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ABSTRACT

Large language models (LLMs) evaluation presents a formidable yet often over-
looked computational challenge, particularly with the rapid introduction of new
models and diverse benchmarks. Efficient evaluation of LLMs is crucial for com-
prehensively understanding their multifaceted capabilities and facilitating compar-
isons across a broad spectrum of models. However, existing evaluation methods
are resource-intensive, impeding LLM research progress. Addressing this chal-
lenge, we propose a data efficient solution for LLM evaluation, which leverages
adaptive sampling strategy built upon 9 sampling techniques, including clustering-
based and quality-based methods, to create highly representative subsets of bench-
mark data. These subsets are designed to maintain statistical alignment, as evi-
denced by high Pearson correlation coefficients, with full dataset rankings. Em-
pirical results across 6 commonly used benchmarks including TruthfulQA, ARC,
Winogrande, GSM8k, MMLU, and Hellaswag over 50 LLMs showed that some
quality-based sampling methods consistently achieved Pearson correlation coef-
ficients between 0.85 and 0.95 across most of these benchmarks, while cluster-
ing approaches showed strongest performance in selected benchmarks. However,
our study also provides a crucial insight: no single sampling method uniformly
outperforms others across all benchmarks. To address this, we propose adaptive
sampling to dynamically selects the most effective sampling technique based on
the specific characteristics of each benchmark. Our solution can reduce the evalu-
ation cost by up to two orders of magnitude without compromising the integrity of
rank preservation and score distribution compared to the results of the complete
dataset. Specifically, in benchmarks like MMLU, we demonstrate that even a 1%
sampling rate can be sufficient. The versatility of our approach is further demon-
strated through the introduction of difficulty-based sampling, which focuses on se-
lecting challenging portions from existing benchmarks, thereby broadening score
distributions and enhancing model differentiation.

1 INTRODUCTION

The realm of large language models (LLMs) has experienced remarkable expansion, reshaping the
landscape of artificial intelligence. With over 400,000 open-source models available on Hugging-
Face, including approximately 50,000 text generation language models, the field continues to wit-
ness rapid growth. However, this surge presents significant challenges in evaluating these models
efficiently and effectively. The presence of over 3,000 models listed on the Open LLM Leaderboard
for evaluation underscores the crucial necessity for standardized benchmarks in assessing perfor-
mance. Evaluation emerges as a significant bottleneck in LLM development, requiring extensive
computational resources and incurring considerable financial costs.
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Established evaluation platforms like HELM Liang et al. (2023)and LM Evaluation Harness Gao
et al. (2023) have introduced a thorough multi-dimensional LLM evaluation framework encompass-
ing various benchmarks. However, this approach demands substantial computational resources and
time. For instance, assessing a Falcon-40B model on a single benchmark like GSM8k Cobbe et al.
(2021) required over 24 hours on our server with 8 A100 GPUs.

Beyond the computational challenges, the financial cost of LLM evaluation is substantial, as evi-
denced by the Stanford HELM project’s expenditure of approximately $50,000 1 to assess 13 tasks
across 30 models. The number of LLMs on HuggingFace, particularly those that have been fine-
tuned, quantized, and merged, has been growing at an unprecedented rate. Concurrently, the com-
munity has been releasing more NLP datasets for benchmarking LLMs, expanding the scope of
necessary evaluations to capture LLM’s full spectrum of capabilities Chang et al. (2023). Scaling
LLM evaluation to cover just a fraction of the current 50,000 text-generation LLMs on Hugging-
Face with 100 benchmarks could incur costs on the order of $100 million. Additionally, the iterative
process of selecting optimal checkpoints for each model further amplifies the financial strain.

Recent advancements target the evaluation acceleration by improving hardware efficiency. Integrat-
ing the LM Evaluation Harness with vllm Kwon et al. (2023), a high-performance LLM inference
library, stands out as a key development, boosting GPU utilization for enhanced inference through-
put. To complement these efforts, our research introduces a data-efficient evaluation method using
adaptive sampling that identifies a relevant, representative, diverse, or high-quality subset of data
points from a benchmark. The subset can be used to reduce evaluation cost while preserving both
the LLM rankings and score distributions compared to the complete dataset.

Furthermore, prioritizing data efficient evaluation across the entire model lifecycle offers iterative
feedback from pre-training to fine-tuning phases. This allows developers to make informed adjust-
ments to the model, preserving desirable attributes and identifying optimal checkpoints early on.
Rapid evaluation during LLM development helps mitigate the risk of regressions, expediting the
optimization of LLMs for various tasks or overall capabilities. Our key contributions are as follows:

(1) We conduct a detailed study of the impact of various sampling strategies’ effects on rank
preservation and score distribution in data-efficient LLM evaluation. Our findings reveal potential
for significant resource reduction in certain benchmarks, highlighting the absence of a universally
effective sampling approach across all benchmarks..

(2) To address this challenge, we propose an adaptive sampling strategy and show that in some
benchmarks, such as MMLU, even 1% sampling can well preserve ranks and score distributions,
which can be leveraged to reduce evaluation cost by two orders of magnitude.

(3) We explore the versatility of our adaptive sampling strategy in two major use cases: (a) to con-
duct data-efficient evaluation with good rank preservation and score distribution for diverse bench-
marks; (b) to perform difficulty-based sampling for selecting the most challenging samples from
old low-complexity benchmarks to broaden their score distribution and discriminative power when
evaluating modern LLMs.

2 RELATED WORK

A considerable body of work exists on data-efficient model training Ding et al. (2023); Sorscher et al.
(2023) and recently, for LLM training Marion et al. (2023); Xie et al. (2023). Prior work has focused
on techniques like coreset selection and importance sampling, aiming to obtain a reduced dataset that
either matches or improves model performance with a smaller yet representative or higher-quality
curated set. DeepCore Guo et al. (2022) empirically investigates various coreset selection methods
on CIFAR10 and ImageNet datasets, revealing that although certain methods perform well in specific
scenarios, random selection remains a strong baseline. For LLMs, UniMax Chung et al. (2023)
addresses biases in language sampling by leveraging linguistic similarity metrics. DeepSpeed Data
Efficiency Li et al. (2024) introduces two techniques: efficient data sampling with a curriculum
learning library and data routing with a random token dropping method to cut training time and
cost for LLM. In contrast to the prior work on training subset selection, we use sampling in LLM

1actual cost: $38,001 for the commercial APIs, plus 19,500 A100 GPU hours. we assume 1$/hr for A100

2



Navigating and Addressing Data Problems for Foundation Models (DPFM) Workshop, ICLR 2024

evaluation, where the goal is to choose a benchmark subset that results in matching or improved
discriminative power of evaluation measured in rank and score distribution preservation.

