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Abstract
The Risk Difference (RD), an absolute measure
of effect, is widely used and well-studied in both
randomized controlled trials (RCTs) and obser-
vational studies. Complementary to the RD, the
Risk Ratio (RR), as a relative measure, is critical
for a comprehensive understanding of interven-
tion effects: RD can downplay small absolute
changes, while RR can highlight them. Despite
its significance, the theoretical study of RR has re-
ceived less attention, particularly in observational
settings. This paper addresses this gap by tack-
ling the estimation of RR in observational data.
We propose several RR estimators and establish
their theoretical properties, including asymptotic
normality and confidence intervals. Through anal-
yses on simulated and real-world datasets, we
evaluate the performance of these estimators in
terms of bias, efficiency, and robustness to gener-
ative data models. We also examine the coverage
and length of the associated confidence intervals.
Due to the non-linear nature of RR, influence
function theory yields two distinct efficient es-
timators with different convergence assumptions.
Based on theoretical and empirical insights, we
recommend, among all estimators, one of the
two doubly-robust estimators, which, intriguingly,
challenges conventional expectations.

1. Introduction
Treatment effect estimation in trials. Modern evidence-
based medicine prioritizes Randomized Controlled Trials
(RCTs) as the cornerstone of clinical evidence. Random-
ization in RCTs allows for the quantification of the average
treatment effect (ATE) by removing confounding influences
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from extraneous or undesirable factors. The medical guide-
line CONSORT (Moher et al., 2010) recommends reporting
the treatment effect with relative measures like the Risk
Ratio (RR) along with absolute measures like the Risk Dif-
ference (RD) to provide a more comprehensive understand-
ing of the effect and its implications, as neither measure
alone offers a complete picture. Indeed, selecting one mea-
sure over another carries several implication. For instance,
with 3% baseline mortality reduced to 1% by treatment,
RD shows a 2% drop, while RR shows controls have three
times the risk: RD suggests a small effect; RR highlights a
larger one. In addition, (Naylor et al., 1992) and (Forrow
et al., 1992) demonstrated that physicians’ inclination to
treat patients, based on their perception of therapeutic im-
pact, is influenced by the scale utilized to present clinical
effects. Finally, the treatment effect may be heterogeneous
in one scale, i.e. the treatment effect varies according to
patient characteristics, but homogeneous in another scale
(Rothman, 2011), which significantly disrupts interpretation.
(Colnet et al., 2024) discusses causal measure properties
with a focus on generalization of the treatment effect from a
trial to a target population.

Consequently, both RD and RR measures are widely used
in the analysis of clinical trial data as explained in Malenka
et al. (1993), Sinclair & Bracken (1994) and Nakayama et al.
(1998). The Risk Ratio is particularly relevant in scenar-
ios where outcomes are always either positive or negative
(Malenka et al., 1993) and in cases where both expected
potential outcomes being compared are small, as it is more
stable and interpretable than the RD. Furthermore, in cases
of rare treatment occurrences, the Risk Ratio closely approx-
imates the Odds Ratio (OR), further enhancing its relevance
and utility in clinical analyses (Schechtman, 2002). Bar-
ratt et al. (2004) recommend using the RR from clinical
trials with an estimation of the individual patient baseline to
provide the right treatment.

Treatment effect estimation in observational data. De-
spite being the gold standard to assess treatment effects,
RCTs may face limitations due to stringent eligibility crite-
ria, unrealistic real-world compliance, short study durations,
and limited sample sizes. Medical journals such as JAMA
(Bibbins-Domingo, 2024) and others (Hernan & Robins,
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2016) have advocated the use of real-world data, often re-
ferred to as observational data, to provide additional sources
of evidence. These data sets are typically less expensive to
collect, more representative of the target population, and
usually encompass large sample sizes.

In the context of observational studies, various estimators
exist to measure the treatment effect, mainly on an abso-
lute scale. Different methods such as re-weighting using
Inverse Probability Weighting (IPW) (Hirano et al., 2003),
outcome modeling with the G-formula, and doubly-robust
approaches like Augmented Inverse Probability Weighting
(AIPW) (Robins, 1986) aim to estimate the RD while han-
dling confounding effects.

However, to the best of our knowledge, there exist no
work proposing or using estimators of the ATE measured
with the Risk Ratio in observational studies based on (non-
)parametric estimation (G-formula or AIPW), nor deriva-
tions of their theoretical properties. A clear gap exists, need-
ing robust estimators and analyses to improve treatment
effect assessments and support medical recommendations
in observational studies. Noteworthily, compared to the
Risk Difference, studying the Risk Ratio induces additional
technical difficulties, due to its non-linear nature.

Contributions. In this paper, we propose and analyze dif-
ferent estimators of the Risk Ratio in observational studies.
Considering first the well studied RCT setting in Section 2,
we analyze the first RR estimator introduced by Cornfield
(1956), establishing a Central Limit Theorem and asymp-
totic confidence intervals. We prove that in RCT adjusting
for covariates or estimating the probability of being treated
reduces the estimator variance. As the probability of being
treated varies across individuals in observational studies, the
above estimator is no longer valid. In Section 3, we detail
different estimators that can be used for estimating the RR
in observational studies: Inverse Propensity Weighting (RR-
IPW), G-formula (RR-G) and two doubly-robust estimators.
For the first two, we prove their asymptotic normality when
the nuisance functions (surface responses and propensity
score) are known or estimated via parametric models. Our
analyses show that estimating nuisance function increases
the variance of RR-G and decreases that of RR-IPW. Be-
sides, using influence function theory (see, e.g., Kennedy,
2022), we derive two doubly-robust estimators, RR-OS,
for one-step correction and RR-AIPW based on estimating
equations. Contrary to the RD, due to the non-linearity
of the RR, both estimators differ. We prove that they are
both asymptotically unbiased and have the minimal variance
among all asymptotically unbiased estimators. Surprisingly,
the RR-AIPW estimator turns out to be a plug-in version
of AIPW estimators for both the numerators and denomina-
tors, which requires weaker assumptions than RR-OS to be
asymptotically normal. For all estimators, our asymptotic

analyses allow us to build asymptotic confidence intervals.
In Section 4, we evaluate all estimators on observational
data, and study the empirical properties of confidence in-
tervals in terms of coverage and lengths. In Section 5, we
extend our analysis to a semi-synthetic and a real-world
dataset. We recommend the RR-AIPW due to (i) less strin-
gent assumptions needed to ensure asymptotic normality,
(ii) empirical performances (consistent and with a small
asymptotical variance), (iii) the ease of implementation, as
a ratio of two simple AIPW estimators.

Related work - Estimation of RR. To the best of our
knowledge, Cornfield (1956) was the first to propose an
estimate of the RR, together with exact and asymptotic con-
fidence intervals, for binary responses, in a RCT scenario,
followed by Kupper et al. (1975); Katz et al. (1978); Bailey
(1987); Morris & Gardner (1988); Sato (1992). Considering
a logistic model, Schouten et al. (1993) propose a RR esti-
mator. Later on, exact confidence intervals were derived by
Wang & Shan (2015). Recently, Inverse Propensity Weight-
ing schemes have been used in different study designs to
estimate the Odds Ratios (Staus et al., 2022) or directly the
RR in some simple settings (Hernán & Robins, 2006). Be-
sides, pseudo-Poisson and pseudo normal distribution have
been proposed with IPW strategies to estimate RD and RR
in clinical trials (Noma et al., 2023). Other methods include
G-formula approaches (Dukes & Vansteelandt, 2018) and
semiparametric density estimation (Kennedy et al., 2023).

In observational studies, one can mention the work of
Richardson et al. (2017),Yadlowsky et al. (2021) and Shir-
vaikar & Holmes (2023) who focus on estimators of the
conditional average treatment effect (CATE) for the RR.
Curth et al. (2020) introduces an “IF-learning” approach
with pseudo outcome regression and derive the influence
function for the CATE of the RR. However, since the expec-
tation of a ratio is not the ratio of the expectations, CATE es-
timations do not directly yield ATE for the RR. This departs
from the RD, for which the ATE is simply the expectation
of the CATE.

2. A Well-Known Risk Ratio Estimator in
RCT

Problem setting Following the potential outcome frame-
work (see Rubin, 1974; Splawa-Neyman et al., 1990), we
consider the random variables (X,T, Y (0), Y (1)), where
X ∈ Rp denotes covariates describing a patient, T is the
treatment assignment (T = 1 when the treatment is given to
an individual, T = 0 otherwise) and Y (0) (resp. Y (1)) is the
outcome of interest, describing the status of a patient with-
out treatment (and with treatment respectively). In practice,
we do not have access simultaneously to Y (1) and Y (0), and
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we only observe

Y = TY (1) + (1− T )Y (0).

Causal effect measures are functions of the joint distribution
of potential outcomes (see Pearl, 2009). In particular, the
Risk Difference (RD) and the Risk Ratio (RR) contrast the
two states as followed

τRD = E[Y (1)]− E[Y (0)] and τRR =
E[Y (1)]

E[Y (0)]
. (1)

The aim of this paper is to propose and study estimators of
τRR for binary and continuous outcomes. Indeed, all our the-
oretical results (except Proposition 3.9) are valid for binary
and continuous outcomes. To estimate τRR, we assume to be
given an i.i.d dataset (X1, T1, Y1), . . . , (Xn, Tn, Yn).

The most simple estimator of the risk ratio consists in re-
placing expectations by empirical means in τRR (Equation 1).
Such an estimator has already been proposed outside the
causal inference framework, with confidence intervals for
the binary case (where Y ∈ {0, 1}, see Katz et al., 1978;
Bailey, 1987). In the potential outcome framework, inspired
by the Neyman estimator of the Risk Difference (Splawa-
Neyman et al., 1990), we call this estimator the Risk Ratio
Neyman estimator.

Definition 2.1 (Risk Ratio Neyman estimator). Let N1 =∑n
i=1 Ti and N0 = n − n1. The Risk Ratio Neyman esti-

mator, denoted τ̂RR,N, is defined as

τ̂RR,N =
1
N1

∑n
i=1 TiYi

1
N0

∑n
i=1(1− Ti)Yi

, (2)

if the denominator is nonzero and 0 otherwise.

With our notation, the 95% confidence interval for τRR for
binary outcomes (Katz et al., 1978) takes the form[

τ̂RR,N exp(−z1−α/2σ̂n), τ̂RR,N exp(z1−α/2σ̂n)
]
, (3)

where z1−α/2 is the 1−α/2 quantile of a standard Gaussian
N (0, 1) and

σ̂n =

√
1∑n

i=1 TiYi
− 1

N1
+

1∑n
i=1(1− Ti)Yi

− 1

N0
.

(4)

In the sequel, we establish under which theoretical assump-
tions the RR-N is an accurate estimator of the Risk Ratio in
Randomized Clinical Trials.

RCT randomly assign treatment to patients in order to eval-
uate treatment effects. We focus on the Bernoulli design,
one of the most widely used RCT designs (Rubin, 1974; Im-
bens & Rubin, 2015), where each participant has the same
probability e ∈ (0, 1) of being treated, independently of the
treatments of others.

Assumption 2.2 (Bernoulli Trial). We assume:

(i) Ignorability/Exchangeability: T ⊥⊥ (Y (0), Y (1)).

(ii) SUTVA: Y = TY (1) + (1− T )Y (0).

(iii) i.i.d.: (Xi, Ti, Y
(0)
i , Y

(1)
i )i∈[n]

i.i.d.∼ P .

(iv) Trial Positivity: Each participant has a fixed proba-
bility e ∈ (0, 1) of assignment: P[Ti = 1] = e.

To ensure our estimates are valid, we need to guarantee the
existence of the ratio we aim to estimate.
Assumption 2.3 (Outcome positivity). We suppose that
both Y (0) and Y (1) are squared integrable and that
E
[
Y (0)

]
> 0.

Proposition 2.4 (Asymptotic normality of τ̂RR,N). Grant
Assumption 2.2 and Assumption 2.3, the Risk Ratio Neyman
estimator is asymptotically unbiased and satisfies

√
n (τ̂RR,N − τRR)

d→ N (0, VRR,N) (5)

where

VRR,N = τ2RR

(
Var

(
Y (1)

)
eE[Y (1)]2

+
Var

(
Y (0)

)
(1− e)E[Y (0)]2

)
.

