A Three-Tier LLM Framework for Forecasting Student Engagement from
Qualitative Longitudinal Data

Ahatsham Hayat! Helen Martinez'

Bilal Khan?
University of Nebraska-Lincoln®

Mohammad Rashedul Hasan!
Lehigh University?

aahatsham2@huskers.unl.edu, hasan@unl.edu

Abstract

Forecasting nuanced shifts in student en-
gagement from longitudinal experiential (LE)
data—multi-modal, qualitative trajectories of
academic experiences over time—remains chal-
lenging due to high dimensionality and missing-
ness. We propose a natural language processing
(NLP)-driven framework using large language
models (LLMs) to forecast binary engagement
levels across four dimensions: Lecture En-
gagement Disposition, Academic Self-Efficacy,
Performance Self-Evaluation, and Academic
Identity and Value Perception. Evaluated on
960 trajectories from 96 first-year STEM stu-
dents, our three-tier approach—LLM-informed
imputation to generate textual descriptors for
missing-not-at-random (MNAR) patterns, zero-
shot feature selection via ensemble voting,
and fine-tuned LLMs—processes textual non-
cognitive responses. LLMs substantially out-
perform numeric baselines (e.g., Random For-
est, LSTM) by capturing contextual nuances
in student responses. Encoder-only LLMs sur-
pass decoder-only variants, highlighting archi-
tectural strengths for sparse, qualitative LE data.
Our framework advances NLP solutions for
modeling student engagement from complex
LE data, excelling where traditional methods
struggle.

1 Introduction

Transformer-based (Vaswani et al., 2017) large lan-
guage models (LLMs) have significantly advanced
natural language processing (NLP), pushing bound-
aries in text understanding and generation across
diverse applications (Bommasani et al., 2021). Be-
yond excelling in traditional NLP tasks such as
summarization and translation (Zhao et al., 2025),
LLMs have demonstrated a remarkable capacity
for reasoning over complex, context-rich informa-
tion, suggesting their potential for analyzing se-
quential and subjective data (Wei et al., 2022; Tou-
vron et al., 2023). One particularly promising, yet

relatively untapped, area for LLM application lies
in the analysis of longitudinal experiential (LE)
data—time-series records capturing individuals’
evolving perceptions, emotions, and experiences
(Xu et al., 2022).

Within educational contexts, LE data offers a
unique and valuable perspective on students’ sub-
jective engagement, a well-established predictor
of retention and academic achievement (Fredricks,
2014; Sinatra et al., 2015). Despite its richness,
the inherent characteristics of LE data, including
its qualitative nature, temporal dependencies, and
frequent missingness, present substantial computa-
tional challenges that often limit the effectiveness
of traditional machine learning approaches (Xu
et al., 2023). Our research focuses on this underex-
plored intersection of LLMs and the complexities
of LE data analysis in education.

In educational research, LE data systematically
gathers real-time, self-reported insights—including
emotional responses, shifts in motivation, and the
development of self-efficacy—from individuals
over time, complementing traditional cognitive as-
sessments (Kolb, 1984; Palmer et al., 2010). Un-
derstanding these non-cognitive (NC) dimensions
can reveal critical engagement patterns predictive
of academic outcomes, informing timely interven-
tions (Wang et al., 2014; Li et al., 2020).

Our research is based on a dataset of 28 dis-
tinct NC features collected weekly from 96 first-
year college STEM (science, technology, engineer-
ing, mathematics) students across three semesters
(Hayat et al., 2024a,b). These features aimed to
capture a comprehensive view of their engage-
ment. However, initial analysis revealed that many
of these features suffered from extreme missing-
ness, with some having up to 100% unanswered
responses. To ensure a more robust analysis, we
focused on 10 key qualitative NC features that ex-
hibited a response rate of at least 35%. Our fore-
casting task specifically targets predicting weekly



binary engagement shifts (positive vs. negative)
across four critical dimensions using 4-week his-
torical sequences, where each prediction involves
determining whether a student’s engagement level
in week 5 will exceed their average from weeks
1-4. These 10 features, despite the inherent chal-
lenges of qualitative data, form the basis of our
investigation into student engagement forecasting.

Initial attempts to forecast engagement by con-
verting the textual responses of these 10 features
into numeric values (e.g., via Likert scale encod-
ing) and training traditional machine learning mod-
els like Random Forest (Breiman, 2001) and Sup-
port Vector Machines (Hearst et al., 1998), as
well as time-series models like LSTMs (Hochreiter
and Schmidhuber, 1997), yielded poor forecasting
performance. Similarly, directly fine-tuning stan-
dard decoder-only and encoder-only LLMs on the
raw text of these 10 NC features also resulted in
suboptimal forecasting accuracy, although show-
ing marginal improvement over the numeric-based
models. This suggests that while LLMs possess in-
herent advantages, directly processing all available
qualitative features, even after initial filtering for
missingness, can still introduce noise, hindering
their ability to effectively discern predictive signals
in this specific type of LE data.