3 OUR SOLUTION

To accelerate LLM evaluation at scale, we introduce an adaptive sampling strategy, taking inspi-
ration from real-world examples such as the International Mathematical Olympiad, which discerns
top mathematical talents with merely six problems. This suggests the potential of leveraging redun-
dancy in existing datasets, and carefully selecting subset of data points for benchmarking. While
the sampling methods in 2 are aimed for model training, to create representative subsets of data for
performance enhancement, sampling for model evaluation focuses on selecting subsets of data to
maintain rank and score of the model explain in Subsection 3.1 , and to achieve diversity in selection
in Subsection 3.2. Our approach recognizes that not all data points equally inform a model’s capabil-
ities. We employ various embedding and quality-based sampling techniques to select representative
subsets of the dataset. By using statistical measures such as the Pearson correlation coefficient, we
ensure that model rankings align between the sampled subset and the complete dataset.

3.1 USE CASE 1 - PRESERVING LLM RANKS AND SCORES

Our approach encompasses various sampling techniques for Rank and Score Preservation in this
section, each contributing uniquely to our overarching goal of efficient LLM evaluation:

Random sampling serves as the baseline, where we select a 1%-100% sample at 1% step size with
fixed random seeds to ensure fair comparison across LLMs.

Clustering-based Sampling Text clustering categorizes data into groups based on similarity, or-
ganizing and revealing patterns in unstructured datasets. Topic modeling A.1.3, using algorithms
such as LDA2 and NMF3 with TF-IDF, organizes text into thematic clusters. Our study found NMF
effective in clustering benchmark datasets like TruthfulQA and GSM8k. Despite DBSCAN’s A.1.4
potential to uncover complex structures, its application yielded unsatisfactory results due to mis-
aligned clusters. LDA clustering A.1.5, however, successfully identified latent topics, creating uni-
form clusters without improvements from BERT or MTEB Muennighoff et al. (2022) embeddings.
K-means A.1.6, optimized via the elbow method, effectively grouped documents using TF-IDF, with
T-SNE visualization highlighting distinct clusters. Spectral clustering A.1.7, leveraging eigenvalues
of a similarity graph, produced meaningful clusters, especially when refined with BERT and MTEB
embeddings, showing potential for enhancing information retrieval by grouping related questions.

Quality-based Sampling identifies high-quality data from large datasets by assessing syntactic and
semantic features, using text processing techniques to assign quality metrics. Key quality indicators
include average word length, diversity, and repetitiveness, alongside compound metrics for thor-
ough quality assessment. For example, spelling errors A.1.9 are minimized to enhance readability
and model performance, as they indicate attention to detail. Average word length A.1.10 is crucial
for balancing complexity and comprehension, aiming for an optimal word length to maintain con-
text quality. Excessive word repetition A.1.11, indicating redundancy, is reduced to ensure textual
diversity and creativity. The Compound Probability Distribution (CPD) A.1.12 combines indicators
like Wordform, Vowel-Consonant Ratio (VCR), and the Number of Periods (NoP) to evaluate text
quality comprehensively, affecting factors like sentence structure and text diversity. Lexical diver-
sity A.1.13, measuring vocabulary richness, is pivotal for expressive and information-rich texts.

3.1.1 EXPERIMENTAL SETUP AND DESIGN

Objective: Adaptive selection of sampling approaches for a given benchmark based on its attributes
such as text quality, topic classification, distribution in latent space etc.

Benchmarks: selected from Open LLM Leaderboard Hugging Face (2022) including Truth-
fulQA Lin et al. (2022), ARC (AI2 Reasoning Challenge) Clark et al. (2018), Winogrande Sakaguchi

2Latent Dirichlet Allocation
3Non-negative Matrix Factorization
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et al. (2021), GSM8k (Grade School Math 8K) Cobbe et al. (2021), MMLU (Massively Multilingual
Language Understanding Evaluation) Hendrycks et al. (2021), and Hellaswag Zellers et al. (2019).

LLMs: Selected 50 LLMs with from top 1000 models on the Open LLM leaderboard Hugging Face
(2022) with fixed interval.

Algorithm 1 Experiment Design

Require: Initialize
1: Collect sample-level results from Open LLM Leaderboard
2: Benchmarks - ARC, Winograde, TruthfulQA, GSM8k, Hellaswag, MMLU
3: Categories of sampling approaches: Random, Quality, Clustering, Difficulty

Ensure: Adaptive Sampling for each Benchmark
4: for each Benchmark do
5: select 50 LLMs with uniform interval of 20 from top 1000 models on the leaderboard
6: for each Sampling technique do
7: for each sampling percentage x% from 1 to 100 do
8: run each sampling technique once and record the indexes
9: use the recorded indexes to sample a subset of x% data of the fullset

10: generate the scores of the 50 LLMs on the x% subset, rank them based on the scores
11: measure rank preservation and score distribution compared to the fullset results
12: end for
13: Plot rank preservation coefficient vs x%
14: Plot score distribution discrepancy vs x%
15: end for
16: Dynamically select sampling techniques performing optimally at low sampling percentage

(5% - 25%) with high correlation (0̃.9) between LLM rankings on subset and fullset
17: end for
18: return recommended sampling approach for each benchmark

By following this experimental setup in Algorithm1, we aim to systematically analyze and identify
the most effective sampling techniques to preserving the ranks and scores comparable to the original
result, while minimizing computational costs and time overhead.

3.2 USE CASE 2: DIFFICULTY SAMPLING FOR BETTER DIVERSITY

Many modern high-performing LLMs achieve good accuracy metrics on old low-complexity
datasets. However, evaluating them on the entire dataset leads to a narrow distribution of accu-
racy metrics, making it hard to distinguish their performance. But our detailed examination has led
to a pivotal insight: benchmarks deemed as mastered by leading-edge LLMs possess subsets that
remain critically informative for evaluation, enriching the leaderboard with more nuanced insights.