Proposition 2.4 establishes the asymptotic normality of the
RR-N estimator, a simple ratio of mean estimates, which
leads to asymptotic confidence intervals (CI). Indeed, ac-
cording to Proposition 2.4, for all α ∈ (0, 1), a (1 − α)
asymptotic confidence interval for τRR is given by[

τ̂RR,N ± z1−α/2

√
V̂RR,N/n

]
, (6)

where V̂RR,N is any estimation of VRR,N. Throughout this
paper, based on the Central Limit Theorems we establish,
we will consider such CI. The properties of the different CI
are studied in Section 4.2.

Contrary to Katz et al. (1978), Proposition 2.4 is valid for
both continuous and binary outcomes. However, consider-
ing binary outcomes in Proposition 2.4 leads to an asymp-
totic confidence interval equivalent to that presented in Katz
et al. (1978) (see Appendix 7.2.3). Deriving a Central Limit
Theorem for log(τ̂RR,N) instead of τ̂RR,N would lead to the
exact same CI (see Appendix 7.2.4).

Probability of receiving treatment As the probability of
treatment e is known in an RCT, one could be tempted to
consider what we call the Risk Ratio Horvitz-Thomson esti-
mator (in reference of the Risk Difference Horvitz-Thomson
estimator, see Horvitz & Thompson, 1952) defined as

τ̂RR,HT =
1
n

∑n
i=1

TiYi

e

1
n

∑n
i=1

(1−Ti)Yi

1−e

(7)
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if
∑n
i=1 Ti < n and 0 otherwise. Indeed, the frequency of

treatments assignments in the sample may be different from
the actual probability of receiving treatment e. Similarly
to what Hirano et al. (2003); Hahn (1998); Robins et al.
(1992) noticed for the RD, we prove in Appendix 7.2.2 that
opting for ê over e in the Risk Ratio estimator (thereby
employing the RR-N instead of the RR-HT) results in a
reduced asymptotic variance, with a larger reduction when
e is close to zero or one. More precisely, letting VRR,HT the
asymptotic variance of τ̂RR,HT, we have

VRR,N = VRR,HT − τ2RR/e(1− e). (8)

3. Risk Ratio Estimators in Observational
Studies

A key difference between RCTs and observational studies
is the handling of confounding variables. If not properly
addressed, these can distort the true causal association be-
tween exposure and outcome due to their correlation with
both. Therefore, estimating the Risk Ratio in observational
studies is more complex than in RCTs, as randomization
assumptions do not apply (i.e. the propensity score now
depends on the covariates X).

Assumption 3.1 (Observational Study Identifiability As-
sumptions). We assume:

(i) Unconfoundedness/Conditional Exchangeability:
(Y (0), Y (1)) ⊥⊥ T | X .

(ii) Overlap/Positivity: ∃η ∈ (0, 1/2] such that η ≤
P[T = 1|X] ≤ 1− η almost surely.

(iii) SUTVA: Y = TY (1) + (1− T )Y (0).

(iv) i.i.d.: The data is (Xi, Ti, Y
(0)
i , Y

(1)
i )i∈[n]

i.i.d.∼ P .

Unconfoundedness means that after accounting for known
confounding variables, no hidden factors affect both treat-
ment assignment and outcomes. It is a relaxed form of
exchangeability.

RR-N and RR-HT estimators cannot be used in the context
of observational studies, since they are built on the assump-
tion of a constant propensity score. But the RR-N estimator
can be extended to observational studies as follows.

3.1. Risk Ratio Inverse Propensity Weighting (RR-IPW)

Treatment effect in observational studies can be estimated
via reweighting individuals by the inverse of their propensity
score, thus giving more weights to people who are very
likely/unlikely to be treated. Such a method, called Inverse
Propensity Weighting (IPW, see Hirano et al., 2003) for
estimating the Risk Difference, can be straightforwardly
extended to build Risk Ratio estimators.

Definition 3.2 (RR-IPW). Grant Assumption 2.3 and As-
sumption 3.1. Given an estimator 0 < ê(·) < 1 of the
propensity score e(x) = P [T = 1|X = x], the Risk Ratio
IPW, denoted by τ̂RR,IPW,n, is defined as

τ̂RR,IPW =

1
n

∑n
i=1

TiYi

ê(Xi)

1
n

∑n
i=1

(1−Ti)Yi

1−ê(Xi)

.

Proposition 3.3 demonstrates the asymptotic normality of
the Oracle Ratio IPW estimator, defined as the RR-IPW but
where ê(·) is replaced by the oracle propensity score e(·).
Proposition 3.3 (RR-IPW asymptotic normality). Grant
Assumptions 2.3 and 3.1. Then the Oracle Risk Ratio IPW
is asymptotically unbiased and satisfies

√
n
(
τ⋆RR,IPW − τRR

) d→ N (0, VRR,IPW) (9)

where VRR,IPW
τ2

RR
= E

[
(Y (1))2

e(X)E[Y (1)]
2

]
+ E

[
(Y (0))2

(1−e(X))E[Y (0)]
2

]
.

Note that when the propensity score is constant, one can
retrieve the variance of the RR-HT as expected. Note also
that the asymptotic variance may be large, due to strata
on which the propensity score is close to zero or one. In
other words, a correct estimation is difficult when some
subpopulations are unlikely to be treated (or untreated).

If we assume a logistic model for the true propensity
score and estimate it using maximum likelihood estimation
(MLE), the variance of the RR-IPW can be derived.

Assumption 3.4. We assume E[XX⊤] is positive definite,
X is Sub-Gaussian, and for all X ∈ Rp,

P(T = 1|X) = {1 + exp(−X⊤β1
∞ − β0

∞)}−1,

where β∞ := (β0
∞, β

1
∞) ∈ Rp+1.

For any positive semi-definite matrix A and any vector X ,
let ∥X∥A =

√
X⊤AX .

Proposition 3.5 (Asymptotics of τ̂RR,IPW under a logistic
model). Under Assumptions 3.1 and 3.4, the RR-IPW esti-
mator, with the propensity score estimated via MLE, satisfies

√
n(τ̂RR,IPW − τRR)

d→ N (0, VRR-MLE),

with VRR-MLE = VRR-IPW − τ2RR

∥∥∥∥ c10
E[Y (0)] +

c01
E[Y (1)]

∥∥∥∥2
Q−1

,

where c10 = E[X̃ e(X)Y (0)], c01 = E[X̃(1− e(X))Y (1)]

and Q = E[e(X)(1− e(X))X̃X̃⊤] with X̃ := (1, X).

The variance of τ̂RR,IPW is notably smaller than that of the
oracle estimator τ⋆RR,IPW. While this might initially seem
counterintuitive, similar observations have been made in
RCT, as highlighted in studies by Hirano et al. (2003); Hahn
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(1998); Robins et al. (1992) and in observational studies by
Lunceford & Davidian (2004b). Choosing ê over e in the
Risk Ratio estimator (thus using τ̂RR,IPW instead of τ⋆RR,IPW)
leads to a reduction in asymptotic variance.

3.2. Risk Ratio G-formula estimator (RR-G)

For all (x, t) ∈ Rp × {0, 1}, let µ(t)(x) = E
[
Y (t)|X = x

]
be the surface response of the potential outcome. Assume
that we have at our disposal two estimators µ̂(0)(·) and
µ̂(1)(·) which respectively estimate µ(0)(·) and µ(1)(·). We
then employ the ratio of these two potential outcome esti-
mations to compute the Risk Ratio. This method, termed
the plug-in G-formula or outcome-based modeling, was first
introduced by Robins (1986) for the Risk Difference.
Definition 3.6 (RR G-formula). Given two estimators
µ̂(0)(·) and µ̂(1)(·), the Risk Ratio G-formula estimator,
denoted τ̂RR,G, is defined as

τ̂RR,G =
1
n

∑n
i=1 µ̂(1)(Xi)

1
n

∑n
i=1 µ̂(0)(Xi)

, (10)

if 1
n

∑n
i=1 µ̂(0)(Xi) ̸= 0 and zero otherwise.

The properties of RR-G depend on the estimators µ̂(0) and
µ̂(1). We analyze in the following the behavior of Or-
acle Risk Ratio G-formula estimator defined as τ⋆RR,G =
( 1n
∑n
i=1 µ(1)(Xi))/(

1
n

∑n
i=1 µ(0)(Xi)).

Proposition 3.7 (Asymptotic Normality of τ⋆RR,G). Grant
Assumptions 2.2 and 2.3. Then, the Oracle Risk Ratio G-
formula estimator, τ⋆RR,G, is asymptotically unbiased and
satisfies

√
n
(
τ⋆RR,G − τRR

) d→ N (0, VRR,G) , (11)

where VRR,G = τ2RR Var

(
µ(1)(X)

E[Y (1)]
− µ(0)(X)

E[Y (0)]

)
.

Proposition 3.7 establishes that the Oracle Risk Ratio G-
formula estimator is asymptotically normal. Surprisingly,
in the case where there is no effect (i.e. τRR = 1),
the asymptotic variance is driven by the variance of the
Risk Difference on each strata determined by X , namely
Var(µ(1)(X) − µ(0)(X)). By considering the Oracle RR-
G instead of RR-G, we remove the additional randomness
related to the estimation of the surface responses. It is thus
likely that the true variance of RR-G is larger than that of
Oracle RR-G, as shown below.

Assuming a linear model for Y (t) and estimating both re-
sponse surfaces µ̂(0) and µ̂(1) using ordinary least squares,
the variance of the RR-G can be derived.
Assumption 3.8 (Linear model). For all t ∈ {0, 1},

Y (t) = c(t) +X⊤β(t) + ε(t) E[X] = µ

E[ε(t)|X] = 0 Var[ε(t)|X] = σ2,

where we assume that Y (t) ≥ c > 0 for some c.
Proposition 3.9 (Asymptotic normality of τ̂RR,OLS). Grant
Assumptions 3.1 and 3.8. Then, the RR G-formula estimator
τ̂RR,OLS that uses linear regression to estimate µ(t) satisfies

√
n(τ̂RR,OLS − τRR)

d→ N (0, VRR-OLS) ,

where, letting νt = E[X|T = t] and Σt = Var(X|T = t),

VRR-OLS

τ2RR
=

∥∥∥∥∥ β(1)

E
[
Y (1)

] − β(0)

E
[
Y (0)

]∥∥∥∥∥
2

Σ

+ σ2

×

(
1 + (1− e)2∥ν1 − ν0∥2Σ−1

1

eE
[
Y (1)

]2 +
1 + e2∥ν1 − ν0∥2Σ−1

0

(1− e)E
[
Y (0)

]2
)
.

The variance of RR-OLS can be decomposed in two terms:
the first term corresponds to the oracle variance of RR-
G, that is VRR,G/τ

2
RR; the second term appears due to the

estimation of response surfaces via OLS. Contrary to RR-
IPW, the variance of the oracle estimator for the G-formula
is smaller than that of the OLS estimator. Note that if we
use RR-OLS in a Bernoulli Trial, then one can show that
even in an RCT setting, adjusting for covariates is beneficial
as the variance of the RR-OLS is smaller than the variance
of RR-N. These results are provided in Appendix 7.3.4.

3.3. Risk Ratio One-step estimator (RR-OS)

A popular estimator for the RD is the augmented in-
verse probability weighted estimator (AIPW, see Robins
et al., 1992). AIPW combines the properties of G-formula
and IPW estimators and is doubly-robust in the sense
that it is consistent as soon as either the propensity or
outcome models are correctly specified. By calculating
the influence function of the statistical estimand ψRD =
E [E [Y |T = 1, X]− E [Y |T = 0, X]] we obtain an effi-
cient estimator: it has no asymptotic bias and the minimal
asymptotic variance (Kennedy, 2022). Therefore, to esti-
mate the Risk Ratio (RR), a natural approach is to derive
an efficient estimator using semi-parametric theory (Tsiatis,
2006), as presented below.
Definition 3.10 (Crossfitted RR-OS). For all t ∈ {0, 1}
and all x, let µ(t)(x) = E

[
Y (0)|X = x

]
and e(t)(x) =

P [T = t|X = x]. We denote I = {1, . . . , n}, let
I1, I2, ..., IK be a partition of I. Let µ̂I−k

(t) (X) and

ê
I−k

(t) (X) be estimators of µ(t) and e(t) built on the sam-
ple I−k = I\Ik. For all t ∈ {0, 1}, let

τ̂AIPW,t =
1

n

K∑
k=1

∑
i∈Ik

µ̂I−k

(t) (Xi) +
Yi − µ̂

I−k

(t) (Xi)

ê
I−k

(t) (Xi)
1Ti=t


(12)

and τ̂G,t =
1

n

K∑
k=1

∑
i∈Ik

µ̂
I−k

(t) (Xi), (13)
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The crossfitted Risk Ratio One-Step (RR-OS) estimator
τ̂RR-OS is defined as

τ̂RR-OS =
τ̂G,1

τ̂G,0

(
1− τ̂AIPW,0

τ̂G,0

)
+
τ̂AIPW,1

τ̂G,0
.