The limitations observed with both traditional
numeric approaches and direct LLM fine-tuning
underscore the need for a more tailored strat-
egy for analyzing this qualitative, time-series LE
data with significant missingness. Unlike tra-
ditional time-series models (e.g., ARIMA (Box
et al., 2015), LSTMs (Hochreiter and Schmidhuber,
1997)), which struggle with non-numeric input and
are particularly vulnerable to biases introduced by
missing data, LL.Ms offer the potential to directly
process qualitative information.

As highlighted earlier, processing LE data
presents a complex array of challenges, includ-
ing its qualitative nature, temporal dependencies,
and significant sparsity due to missing self-reports.
These difficulties are further compounded by the
prevalence of missing-not-at-random (MNAR) pat-
terns (Rubin, 1976), where the absence of a report
is often correlated with the very engagement phe-
nomena we aim to study. This introduces biases
that conventional statistical imputation techniques,
such as Last Observation Carried Forward (LOCF),
are often inadequate to handle effectively (Schafer,
1997).

To address this critical issue of biased missing-
ness and the noise within the qualitative LE feature
space, we propose a three-tier LLM framework
specifically designed for the unique characteristics
of this LE data: (1) LLM-informed imputation,
using LLMs’ contextual understanding to generate
textual descriptors for missing values, mitigating
MNAR bias where traditional methods fall short;
(2) LLM-based zero-shot feature selection, em-
ploying a panel of expert LLMs to infer and se-
lect the most relevant subset of our 10 qualitative
NC features via majority voting, thereby reducing
noise; and (3) fine-tuned forecasting, comparing
decoder-only and encoder-only LL.Ms to predict
binary engagement levels for four key dimensions:
Lecture Engagement Disposition (LED), Academic
Self-Efficacy (ASE), Performance Self-Evaluation
(PSE), and Academic Identity and Value Perception
(AIVP).

Evaluated on 960 overlapping 4-week trajecto-
ries (weeks 1-4 predicting week 5) derived from our
dataset, our three-tier approach significantly outper-
forms numeric baselines. Ablation studies further
demonstrate the efficacy of each component: (1)
zero-shot feature selection yields substantial gains
compared to using all 10 NC features, highlighting
the noise reduction achieved through expert LLM
guidance; and (2) LLM-based feature selection sur-
passes numeric feature-based models that utilize
all available features, directly justifying the need
for our LLM-driven feature selection process for
this qualitative data. Encoder-only architectures
consistently outperform decoder-only variants in
this sparse LE forecasting task. This work con-
tributes to the advancement of NLP by reframing
qualitative time-series forecasting as a language
problem.

Our main contributions are summarized as fol-
lows.

* A three-tier LLM framework tackling qualita-
tive LE data’s noise and MNAR missingness
via imputation and feature selection.

¢ A novel zero-shot LLM selection method, out-
performing numeric baselines on textual time-
series.

* Evidence of LLMSs’ superiority for sparse, sub-
jective sequences, advancing NLP’s temporal
scope.



2 Related Work

This research leverages LLMs for time-series fore-
casting, extending their NLP strengths to quali-
tative LE data in education. Transformer-based
LLMs like TimeGPT (Garza et al., 2024) and
PromptCast (Xue and Salim, 2024) verbalize nu-
meric time-series for prediction, with data-centric
approaches transforming sequences into text for
pre-trained LMs (Jin et al., 2024) and model-centric
methods fine-tuning LMs for temporal tasks (Zhou
et al., 2023). Our model-centric approach fine-
tunes LLMs for subjective LE sequences, diverg-
ing from numeric trends to target engagement
attributes—a domain underexplored by existing
LLM-based time-series models despite their se-
quential modeling prowess.

Student engagement forecasting in educational
analytics often relies on cognitive (e.g., grades)
or behavioral (e.g., clickstreams) data, using ML
methods like LSTMs and Random Forests (Xu
and Ouyang, 2022). Recent work incorporates
NC factors—self-efficacy, motivation—from sur-
veys (Fredricks, 2014), yet struggles with textual
responses, temporal dynamics, and MNAR miss-
ingness prevalent in LE data (Sinatra et al., 2015).
Unlike these numeric-focused efforts, our frame-
work verbalizes weekly NC trajectories for LLM
processing, forecasting binary engagement levels
and bridging educational analytics with NLP’s tex-
tual capabilities, addressing a gap in longitudinal
engagement modeling.

Handling missing data and feature selection in
LE sequences poses further challenges. Traditional
imputation (e.g., MICE (van Buuren and Groothuis-
Oudshoorn, 2011)) assumes MCAR/MAR, falter-
ing with MNAR patterns (e.g., disengagement-
driven skips) and LE’s qualitative heterogeneity
(Rubin, 1976). Generative models like GAIN
(Yoon et al., 2018) impute numeric values but lack
context for textual NC features, while standard
feature selection (e.g., variance thresholding (Jain
et al., 2000)) misses nuanced semantic relevance.
Our three-tier framework—LLM-informed impu-
tation (GPT-40), zero-shot feature selection, and
fine-tuned forecasting—outperforms these by cap-
turing MNAR context and selecting predictive NC
subsets, leveraging LLMs’ reasoning for sparse,
subjective data. See Appendix A.2 for a detailed
discussion.