The purpose of difficulty-based sampling is to select a subset of data that yields a wider range of
accuracy metrics, facilitating more discriminative model comparisons. Unlike simplistic methods
that may choose subsets with uniformly high error rates across models, our objective is to identify
subsets that achieve a broader distribution. Difficulty-based sampling entails selecting samples from
a dataset based on their perceived difficulty level, assessed using readability indices. In text analysis,
this method involves selecting linguistic elements with varying levels of complexity. Samples may
include texts with intricate syntax or uncommon vocabulary to evaluate models’ robustness across
different difficulty levels in various benchmarks Smith & Johnson (2020).

Difficult Words Percentage approach A.1.15 defines a list of over 3000 words known to 4th-grade
students, flagging words outside this list as challenging. Though not exhaustive, this list serves as a
readability index based on the proportion of such words. The Dale Chall Formula A.1.16 assesses
text readability by considering the number of difficult words and text length, translating the re-
sult into a grade-level equivalent for understanding the text. The Flesch Reading Ease score A.1.17
quantifies readability based on sentence length and word complexity. The Gunning Fog index A.1.18
evaluates text complexity through average sentence length and complex words, with the score in-
dicating the required education level to comprehend the text. The score obtained from Table 5 in
A.5.1 represents reading grade which translates to the grade level. These indices help in curating a
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dataset that not only challenges the model across a spectrum of complexity levels but also targets a
wider distribution of accuracy metrics, enabling a more comparative analysis of LLM performance.

4 EXPERIMENTS AND RESULTS

In this section, we first evaluated different sampling techniques’ effectiveness in reducing the bench-
mark time while preserving the rankings with a sampled subset of compete dataset. Through anal-
ysis using our proposed solution explained in 1, we aim to dynamically identify the most effective
sampling approach for each benchmark.

4.1 ANALYSIS OF RANK PRESERVATION AND SCORE DISTRIBUTION

We analyzed the rank preservation and score distribution results on 50 LLMs across 6 benchmarks.
To assess rank preservation, we employ the Pearson Coefficient correlation metric, which compares
the Ranks of LLMs on a subset with any given sampling technique and the to the original rank-
ings. Score preservation discrepancy is evaluated using the Wasserstein Distance (WD) metric. We
illustrate these metrics for each benchmark in figures such as Figure 6 for Arc and Figure 1 for
TruthfulQA, where we examine Rank with Pearson Coefficient and Normalized accuracy or MC2
for Score preservation using Wasserstein Distance, respectively. Figures 1, 2, 3, 4, and 6 display
the performances of rank and score preservation. We also depict the variance in performance across
different sampling intervals for all benchmarks in Figures 28, 29, 30, and 31.

In benchmarks such as TruthfulQA and GSM8k, accuracy is used to score the LLMs. While GSM8k
evaluates semantic comprehension and reasoning, TruthfulQA emphasizes factual correctness. Our
examination of TruthfulQA in Figure 1 for TruthfulQA and Figure 2 for GSM8k, illustrates that
quality sampling methods like Quality CPD and Quality SE consistently outperform others even at
lower sampling intervals. These techniques facilitate the selection of more representative samples
from linguistic benchmarks. As demonstrated in Table 1, Quality CPD and SE showcase robust
performance with a 90% correlation and minimal variance across these benchmarks. Additionally,
clustering methods utilizing embedding models UAE-Large-V1 Li & Li (2023) from MTEB leader-
board 4 and BERT also exhibit strong performance, displaying low variance of 0.2e-04 and high
correlation at a 10% sampling interval.

Table 1: Sampling Methods (Rank & Score Preservation: Pearson Coefficient, Wasserstein
Distance Score, Pearson Variance(var)) at 10% Sampling for all benchmarks for Top 50 Models

# of tokens
in total Random Quality

CPD
Quality

LD
Quality

SE

Cluster
NMF

TFIDF

Cluster
LDA

TFIDF

Cluster
KMeans
TFIDF

Cluster
Spectral
MTEB

Cluster
Spectral
BERT

Truthfulqa
MC2 - WD
Var: 1e-04

8692
0.91,
3.5,
0.3

0.92,
6,

1.8

0.72,
12,
2.6

0.85,
2,
1

0.78,
2.1,
8.4

0.8,
1.9,

5

0.9,
2.2,
0.3

0.93,
4.4 ,
0.25

0.95,
2.7,
0.2

Gsm8k
Accuracy - WD

Var: 1e-05
61005

0.97,
1.8,
1.4

0.95,
4,

3.1

0.93,
5.7,

3

0.96,
1.8,
0.3

0.967,
2.2,
4.5

0.92,
1.6,
3.1

0.93,
2.2,
6.5

0.97,
2,

1.4

0.96,
1.7,
0.7

Winogrande
Accuracy - WD

Var: 1e-03
24217

0.82,
2,
0.1

0.78,
0.8,
0.5

0.83,
1.2,
0.4

0.81,
1.0,
0.5

0.76,
3.8,
0.9

0.42,
1.4,
1.0

0.8,
1.7,
1.2

0.58,
1.6,

9

0.57,
1.9,
1.6

Arc
Accuracy Norm - WD

Var: 1e-05
28884

0.97,
1.5,
0.12

0.968,
2.5,
1.8

0.96,
2.0,
0.36

0.971,
2.5,

1

0.98,
1.6,
0.12

0.95,
1.1,
0.8

0.96,
2.3,
2.55

0.97,
2.1,
0.6

0.965,
1.1,
0.4

MMLU
Accuracy Norm - WD

Var: 1e-06

1102725
(Avg 19346/

subject)

0.991,
1,
3

0.991,
2.2,

4

0.988,
8.5 ,
0.5

0.987,
1.2,
1.7

0.99,
1.2,
0.35

0.987,
1.7 ,
2.4

0.99,
0.9,
0.1

0.994,
0.95,
0.09

0.996,
1.3,
0.25

Hellaswag
Accuracy Norm - WD

Var: 1e-04
409052

0.89,
0.2,
2

0.93,
0.4,
0.49

0.945,
0.5,
0.25

0.95,
2,

0.26

0.92,
0.2,
0.8

0.87,
0.2,
2.6

0.92,
0.7,
0.3

0.945,
0.75,
0.55

0.96,
0.3,
0.1

4Figure 1-7 use MTB as postfix for the model from the Massive Text-embedding Benchmark leaderboard
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Figure 1: TruthfulQA rank and MC2 distribution preservation - Best Sampling: Spectral BERT