Considering the statistical estimand ψRR = E[E[Y |T=1,X]]
E[E[Y |T=0,X]] ,

we obtained the estimator RR-OS, which is efficient when
nuisance components are estimated via cross-fitting (Cher-
nozhukov et al., 2017) and with non-parametric methods.

Proposition 3.11 (Asymptotic normality of τ̂RR-OS). Grant
Assumption 2.3 and Assumption 3.1. Assume that for all
1 ≤ k ≤ K, and for all t ∈ {0, 1},

E
[(
µ̂
I−k
(t)

(X)−µ(t)(X)
)2

]
E
[
(êI−k (X)−e(X))

2
]
=o( 1

n ) (14)

E
[
µ̂
I−k
(0)

(X)
]
−E[µ(0)(X))]=o(n−1/4) (15)

E
[
(µ̂

I−k
(0)

(X)−µ(0)(X))2
]
E
[
(µ̂

I−k
(1)

(X)−µ(1)(X))2
]
=o( 1

n ), (16)

with η ≤ êI−k(·) ≤ 1− η (see Assumption 3.1). Then the
One-Step estimator is asymptotically unbiased and satisfies

√
n (τ̂RR-OS − τRR)

d→ N (0, VRR,OS) ,

where

VRR,OS

τ2RR
= Var

(
µ(1)(X)

E
[
Y (1)

] − µ(0)(X)

E
[
Y (0)

])

+ E

[
Var

(
Y (1)|X

)
e(X)E

[
Y (1)

]2
]
+ E

[
Var

(
Y (0)|X

)
(1− e(X))E

[
Y (0)

]2
]
.

This estimator is efficient: its asymptotic variance is min-
imal. The semi parametric theory develops efficient esti-
mators by compensating for the first-order bias (Kennedy,
2022), this can be achieved either by estimating and subtract-
ing the first-order bias, leading to the RR-OS estimator or
by finding values for the target parameter and nuisance pa-
rameters that solve the estimating equation (see A.Schuler,
2024, for the RD case), resulting in RR-AIPW presented
below (calculations are detailed in Appendix 7.3.6).

3.4. Risk Ratio Augmented Inverse Propensity
Weighting (RR-AIPW)

Definition 3.12 (Crossfitted RR-AIPW). The Risk Ratio
AIPW crossfitted is defined as

τ̂RR,AIPW :=
τ̂AIPW,1

τ̂AIPW,0
,

where τ̂AIPW,0, and τ̂AIPW,1 are defined in 3.10.

The RR-AIPW is simply the ratio of two one-step estima-
tors, one for E

[
Y (1)

]
and one for E

[
Y (0)

]
. This method

may seem simplistic at first glance, since approximating
both the numerator and denominator usually results in a
non-zero asymptotic bias. However, RR-AIPW is derived
via the estimating equation method using influence function
theory, which results in an efficient (asymptotically unbi-
ased) estimator. Note that in the case of the Risk Difference
(RD), both approaches (One-step bias correction and esti-
mating equation) yield the same AIPW estimator. However,
because our statistical estimand for the Risk Ratio is nonlin-
ear, the resulting estimators differ. It remains that they are
both efficient, as shown below.

Proposition 3.13 (RR AIPW asymptotic normality).
Grant Assumptions 2.3 and 3.1. Assume that (14) holds
and that, for all 1 ≤ k ≤ K and all t ∈ {0, 1},

E
[(
µ̂
I−k
(t)

(X)−µ(t)(X)
)2

]
=o(1), E

[
(êI−k (X)−e(X))

2
]
=o(1),

(17)

with η ≤ êI−k(·) ≤ 1− η. Then, the crossfitted Risk Ratio
AIPW estimator is asymptotically unbiased and satisfies

√
n (τ̂RR,AIPW − τRR)

d→ N (0, VRR,OS) ,

where VRR,OS is defined in Proposition 3.11.

Assumptions in Proposition 3.13 are the same as those used
in the Risk Difference AIPW estimator (Wager, 2020) to
achieve double robustness. Specifically, RR-AIPW ben-
efits from weak double robustness, meaning consistency
is maintained as long as either the outcome model or the
propensity score model is estimated consistently. This con-
trasts with RR-OS, which lacks this flexibility: it requires
consistency of both outcome models (µ0, µ1) or the joint
consistency of (e, µ0) to achieve reliable inference. Ad-
ditionally, condition 14 often referred to as a risk decay
condition ensures strong double robustness for RR-AIPW.
This property ensures asymptotic normality when both the
propensity score and outcome regression converge at suffi-
ciently fast rates. We recommend RR-AIPW over RR-OS,
not only because both share identical efficiency in their
asymptotic distributions, but also because RR-AIPW op-
erates under weaker assumptions. RR-AIPW’s strong and
weak double robustness properties provide greater resilience
to model misspecification compared to RR-OS.

4. Simulation
Simulations for RCT are provided in Appendix 8. For ob-
servational studies, we generate datasets (X,T, Y (0), Y (1))
according to the general model

Y (1) = m(X) + b(X) + ε(1) P [T = 1|X] = e(X),
Y (0) = b(X) + ε(0) with ε(t) ∼ N

(
0, σ2

)
.
,
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Sample size

Figure 1. Risk Ratio estimators computed for a Linear/Logistic DGP, with 3000 repetitions.

Figure 2. Risk Ratio estimators computed for a non-Linear-Logistic DGP, with 3000 repetitions.

where m(.), b(.), and e(.) respectively correspond to
the treatment effect, the baseline and the propensity
score. The true Risk Ratio can be expressed as τRR =
E
[
Y (1)

]
/E
[
Y (0)

]
= E [m(X)] /E [b(X)] + 1. We com-

pare the performances of all estimators defined in Sec-
tion 3 where nuisance components (regression surfaces
and propensity score) are estimated via parametric (lin-
ear/logistic regression) or non-parametric methods (random
forests). More details are provided in Appendix 8.

4.1. Linear and Logistic DGP

The first observational data-generating process (DGP), in-
troduced in Lunceford & Davidian (2004a), uses linear out-
come models (treatment effect and baseline) and a logistic
propensity score, defined as m(X,V ) = 2 with:

b(X,V ) = β⊤
0 [X,V ], e(X) = (1 + exp(−β⊤

e X))−1

β0 = (−1, 1,−1,−1, 1, 1) βe = (−0.6, 0.6,−0.6).

Covariates X = (X1, X2, X3)
⊤ influence treatment and

response, while V = (V1, V2, V3)
⊤ only affect the response.

[X,V ] are jointly distributed, with X3 ∼ Bernoulli(0.2)
and V3 ∼ Bernoulli(P (V3 = 1 | X3) = 0.75X3 +

0.25(1 − X3)). Conditional on X3, (X1, V1, X2, V2)
⊤ ∼

N (λX3
,Σ), where:

λ1 = −λ0 =


1
1
−1
−1

 ,Σ =


1 0.5 −0.5 −0.5
0.5 1 −0.5 −0.5
−0.5 −0.5 1 0.5
−0.5 −0.5 0.5 1


Results are depicted in Figure 1. Only confounding vari-
ables are used as inputs in the different estimators. As
expected, since the generative process is linear, methods
that use parametric estimators (logistic/linear regression)
outperform those using non-parametric approaches (random
forests) in finite-sample settings. While all methods (ex-
cept RR-N) converge to the correct RR, methods based on
parametric estimators exhibit a faster rate of convergence
and are unbiased (except for Logistic RR-IPW) even for
small sample sizes. Indeed, random forests are not suited
for linear generative process and require here more than
10000 samples to estimate correctly the RR. All in all, when
the outcome modelling and the propensity scores are linear,
the two doubly-robust estimators (RR-AIPW and RR-OS)
and the RR-G, all based on linear estimators, achieve the
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best performances: they are unbiased, even for small sample
sizes, and converge quickly to the true RR.

Furthermore, both Linear RR-OS and RR-AIPW estimators
give very similar results. More simulations on a Non-Linear
and (Non-)Logistic DGPs are available in 8.2. As antici-
pated, estimators with non-parametric nuisance functions
outperform their parametric counterparts when the DGP
deviates from linear or logistic structures.

4.1.1. NON-LINEAR AND LOGISTIC DGP

We use a semi-parametric setup (see Nie & Wager, 2020)
with non-linear baseline models, a constant treatment effect
and a logistic propensity score:

b(X) = 2 log
(
1 + eX1+X2+X3

)
,

e(X) = 1/
(
1 + eX2+X3

)
and m(X) = 1,

where X ∼ N (0, Id×d). Results are presented in Figure 2.
The Forest IPW and Linear G-formula estimators yield poor
RR estimates for the largest sample size. The forest IPW
uses random forests to estimate a logistic model, which may
still converge, but at a slower rate than other methods. The
Linear G-formula employs linear regressions to estimate
the response surfaces, potentially leading to an irreducible
asymptotic bias. The Forest RR-G, Forest RR-AIPW, and
Forest RR-OS estimators converge slowly to the true RR.
This simulation highlights the doubly robust properties of
the Linear RR-AIPW and Linear RR-OS estimators: they
target the true RR even at small sample sizes, as they have
at least one well-specified model.

4.2. Confidence intervals (CI)

In both the Linear/Logistic and Non-Linear/Logistic data-
generating processes (DGPs), we build asymptotic 95% CI
for the RR-AIPW, RR-G and RR-N estimators based on their
asymptotic normality. Variances were estimated via equa-
tion 136, 33, 47, 52 and 30. In Figure 3, we present the dis-
tribution of the length and coverage (probability that the CI
contains the risk ratio) for each estimator (300 repetitions).
IPW was excluded for its poor performance (excessively
large CIs), caused by propensity scores close to 0 or 1 (see
Figure 8). As expected, RR-N CI has nearly zero coverage
due to non-RCT setting. The Forest RR-G and RR-AIPW
confidence intervals also exhibit poor coverage, which is in
agreement with the Linear/Logistic DGP. In contrast, Linear
RR-G and RR-AIPW demonstrate good coverage. Note that
the CI for OLS RR-G, built on Proposition 3.9, has a better
coverage than the Linear RR-G method, as it includes the
uncertainty due to linear estimations. Although only the
RR AIPW has coverage above 95%, the OLS RR-G has a
shorter average predicted length compared to the Linear RR
AIPW.

Turning to the Non-Linear/Logistic DGP, Figure 4 shows
the CI length and coverage for the same estimators. In this
setting, only the Linear RR-AIPW estimator maintains ac-
ceptable coverage—likely because propensity scores are
well-estimated, whereas modeling complex, non-linear re-
sponse surfaces is difficult with either linear models or
forest-based methods when n = 1000. As before, For-
est RR-G and Forest RR-AIPW struggle with coverage,
and the RR-N estimator again shows almost no coverage,
reflecting its limitations in observational settings. More sim-
ulations on a Non-Linear/Non-Logistic DGP are available
in Appendix 8.2.

5. Real-World Experiment
To better illustrate the practical application and behavior of
our estimators, we include a real-world study from Mayer
et al. (2020) involving 8,270 patients with traumatic brain
injury (TBI), using data extracted from the Traumabase.
The Traumabase is a continuously updated database that
collects comprehensive clinical data from the scene of the
accident through to hospital discharge. The causal effect
of tranexamic acid (TXA) on 28-day mortality is estimated
by adjusting for 17 confounding variables. These variables
include key metrics for severe trauma cases, such as systolic
and diastolic blood pressure, heart rate, oxygen saturation,
and details of interventions. We subsample the real data
to obtain different sample sizes, with results averaged over
3,000 simulations for each sample size. Since this is a real
dataset, the true value of τRR is unknown. Semi-synthetic
simulations, in which the treatment and potential outcomes
are generated (allowing us to know the true RR value), are
described in detail in 8.3. Results are displayed in Figure 5.

