 ↓0.3 61.9 ↓0.2 77.8 ↓0.9 52.3 ↑0.6 75.5 ↓0.5 75.4 ↑0.1 53.8 ↓0.6 35.9 ↓0.1 62.2 ↓0.2

RRHF 65.4 ↓0.3 61.9 ↓0.2 77.7 ↓1.1 52.3 ↑0.6 75.3 ↓0.7 75.3 ↓0.0 54.2 ↓0.2 35.8 ↓0.2 62.2 ↓0.2

SLiCHF 65.6 ↓0.0 63.1 ↑1.0 79.1 ↑0.3 56.0 ↑4.3 75.4 ↓0.6 76.8 ↑1.5 48.8 ↓5.6 36.4 ↑0.5 62.9 ↑0.4

ORPO 65.9 ↑0.2 64.5 ↑2.5 78.5 ↓0.3 57.6 ↑5.9 75.3 ↓0.7 77.2 ↑1.9 52.3 ↓2.2 36.7 ↑0.8 63.7 ↑1.1
SimPO 65.8 ↑0.1 62.1 ↑0.1 74.2 ↓4.6 57.4 ↑5.7 71.1 ↓4.9 72.4 ↓2.9 54.1 ↓0.4 37.0 ↑1.0 61.8 ↓0.7

ROPO 66.2 ↑0.5 63.6 ↑1.5 76.4 ↓2.4 58.1 ↑6.4 72.9 ↓3.1 73.0 ↓2.3 55.6 ↑1.2 37.5 ↑1.5 62.9 ↑0.4

POWER-DL 65.8 ↑0.1 64.7 ↑2.7 76.9 ↓1.8 59.5 ↑7.9 73.6 ↓2.4 76.2 ↑0.9 55.6 ↑1.2 37.2 ↑1.3 63.7 ↑1.1
POWER 65.7 ↓0.0 63.1 ↑1.1 75.0 ↓3.7 59.1 ↑7.4 71.7 ↓4.3 75.7 ↑0.5 54.6 ↑0.1 37.1 ↑1.1 62.9 ↑0.4

I.2 HYPERPARAMETER ROBUSTNESS RESULTS

We assess the hyperparameter robustness of POWER-DL by examining its performance across a
range of values for γ, η, and β in the Helpsteer2 base setting. Figure 2 shows AlpacaEval winrate
and length-controlled winrate for various hyperparameters. POWER-DL exhibits a robust behavior
with respect to all three hyperparameters, particularly considering the length-controlled winrate.

Figure 2: POWER-DL hyperparameter robustness results in the Helpsteer2 base setting.
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I.3 EXAMPLES RESPONSES

The following is an example question along with responses from various models from the Helpsteer2
base pipeline. POWER-DL response shows analytical thinking, a deeper reasoning process, and
consideration of implicit factors, characteristics reminiscent of System 2 thinking.

Question

One One was a race horse Two Two was one too. One One won one race. Two Two won one
too. How many horses are in this story?

Responses from Different Models

Initial Model: There are two horses in this story, One One and Two Two.

GPT-4: There are two horses in this story. Their names are “One One” and “Two Two.”

DPO: Based on the information given in the riddle, there are two horses involved in the story.
“The One One” and “The Two Two” are both mentioned as race horses, and each of them has
won one race respectively. So, there is one “One One” horse and one “Two Two” horse in this
story. Together, they make up the total two horses.

cDPO: Based on the information given in the riddle, there are two horses involved in the story.
“The One One” and “The Two Two” are both designated as race horses, indicating that there
are two horses with those specific monikers. “One One won one race” refers to the horse with
the name “One One” winning one race. “And Two Two won one too” refers to the horse with
the name “Two Two” winning one race as well, implying that both horses won one race each,
not ruling out the possibility of both being race horses. So, there is “One One” horse and “Two
Two” horse in this story.

χPO: There are two horses in this story.