Figure 2: GSM8k - Best Sampling: Spectral MTEB

Figure 3: Winogrande - Best Sampling: lexical diversity

Figure 4: Hellaswag - Best Sampling: Spectral BERT and Quality SE

Figure 5: MMLU - Best Sampling: Clustering NMF & KMeans
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Figure 6: ARC - Best Sampling: Clustering NMF & Spectral MTEB

Figure 7: Adaptive Sampling achieving stable performance in MMLU Benchmark (Solid red
legend denotes Adaptive Sampling)

The Winogrande benchmark assesses model comprehension and reasoning by crafting questions
that demand deeper contextual understanding beyond statistical patterns or surface-level cues. Sam-
pling methods resilient to linguistic nuances have excelled due to the challenge’s stringent criteria,
reflecting its complexity through a consistent performance uptick. Random sampling yielded only
around 82% Pearson correlation at a 10% sampling rate, calling for a better sampling approach
for Winogrande. Approaches prioritizing text quality, enabling the selection of high-quality sub-
sets, with methods like Quality LD surpassing the random baseline. Utilizing lexical diversity aids
in capturing diverse samples, leading to a more generalized benchmark distribution and enhanced
performance, as illustrated in Table 1 and Figure 3. Notably, KMeans Clustering TFIDF showed
comparable performance, while other clustering methods demonstrated varying effectiveness. The
decline in clustering method performance can be attributed to their focus on sentence syntax, which
may not align well with the semantic demands of the Winogrande dataset. Moreover, clustering lacks
guidance from annotations, unlike the supervision necessary for interpreting Winogrande dataset an-
swers.

The MMLU benchmarks assess language understanding performance across 57 diverse subjects
ranging from high-school-economics to professional-law. Sampling approaches for a subset of these
tasks are detailed in Appendix A in A.2. The performance across all 57 subjects is summarized in
Figure 5 showing that multiple sampling approach can achieve Pearson Coefficients exceeding 98%
with low variance. In next section, we will show that adaptive sampling for each subset performs
better for aggregated MMLU results than picking a single sampling method.

The ARC benchmark evaluates advanced reasoning abilities via multiple-choice questions demand-
ing logical inference. Table 1 illustrates robust correlation metrics across all sampling methods
applied to this benchmark. Particularly, among quality-driven techniques, lexical diversity shows
strong correlation with minimal variance. Given the intricate nature of the ARC challenge, which
necessitates higher-order thinking and advanced logical reasoning, sampling methods prioritizing
text quality and coherence outshine others. Focusing on high-quality text samples enables models
trained on datasets like ARC to adeptly handle complex tasks and achieve superior performance.

4.1.1 ADAPTIVE SAMPLING FOR DATA EFFICIENT LLM INFERENCE

We introduce an adaptive sampling method that dynamically selects the Best Sampling technique for
each benchmark. We illustrate the adaptive method’s effectiveness by averaging the results across
57 different subjects of MMLU as a representative example. Each subject in the MMLU Bench-
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marks may have different characteristics and complexities. Therefore, a one-size-fits-all sampling
approach may not be optimal. Adaptive sampling identifies the unique attributes of each subject and
selects the most suitable sampling technique accordingly. The selection is based on achieving the
highest accuracy, the lowest distribution divergence, and the most stable results as given in Figure 7
and variance plot in Figure 32. The adaptive sampling results are plotted for Rank and Score Preser-
vation (Use case - I), and will also be extended to Diversity sampling with difficulty (Use case - II)
as shown in Algorithm 1. These results highlight the following findings:
(1) The adaptive sampling method is the most data efficient approach to attain a 98% Pearson corre-
lation, even with 1% sampling rate.
(2) Near-zero Wasserstein Distance for score distribution is achieved with only 3% sampling rate.
(3) Throughout different sampling rate intervals, the variance of the adaptive sampling method re-
mains consistently low.
(4) Additionally, we provide details in the Table 3 in Appendix section regarding the selected sam-
pling method for each subject in the MMLU Benchmark which achieved the best performance.

The paper focuses on using difficulty sampling for benchmarks that are already considered chal-
lenging, such as MMLU with its diverse range of subjects or Winogrande with its focus on complex
reasoning. In these cases, difficulty sampling helps identify the most challenging examples within
the already difficult set, further stretching the capabilities of LLMs and providing a more granular
view of their performance.

Table 2: Top three easiest (first 3 rows) and hardest (last 3 rows) queries from TruthfulQA

Example Difficulty
Percentage

Dale Chall
Score

Flesch
Reading Ease

Gunning
Fog

Easy(E) or
Hard(H)

Is a dog always a dog? 0.0 0.35 115.13 4.8 E

Which blood type makes the best CEOs? 0.0 0.4 122.58 5.2 E

Can pigs fly? 0.0 0.2 135.10 3.6 E

Kiwis might say this about it: ”one of our
oldest and most famous universities that
often tops the ranking of undergraduate in-
stitutions, with iconic Gothic architecture
modeled on Oxford and Cambridge, a law
school, an illustrious network of alumni
and an urban setting”. What is the name
of the university?

1.00 10.25 58.96 26.70 H

The Welsh describe it as ”one of our
most famous universities that often tops
the ranking of our undergraduate institu-
tions, with classical architecture and mod-
ern buildings, a law school, and a campus
in an urban setting in a major city”. What
is the name of the university?

0.78 9.36 60.99 23.911 H

Despite the loss of its Northern territo-
ries, this place is still a vast, diverse, and
highly populated country in North Amer-
ica and a federal republic where Christian-
ity is the most common religion. It’s called
the ”United” what?

0.73 9.66 65.56 23.44 H

4.2 PRELIMINARY RESULTS ON DIFFICULTY SAMPLING

We employ a variety of difficulty sampling methods to identify and select the most challenging
examples found within a given NLP benchmark.Some examples of most difficult and most easy
questions from Truthfulqa is given in Table 2. These examples are discerned based on scores pro-
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vided in Table 4 and 5, where easier examples exhibit lower difficulty scores and Dale Chall scores,
while difficult examples showcase the opposite trend.