As observed, most estimators yield values larger than one,
suggesting a potential deleterious effect of TXA (increased
mortality). This trend aligns with findings from previous
studies (e.g., (Mayer et al., 2020)). Notably, Forest RR-IPW
is the only estimator indicating a beneficial effect of the
treatment. RR-N, which is not suited for use with obser-
vational data, produces a higher value compared to other
estimators. Interestingly, estimators based on linear models
(Linear RR-AIPW, Linear RR-G, Linear RR-OS) exhibit
the largest variances, particularly for small sample sizes.

6. Conclusion
Quantifying treatment effects presents challenges, since dif-
ferent measures may lead to different understanding of the
same phenomenon. In our study, we focus on one of these
measures, the Risk Ratio and introduced several estimators,
valid in RCT or observational studies. Using dedicated math-
ematical tools (influence function theory, M-estimation), we
establish their asymptotic normality, limiting variance and
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Figure 3. Coverage (left) and Length (right) of asymptotic CI derived from Section 2 and Section 3 with n = 1000 and 300 repetitions.
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Figure 4. Average coverage (left) and average length (right) of asymptotic confidence interval derived from Section 2 and Section 3 for
different estimators with n = 1000 and 300 repetitions for a Non-Linear and Logistic DGP.

Figure 5. RR estimations with weighting, outcome based and augmented estimators as a function of the sample size for the Traumabase.
Parametric (Linear) and non parametric (Forest) estimations of nuisance are displayed.

derive asymptotic confidence intervals. Empirical evalua-
tions show that RR-N and RR-IPW have poor performances.
Either Linear or Forest RR-AIPW (or RR-OS) show similar
(good) behaviors to estimate the Risk Ratio, with the best
theoretical guarantees among all studied estimators. Since
RR-AIPW requires fewer assumption and is simpler to com-
pute, we would recommend to use RR-AIPW. As for the
doubly-robust approaches, G-formula is competitive, with
performances that depend on the setting and the estima-
tion method used for the nuisance components. Identifying
guidelines establishing when linear nuisance components
should be used instead of non-parametric ones still remains
an open problem. In practice, observational studies may

be used to generalize the treatment effect from a RCT pop-
ulation to the general population of interest. Our work is
a first step toward proposing procedures to generalize the
Risk Ratio to general populations.
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Impact Statement
This paper proposes and studies estimators for the Risk Ra-
tio in observational studies, addressing a methodological
gap in causal inference. The Risk Ratio is widely used in
clinical and epidemiological research to assess relative treat-
ment effects. However, it is important to consider the Risk
Ratio alongside other effect measures, as each provides a
different perspective on the data and may have different
implications for practice. As these methods rely on stan-
dard causal assumptions such as ignorability—which can be
difficult to satisfy in practice—caution is needed when in-
terpreting the results. Violations of these assumptions may
lead to biased estimates and incorrect conclusions about
treatment effects.
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7. Appendix
7.1. Preliminary results

Since we are studying the asymptotic properties of the risk ratio, we cannot directly apply a central limit theorem as in
(Wager, 2020). We will therefore rely on Theorem 7.1 to prove most of our asymptotic results.

Theorem 7.1 (Asymptotic normality of the ratio of two estimators). Let (Z1, . . . , Zn) be n i.i.d. random variables, g0
and g1 two functions square integrable such that E [g0(Zi)] = τ0 and E [g1(Zi)] = τ1, where τ0 ̸= 0. Then, we have that

√
n

(∑n
i=1 g1(Zi)∑n
i=1 g0(Zi)

− τ1
τ0

)
d→ N (0, V ⋆RR) ,

where

V ⋆RR =

(
τ1
τ0

)2

Var

(
g1(Z)

τ1
− g0(Z)

τ0

)
.

Proof. We rely on M-estimation theory to prove Theorem 7.1. Let

θ̂n =


1
n

∑n
i=1 g0(Zi)

1
n

∑n
i=1 g1(Zi)∑n
i=1 g1(Zi)∑n
i=1 g0(Zi)

 and ψ(Z,θ) =

 g0(Z)− θ0
g1(Z)− θ1
θ1 − θ2θ0

 , (18)

where θ = (θ0, θ1, θ2). We have that

n∑
i=1

g0(Zi)− 1

n

n∑
j=1

g0(Zj)

 =

n∑
i=1

g0(Zi)−
n∑
j=1

g0(Zj) = 0,

and similarly

n∑
i=1

g1(Zi)− 1

n

n∑
j=1

g1(Zj)

 =

n∑
i=1

g1(Zi)−
n∑
j=1

g1(Zj) = 0.

Besides,

n∑
i=1

 1

n

n∑
j=1

g1(Zj)−
∑n
j=1 g1(Zj)∑n
j=1 g0(Zj)

1

n

n∑
j=1

g0(Zj)

 = 0.

Gathering the three previous equalities, we obtain

n∑
i=1

ψ(Zi,θn) = 0, (19)

which proves that θ̂n is an M-estimator of type ψ (see Stefanski & Boos, 2002). Furthermore, letting θ∞ = (τ0, τ1, τ1/τ0),
simple calculations show that

E [ψ(Z,θ∞)] = 0. (20)

Since the first two components of ψ are linear with respect to θ0 and θ1 and since the third component is linear with respect
to θ2, θ∞ defined above is the only value satisfying (20). Define

A (θ∞) = E
[
∂ψ

∂θ
|θ=θ∞

]
and B(θ∞) = E

[
ψ(Z, θ∞)ψ(Z, θ∞)T

]
. (21)

13
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We now check the conditions of Theorem 7.2 in Stefanski & Boos (2002). First, let us compute A (θ∞) and B (θ∞). Since

∂ψ

∂θ
(Z, θ) =

 −1 0 0
0 −1 0

−θ2 1 −θ0

 , (22)

we obtain

A (θ∞) =

 −1 0 0
0 −1 0

− τ1
τ0

1 −τ0

 , (23)

which leads to

A−1 (θ∞) =

 −1 0 0
0 −1 0
τ1
τ2
0

− 1
τ0

− 1
τ0

 . (24)

Regarding B (θ∞), elementary calculations show that

ψ(Z, θ∞)ψ(Z, θ∞)T =

 (g0(Z)− τ0)
2

(g0(Z)− τ0) (g1(Z)− τ1) 0

(g0(Z)− τ0) (g1(Z)− τ1) (g1(Z)− τ1)
2

0
0 0 0

 ,

which leads to

B(θ∞) =

 Var [g0(Z)] Cov (g0(Z), g1(Z)) 0
Cov (g0(Z), g1(Z)) Var [g1(Z)] 0

0 0 0

 .

Based on the previous calculations, we have

• ψ(z,θ) and its first two partial derivatives with respect to θ exist for all z and for all θ in the neighborhood of θ∞.

• For each θ in the neighborhood of θ∞, we have for all i, j, k ∈ {0, 2}:∣∣∣∣ ∂2

∂θi∂θj
ψk(z,θ)

∣∣∣∣ ≤ 1

and 1 is integrable.

• A(θ∞) exists and is nonsingular.

• B(θ∞) exists and is finite.

Since we have:
n∑
i=1

ψ(Ti, Yi, θ̂n) = 0 and θ̂n
p→ θ∞.

Then the conditions of Theorem 7.2 in Stefanski & Boos (2002) are satisfied, we have
√
n
(
θ̂n − θ∞

)
d→ N

(
0, A(θ∞)−1B(θ∞)(A(θ∞)−1)⊤

)
,

where

A(θ∞)−1B(θ∞)(A(θ∞)−1)⊤

=


Var [g0(Z)] Cov (g0(Z), g1(Z))

Cov(g0(Z),g1(Z))
τ0

− τ1 Var[g0(Z)]
τ2
0

Cov (g0(Z), g1(Z)) Var [g1(Z)] −Cov(g0(Z),g1(Z))τ1
τ2
0

+ Var[g1(Z)]
τ0

Cov(g0(Z),g1(Z))
τ0

− τ1 Var[g0(Z)]
τ2
0

−Cov(g0(Z),g1(Z))τ1
τ2
0

+ Var[g1(Z)]
τ0

V ⋆RR

, (25)

14
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with

V ⋆RR =

(
τ1
τ0

)2

Var

(
g1(Z)

τ1
− g0(Z)

τ0

)
. (26)

In particular,

√
n

(∑n
i=1 g1(Zi)∑n
i=1 g0(Zi)

− τ1
τ0

)
d→ N (0, V ⋆RR) . (27)

Assumption 7.2. We suppose that both Y (0) and Y (1) are squared integrable and that E
[
Y (0)|X

]
,E
[
Y (1)|X

]
> 0.

Theorem 7.3 (Finite sample bias and variance of the ratio of two estimators). Let T1(Z) and T0(Z) be two unbiased
estimators of τ1 and τ0 > 0 where Z = (Z1, . . . , Zn) be n i.i.d. random variables. We assume thatM0 ≥ T0(Z) ≥ m0 > 0,
|T1(Z)| ≤M1. We also assume that Var(T1(Z)) = Op

(
1
n

)
and Var(T0(Z)) = Op

(
1
n

)
Then, we have that

Bias

(
T1(Z)

T0(Z)
,
τ1
τ0

)
=

∣∣∣∣E [T1(Z)

T0(Z)

]
− τ1
τ0

∣∣∣∣ ≤ M1M0

nm2
0

(
M0

m0
+ 1

)
,

and ∣∣∣∣∣Var
(
T1(Z)

T0(Z)

)
−
(
τ1
τ0

)2

Var

(
T1(Z)

τ1
− T0(Z)

τ0

)∣∣∣∣∣ ≤ 2M0M1

nm4
0

(
M0M1

m2
0

+ 1

)
.

Proof. We rely on the multivariate version of Taylor’s theorem to prove Theorem 7.3. We first introduce the multi-index
notation:

|α| = α1 + · · ·+ αn, α! = α1! · · ·αn!, xα = xα1
1 · · ·xαn

n

and

Dαf =
∂|α|f

∂xα1
1 · · · ∂xαn

n
, |α| ≤ k

Let f be the ratio function

f : R∗
+ × R∗

+ −→ R
(x1, x2) 7−→ x1/x2.

Since f is two times continuously differentiable then one can derive an exact formula for the remainder in terms of 2nd
order partial derivatives of f . Namely, if we define x = (x1, x2) and for a ∈ R∗

+ × R∗
+

f(x) =
∑
|α|≤1

Dαf(a)

α!
(x− a)α +Rk+1(x), (28)

with

Rk+1(x) =
∑

|β|=k+1

(x− a)β
|β|
β!

∫ 1

0

(1− t)|β|−1Dβf(a+ t(x− a)) dt.

Bias:

15
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Computing 28 for the ratio function with x = (T1(Z), T0(Z)), a = (τ1, τ0) and taking the expectation gives us:

E [f(T1(Z), T0(Z))]

= E
[
f(τ1, τ0) +

∂f(τ1, τ0)

∂T1(Z)
(T1(Z)− τ1) +

∂f(τ1, τ0)

∂T0(Z)
(T0(Z)− τ0) +R2(T1(Z), T0(Z))

]
= E [f(τ1, τ0)] +

∂f(τ1, τ0)

∂T1(Z)
E [(T1(Z)− τ1)]

+
∂f(τ1, τ0)

∂T0(Z)
E [(T0(Z)− τ0)] + E [R2(T1(Z), T0(Z))]

=
τ1
τ0

+ E [R2(T1(Z), T0(Z))]

In order to produce Theorem 7.3, we just need to show that E [R2(T1(Z), T0(Z))] = Op
(
1
n

)
. To do so, we first compute

R2(T1(Z), T0(Z))

R2(T1(Z), T0(Z)) = 2(T0(Z)− τ0)
2

∫ 1

0

(1− t)(τ1 + t(T1(Z)− τ1))

(τ0 + t(T0(Z)− τ0))3
dt︸ ︷︷ ︸

R1
2(T1(Z),T0(Z))

− 2(T0(Z)− τ0)(T1(Z)− τ1)

∫ 1

0

1− t

(τ0 + t(T0(Z)− τ0))2
dt︸ ︷︷ ︸

R2
2(T1(Z),T0(Z))

Since we assume that T0(Z) ≥ m0 > 0 and that |T1(Z)| ≤M1 we have:

∣∣R1
2(T1(Z), T0(Z))

∣∣ = ∣∣∣∣2(T0(Z)− τ0)
2

∫ 1

0

(1− t)(τ1 + t(T1(Z)− τ1))

(τ0 + t(T0(Z)− τ0))3
dt

∣∣∣∣
≤ 2(T0(Z)− τ0)