3 Three-Tier LLM Framework

This section details our three-tier NLP framework
for forecasting weekly student engagement levels
from qualitative LE data, designed to address the
challenges of MNAR missingness and noise in the
feature space. The framework, illustrated in Figure
1, consists of: (1) LLM-informed imputation to ad-
dress MNAR gaps, (2) zero-shot feature selection
via an ensemble of expert LLMs, and (3) fine-tuned
forecasting with diverse LLM architectures. These
tiers transform sparse, qualitative NC sequences
into predictive models, evaluated against numeric
baselines.

3.1 Dataset

We utilize a dataset from 96 first-year college stu-
dents in introductory programming courses at a
U.S. public university, collected over 15 weeks
per semester across three semesters (Hayat et al.,
2024a,b). The data captures 78-dimensional aca-
demic experiential trajectories across three modali-
ties: 9-dimensional background data (e.g., demo-
graphics, socioeconomic status), 41-dimensional
cognitive data (e.g., quiz scores, coding assignment
grades), and 28-dimensional NC data (e.g., self-
reported motivation, lecture engagement). Back-
ground data derives from an initial web survey, cog-
nitive data from the course learning management
system, and NC data from daily, context-adaptive
questions via a privacy-preserving smartphone app,
stored anonymously on cloud servers.

For forecasting, we focus on the NC data, com-
prising responses to 28 questions targeting behav-
ioral, emotional, and cognitive engagement dimen-
sions (e.g., “How much are you looking forward to
your CS1 class lecture today?”’). Due to high miss-
ingness—over 90% for 18 questions, with some
entirely unanswered—we curated 10 key qualita-
tive NC features with at least 35% response rates,
detailed in Appendix A.1. These 10 features repre-
sent our curated set of key qualitative non-cognitive
indicators of student engagement, chosen after ad-
dressing the issue of high missingness in the ini-
tial 28 features. Using a sliding window, we con-
struct 4-week sequences to predict the subsequent
week’s engagement shift (e.g., weeks 1-4 predict
week 5), yielding 960 trajectories (96 students x
10 predictions per semester). Each trajectory tar-
gets four binary engagement outcomes—Lecture
Engagement Disposition, Academic Self-Efficacy,
Performance Self-Evaluation, and Academic Iden-
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Figure 1: Three-tier LLM framework: (1) LLM-informed imputation fills MNAR gaps in LE trajectories, (2) zero-
shot feature selection by expert LLMs curates NC subsets, and (3) fine-tuned LL.Ms forecast binary engagement

levels, enhanced by background features.

tity and Value Perception—derived as composite
scores from the 10 NC features.

3.2 LLM-Informed Imputation

The NC data exhibits significant missingness (e.g.,
66% of responses missing in week 1, 37% of stu-
dents skipping questions for over two weeks), often
due to students skipping questions or uninstalling
the app—patterns indicative of MNAR behavior
(Rubin, 1976). Traditional imputation methods
like LOCF (Liu, 2016) are unsuitable, as entire
weekly response sets may be absent, leaving no
prior values to propagate, and numeric imputation
risks introducing bias by ignoring MNAR’s seman-
tic context (Little and Rubin, 2019). To address
this critical issue of biased missingness, we employ
GPT-40 (OpenAl, 2024) in a zero-shot manner to
generate textual descriptors for missing responses
(e.g., “The student skipped this question” or “No
response due to app uninstallation™), preserving
contextual meaning without forcing numeric as-
sumptions.

For each missing response in our dataset, we
construct a detailed prompt that includes surround-
ing NC data, such as responses from prior or sub-
sequent weeks, and contextual metadata, such as
question type and week number. This informa-
tion serves as the dataset features information pro-

vided to GPT-40, enabling it to infer a descrip-
tor for the missing response. GPT-40 processes
these prompts zero-shot—without task-specific
training—Ileveraging its linguistic reasoning to in-
fer descriptors that reflect MNAR dynamics (e.g.,
disengagement patterns). This approach enhances
data quality by embedding semantic context into
the 960 trajectories, enabling downstream feature
selection and forecasting to exploit qualitative sig-
nals overlooked by statistical methods (Little and
Rubin, 2019).

3.3 Zero-Shot Feature Selection

Our dataset’s 10 curated NC features, reduced from
an initial set of 28 due to extreme missingness,
form a semantically rich yet sparse space requir-
ing feature selection to optimize forecasting by
reducing noise inherent in the qualitative feature
space (Guyon and Elisseeff, 2003). Traditional
methods—e.g., variance thresholding, correlation
analysis (Jain et al., 2000), or attention-based deep
learning (Ying et al., 2024)—rely on statistical dis-
tributions or labeled data, often missing qualitative,
non-linear relationships in LE sequences. Instead,
we propose a zero-shot feature selection method
using an ensemble of expert LLMs: GPT-40 (Ope-
nAl, 2024), Google Gemini (Team et al., 2024a),
DeepSeek (DeepSeek-Al et al., 2025), and Mi-



crosoft Copilot (Copilot, 2024). This panel lever-
ages each model’s linguistic reasoning and world
knowledge to identify predictive NC subsets for
four engagement dimensions without accessing the
data itself (Kojima et al., 2022).