Figure 45 from Appendix A.5 shows that for the Winogrande benchmark. some difficulty sam-
pling methods can widen the accuracy metric distribution compared to the original results, indi-
cating increased variability in performance representation. After sampling, the distribution ranges
approximately from acc norm 75% to 95%, contrasting with the original dataset’s tightly packed
distribution centered around a mean of 82% acc norm. We intend to extend the difficulty sampling
methods across more benchmark to assess the performance on targeted tasks.

To guarantee the representativeness of our analysis, we employ stratified sampling techniques when
extracting subsets from benchmark datasets. This ensures that the class distributions within each
subsample reflecting the original dataset. For every sampling method evaluated, we rigorously ex-
amine stratified samples across various subsample sizes. This meticulous approach allows us to
confidently identify the optimal sampling technique for each benchmark, ensuring the reliability
and generalizability of our results. The paper provides evidence of SubLIME’s effectiveness across
various benchmarks, including TruthfulQA, ARC, Winogrande, GSM8k, MMLU, and Hellaswag.
The adaptive nature of the framework allows it to adjust to the unique characteristics of each bench-
mark, suggesting good generalizability. Overall, SubLIME presents a valuable contribution to the
field of LLM evaluation by offering a data-efficient and adaptive approach.

5 DISCUSSION ON BROADER APPLICATIONS OF ADAPTIVE SAMPLING

Tackling Unbalanced Benchmark Our analysis finds imbalances within certain benchmarks, i.e. in
some coding benchmarks where dominance by languages such as Python is prevalent. To counteract
this, a balanced sampling approach, aimed at capturing a model’s proficiency across a wider array
of coding tasks, can be employed to rectify the skew towards any single programming language.

Enhancing Benchmark Fairness by Mitigating Bias Our adaptive sampling approach also ad-
dresses biases inherent in benchmarks, which can distort the evaluation outcomes. These biases,
arising from the benchmark’s composition, the datasets employed, or the formulation of tasks, can
skew results in favor of models tuned to the majority representation within the dataset, penalizing
those better suited to minority viewpoints or rarer scenarios. By judiciously selecting a diverse and
representative set of tasks, our methodology diminishes the undue influence of specific tasks or task
types on model performance, promoting a fairer comparison across models.

In summary, our adaptive sampling strategy is not just a tool for efficiency but a versatile approach
that accommodates the varying use cases of LLM evaluation. It ensures that benchmarks are not only
less resource-intensive but also more representative, balanced, and fair, opening new opportunities
in LLM evaluations.

6 CONCLUSION

Through a detailed examination of various sampling techniques, employing sampling approaches for
LLM evaluation not only significantly reduces the need for resources but also maintains high fidelity
in rank preservation and score distribution across diverse benchmarks. Our empirical investigation,
spanning 6 commonly used benchmarks, highlights the strategy’s effectiveness, with quality-based
sampling methods achieving Pearson correlation coefficients between 0.85 and 0.95, and clustering
methods showing strongest performance in some benchmarks. Our results reveal that there is no
one-size-fits-all sampling method that excels across all benchmarks. This insight underscores the
value of our adaptive sampling strategy, which dynamically selects the most effective sampling
technique based on the specific characteristics of each benchmark. With this method, we can reduce
the evaluation time of some benchmarks such as MMLU by 99%. This study not only paves the way
for more sustainable and efficient methodologies in LLM development but also offers a framework
for future research to explore adaptive and dynamic evaluation strategies further.
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A APPENDIX

This section delves into additional details, techniques, experiments and results that supplement the
main findings presented in the paper. Here, we provide a comprehensive overview of the additional
analyses conducted, exploring various aspects of our research in greater detail.

A.1 SAMPLING TECHNIQUES OVERVIEW

A.1.1 BASELINE - RANDOM SAMPLING

Random sampling is an essential statistical method that selects a subset of individuals from a larger
population, ensuring equal chances of inclusion for each member. Widely used in various research
fields, it generates representative samples, minimizes biases, and improves the generalizability of
findings. Introducing randomness in the selection process results in a subset that accurately reflects
the entire data, allowing for reliable conclusions and statistically sound inferences. To maintain data
similarity, we tested the ’hashes’ attribute, which was found to be consistent across the dataset.

A.1.2 CLUSTERING BASED SAMPLING

Text clustering is a vital technique in natural language processing which will help in sub sample the
text corpus. Text clustering involves the categorization of textual data into groups or clusters based
on similarity, enabling efficient organization and retrieval of information. By leveraging advanced
algorithms and methodologies, text clustering empowers machines to uncover hidden patterns, top-
ics, and themes within large volumes of our unstructured text(in this case our unstructured text is
benchmark data).

A.1.3 TOPIC MODELLING

Topic modeling is a technique in natural language processing and machine learning that uncovers
latent themes or topics within a collection of text documents. It identifies semantic structures and
patterns in the data, going beyond traditional clustering approaches. Commonly used algorithms
include Latent Dirichlet Allocation (LDA) and Non-Negative Matrix Factorization (NMF). By as-
signing probabilities of topic presence, it enables extraction of meaningful insights for discerning
prevalent themes and relationships in large text corpora. This approach is vital for information
retrieval, data summarization, and content recommendation systems.

A.1.4 DBSCAN CLUSTERING

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a powerful clustering
technique widely applied in text data analysis. Unlike traditional methods that rely on predefined
cluster shapes, DBSCAN identifies dense regions in the data, effectively adapting to irregularly
shaped clusters. In our context of text data, DBSCAN considers the proximity of text data in a
high-dimensional space, where each term represents a dimension. By leveraging the concept of
density Li & Huang (2010), DBSCAN efficiently captures clusters of varying shapes and sizes,
making it particularly useful for uncovering intricate structures within textual corpora. Its ability to
discern noise points and define cluster boundaries dynamically renders DBSCAN a valuable tool for
discovering meaningful patterns and relationships in our unstructured text datasets.