2

∫ 1

0

∣∣∣∣ (1− t)max(τ1,M1)

min(m0, τ0)3

∣∣∣∣ dt
= (T0(Z)− τ0)

2 M1

m3
0︸︷︷︸

C1

Similarly, we have:

∣∣R2
2(T1(Z), T0(Z))

∣∣ = ∣∣∣∣2(T0(Z)− τ0)(T1(Z)− τ1)

∫ 1

0

1− t

(τ0 + t(T0(Z)− τ0))2
dt

∣∣∣∣
= 2 |(T0(Z)− τ0)(T1(Z)− τ1)|

∣∣∣∣∫ 1

0

1− t

(τ0 + t(T0(Z)− τ0))2
dt

∣∣∣∣
≤ |(T0(Z)− τ0)(T1(Z)− τ1)|

1

m2
0︸︷︷︸

C2

Finally we get that:

|E [R2(T1(Z), T0(Z))]| ≤ E
[
|R1

2(T1(Z), T0(Z))|+ |R2
2(T1(Z), T0(Z))|

]
≤ C1 Var(T0(Z)) + C2E [|(T0(Z)− τ0)(T1(Z)− τ1)|]

≤ C1 Var(T0(Z)) + C2

√
Var(T0(Z))Var(T1(Z))

≤ C1M
2
0 + C2M0M1

16
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Since we have that Var(T1(Z)) = Op
(
1
n

)
and Var(T0(Z)) = Op

(
1
n

)
, we can conclude by:

Bias

(
T1(Z)

T0(Z)
,
τ1
τ0

)
=

∣∣∣∣E [T1(Z)

T0(Z)

]
− τ1
τ0

∣∣∣∣ ≲ M1M0

nm2
0

(
M0

m0
+ 1

)
Variance:
Let us begin by expanding the variance of the function f :

Var f(T1(Z), T0(Z)) = E
[
(f(T1(Z), T0(Z))− E [f(T1(Z), T0(Z))])2

]
Next, apply Taylor’s expansion around the means τ1 and τ0:

= E
[
(f(τ1, τ0) +

∂f(τ1, τ0)

∂T1(Z)
(T1(Z)− τ1) +

∂f(τ1, τ0)

∂T0(Z)
(T0(Z)− τ0)

+R2(T1(Z), T0(Z))− E [f(T1(Z), T0(Z))])2
]

Simplify by focusing on the first-order derivatives and residual terms:

= E
[
(
∂f(τ1, τ0)

∂T1(Z)
(T1(Z)− τ1) +

∂f(τ1, τ0)

∂T0(Z)
(T0(Z)− τ0)

+R2(T1(Z), T0(Z))− E [R2(T1(Z), T0(Z))])2
]

Decompose the variance into linear, cross-term, and residual contributions:

= E
[
(
∂f(τ1, τ0)

∂T1(Z)
(T1(Z)− τ1) +

∂f(τ1, τ0)

∂T0(Z)
(T0(Z)− τ0))

2

]
+ 2E

[
∂f(τ1, τ0)

∂T1(Z)
(T1(Z)− τ1)

+
∂f(τ1, τ0)

∂T0(Z)
(T0(Z)− τ0)

]
E [R2(T1(Z), T0(Z))− E [R2(T1(Z), T0(Z))]]

+ Var(R2(T1(Z), T0(Z)))

Finally, re-express the result using a simplified ratio of variances:

=

(
τ1
τ0

)2

Var

(
T1(Z)

τ1
− T0(Z)

τ0

)
+Var(R2(T1(Z), T0(Z))

We now focus on Var(R2(T1(Z), T0(Z))):

Var(R2(T1(Z), T0(Z))) ≤ E
[
(R2(T1(Z), T0(Z)))2

]
≤ 2E

[
|R1

2(T1(Z), T0(Z))|2
]
+ 2E

[
|R2

2(T1(Z), T0(Z))|2
]

We first focus on the first term:

E
[
|R1

2(T1(Z), T0(Z))|2
]
≤ E

[(
C02(T0(Z)− τ0)

2
)2]

≤ C2
1E
[
(T0(Z)− τ0)

4
]

≤ C2
1M

2
0E
[
(T0(Z)− τ0)

2
]

T0(Z) ≤M0

≤ C2
1M

2
0 Var(T0(Z))

For the second term we have:

E
[
|R2

2(T1(Z), T0(Z))|2
]
= C2

2E
[
(T0(Z)− τ0)

2(T1(Z)− τ1)
2
]

≤ C2
2

√
E [(T0(Z)− τ0)4]E [(T1(Z)− τ1)4]

T1(Z), T0(Z) bounded ≤ C2
2M0M1

√
E [(T0(Z)− τ0)2]E [(T1(Z)− τ1)2]

≤ C2
2M0M1

√
Var(T0(Z))Var(T1(Z))

17
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Hence we get that:

Var(R2(T1(Z), T0(Z))) ≲
2M0M1

nm4
0

(
M0M1

m2
0

+ 1

)

7.2. Proofs of Section 2

7.2.1. RISK RATIO NEYMAN ESTIMATOR

Proof of Proposition 2.4.
Asymptotic Bias and Variance: we proceed with M-estimations to prove asymptotic bias and variance of the Ratio Neyman
estimator, we first define the following:

θ̂n =

 1
n0

∑
Ti=0 Yi

1
n1

∑
Ti=1 Yi

τ̂R−N,n

 and ψ(T, Y,θ) =

 ψ0(θ)
ψ1(θ)
ψ2(θ)

 =:

 (1− T ) (Y − θ0)
T (Y − θ1)
θ1 − θ2θ0

 , (29)

where θ = (θ0, θ1, θ2).

Next, we verify that for θ̂n = ( 1
n0

∑
Ti=0 Yi,

1
n1

∑
Ti=1 Yi, τ̂R−N,n), we have:

n∑
i=1

ψ(Ti, Yi, θ̂n) = 0.

We begin by demonstrating this for ψ1:

n∑
i=1

ψ1(Ti, Yi, θ̂n) =

n∑
i=1

Ti

Yi − 1

n1

∑
Tj=1

Yj


=

n∑
i=1

Ti

Yi − 1

n1

n∑
j=1

TjYj


=

n∑
i=1

TiYi −
1

n1

n∑
i=1

Ti

n∑
j=1

TjYj

=

n∑
i=1

TiYi −
n∑
j=1

TjYj

= 0.

Similarly, we can show:
n∑
i=1

ψ0(Ti, Yi, θ̂n) = 0.

Moreover, by construction:
n∑
i=1

ψ2(Ti, Yi, θ̂n) = 0.

Thus, we have established that θ̂n is an M-estimator of type ψ (see Stefanski & Boos, 2002). Given that we are in a Bernoulli

18



Quantifying Treatment Effects: Estimating Risk Ratios via Observational Studies

Trial, we now demonstrate that E [ψ(T, Y, θ∞)] = 0 where θ∞ = (E[Y (0)],E[Y (1)], τRR). Therefore, we have:

E [ψ1(θ∞)] = E
[
T
(
Y − E[Y (1)]

)]
= E

[
T
(
Y (1) − E[Y (1)]

)]
(by SUTVA)

= E [T ]E
[
Y (1) − E[Y (1)]

]
(by ignorability)

= 0.

Similarly, we can show:
E [ψ0(θ∞)] = 0.

Furthermore, we have:
E [ψ2(θ∞)] = E[Y (1)]− τRRE[Y (0)] = 0.

At this point, we note that θ∞ is the only value of θ such that E [ψ(T, Y,θ)] = 0. We proceed by defining:

A (θ∞) = E
[
∂ψ

∂θ
|θ=θ∞

]
and B(θ∞) = E

[
ψ(Z, θ∞)ψ(Z, θ∞)T

]
.

Next, we check the conditions of Theorem 7.2 in Stefanski & Boos (2002). First, we compute A (θ∞) and B (θ∞). Since:

∂ψ

∂θ
(Z, θ) =

 −(1− T ) 0 0
0 −T 0

−θ2 1 −θ0

 ,

we obtain:

A (θ∞) =

 −(1− e) 0 0
0 −e 0

−τRR 1 −E[Y (0)]

 ,

which leads to:

A−1 (θ∞) =

 1
e−1 0 0

0 − 1
e 0

τRR
1

E[Y (0)](1−e) − 1
eE[Y (0)]

− 1
E[Y (0)]

 .

Regarding B (θ∞), elementary calculations show that:

ψ(Z, θ∞)ψ(Z, θ∞)T

=


(
(1− T )(Y − E[Y (0)])

)2
(1− T )(Y − E[Y (0)])T (Y − E[Y (1)]) 0

(1− T )(Y − E[Y (0)])T (Y − E[Y (1)])
(
T (Y − E[Y (1)])

)2
0

0 0 0

 ,

which leads to:

B(θ∞) =

 (1− e)Var
[
Y (0)

]
0 0

0 eVar
[
Y (1)

]
0

0 0 0

 .

Based on the previous calculations, we have:

• ψ(z,θ) and its first two partial derivatives with respect to θ exist for all z and for all θ in the neighborhood of θ∞.
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• For each θ in the neighborhood of θ∞, we have for all i, j, k ∈ {0, 2}:∣∣∣∣ ∂2

∂θi∂θj
ψk(z,θ)

∣∣∣∣ ≤ 1

and 1 is integrable.

• A(θ∞) exists and is nonsingular.

• B(θ∞) exists and is finite.

Since we have:
n∑
i=1

ψ(Ti, Yi, θ̂n) = 0 and θ̂n
p→ θ∞.

Then, the conditions of Theorem 7.2 in Stefanski & Boos (2002) are satisfied, we have:

√
n
(
θ̂n − θ∞

)
d→ N

(
0, A(θ∞)−1B(θ∞)(A(θ∞)−1)⊤

)
,

where:

A(θ∞)−1B(θ∞)(A(θ∞)−1)⊤ =


Var[Y (0)]
(1−e) 0 − τ Var[Y (0)]

τ0(1−e)

0
Var[Y (1)]

e

Var[Y (1)]
eτ0

− τ Var[Y (0)]
τ0(1−e)

Var[Y (1)]
eτ0

VR−N

 ,
with:

VR−N = τ2RR

(
Var

(
Y (1)

)
eE[Y (1)]2

+
Var

(
Y (0)

)
(1− e)E[Y (0)]2

)
.

In particular, we obtain:
√
n (τ̂RR,N,n − τRR)

d→ N (0, VRR,N) .

Finally, note that:

VR−N = τ2RR

(
Var

(
Y (1)

)
eE[Y (1)]2

+
Var

(
Y (0)

)
(1− e)E[Y (0)]2

)

= τ2RR

(
E[(Y (1))2]− E[Y (1)]2

eE[Y (1)]2
+

E[(Y (0))2]− E[Y (0)]2

(1− e)E[Y (0)]2

)
= VR−HT − τ2RR

e(1− e)
.

As a consequence an estimator V̂R−N can be derived :

V̂R−N = τ̂2RR,N,n

(
1
n

∑
Ti=1

(
Yi − 1

n

∑
Ti=1 Yi

)2
ê
(
1
n

∑
Ti=1 Yi

)2 +
1
n

∑
Ti=0

(
Yi − 1

n

∑
Ti=0 Yi

)2
(1− ê)

(
1
n

∑
Ti=0 Yi

)2
)

(30)

Optimal choice of e: the optimal value of eopt is the one that minimizes the variance of the Ratio Neyman estimator.
Therefore, we need to solve:

inf
e∈(0,1)

τ2RR

(
Var

(
Y (1)

)
eE
[
Y (1)

]2 +
Var

(
Y (0)

)
(1− e)E

[
Y (0)

]2
)
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Noting that the variance we want to minimize is convex in e, we can derive the variance and set it to 0 to find eopt. We have:

C1

e2opt
=

C0

(1− eopt)2

where C1 =
Var(Y (1))
E[Y (1)]

2 and C0 =
Var(Y (0))
E[Y (0)]

2 .

• If
Var(Y (1))
E[Y (1)]2

=
Var(Y (0))
E[Y (0)]2

:
eopt = 0.5

• otherwise:

eopt =
C1 −

√
C1C0

C1 − C0
∈ (0, 1)

7.2.2. RISK RATIO HORVITZ-THOMSON ESTIMATOR

Definition 7.4 (Risk Ratio Horvitz-Thomson estimator). Grant Assumption 2.2 and Assumption 2.3. The Risk Ratio
Horvitz-Thomson estimator denoted τ̂RR,HT,n is defined as,

τ̂RR,HT,n =

∑n
i=1

TiYi

e∑n
i=1

(1−Ti)Yi

1−e

(31)

if
∑n
i=1 Ti < n and 0 otherwise.