Mathematical Formulation. Formally, let X
denote the dataset of student responses, where each
instance X' = (X{,..., X)) is a d-dimensional
vector, and d = 10 represents the curated NC fea-
tures (e.g., X: motivation, X¢: lecture enjoyment).
For each engagement dimension & (e.g., k = LED
for Lecture Engagement Disposition), we define
a candidate feature set F = {X;,..., X0} and
seek an optimal subset S;; C F that maximizes
predictive relevance for target Y. Unlike statisti-
cal methods that require data access, our ensemble
operates zero-shot: given only semantic descrip-
tions of the 10 features and target definitions, each
LLM M; independently produces a ranking R? of
features by inferred relevance. We aggregate these
rankings via majority voting, where a feature Xj is
included in Sy, if selected by at least [.J/2] models,
where J = 4 is the ensemble size. This yields
consensus-driven subsets Sy, that capture semantic
relationships across multiple expert perspectives.

Implementation via Unified Expert Prompt.
To systematically guide the feature selection pro-
cess across all four engagement dimensions, we
employ a single comprehensive prompt that lever-
ages psychological domain expertise. Each LLM
in our ensemble receives the following structured
prompt:

“You are an expert psychologist analyz-
ing and predicting student engagement.
Given a set of survey questions (e.g., Q1:
How much are you looking forward to
today’s lecture?, Q5: How much did you
enjoy today’s lecture?, Q18: How confi-
dent are you in your programming skills?,
... ), identify the most predictive ones for
forecasting students’ engagement levels
in the following domains for the upcom-
ing week:”

1. Lecture Engagement Disposition
2. Academic Self-Efficacy
3. Performance Self-Evaluation

4. Academic Identity and Value Per-
ception

This unified prompting approach ensures con-
sistency across the ensemble while allowing each
LLM to apply its domain knowledge to identify
dimension-specific feature subsets. The stream-
lined prompt structure enables each model to con-
sider all available features and make informed se-
lections based on psychological theory and seman-
tic relationships between questions and target con-
structs.

The systematic application of this expert prompt
yields tailored feature subsets: Lecture Engage-
ment Disposition Spgp = {Q1,Q5}, Academic
Self-Efficacy Sasg = {Q18,Q19, Q20}, Perfor-
mance Self-Evaluation Spsg = {Q21, @22, 923},
and Academic Identity and Value Perception
Save = {@24, Q25}. By reasoning over semantic
nuance (e.g., prioritizing “lecture enjoyment” over
“general motivation” for LED), the ensemble cap-
tures contextual relationships statistical methods
overlook. This data-agnostic, scalable approach
leverages LLMs’ prior knowledge, offering a novel
alternative to traditional feature selection for quali-
tative time-series tasks (Kojima et al., 2022).

We acknowledge that our current implemen-
tation relies on closed-source LLMs (GPT-4o,
Google Gemini, DeepSeek, and Microsoft Copilot),
though the framework is adaptable to open-source
alternatives such as Llama (Touvron et al., 2023)
or Mistral (Mistral Al, 2024) for enhanced repro-
ducibility.

3.4 Data Preprocessing

To generate binary labels for our 960 trajectories,
we score NC responses on a scale capturing engage-
ment intensity (e.g., for Xi: “I am really looking
forward to it” = 1, “I am not planning to attend” =
-1, “I am kind of looking forward” = 0.5, “I am not
really looking forward” = -0.5). For each student
and week, we compute a composite score per di-
mension by averaging the subset’s scores selected
for that dimension (e.g., for Lecture Engagement
Disposition: (X7 + X5)/2, aggregating daily re-
sponses). For a 4-week sequence (e.g., weeks 1—
4), we calculate the week 5 score; a positive shift
(Yr = 1) is assigned if the week 5 score exceeds
the 4-week average, otherwise negative (Y = 0),
yielding a positive-to-negative ratio between 60:40
and 70:30 across the four dimensions.

For baseline models, we convert NC responses
into numeric features using these assigned scores
(e.g., X1 = 1 for “I am really looking forward
to it”), preserving the 10-feature structure post-



selection (Section 3.3). Missing values, reflecting
MNAR patterns, are imputed with zeros, forming
36-D vectors (10 features x 4 weeks) or 4 x 10-D
sequences for model input. For LLLMs, we verbal-
ize these imputed 4-week sequences into natural
language narratives, integrating GPT-4o0 descrip-
tors from Section 3.2 to leverage text-processing
strengths (Radford et al., 2019). For example, a
sequence might read: “Week 1, Monday: Prior to
the lecture, the student reported I am not looking
forward to it; in the evening, they reflected: I did
not enjoy the lecture. Week 2: [imputed] skipped
the question”. This transformation embeds daily
responses (e.g., X1: motivation, X5: enjoyment)
and imputed MNAR patterns, tailored to the four
engagement dimensions, preparing data for fine-
tuning with qualitative context intact.