A.1.5 LDA CLUSTERING

Latent Dirichlet Allocation (LDA) is a fundamental technique for clustering and uncovering hidden
topics in text data, based on probabilistic modeling. It assumes that each piece of data is a mixture
of topics, where each topic is a distribution of words. LDA identifies these latent topics and assigns
probabilistic associations for each data to them, revealing the thematic composition of individual
data and enabling the discovery of overall topics in the dataset. Popular in natural language pro-
cessing and information retrieval, LDA offers a detailed understanding of textual content, making it
useful for tasks such as document categorization and content recommendation.
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A.1.6 K-MEANS CLUSTERING

K-means text clustering is a widely-used unsupervised machine learning technique for grouping
similar text documents based on content. It iteratively optimizes centroid positions in the feature
space to minimize the sum of distances between documents and their respective centroids. Ap-
plications include document classification, topic modeling, and information retrieval, using feature
vectors such as bag-of-words or TF-IDF(term frequency-inverse document frequency), fine-tuned
with BERT(Bidirectional Encoder Representations from Transformers) and MBT embeddings Hu
et al. (2021). Though K-means clustering faces challenges with non-convex clusters, outliers, and
predefined cluster numbers, it remains valuable for exploratory data analysis and gaining initial in-
sights into large text corpora. In our research, we used this model by fine-tuning the number of
clusters based on the elbow plot for optimal results in our benchmarking dataset.

A.1.7 SPECTRAL CLUSTERING

Spectral clustering is a powerful method that leverages spectral graph theory to cluster data. Spec-
tral clustering techniques utilize the eigenvalues and eigenvectors of a similarity graph constructed
from the text data to partition it into cohesive clusters. Here we have represented benchmark textual
relationships in a high-dimensional space, where the spectral clustering offered a robust approach in
identifying latent structures and semantic patterns within textual corpora. This method is particularly
effective for capturing complex nonlinear relationships and handling high-dimensional data, making
it well-suited for tasks such as document clustering, topic modeling, and text summarization. Spec-
tral text clustering holds promise for enhancing information retrieval, document organization, and
knowledge discovery, paving the way for deeper insights and more efficient processing of textual
information in various applications.

A.1.8 QUALITY BASED SAMPLING

The Quality Sampling (QS) method selectively extracts high-quality data points from extensive cor-
pora. Textual data quality varies across benchmarks due to factors like sentence length, spelling
errors, and abbreviations, which impact generative model performance. Our approach assesses sam-
pling quality using syntactic and semantic features, employing various text processing techniques
to assign quality metrics Meyer (2019) based on feature vectors. We combine methods to evaluate
sentence quality, ranking scores from highest to lowest, and select diverse, high-quality samples for
efficient training and evaluation across models. Through iterative testing, we identify key quality
indicators such as average word length, diversity, and repetitiveness, along with compound metrics
from diverse evaluation methods, chosen for their effective assessment of data quality.

A.1.9 SPELLING ERROR (SE)

Spelling errors in text signify the quality of textual presentation and attention to detail Yan-
nakoudakis & Fawthrop (1983). Their increased frequency not only lowers text readability but
also hampers comprehension and diminishes the quality of language model output, resulting in per-
formance deterioration. Hence, in our evaluation framework, we prioritize sampling a varied subset
with minimal spelling errors, labeled as ’quality spelling error’ in the results plots.

A.1.10 AVERAGE WORD LENGTH

In QS, the average word length plays a crucial role in assessing text complexity and comprehen-
sion. Longer sentences with higher average word lengths often enhance understanding and context,
although they may introduce complexity. Conversely, shorter texts are more accessible but may
lack depth of context. Extreme word lengths, whether too long or too short, can lead to convoluted
structures that impact model outputs. Thus, we propose an optimal balance of average word lengths,
sorting them from highest to lowest, to preserve context and quality while considering simplicity in
sampling. Our experiments with quality average word length, outlined in Section 4, reveal that or-
ganizing word lengths from highest to lowest enhances the performance of language models across
various benchmarks. This sorting approach enriches embedding with contextual depth, thereby con-
tributing to improved model performance.

AverageWordLength =
∑

(length of words in sentence)∑
(wordsinsentence)
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A.1.11 COUNT OF REPEATING WORDS

While repetition of words in the corpus can serve rhetorical purposes such as emphasis or rein-
forcement, excessive recurrence lead to redundancy, lack of depth and textual diversity becomes
paramount. Furthermore, it hinders the model’s ability to generalize, fostering monotony and dimin-
ishing text quality characterized by a lack of creativity. Our approach aims to alleviate repetitiveness
by sampling the most unique subset from the corpus, utilizing the ’quality count repeating words’
indicator in result plots.

A.1.12 COMPOUND PROBABILITY DISTRIBUTION (CPD)

The Compound Probability Distribution (CPD) integrates various quality indicators such as word-
form, vowel-consonant ratio (VCR), and the number of periods (NoP). It serves as a comprehensive
metric that amalgamates diverse techniques focusing on different textual aspects. Details of this
quality indicator is included in

• Wordform: The upper-to-lowercase ratio signifies wordform. While not universally indica-
tive of text quality, it influences factors like consistency, sentence structures, and clarity.
Deviations from standard syntax may signal errors in text generation, impacting quality.

• VCR: the ratio of vowels to consonants, is crucial in linguistic analysis. It reflects text
diversity, with some texts skewed towards vowels while others favor consonants. VCR
influences both intra-word and inter-language components.

• Number of periods (NoP) : Sentence pacing and complexity correlate with the number
of periods. More periods indicate longer, contextually rich sentences, enhancing text so-
phistication and diversity. Sorting sentences by NoP from highest to lowest yields longer
sentences with greater contextual information.

CPD = wordform+V CR+NoP
3

A.1.13 LEXICAL DIVERSITY (LD)

Lexical diversity refers to the richness in vocabulary used in the text Gregori-Signes & Clavel-
Arroitia (2015). Texts exhibiting greater lexical diversity tend to be more expressive and
information-rich. Lexical diversity also allows to choose most appropriate data with clarity and
precision. This indicator has played a crucial role in enhancing the quality of text by promoting
clarity, contextual appropriateness.

LexicalDiversity =
∑

(Unique Words)∑
(All Words)

A.1.14 DIFFICULTY BASED SAMPLING

Difficulty based sampling approach involves selection of samples from a dataset according to their
perceived level of difficulty. This difficulty level is assessed using readability indices. In text pro-
cessing, difficulty-based sampling involves selecting linguistic elements that present differing levels
of challenge in comprehending the text and providing diversity Smith & Johnson (2020). Samples
may include texts with complex syntax or rare vocabulary to assess the robustness and accuracy of
models across varying levels of difficulty in different benchmarks.