Within the context of a Bernoulli trial, Proposition 7.5 proves that the Risk Ratio Horvitz-Thompson estimator is asymptoti-
cally unbiased and normally distributed.
Proposition 7.5 (Asymptotic normality of τ̂RR,HT,n). Under Assumption 2.2 and Assumption 2.3, the Risk Ratio Horvitz-
Thompson estimator is asymptotically unbiased and satisfies

√
n (τ̂RR,HT,n − τRR)

d→ N (0, VRR,HT) (32)

where VRR,HT = τ2RR

(
E
[
(Y (1))

2
]

eE[Y (1)]
2 +

E
[
(Y (0))

2
]

(1−e)E[Y (0)]
2

)
.

If we assume that for all i, M ≥ Yi ≥ m > 0 and 0 <
∑n
i=1 Ti < n, we also have:

|Bias(τ̂RR, HT, n| ≤
2M3(1− e)3

nm3e3

|Var(τ̂RR, HT, n)| ≤
4M4(1− e)6

nm6e4

Proof of Proposition 7.5.

Asymptotic Bias and Variance. Let Zi := (Ti, Yi) and define g0(Zi) =
(1−Ti)Yi

1−e and g1(Zi) = TiYi

e . First, we evaluate
the expectation of g1(Zi):

E [g1(Zi)] = E
[
TiYi
e

]
(by i.i.d)

= E

[
TiY

(1)
i

e

]
(by SUTVA)

= E
[
Ti
e

]
E
[
Y

(1)
i

]
(by ignorability)

= E
[
Y

(1)
i

]
(by Trial positivity)
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Similarly, we can find the expectation of g0(Zi):

E [g0(Zi)] = E
[
Y (0)

]
> 0.

Thus, according to Theorem 7.1, we have
√
n (τ̂RR-HT, n − τRR)

d→ N (0, VRR-HT), with

VRR-HT =

(
τ1
τ0

)2

Var

(
g1(Z)

τ1
− g0(Z)

τ0

)
= τ2RR Var

(
TY

eE
[
Y (1)

] − (1− T )Y

(1− e)E
[
Y (0)

]) .
Next, we evaluate the variance terms separately:

Var

(
TY

eE
[
Y (1)

]) =
1

E
[
Y (1)

]2
e2

Var (TY )

=
1

E
[
Y (1)

]2
e2

(
E
[
(TY )

2
]
− E [TY ]

2
)

=
1

E
[
Y (1)

]2
e2

(
E
[
T (Y )

2
]
− E [TY ]

2
)

(T is binary)

=
1

E
[
Y (1)

]2
e2

(
E
[
T
(
Y (1)

)2]
− E

[
TY (1)

]2)
(by SUTVA)

=
1

E
[
Y (1)

]2
e2

(
eE
[(
Y (1)

)2]
− e2E

[
Y (1)

]2)
(by ignorability)

=
E
[(
Y (1)

)2]
eE
[
Y (1)

]2 − 1.

Similarly, we find the variance of the second term:

Var

(
(1− T )Y

(1− e)E
[
Y (0)

]) =
E
[(
Y (0)

)2]
(1− e)E

[
Y (0)

]2 − 1.

Finally, we compute the covariance between the two terms:

Cov

(
TY

eE
[
Y (1)

] , (1− T )Y

(1− e)E
[
Y (0)

]) =
Cov(TY, (1− T )Y )

eE
[
Y (1)

]
(1− e)E

[
Y (0)

]
=

(
E
[
T (1− T )Y 2

]
− E [TY ]E [(1− T )Y ]

)
eE
[
Y (1)

]
(1− e)E

[
Y (0)

]
=

−E [TY ]E [(1− T )Y ]

eE
[
Y (1)

]
(1− e)E

[
Y (0)

]
= −1.

Using Bienayme’s identity, we finally obtain:
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VRR-HT = τ2RR

E
[(
Y (1)

)2]
eE
[
Y (1)

]2 +
E
[(
Y (0)

)2]
(1− e)E

[
Y (0)

]2
 .

As a consequence an estimator V̂RR−HT can be derived:

V̂RR−HT = τ̂2RR,HT,n

(
1
n

∑
Ti=1 Y

2
i

ê
(
1
n

∑
Ti=1 Yi

)2 +
1
n

∑
Ti=0 Y

2
i

(1− ê)
(
1
n

∑
Ti=0 Yi

)2
)

(33)

Finite sample Bias and Variance. Let T1(Z) = 1
n

∑n
i=1

TiYi

e and T0(Z) = 1
n

∑n
i=1

(1−Ti)Yi

1−e where Z = (Z1, . . . , Zn).
First, consider the variance of T1(Z):

Var(T1(Z)) =
1

ne2
Var (TiYi) (by i.i.d)

=
1

ne2

(
E
[
(TiYi)

2
]
− E [TiYi]

2
)

=
E
[(
Y (1)

)2]− eE
[
Y (1)

]2
ne

.

Thus Var(T1(Z)) = Op (1/n) and similarly Var(T0(Z)) = Op (1/n). Next, we show that T0(Z) is bounded:

T0(Z) =
1

n

n∑
i=1

(1− Ti)Yi
1− e

=
1

n(1− e)

n∑
i=1

(1− Ti)Yi

≥ m

(1− e)

n∑
i=1

(1− Ti) (since Yi ≥ m > 0)

≥ m

(1− e)
(as

n∑
i=1

Ti < n).

Similarly, we also have the upper bound

T0(Z) =
1

n

n∑
i=1

(1− Ti)Yi
1− e

=
1

ne

n∑
i=1

(1− Ti)Yi

≤ 1

ne

n∑
i=1

Yi (since T is binary)

≤ M

e
(since Yi ≤M ).

Similarly, we have T1(Z) ≤ M
e . Therefore, we have shown that T1(Z) and T0(Z) are unbiased estimators of E

[
Y (1)

]
and

E
[
Y (0)

]
> 0, respectively. We also established that M/e ≥ T0(Z) ≥ m/(1− e) > 0 and |T1(Z)| ≤M/e. Furthermore,
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we pointed out that Var(T1(Z)) = Op
(
1
n

)
and Var(T0(Z)) = Op

(
1
n

)
. Applying Theorem 7.3, we obtain:

|E [τ̂RR, HT, n]− τRR| ≤
M2(1− e)2

ne2m2

(
M(1− e)

me
+ 1

)
≤ 2M3(1− e)3

nm3e3
,

and

|Var(τ̂RR, HT, n)− VRR, HT| ≤
2M2(1− e)4

nm4e2

(
M2(1− e)2

m2e2
+ 1

)
≤ 4M4(1− e)6

nm6e4
.

Optimal choice of e The optimal value of eopt is the one that minimizes the variance of the Ratio Horvitz-Thomson
estimator. Therefore, we need to solve:

inf
e∈(0,1)

τ2RR

E
[(
Y (1)

)2]
eE
[
Y (1)

]2 +
E
[(
Y (0)

)2]
(1− e)E

[
Y (0)

]2


Noting that the variance we want to minimize is convex in e, we can derive the variance and set it to 0 to find eopt. We have:

C1

e2opt
=

C0

(1− eopt)2

where C1 =
E
[
(Y (1))

2
]

E[Y (1)]
2 and C0 =

E
[
(Y (0))

2
]

E[Y (0)]
2 .

• If
Var(Y (1))
E[Y (1)]2

=
Var(Y (0))
E[Y (0)]2

:

eopt = 0.5

• otherwise:

eopt =

E
[(
Y (1)

)2]E [Y (0)
]2 −√E

[(
Y (1)

)2]E [(Y (0)
)2]E [Y (1)

]
E
[
Y (0)

]
E
[(
Y (1)

)2]E [Y (0)
]2 − E

[(
Y (0)

)2]E [Y (1)
]2 ∈ (0, 1)

7.2.3. LINK WITH EXISTING ASYMPTOTIC CONFIDENCE INTERVALS

According to Proposition 2.4, a (1− α) asymptotic confidence interval for τRR is given by

τ̂RR,N,n ±

√
V̂RR,Nz1−α/2

n

 (34)

with V̂RR,N an estimator of

VRR,N = τ2RR

(
Var

(
Y (1)

)
eE[Y (1)]2

+
Var

(
Y (0)

)
(1− e)E[Y (0)]2

)
.
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Now, assume that Y (0), Y (1) ∈ {0, 1} with associated probabilities P[Y (0) = 1] = p0 and P[Y (1) = 1] = p1. In this setting,
the variance VRR,N takes the form

VRR,N

n
=
τ2RR

n

(
Var

(
Y (1)

)
eE[Y (1)]2

+
Var

(
Y (0)

)
(1− e)E[Y (0)]2

)

= τ2RR

(
p1(1− p1)

N1p21
+
p0(1− p0)

N0p20

)
= τ2RR

(
1− p1
N1p1

+
1− p0
N0p0

)
= τ2RR

(
1

N1p1
− 1

N1
+

1

N0p0
− 1

N0

)
= τ2RR

(
1

N1p1
− 1

N1
+

1

N0p0
− 1

N0

)
.

An estimation of such a quantity can be constructed by replacing p1 (resp. p0) by (1/N1)
∑n
i=1 TiYi (resp. (1/N0)

∑n
i=1(1−

Ti)Yi), which leads to

V̂RR,N

n
= τ̂2RR

(
1∑n

i=1 TiYi
− 1

N1
+

1∑n
i=1(1− Ti)Yi

− 1

N0

)
. (35)

Thus, a (1− α) asymptotic confidence interval for τRR is given by[
τ̂RR,N,n ± z1−α/2τ̂RR,N,n

√(
1∑n

i=1 TiYi
− 1

N1
+

1∑n
i=1(1− Ti)Yi

− 1

N0

)]
(36)

=

[
τ̂RR,N,n

(
1± z1−α/2

√(
1∑n

i=1 TiYi
− 1

N1
+

1∑n
i=1(1− Ti)Yi

− 1

N0

))]
. (37)

Finally, since ex is equivalent to 1 + x near x = 0, the above interval is equivalent to that given by (3), which concludes the
proof.

7.2.4. DELTA METHOD WITH log FUNCTION

According to Proposition 2.4, we know that
√
n (τ̂RR,N,n − τRR)

d→ N (0, VRR,N) , (38)

where

VRR,N = τ2RR

(
Var

(
Y (1)

)
eE[Y (1)]2

+
Var

(
Y (0)

)
(1− e)E[Y (0)]2

)
.

Using the Delta method, with the function θ 7→ log(θ), we obtain

√
n (log(τ̂RR,N,n)− log(τRR))

d→ N
(
0, (1/τRR)

2VRR,N

)
. (39)

Thus, a (1− α) asymptotic confidence interval for log(τRR) is given by[
log(τ̂RR,N,n)± z1−α/2

√
VRR,N

nτ2RR

]
. (40)

Letting Vlog RR,N = VRR,N/τ
2
RR, a (1− α) asymptotic confidence interval for τRR is[

τ̂RR,N,n exp

(
±z1−α/2

√
Vlog RR,N

n

)]
. (41)
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Now, note that, if Y (0), Y (1) ∈ {0, 1} with P[Y (t) = 1] = pt, we have

Vlog RR,N =
Var

(
Y (1)

)
eE[Y (1)]2

+
Var

(
Y (0)

)
(1− e)E[Y (0)]2

(42)

=
p1(1− p1)

ep21
+
p0(1− p0)

(1− e)p20
(43)

=
1

ep1
− 1

e
+

1

ep0
− 1

1− e
. (44)

Hence,
Vlog RR,N

n
=

1

enp1
− 1

en
+

1

enp0
− 1

n(1− e)
, (45)

which can be estimated replacing ne (resp. n(1 − e)) by N1 =
∑n
i=1 Ti (resp. N0 = n −N1 and enp1 (resp. enp0) by∑n

i=1 YiTi (resp.
∑n
i=1 Yi(1− Ti)). Replacing Vlog RR,N/n by such an estimate in the asymptotic confidence interval (41)

leads to the well-known formula presented in Equation (3).