3.5 Fine-Tuned Forecasting with LLM
Architectures

We forecast binary engagement levels (positive
vs. negative) over 10 weeks (weeks 5-14) us-
ing the 960 verbalized trajectories (Section 3.4).
Two different LLM architecture classes are fine-
tuned for binary classification of student engage-
ment across key dimensions: decoder-only mod-
els (Gemma2 9B (Team et al., 2024b), Mixtral
8x7B (Jiang et al., 2024), Llama 7B (Touvron et al.,
2023)) and encoder-only models (RoBERTa (Liu
et al., 2021), DistiIBERT-base-uncased (Sanh et al.,
2020)).

Decoder-only models leverage autoregressive
reasoning to model the narrative complexity and
temporal dependencies of verbalized NC trajecto-
ries (e.g., 4-week sequences with MNAR-imputed
text), potentially capturing nuanced shifts in quali-
tative LE data. Specifically, we include Gemma2
9B for its strong performance and efficiency, Mix-
tral 8x7B as a sparse mixture-of-experts model
known for its high quality and fast inference, and
Llama 7B as a widely adopted and well-studied
foundational model.

Conversely, encoder-only models excel at bidi-
rectional sequence encoding, optimizing discrimi-
native power for sparse, noisy inputs by focusing
on contextual feature interactions—critical for our
960 trajectories with varying missingness (35%—
100%). We select RoBERTa for its robust pre-
training and state-of-the-art results on various clas-
sification tasks, and DistilBERT-base-uncased as a
computationally efficient yet effective transformer
model, allowing us to explore the trade-off between

model size and performance.

This dual selection tests architectural suitability:
generative flexibility for sequential coherence vs.
compact representation for classification efficacy.

Performance is evaluated using balanced accu-
racy and macro-F1, against numeric baselines: Ran-
dom Forest (Breiman, 2001), Support Vector Ma-
chines (Hearst et al., 1998), 1D CNN (O’Shea and
Nash, 2015), LSTM (Hochreiter and Schmidhu-
ber, 1997), and Transformer (Vaswani et al., 2017).
Baselines use scored responses (no verbalization).

4 Experiments and Results

We evaluate our three-tier LLM framework—LLM-
informed imputation, zero-shot feature selection,
and fine-tuned forecasting—against numeric base-
lines to demonstrate its effectiveness in forecasting
student engagement from qualitative LE data. Key
comparisons assess: (1) baseline machine and deep
learning models with numeric NC subset features,
(2) LLMs with verbalized NC subset features, and
(3) LLMs with NC subset plus background features.
Two ablation studies further explore feature quan-
tity (subset vs. all NC features) and input modality
(textual LLMs vs. numeric baselines with all fea-
tures), validating LLMs’ superiority and selection
benefits for noisy, MNAR-impaired data.

4.1 Experimental Setup

The dataset comprises 960 trajectories (Sec-
tion 3.1), split into 70% training (672 trajectories),
15% wvalidation (144), and 15% testing (144), with
positive-to-negative class ratios ranging from 60:40
to 70:30 across four dimensions: Lecture Engage-
ment Disposition (LED), Academic Self-Efficacy
(ASE), Performance Self-Efficacy (PSE), and Aca-
demic Identity and Value Perception (AIVP). Three
configurations are tested: (1) numeric NC sub-
set features (e.g., LED: Q1, Q5 post zero-shot
selection, Section 3.3), (2) verbalized NC subset
features, and (3) verbalized NC subset features
plus 9 background features (e.g., demographics)
appended as “Background: Female, Mechanical
Engineering Major...”.

Baseline models—Random Forest (RF, 100
trees), SVM (RBF kernel), 1D CNN, LSTM, and
Transformer—are implemented via scikit-learn,
trained on numeric NC subset features (e.g., LED:
Q1, Q5 as scores, Section 3.4). The 1D CNN
uses two convolutional layers with max-pooling,
followed by fully connected and dropout layers.



Table 1: Baseline Performance Across Dimensions Using Numeric NC Subset Features

Model LED ASE PSE AIVP
B.Acc F1 B.Acc. F1 B.Acc F1 B.Acc F1
Random Forest ~ 54.5 535 46.0 44.5 53.5 52.5 44.0 41.0
SVM 52.0 48.0 50.0 41.0 51.5 47.0 50.0 39.0
1D CNN 49.0 49.0 485 46.0 425 39.5 50.0 41.5
Transformer 49.5 47.0 50.0 50.0 50.0 46.5 49.5 38.5
LSTM 55.5 54.0 53.5 48.0 47.5 45.0 51.5 40.5
The LSTM employs two 50-unit layers, the first 4.2.2 LLM Performance with NC Subset

returning sequences, with dropout. The Trans-
former features two MultiHeadAttention layers,
feed-forward networks, and global average pooling,
with dropout. These run on 8x NVIDIA A40 GPUs
with a batch size of 32, learning rate of 0.001, 50
epochs, and AdamW optimizer (Loshchilov and
Hutter, 2019). LLMs—decoder-only (Gemma?2
9B (Team et al., 2024b), Mixtral 8x7B (Jiang et al.,
2024), LLaMA 7B (Touvron et al., 2023)) and
encoder-only (RoBERTa (Liu et al., 2021), Dis-
tilIBERT (Sanh et al., 2020))—are fine-tuned via
Hugging Face Transformers on the same GPUs,
with a batch size of 8, learning rate of 1 x 1075,
20 epochs, and AdamW with weight decay 0.01.
Given class imbalance, we report balanced accu-
racy (B.Acc.) and macro-F1 score.