SPPO: Based on the information provided in the riddle, there are two horses involved in the
story. “One One” and “Two Two” are both race horses, and the sentence “One One won one
race. Two Two won one too.” indicates that both horses won one race each. So, there are two
distinct horses that won a race each, namely One One and Two Two. Therefore, the number of
horses in this story is 2.

SimPO: Based solely on the information provided in the riddle, there could be as many as
three horses and as few as one. The first two lines introduce two horses, “One-One” and “Two-
Two.” The next two lines indicate that each can win a race, but the information about the races
themselves and the horses that competed in them is missing. If “One-One” and “Two-Two”
raced each other, then just those two horses would exist in this story. However, if either or
both raced a third horse, the number of horses in the story could be three. Therefore, the actual
number of horses in this riddle’s story is unknown.

POWER-DL (ours): The story mentions two horses, One One and Two Two. However, it’s
possible that there could be more horses involved. The statement “One One won one race”
does not specify whether the track was crowded with competitors, and it’s possible that the
horse had to race against multiple opponents. Therefore, the number of horses in the story
could be anywhere from two to many. The statement only specifies the race results of the two
named horses.
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J EXPERIMENTAL RESULTS ON MISTRAL FAMILY

In this section, we provide experimental results on conducting preference optimization on Mistral-
7B (Jiang et al., 2023). We follow the same experimental details described earlier and finetune
mistralai/Mistral-7B-v0.1 in the base setting and mistralai/Mistral-7B-Instruct-v0.2 in the instruct
setting.

Table 6: AlpacaEval 2 and Arena-Hard results on Helpsteer2 and Zephyr settings for Mistral family.
Helpsteer2 Zephyr

Mistral-7B-Base Mistral-7B-Instruct Mistral-7B-Base Mistral-7B-Instruct
AlpacaEval Arena-Hard AlpacaEval Arena-Hard AlpacaEval Arena-Hard AlpacaEval Arena-Hard

Method LC(%) WR(%) WR(%) LC(%) WR(%) WR(%) LC(%) WR(%) WR(%) LC(%) WR(%) WR(%)

Initial Model 5.47 4.16 1.5 27.70 22.26 14.8 2.85 2.11 0.6 27.70 22.26 14.8

DPO 11.89 10.39 4.6 36.47 29.41 17.1 15.67 13.26 5.9 36.55 36.28 24.3
DPO+SFT 10.57 8.21 3.4 35.28 27.88 16.9 12.30 10.68 5.4 35.31 35.70 25.1
cDPO 12.12 10.52 3.5 32.07 29.22 16.6 13.57 12.24 5.4 31.42 30.43 20.9
χPO 10.88 8.64 4.1 38.90 37.02 22.5 9.80 8.35 3.4 34.79 35.53 17.0
SimPO 14.56 13.97 7.9 38.28 28.89 14.1 16.08 16.50 7.3 36.23 29.11 22.5

POWER-DL 19.83 15.40 8.2 42.26 34.72 23.7 20.34 19.50 12.1 42.57 42.53 28.0
POWER 19.72 16.04 6.5 39.23 33.06 20.1 17.09 15.25 10.2 38.13 36.85 26.2

Table 7: Mistral MT-Bench results on Helpsteer2 and Zephyr settings.
Helpsteer2 Zephyr

Mistral-7B-Base Mistral-7B-Instruct Mistral-7B-Base Mistral-7B-Instruct
Method GPT-4 Score GPT-4 Score GPT-4 Score GPT-4 Score

Initial Model 3.1 6.6 3.6 6.6

DPO 3.4 6.3 5.0 6.6
DPO+SFT 3.4 6.3 5.2 6.3
cDPO 3.5 6.1 5.2 6.5
χPO 3.2 6.6 5.0 6.2
SimPO 2.9 6.3 4.5 6.0

POWER-DL 3.4 6.6 5.2 6.6
POWER 3.2 6.6 5.2 6.5
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