7.3. Proofs of Section 3

7.3.1. RISK RATIO INVERSE PROPENSITY WEIGHTING

Proof of Proposition 3.3.
Asymptotic bias and variance of the oracle Risk Ratio IPW estimator Recall that the oracle Risk Ratio IPW is defined as

τ⋆RR,IPW =

(
n∑
i=1

TiYi
e(Xi)

)/( n∑
i=1

(1− Ti)Yi
1− e(Xi)

)
,

where the propensity score e is assumed to be known. Let us define g1(Z) = TY/e(X) and g0(Z) = (1−T )Y/(1− e(X))
with Z = (X,T, Y ). Since

m

1− η
≤ g1(Z) ≤

M

η
and g0(Z) ≤

M

η
,

the function g0 and g1 are bounded from above and below and thus square integrable. Besides, E [g0(Zi)] = E
[
Y (0)

]
and

E [g1(Zi)] = E
[
Y (1)

]
. We can therefore apply Theorem 7.3 and conclude that

√
n(τ⋆RR,IPW − τRR) → N (0, VRR,IPW),

where

VRR,IPW = τ2RR Var

 TiYi

e(Xi)

E
[
Y (1)

] − (1−Ti)Yi

1−e(Xi)

E
[
Y (1)

]
 . (46)

Moreover,

Var

(
TY

e(X)

)
= E

[(
TY

e(X)

)2
]
− E

[
TY

e(X)

]2
= E

[
TY 2

e(X)2

]
− E

[
Y (1)

]2
= E

[
1

e(X)2
E
[
T (Y (1))2|X

]]
− E

[
Y (1)

]2
= E

[
1

e(X)
E
[
(Y (1))2|X

]]
− E

[
Y (1)

]2
= E

[
1

e(X)
E
[
(Y (1))2|X

]]
− E

[
Y (1)

]2
= E

[
(Y (1))2

e(X)

]
− E

[
Y (1)

]2
.
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Similarly

Var

(
(1− T )Y

1− e(X)

)
= E

[
(Y (0))2

1− e(X)

]
− E

[
Y (0)

]2
.

Additionally, the covariance satisfies

Cov

(
TY

e(X)
,
(1− T )Y

1− e(X)

)
= E

[(
TY

e(X)
− E

[
Y (1)

])( (1− T )Y

1− e(X)
− E

[
Y (0)

])]
= E

[
TY

e(X)

(1− T )Y

1− e(X)

]
− E

[
Y (1)

]
E
[
(1− T )Y

1− e(X)

]
− E

[
Y (0)

]
E
[
TY

e(X)

]
+ E

[
Y (1)

]
E
[
Y (0)

]
= −E

[
Y (1)

]
E
[
Y (0)

]
.

Therefore, we get that

VRR,IPW = τ2RR

E
[
(Y (1))2

e(X)

]
E
[
Y (1)

]2 +
E
[
(Y (0))2

1−e(X)

]
E
[
Y (0)

]2
 .

As a consequence an estimator V̂RR−IPW can be derived:

V̂RR−IPW = τ̂2RR,IPW,n

 1
n

∑
Ti=1

(
Yi

ê(xi)

)2
(
1
n

∑
Ti=1 Yi

)2 +

1
n

∑
Ti=0

(
Yi

1−ê(xi)

)2
(
1
n

∑
Ti=0 Yi

)2
 (47)

Since we have E
[(

TY
e(X)

)2]
= E

[
(Y (1))2

e(X)

]
.

Finite sample bias and variance of the oracle Risk Ratio IPW estimator Let T1(Z) = 1
n

∑n
i=1

TiYi

e(Xi)
and T0(Z) =

1
n

∑n
i=1

(1−Ti)Yi

1−e(Xi)
where Z = (Z1, . . . , Zn). We first show that Var(T1(Z)) = Op

(
1
n

)
and Var(T0(Z)) = Op

(
1
n

)
:

Var(T1(Z)) =
1

n2
Var

(
n∑
i=1

TiYi
e(Xi)

)

=
1

n2

n∑
i=1

Var

(
TiYi
e(Xi)

)
(by i.i.d.)

=
1

n

(
E

[(
TiYi
e(Xi)

)2
]
− E

[
TiYi
e(Xi)

]2)
(by law of total expectation)

=
E
[
(Y (1))2

e(Xi)

]
− E

[
Y (1)

]2
n

= Op

(
1

n

)
Similarly, Var(T0(Z)) = Op

(
1
n

)
. And we also have:

E [T1(Z)] = E
[
TiYi
e(Xi)

]
= E

[
Y (1)

]
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E [T0(Z)] = E
[
(1− Ti)Yi
1− e(Xi)

]
= E

[
Y (0)

]

Therefore, we showed that T1(Z) and T0(Z) are respectively unbiased estimators of E
[
Y (1)

]
and E

[
Y (0)

]
> 0 such that

Var(T1(Z)) = Op
(
1
n

)
and Var(T0(Z)) = Op

(
1
n

)
. By assumption,

m

1− η
≤ T0(Z) ≤ M

η
and T1(Z) ≤ M

η
,

thus T0(Z) and T1(Z) are bounded. Applying Theorem 7.3, we obtain

|E [τ̂RR, IPW, n]− τRR| ≤
2M3(1− η)3

nm3η3
,

and

|Var(τ̂RR, HT, n)− VRR, HT| ≤
4M4(1− η)6

nm6η4
.

7.3.2. RISK RATIO INVERSE PROPENSITY WEIGHTING IN LOGISTIC MODELS

Proof of Proposition 3.5. The likelihood function L (β) is

L (β) =

n∏
i=1

P (T = ti | X = xi) =

n∏
i=1

e (xi;β)
ti (1− e (xi;β))

1−ti

where we define e (X;β) = {1 + exp(−X⊤β1 − β0)}−1. Now, taking minus the logarithm of this expression, the log
likelihood function, denoted lnL (β), we obtain,

− lnL (β) = −
n∑
i=1

ti log(e(Xi;β)) + (1− ti) log(1− e(Xi;β)).

The minimization of this quantity can be obtained when looking for the root of the derivative, so that we obtain the following
expression,

− ∂

∂β0
lnL (β) = −

n∑
i=1

Ti − e (Xi;β)

e (Xi;β) (1− e (Xi;β))

∂

∂β0
e (Xi;β) .

− ∂

∂β1
lnL (β) = −

n∑
i=1

Ti − e (Xi;β)

e (Xi;β) (1− e (Xi;β))

∂

∂β1
e (Xi;β) .

Therefore,

∂

∂β0
lnL (β) = −

n∑
i=1

(Ti − e (Xi;β)) and
∂

∂β1
lnL (β) = −

n∑
i=1

Xi (Ti − e (Xi;β)) (48)

In particular, if we apply 48 for the maximum likelihood estimator β̂n, and if we define X̃ := (1, X), we have:
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∂

∂β
lnL (β)

∣∣∣∣
β=β̂n

= 0 ⇐⇒
n∑
i=1

X̃i

(
Ti − e

(
Xi; β̂n

))
= 0.

Let Z = (X,T, Y ) and θ = (β, θ0, θ1, θ2), we define ψ and θ̂n as:

ψ(Z,θ) =


X̃(T − e(X,β))

(1−T )Y
1−e(X,β) − θ0

TY
e(X,β) − θ1
θ1 − θ2θ0

 and θ̂n =


β̂n
τ̂IPW,0
τ̂IPW,1

τ̂IPW,1/τ̂IPW,0


where τ̂IPW,1 = 1

n

∑n
i=1

TY
e(X,β̂n)

and τ̂IPW,0 = 1
n

∑n
i=1

(1−T )Y

1−e(X,β̂n)
. One can note that:

n∑
i=1

ψ1(Zi, θ̂n) =

n∑
i=1

X̃i

(
Ti − e

(
Xi; β̂n

))
= 0.

n∑
i=1

ψ2(Zi, θ̂n) =

n∑
i=1

 (1− Ti)Yi

1− e(Xi, β̂n)
− 1

n

n∑
j=1

(1− Tj)Yj

1− e(Xj , β̂n)

 = 0.

n∑
i=1

ψ3(Zi, θ̂n) =

n∑
i=1

 TiYi

e(Xi, β̂n)
− 1

n

n∑
j=1

TjYj

e(Xj , β̂n)

 = 0.

n∑
i=1

ψ4(Zi, θ̂n) =

n∑
i=1

τ̂IPW,1 −
τ̂IPW,1

τ̂IPW,0
τ̂IPW,0︸ ︷︷ ︸

τ̂IPW,1

= 0.

Gathering the three previous equalities, we obtain

n∑
i=1

ψ(Zi, θ̂n) = 0, (49)

which proves that θ̂n is an M-estimator of type ψ (see Stefanski & Boos, 2002). Furthermore, letting θ∞ =
(β∞,E

[
Y (0)

]
,E
[
Y (1)

]
,E
[
Y (1)

]
/E
[
Y (0)

]
), we can compute the following quantities:

E [ψ1(Z,θ∞)] = E
[
X̃(T − e(X))

]
= E

[
X̃ · E [T − e(X) | X]

]
(Law of Total Probability)

= E
[
X̃ · (E [T | X]− e(X))

]
(e(X) is a function of X)

= 0 (Definition of e(X))

Furthermore, note that:
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E [ψ2(Z,θ∞)] = E

[
1

n

n∑
i=1

(
TiYi
e(Xi)

)]
− E[Y (1)],

and the following holds:

E

[
1

n

n∑
i=1

(
TiYi
e(Xi)

)]
=

1

n

n∑
i=1

E
[
TiYi
e(Xi)

]
(Linearity of expectation)

= E
[
TY (1)

e(X)

]
(Independence and consistency)

= E
[
E
[
TY (1)

e(X)
| X
]]

(Law of Total Probability)

= E
[

1

e(X)
E
[
TY (1) | X

]]
(e(X) depends on X)

= E
[

1

e(X)
E
[
Y (1) | X

]
E [T | X]

]
(No confounding assumption)

= E
[
E
[
Y (1) | X

]]
(Definition of e(X))

= E[Y (1)].

This shows that E [ψ2(Z,θ∞)] = 0. Similarly, one can show that E [ψ3(Z,θ∞)] = 0. Finally, we also have ψ4(Z,θ∞) = 0.
Therefore,

E [ψ(Z,θ∞)] = 0. (50)

We now show that θ∞ defined above is the unique value that satisfies 50. Let

L(β) = −E
[
T ln

(
e(X,β)

)
+
(
1− T

)
ln
(
1− e(X,β)

)]
.

A direct calculation shows that

∇βL(β) = E
[
X̃
(
e(X,β) − T

)]
and ∇2

βL(β) = E
[
X̃ X̃⊤ e(X,β)

(
1− e(X,β)

)]
Since E[T | X] = e(X,β∞), so at β = β∞,

∇βL(β∞) = E
[
X̃
(
e(X,β∞)− T

)]
= 0

making β∞ a stationary point. Furthermore, using overlap we have e(X,β)
(
1− e(X,β)

)
≥ η2 therefore ∀v ∈ Rp+1:

v⊤∇2
βL(β)v = E

[
||X̃⊤v||22 e(X,β)

(
1− e(X,β)

)]
≥ η2E

[
||X̃⊤v||22

]
≥ η2v⊤E

[
X̃ X̃⊤

]
v.

Since we assumed that E
[
XX⊤

]
is positive definite, the Hessian ∇2

βL(β) is positive definite, so L(β) is strictly convex.
Hence there is a unique global minimizer ofL(β); since β∞ is a critical point, it must be that unique minimizer. Consequently,
any solution to

E
[
X̃
(
e(X,β)− T

)]
= 0

must equal β∞. Since the second and third two components of ψ are linear with respect to θ0 and θ1 and since the forth
component is linear with respect to θ2, θ∞ is the only value satisfying (50).
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We want to show that for every θ in a neighborhood of θ∞, all the components of the second derivatives∣∣∣∣ ∂2∂2θψk(z,θ)
∣∣∣∣

are integrable for all k ∈ {1, 4}. Since θ = (β, θ0, θ1, θ2), we need to show that for k ∈ {1, 4} and i, j ∈ {0, 2} the
following quantities are integrable∣∣∣∣ ∂2

∂θi∂θj
ψk(z,θ)

∣∣∣∣ ∣∣∣∣ ∂2

∂θi∂β
ψk(z,θ)

∣∣∣∣ ∣∣∣∣ ∂2

∂β∂θi
ψk(z,θ)

∣∣∣∣ ∣∣∣∣ ∂2

∂β∂β
ψk(z,θ)

∣∣∣∣
One can note that the first three quantities are bounded by 1 and therefore integrable. Hence, it suffices to consider∣∣∣∣ ∂2∂2β

ψk(z,θ)

∣∣∣∣ ,
where k ∈ {1, 2, 3}, since ψ4 does not depend on θ1. For k = 1, a direct calculation yields∣∣∣∣ ∂2∂2β

ψ1(z,θ)

∣∣∣∣ = ∣∣−X̃k X̃l X̃m e(X,β)
(
1− e(X,β)

)(
1− 2e(X,β)

)∣∣ ≤ ∣∣X̃k X̃l X̃m

∣∣.
By Cauchy–Schwarz or Hölder’s inequality,

E
[∣∣X̃k X̃l X̃m

∣∣] ≤ E
[
(X̃k)

2
]1/2 E[(X̃l X̃m)2

]1/2 ≤ E
[
(X̃k)

2
]1/2 E[(X̃l)

4
]1/4 E[(X̃m)4

]1/4
.