4.2 Results and Analysis
4.2.1 Baseline Performance

Table 1 shows the performance of baseline mod-
els trained on numeric NC subset features (e.g.,
LED: Q1, Q5; Section 3.3) across four dimensions:
LED, ASE, PSE, and AIVP. LSTM leads in three
dimensions, with balanced accuracy (B.Acc.) of
55.5% (LED), 53.5% (ASE), and 51.5% (AIVP),
and macro-F1 peaking at 54.0% (LED), leverag-
ing its sequential modeling capability. Random
Forest (RF) excels for PSE (53.5% B.Acc., 52.5%
F1), surpassing LSTM through robust feature ag-
gregation. SVM and Transformer achieve moder-
ate results, with Transformer’s best F1 at 50.0%
(ASE), while 1D CNN consistently underperforms
(e.g., 39.5% F1 for PSE). Across dimensions, base-
lines average 50.8% balanced accuracy and 46.9%
macro-F1, struggling with sparsity and MNAR pat-
terns. These models have demonstrated a tendency
to deliver unreliable results, with a significant skew
towards predicting outcomes predominantly in the
positive class, which makes these models unreli-
able for these tasks.

Features

Table 2 presents the performance of fine-tuned
LLMs using verbalized NC subset features (e.g.,
2-3 features per dimension, Section 3.3) across
all four dimensions: LED, ASE, PSE, and
AIVP. RoBERTa consistently achieves the high-
est macro-F1 scores, ranging from 65.0% (LED)
to 70.5% (ASE, AIVP), with balanced accuracy
peaking at 69.0% (AIVP), surpassing the best
baseline (LSTM, 54.0% F1 for LED) by 11%-
17%. Encoder-only models outperform decoder-
only counterparts, with DistilBERT close behind
RoBERTa (e.g., 68.5% F1 for AIVP vs. 70.5%),
while decoder-only models show variability: Llama
excels for PSE (73.0% F1) but drops to 56.5% for
LED, and Mixtral lags across dimensions (55.5%—
63.0% F1). Gemma?2 performs well for ASE
(70.0% F1) but averages lower elsewhere. The
mean balanced accuracy (64.2%) and macro-F1
(64.4%) of LLMs highlight their textual reasoning
advantage over numeric baselines, supporting their
baseline superiority.

4.2.3 LLM Performance with NC Subset +
Background Features

Table 3 reports LLM performance when NC sub-
set features are augmented with background data
(e.g., demographics). RoOBERTa again dominates,
with balanced accuracy improving to 72.5%-77.5%
and macro-F1 to 73.0%-77.5% across dimensions,
a 3%-12% gain over NC-only results (e.g., LED
F1: 65.0% to 77.5%). This boost peaks for LED
(77.5% F1), affirming background data’s contex-
tual value. DistilBERT follows closely, with no-
table gains (e.g., LED F1: 64.5% to 75.0%), while
decoder-only models improve but remain incon-
sistent: Llama reaches 74.5% F1 for LED but
dips to 66.5% for PSE, Gemma2 holds steady
(e.g., 70.0% F1 for AIVP), and Mixtral trails
(61.0%-66.0% F1). The mean balanced accu-
racy rises to 69.0% and macro-F1 to 69.5%, with
encoder-only models (RoBERTa: 74.5% mean F1,
DistilBERT: 68.3%) outperforming decoder-only



Table 2: LLM Performance Across Dimensions Using NC Subset Features Only

Model LED ASE PSE AIVP
B.Acc. F1 B.Acc F1 B.Acc F1 B.Acc. F1
Gemma2 9B 62.0 61.0 72.0 70.0 65.5 66.5 65.5 66.5
Mixtral 8x7B  62.0 61.5 63.5 63.0 55.5 55.5 59.0 59.0
Llama 7B 59.5 56.5 62.0 61.5 73.0 73.0 59.5 59.0
DistilBERT 65.0 64.0 63.5 67.0 67.5 67.0 67.5 68.5
RoBERTa 65.0 65.0 66.5 70.5 68.0 69.5 69.0 70.5

Table 3: LLM Performance Across Dimensions Using NC Subset and Background Features

Model LED ASE PSE AIVP
B.Acc. F1 B.Acc F1 B.Acc F1 B.Acc F1
Gemma2 9B 71.5 72.0 69.0 69.0 65.5 64.5 69.0 70.0
Mixtral 8x7B  60.0 61.5 66.0 66.0 61.5 61.5 61.0 61.0
Llama 7B 72.5 74.5 68.0 69.0 66.5 66.5 66.5 66.5
DistilBERT 74.5 75.0 65.5 66.0 70.5 63.0 65.0 64.5
RoBERTa 71.5 71.5 73.5 73.0 74.0 73.5 72.5 74.0

Table 4: LLM Performance Across Dimensions Using All NC and Background Features

Model LED ASE PSE AIVP

B.Acc. F1 B.Acc. F1 B.Acc. F1 B.Acc. F1
Gemma2 9B 58.50 52.50 62.50 65.50 59.50 58.50 66.00 65.50
Mixtral 8x7B  55.50 56.50 59.00 63.00 58.00 56.50 52.00 53.50
Llama 7B 59.50 56.50 62.50 62.50 59.00 59.00 60.00 63.50
DistilBERT 62.00 62.50 64.00 63.50 60.50 62.50 65.50 64.00
RoBERTa 66.50 65.00 64.50 65.00 63.00 62.50 64.50 64.00

(Llama: 69.1%, Gemma2: 67.9%, Mixtral: 62.5%)
by 5%—-12%. Compared to baselines (max 54.0%
F1), NC+background LLMs extend the gap to 19%—
23%.