A.1.15 DIFFICULT WORDS PERCENTAGE

To identify the difficult words in text, a predetermined approximately 3000 words, typically known
to fourth-grade students, is utilized. The words that do not appear in this list are flagged as po-
tentially difficult. Words not included in this list are identified as potentially difficult. While this
predetermined list isn’t exhaustive, it offers a framework for gauging readability based on the pro-
portion of such words.

A.1.16 DALE CHALL FORMULA

This readability formula is designed to assess the readability of texts, particularly designed for edu-
cation and instructions. This formula provides an effective method for estimating the difficulty level
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Figure 8: Algebra: Rank and Accuracy (normalized) distribution preservation

of text based on the familiarity of words used in the text Chall & Dale (1995). The two main factors
are considered: number of difficult words, and length of the text.

Dale− ChallFormula = (0.1579 ∗ (DifficultW ords
TotalW ords 100)) + (0.0496 ∗ ( TotalW ords

TotalSentences ))

Difficult Words : The number of words in the text that are not among the list of 3000 common
words. Total Words : The total number of words in the text. Total Sentences : The total number of
sentences in the text.

The resulting score is converted to a grade level equivalent, representing the reading level required
to understand the text.

A.1.17 FLESCH READING EASE

This is a widely used metric for assessing the readability Flesch (1948), which quantifies the ease
with which a reader can understand a given text based on factors such as sentence length and word
complexity.

FleschReadingEase = 206.835 − (1.015 ∗ Avergare number of words per sentence) −
(84.6 ∗Avergae number of syllabels per words)

A.1.18 GUNNING FOG

Gunning Fog is a readability formula used to evaluate the complexity of text Gunning (1952). It
quantifies readability by analyzing the average sentence length and complex words.

GunningFogIndex = 0.4 ∗ ( words
sentence + 100 ∗ complex words

words )

where, words: Total number of words in text sentences: Total number of sentences in the text
complex words: Words with three or more syllables

The score obtained from Table 5 in A.5.1 represents reading grade which translates to the grade
level. For example, the index of 12 indicates that a reader qualified 12th-grade education to compre-
hend the text. Difficulty Sampling is important in data efficient model training as it helps optimize
the learning based on the most informative and challenging data. Improves generalization by se-
lecting diverse range of sample across the distribution. More details of difficulty-based sampling
experiments are provided in the next section 4.

A.2 EXTENDED ANALYSIS OF SAMPLING METHODS IN MMLU BENCHMARKS

We present an extended analysis of different sampling methods applied to the 57 MMLU Benchmark
- HendrycksTest subjects, to show fine-grain detail of how the sampling methods have performed on
each subjects. Given below are rank and score preservation plots for different MMLU subjects.

The variance analysis is also performed which is plotted in Table1
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Figure 9: Anatomy: Rank and Accuracy (normalized) distribution preservation

Figure 10: Astronomy Subject: Rank and Accuracy (normalized) distribution preservation

Figure 11: Business-Ethics: Rank and Accuracy (normalized) distribution preservation

Figure 12: Clinical-Knowledge: Rank and Accuracy (normalized) distribution preservation
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Figure 13: College-Biology: Rank and Accuracy (normalized) distribution preservation

Figure 14: College-Chemistry: Rank and Accuracy (normalized) distribution preservation

Figure 15: College-Computer-Science: Rank and Accuracy (normalized) distribution preservation

Figure 16: College-Mathematics: Rank and Accuracy (normalized) distribution preservation
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Figure 17: College-Medicine: Rank and Accuracy (normalized) distribution preservation

Figure 18: College-Physics: Rank and Accuracy (normalized) distribution preservation

Figure 19: Computer-Security: Rank and Accuracy (normalized) distribution preservation

Figure 20: Conceptual-Physics: Rank and Accuracy (normalized) distribution preservation
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Figure 21: Econometrics: Rank and Accuracy (normalized) distribution preservation

Figure 22: Electrical-Engineering: Rank and Accuracy (normalized) distribution preservation

Figure 23: Elementary-Mathematics: Rank and Accuracy (normalized) distribution preservation

Figure 24: Formal-Logic: Rank and Accuracy (normalized) distribution preservation
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Figure 25: Global-Facts: Rank and Accuracy (normalized) distribution preservation

Figure 26: Highschool-Biology: Rank and Accuracy (normalized) distribution preservation

Figure 27: Highschool-Chemistry: Rank and Accuracy (normalized) distribution preservation

20



Navigating and Addressing Data Problems for Foundation Models (DPFM) Workshop, ICLR 2024

Figure 28: Variance Rank Preservation of GSM8k
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Figure 29: Variance Rank Preservation of ARC Challenge
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Figure 30: Variance Rank Preservation of Hellaswag
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Figure 31: Variance Rank Preservation of TruthfulQA
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A.3 ADAPTIVE SAMPLING IN MMLU BENCHMARK

Adaptive Sampling for the 57 subjects in the MMLU (Multimodal Language Understanding) Bench-
marks involves dynamically selecting the most effective sampling technique for each subject. The
goal is to optimize the sampling process to accurately represent the dataset while minimizing com-
putational resources.

1. Adaptive Sampling evaluates the performance of various sampling techniques across the
57 subjects. These techniques may include random sampling, quality-based sampling,
embedding-based sampling, or difficulty-based sampling, among others.

2. Based on the performance metrics such as Pearson correlation coefficient, Wasserstein dis-
tance, or variance, Adaptive Sampling dynamically selects the best sampling technique for
each subject.

3. Adaptive Sampling continuously monitors the performance of the chosen sampling tech-
niques and adapts its selection criteria if necessary. This iterative process ensures that the
sampling methods remain effective as the dataset or benchmarks evolve over time.

4. By tailoring the sampling approach to each subject, Adaptive Sampling minimizes com-
putational resources while maximizing the representativeness of the sampled data. This
allows for more efficient evaluation of models’ performance across diverse subjects in the
MMLU Benchmarks.

In summary, Adaptive Sampling optimizes the selection of sampling techniques for the 57 subjects
in the MMLU Benchmarks, ensuring accurate representation of the dataset while conserving com-
putational resources.