4.3 Ablation Study

We conduct two ablation studies to evaluate our
LLM-based approach for forecasting student en-
gagement levels across four dimensions.

Evaluating Feature Quantity: Subset vs. All
NC Features. We compare LLMs fine-tuned on
a zero-shot selected subset of NC features plus
background features (Table 3) against those using
all 10 NC features plus background features (Ta-
ble 4). In the all-features case, ROBERTa achieves
macro-F1 scores of 62.5%—65.0% and balanced ac-
curacy (B.Acc.) of 63.0%—66.5%, markedly lower
than the subset case’s 73.0%—77.5% F1 and 72.5%—
77.5% B.Acc. Dimension-specific F1 losses range
from 8.0% (ASE) to 12.5% (LED), indicating that
all 10 NC features introduce noise, weakening
the signal distilled by expert LLM selection (Sec-
tion 3.3). Encoder-only models (RoBERTa, Distil-
BERT) consistently outperform decoder-only vari-
ants (Gemma2 9B, Mixtral 8x7B, LLaMA 7B)
across both configurations, though the gap nar-
rows with all features—e.g., ROBERTa’s LED F1
lead over LLaMA 7B shrinks from 18.0% (subset)
to 8.5%—suggesting noise impacts decoder-only
models less severely.

Assessing Input Modality: Textual LLMs vs.
Numeric Baselines with All Features. We
train baseline models—Random Forest (RF, 100
trees (Breiman, 2001)), Support Vector Machine
(SVM), 1D CNN, Transformer, and LSTM—on nu-
meric LE data with all 10 NC features (converted
to scores, forming 960 x 36-D vectors, Section 3.4)
and fine-tune RoBERTa (Liu et al., 2021), our top
performer with subset features, on textual all NC
features (verbalized responses). Table 5 reports
results across 960 trajectories for four dimensions:
LED, ASE, PSE, and AIVP. RoBERTa consistently
outperforms numeric baselines in balanced accu-
racy and macro-F1 across most dimensions, lever-
aging textual reasoning to capture qualitative nu-
ances and MNAR-impaired patterns that numeric
models struggle to model. Notably, 1D CNN ex-
cels for ASE, suggesting some sequential patterns
in numeric data align with convolutional strengths,
yet ROBERTa’s broader superiority—particularly
for LED, PSE, and AIVP—underscores LLMs’ ad-
vantage in processing raw verbalized sequences.
Baselines like SVM and LSTM exhibit variability,
often skewed by noise or positive-class bias, while
Transformer and RF show moderate consistency
but lack the discriminative power of textual LLM:s.
This complements the first ablation study (subset
vs. all NC features), affirming that while subset
selection enhances performance, even with all fea-
tures, LLMs’ textual modality outstrips numeric
approaches for sparse, qualitative LE data.



Table 5: Performance of Numeric Baselines and Textual RoBERTa with All NC Features Across Dimensions

Model LED ASE PSE AIVP
B.Acc. F1 B.Acc B.Acc. F1 B.Acc. F1

Random Forest ~ 52.5 49.5 50.5 455 49.0 46.5 48.0 41.0
SVM 50.5 45.5 50.0 40.5 445 40.0 50.0 38.0
1D CNN 52.0 51.5 62.0 61.5 48.0 47.5 445 43.0
Transformer 48.5 47.5 455 45.0 51.5 51.5 53.5 53.0
LSTM 44.0 435 475 47.5 47.0 47.0 50.0 47.5
RoBERTa 61.0 60.5 59.0 65.0 64.0 62.5 62.5 62.0

5 Conclusion

Our findings provide compelling evidence for the
efficacy of our three-tier LLM framework in fore-
casting student engagement from qualitative LE
data. We highlight three key insights. First,
LLMs consistently outperformed traditional nu-
meric baselines across all engagement dimensions,
even when both were trained on the same selected
non-cognitive feature subsets. This superiority
underscores the inherent capability of LLMs to
process and understand the nuanced information
present in verbalized student responses, effectively
capturing contextual patterns missed by numeric
conversions and sequential models, particularly in
the presence of MNAR missingness and data spar-
sity. Notably, this advantage persisted even when
all available non-cognitive features were used, fur-
ther emphasizing the limitations of traditional ma-
chine learning approaches for this type of qualita-
tive time-series data.

Second, our analysis revealed a significant per-
formance difference between LLLM architectures.
Encoder-only models, such as RoOBERTa and Dis-
tilBERT, demonstrated a clear advantage over
decoder-only models across various configurations.
This suggests that their strength in creating ro-
bust representations from sparse textual sequences
makes them particularly well-suited for the bi-
nary classification task of engagement forecast-
ing. While decoder-only models showed occa-
sional strong performance on specific dimensions,
their overall variability indicates that their gener-
ative focus might be less optimal for the discrim-
inative demands of this task. The consistent out-
performance of encoder-only models, even with
increased data complexity, highlights their robust-
ness for this application.

Third, integrating background data significantly
boosted LLM performance, particularly for specific
engagement dimensions, emphasizing the impor-
tance of context. Furthermore, the synergy between
our LL.M-driven feature selection and forecasting
tiers was validated by the enhanced performance

achieved with selected feature subsets.

In conclusion, this work demonstrates the trans-
formative potential of our three-tier LLM frame-
work for analyzing complex, qualitative LE data
in educational settings. By effectively addressing
challenges such as MNAR missingness and noisy
feature spaces, our approach offers a significant
advancement over traditional numeric methods,
paving the way for richer and more insightful anal-
yses of student engagement and potentially other
subjective, time-series datasets. However, respon-
sible deployment of such frameworks requires
careful consideration of their limitations and
ethical implications.

6 Limitations

Our study acknowledges several important limita-
tions. Dataset scale and diversity: Our analysis
is based on data from 96 first-year STEM students
at a single U.S. university, resulting in 960 tra-
jectories. This relatively small and homogeneous
sample limits generalizability to broader student
populations, diverse educational contexts, or differ-
ent demographic groups. Validation constraints:
Our LLM-informed imputation method has not un-
dergone human validation to verify the accuracy of
generated missing value descriptors, affecting con-
fidence in semantic quality and downstream fore-
casting performance. Baseline limitations: Our
evaluation focuses on traditional machine learning
and basic deep learning models, but does not bench-
mark against state-of-the-art multimodal or recent
transformer-based time-series forecasting models.
Theoretical justification: While empirical results
demonstrate encoder-only LLLMs’ superior perfor-
mance over decoder-only models, we provide lim-
ited theoretical explanation for this architectural
advantage. Dependency on proprietary mod-
els: Our framework relies on closed-source LLMs
(GPT-40, Gemini, DeepSeek, Copilot), which may
limit reproducibility and accessibility.



7 Ethical Considerations

7.1 LLM Biases and Educational Harms

Foundation models encode systemic biases from
pretraining data (Bommasani et al., 2021), which
can be amplified when fine-tuned on small educa-
tional datasets. LLMs characterized as “stochastic
parrots” (Bender et al., 2021) exhibit stereotypi-
cal biases across gender, race, profession, and reli-
gion (Nadeem et al., 2021; Gallegos et al., 2024),
with documented religious bias analogizing ‘“Mus-
lim” to “terrorist” in 23% of cases (Abid et al.,
2021). A comprehensive risk taxonomy identifies
discrimination, hate speech, and human-computer
interaction harms as primary concerns (Weidinger
et al., 2022).

Our framework’s LLM-informed imputation and
feature selection may inadvertently reflect these bi-
ases, potentially misrepresenting underrepresented
student voices or reinforcing stereotypical engage-
ment assumptions. Algorithmic bias in educa-
tion disproportionately affects students based on
race/ethnicity, gender, nationality, socioeconomic
status, and disability (Baker and Hawn, 2022). Au-
tomated engagement predictions risk reinforcing
inequalities through biased classifications that sys-
tematically disadvantage certain groups, as founda-
tion model defects are inherited downstream (Bom-
masani et al., 2021).

7.2 Potential Harms and Mitigation

Self-fulfilling prophecies: Predictions may in-
fluence educator expectations, creating scenarios
where students labeled “disengaged” receive re-
duced support. Automated decision-making risks
“reducing a human being to a percentage,” under-
mining student dignity (Binns et al., 2018). Stu-
dent autonomy: Engagement monitoring may cre-
ate surveillance environments compromising au-
thentic self-expression and altering social dynam-
ics the technology purports to measure (Weidinger
et al., 2022). Resource allocation: Binary pre-
dictions could lead to misallocation if false posi-
tives/negatives disproportionately affect vulnerable
populations (Corbett-Davies et al., 2017).

Privacy considerations: Our dataset involves
sensitive student information including academic
performance and personal reflections. While com-
mitting to full anonymization, evolving LLM ca-
pabilities may create unforeseen privacy risks not
understood at consent time.

Mitigation strategies: We propose safeguards

informed by responsible Al principles (Weidinger
et al., 2022; Bommasani et al., 2021): (1) Regular
bias auditing across demographic subgroups; (2)
Human-in-the-loop validation requiring educator
oversight before interventions (Binns et al., 2018);
(3) Transparent communication about data use; (4)
Supportive-only intervention guidelines; (5) Con-
tinuous monitoring of deployment outcomes. Our
framework should augment, not replace, human ed-
ucational judgment, emphasizing fairness, account-
ability, and transparency in high-stakes educational
applications (Binns et al., 2018; Weidinger et al.,
2022; Baker and Hawn, 2022).
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