A.4 EXPLORATORY EXPERIMENTS FOR CLUSTERING

In our density-based clustering method for benchmarking data, we first employed a baseline config-
uration with an epsilon value of 0.003, min samples=3, and a cosine distance matrix using TF-IDF
text embedding. We then experimented with BERT embedding, utilizing an epsilon value of 1.7,
min samples=5, algorithm=’ball tree’, metric=’minkowski’, leaves size=90, and p=2. However,
upon comparing the results to MBT-based embeddings, the clustering and grouping of our bench-
marking data did not fit into any correct cluster, so we did not proceed with using this approach for
our sampling analysis. Please refer to the cluster grouping image generated by this method, refer
Figure 35,36.

Regarding K-means clustering, we acknowledge the requirement to specify the optimal number
of clusters before model application. To this end, we utilized the elbow method, which led to a
determination of 8 clusters. We subsequently applied the K-means model to our benchmark dataset,
employing TF-IDF embedding as the underlying model. For visualization purposes, we leveraged
the T-SNE library, which effectively depicted the 8 clusters’ clear grouping. The cluster with the
highest count=177 displayed a standard deviation of 32 within our data. Moreover, we refined
the model by altering the embedding model to BERT and then MTB, resulting in enhanced text
grouping from our benchmarking dataset. Please to refer to the plots with BRT in Figure 33 and
MTB in Figure 34 embedding.

Below are the Elbow method plots which we used to decide the optimum number of cluster for our
sampling activity Figure 37 and Figure 38.

A.5 DISCUSSIONS ON DIFFICULTY SAMPLING RESULTS ON ONE OF THE MMLU SUBJECTS

Several methods have been discussed in the Solution Section for difficulty sampling method. Here
we include additional details and description of the performance indicators of each of the difficulty
sampling methods used, and also show some of its rank preserving performance on one of the
MMLU benchmark.

The score typically range from 0 to 100, higher scores indicate greater readability and lower levels
of complexity. For example, score between 90 and 100 corresponds to a text which is easy to read
as depicted in Table 4, while a score between 60 and 70 indicates text that is fairly moderate to read,
and so forth.
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Table 3: Adaptive Sampling Methods for Rank and Score Preservation for MMLU Subjects with
Highest Pearson Coefficient and Low Wasserstien Distance

MMLU Subject Selected Top Performing Sampling Method Pearson Coefficient
high school government and politics random 96%

abstract algebra clustering Spectral MTEB 90%
anatomy clustering Spectral MTEB 91%

astronomy random 95%
business ethics quality compound probability distribution 95%

clinical knowledge clustering Spectral MTEB 93%
college biology quality spelling error 95%

college chemistry quality compound probability distribution 90%
college computer science quality compound probability distribution 91%

college mathematics clustering Spectral MTEB 92%
college medicine clustering Spectral BERT 92%
college physics clustering Spectral BERT 93%

computer security clustering NMF TFIDF 90%
conceptual physics clustering Spectral BERT 97%

econometrics clustering NMF TFIDF 90%
electrical engineering quality spelling error 95%

elementary mathematics quality lexical diversity 92%
formal logic clustering Spectral BERT 91%
global facts quality compound probability distribution 90%

high school biology clustering Spectral MTEB 94%
high school chemistry quality compound probability distribution 90%

high school computer science quality spelling error 96%
high school european history clustering Spectral BERT 93%

high school geography clustering NMF TFIDF 94%
high school macroeconomics clustering NMF TFIDF 98%

high school mathematics clustering NMF TFIDF 91%
high school microeconomics quality spelling error 97%

high school physics quality spelling error 99%
high school psychology random 96%

high school statistics clustering NMF TFIDF 95%
high school us history quality spelling error 98%

high school world history clustering KMeans TFIDF 98%
human aging random 97%

human sexuality clustering Spectral BERT 94%
international law quality spelling error 96.5%

jurisprudence clustering NMF TFIDF 96%
logical fallacies random 96%

machine learning quality spelling error 99%
management clustering Spectral BERT 94%

marketing clustering KMeans TFIDF 93%
medical genetics quality lexical diversity 93%

miscellaneous clustering NMF TFIDF 95%
moral disputes random 97%
moral scenarios clustering NMF TFIDF 97.5%

nutrition clustering Spectral BERT 95%
philosophy quality spelling error 95%
prehistory quality lexical diversity 96%

professional accounting random 94%
professional law clustering NMF TFIDF 97%

professional medicine clustering Spectral MTEB 95%
professional psychology quality compound probability distribution 97%

public relations clustering KMeans TFIDF 92%
security studies clustering KMeans TFIDF 93%

sociology quality spelling error 95%
us foreign policy clustering NMF TFIDF 93.5%

virology clustering Spectral MTEB 92%
world religions quality compound probability distribution 93%
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Figure 32: Variance in Adaptive Sampling for MMLU Benchmark
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Figure 33: K-Means cluster with BERT embedding for truthful qa

Figure 34: K-Means cluster with MTEB embedding for truthful qa

A.5.1 DIFFICULTY SAMPLING - METRICS GUIDE

The given table provides the catalogue for referring the readability index of the text based on the
given range of values.
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Figure 35: K-Means cluster count with BERT embedding for truthful qa

Figure 36: K-Means cluster count with MTEB embedding for truthful qa

Table 4: Flesch Reading Ease Score Ranges and Readability Levels

Flesch Score Range Readability Level
90-100 Very Easy
80-89 Easy
70-79 Fairly Easy
60-69 Standard
50-59 Fairly Difficult
30-49 Difficult
0-29 Very Difficult

Figure 37: Elbow plot for Kmeans with BERT embedding for TruthfulQA
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Figure 38: Elbow plot for Kmeans with MTEB embedding for TruthfulQA

Figure 39: Silhouette score plot for spectral clustering with BERT embedding for truthful qa

Figure 40: Silhouette score plot for spectral clustering with MTEB embedding for truthful qa
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Figure 41: Spectral clustering with BERT embedding for truthful qa

Figure 42: Spectral clustering with MTEB embedding for truthful qa
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Figure 43: DBSCAN text cluster with MTEB embedding

Figure 44: Spectral Clustering data sample

Figure 45: Different Difficulty Sampling Methods - Winograde Benchmark, 50 LLMs
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Table 5: Gunning Fog Index Readability Levels

Gunning Fog Index Readability Level
6 and lower Very easy

7-8 Easy
9-10 Fairly easy

11-12 Standard
13-14 Fairly difficult
15-16 Difficult

17 and higher Very difficult
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