Since X̃ is sub-Gaussian, it has finite moments of all orders, implying integrability of
∣∣X̃k X̃l X̃m

∣∣.
For k = 2 or k = 3, we similarly get ∣∣∣∣ ∂2∂2β

ψ2(z,θ)

∣∣∣∣ ≤ ∣∣Y exp(2 X̃⊤β) X̃ X̃⊤∣∣,
and ∣∣∣∣ ∂2∂2θψ3(z,θ)

∣∣∣∣ ≤ ∣∣Y exp(2 X̃⊤β) X̃ X̃⊤∣∣.
Hence, it remains to show that

E
[∣∣Y exp(2 X̃⊤β) X̃k X̃l

∣∣]
is finite. By Cauchy–Schwarz,

E
[∣∣Y exp(2 X̃⊤β) X̃k X̃l

∣∣] ≤
√
E
[
Y 2
]√

E
[
exp
(
4 X̃⊤β

)
(X̃k X̃l)2

]
.

Since X̃ is sub-Gaussian, its exponential moments are finite. Specifically, for some σ > 0,

E
[
exp
(
λv⊤X̃

)]
≤ exp

(
λ2∥v∥2

2σ
2

2

)
∀λ ∈ R, v ∈ Rd,

which guarantees E[exp(8 X̃⊤β)] is finite. Moreover, sub-Gaussian random variables have finite polynomial moments, so
E[(X̃k X̃l)

4] is also finite. Therefore, ∣∣Y exp(2 X̃⊤β) X̃k X̃l

∣∣
is integrable.

Collecting these results, we conclude that every second derivative
∣∣∣ ∂2

∂2θψk(z,θ)
∣∣∣ is integrable for all k ∈ {1, 4} in a

neighborhood of θ∞.
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Define

A (θ∞) = E

[
∂ψ

∂θ

∣∣∣∣
θ=θ∞

]
and B(θ∞) = E

[
ψ(Z, θ∞)ψ(Z, θ∞)T

]
.

Next, we verify the conditions of Theorem 7.2 in Stefanski & Boos (2002). To do so, we compute A (θ∞) and B (θ∞).
Since

∂ψ

∂θ
(Z, θ) =


−e(X,β) (1− e(X,β)) X̃X̃⊤ 0 0 0

(1−T )Y e(X,β)
1−e(X,β) X̃⊤ −1 0 0

−TY (1−e(X,β))
e(X,β) X̃⊤ 0 −1 0

0 −θ2 1 −θ0

 , (51)

We obtain

A (θ∞) =


−Q 0 0 0
c⊤10 −1 0 0
−c⊤01 0 −1 0

0 −E[Y (1)]
E[Y (0)]

1 −E
[
Y (0)

]
 ,

where:

• Q = E
[
e(X)(1− e(X))X̃X̃⊤

]
,

• c10 = E[X̃ e(X)Y (0)] and c01 = E[X̃(1− e(X))Y (1)],

which using Schur complement leads to:

A−1 (θ∞) =


−Q−1 0 0 0

−c⊤10Q−1 −1 0 0
c⊤01Q

−1 0 −1 0(
E[Y (1)]
E[Y (0)]2 c

⊤
10 +

1

E[Y (0)]
c⊤01

)
Q−1 E[Y (1)]

E[Y (0)]2
−1

E[Y (0)]
−1

E[Y (0)]

 .

Regarding B (θ∞), elementary calculations show that

B(θ∞) =


Q −c10 c01 0

−c⊤10 Var
(

(1−T )Y
1−e(X)

)
−E

[
Y (1)

]
E
[
Y (0)

]
0

c⊤01 −E
[
Y (1)

]
E
[
Y (0)

]
Var

(
TY
e(X)

)
0

0 0 0 0

 ,

Based on the previous calculations, we have

• ψ(z,θ) and its first two partial derivatives with respect to θ exist for all z and for all θ in the neighborhood of θ∞.

• For each θ in the neighborhood of θ∞, we have for all k ∈ {1, 4}
∣∣∣ ∂2

∂2θψk(z,θ)
∣∣∣is integrable.

• A(θ∞) exists and is nonsingular.

• B(θ∞) exists and is finite.
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Since we have:
n∑
i=1

ψ(Ti, Yi, θ̂n) = 0 and θ̂n
p→ θ∞.

Then the conditions of Theorem 7.2 in Stefanski & Boos (2002) are satisfied, we have

√
n
(
θ̂n − θ∞

)
d→ N

(
0, A(θ∞)−1B(θ∞)(A(θ∞)−1)⊤

)
,

Since we are only interested in the bottom right term of the sandwich term , we only need to compute
uTd+3A(θ∞)−1B(θ∞)(A(θ∞)−1)⊤ud+3 where ud+3 is the last vector canonical basis vector of Rd+3. Hence,

[
A(θ∞)−1B(θ∞)(A(θ∞)−1)⊤

]
d+3,d+3

= uTd+3A(θ∞)−1B(θ∞)(A(θ∞)−1)⊤ud+3

= uTd+3A(θ∞)−1B(θ∞)(uTd+3A(θ∞)−1)⊤

Noting that u⊤d+3A(θ∞)−1 =

((
E[Y (1)]
E[Y (0)]2 c

⊤
10 +

1

E[Y (0)]
c⊤01

)
Q−1, E[Y (1)]

E[Y (0)]2 ,
−1

E[Y (0)] ,
−1

E[Y (0)]

)
where we used that

(Q−1)⊤ = Q−1 since Q is symmetric. We defining

u⊤d+3A(θ∞)−1B(θ∞) :=W = (W1,W2,W3,W4)

where:

W1 =

[
E[Y (1)]

E[Y (0)]2
c⊤10 +

1

E[Y (0)]
c⊤01

]
Q−1Q︸ ︷︷ ︸
Id

− c⊤10
E[Y (1)]

E[Y (0)]2
− c⊤01

1

E[Y (0)]
= 0,

W2 = −
[
E[Y (1)]

E[Y (0)]2
c⊤10 +

1

E[Y (0)]
c⊤01

]
Q−1c10 + Var

(
(1− T )Y

1− e(X)

)
E[Y (1)]

E[Y (0)]2
+ E

[
Y (1)

]
,

W3 =

[
E[Y (1)]

E[Y (0)]2
c⊤10 +

1

E[Y (0)]
c⊤01

]
Q−1c01 − E[Y (1)]2

E[Y (0)]
−

Var
(
TY
e(X)

)
E[Y (0)]

,

and W4 = 0. Finally, gathering all the terms we have:

[
A(θ∞)−1B(θ∞)(A(θ∞)−1)⊤

]
d+3,d+3

=W2
E[Y (1)]

E[Y (0)]2
−W3

1

E[Y (0)]

= −
[
E[Y (1)]

E[Y (0)]2
c⊤10 +

1

E[Y (0)]
c⊤01

]
Q−1c10

E[Y (1)]

E[Y (0)]2

−
[
E[Y (1)]

E[Y (0)]2
c⊤10 +

1

E[Y (0)]
c⊤01

]
Q−1c01

1

E[Y (0)]

+ Var

(
(1− T )Y

1− e(X)

)(
E[Y (1)]

E[Y (0)]2

)2

+
Var

(
TY
e(X)

)
(E[Y (0)])

2

+ 2
E[Y (1)]2

E[Y (0)]2
.
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One can note that:

Var

(
(1− T )Y

1− e(X)

)(
E[Y (1)]

E[Y (0)]2

)2

+
Var

(
TY
e(X)

)
(E[Y (0)])

2 + 2
E[Y (1)]2

E[Y (0)]2
=

(
E[Y (1)]

E[Y (0)]

)2

︸ ︷︷ ︸
τ2

RR

Var
(

(1−T )Y
1−e(X)

)
E[Y (0)]2

+
Var

(
TY
e(X)

)
E[Y (1)]2

+ 2



= τ2RR

E
[
(Y (1))2

e(X)

]
E
[
Y (1)

]2 +
E
[
(Y (0))2

1−e(X)

]
E
[
Y (0)

]2


where for the last equality we used that:

Var

(
TY

e(X)

)
= E

[
(Y (1))2

e(X)

]
− E

[
Y (1)

]2
and Var

(
(1− T )Y

1− e(X)

)
= E

[
(Y (0))2

1− e(X)

]
− E

[
Y (0)

]2
Finally using calculation we did previously we get that:

VRR-MLE = τ2RR

E
[
(Y (1))2

e(X)

]
E
[
Y (1)

]2 +
E
[
(Y (0))2

1−e(X)

]
E
[
Y (0)

]2


︸ ︷︷ ︸
VRR-IPW

−τ2RR

∥∥∥∥ c10
E[Y (0)]

+
c01

E[Y (1)]

∥∥∥∥2
Q−1

7.3.3. RISK RATIO G FORMULA ESTIMATOR

Proof of Proposition 3.7.
Asymptotic bias and variance of the oracle risk ratio G formula estimator Recall that the oracle risk ratio G formula is
defined as

τ⋆RR,G,n =

∑n
i=1 µ(1)(Xi)∑n
i=1 µ(0)(Xi)

,

where the response surfaces µ(0) and µ(1) are assumed to be known. Let us define g1(Z) = µ(1)(Xi) and g0(Z) = µ(0)(Xi)

with Z = X . Since g1(Z) and g0(Z) are bounded, they are square integrable. We also have that E [g0(Zi)] = E
[
Y (0)

]
and

E [g1(Zi)] = E
[
Y (1)

]
. We can therefore apply Theorem 7.3 and conclude that

√
n(τ⋆RR,G,n − τRR) → N (0, VRR,G),

where VRR,G = τ2RR Var

(
µ⋆
1(X)

E[Y (1)]
− µ⋆

0(X)

E[Y (0)]

)
. As a consequence an estimator V̂RR,G can be derived:

V̂RR,G =
τ̂2RR,G,n

n

n∑
i=1

(
µ̂1(Xi)

1
n

∑
Ti=1 Yi

− µ̂0(Xi)
1
n

∑
Ti=0 Yi

− 1

n

n∑
i=1

µ̂1(Xi)
1
n

∑
Ti=1 Yi

− µ̂0(Xi)
1
n

∑
Ti=0 Yi

)2

(52)

Finite sample bias and variance of the oracle ratio G formula estimator Let T1(Z) = 1
n

∑n
i=1 µ(1)(Xi) and T0(Z) =
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1
n

∑n
i=1 µ(0)(Xi) where Z = (X1, . . . , Xn). We first show that Var(T1(Z)) = Op

(
1
n

)
and Var(T0(Z)) = Op

(
1
n

)
:

Var(T1(Z)) =
1

n2
Var

(
n∑
i=1

µ(1)(Xi)

)

=
1

n2

n∑
i=1

Var(µ(1)(Xi)) (by i.i.d.)

=
1

n

(
E
[
(µ(1)(Xi))

2
]
− E

[
Y (1)

]2)
(by law of total expectation)

≤
M2 − E

[
Y (1)

]2
n

(µ(1)(Xi)) ≤M)

= Op

(
1

n

)
.

Similarly, Var(T0(Z)) = Op (1/n). Since we also have that

E [T1(Z)] = E
[
Y (1)

]
E [T0(Z)] = E

[
Y (0)

]
Therefore, we showed that T1(Z) and T0(Z) are unbiased estimators of E

[
Y (1)

]
and E

[
Y (0)

]
> 0 such that Var(T1(Z)) =

Op (1/n) and Var(T0(Z)) = Op (1/n). We also have that T0(Z) and T1(Z) are bounded:

m0 ≤ T0(Z) ≤M0 and T1(Z) ≤M1

Applying Theorem 7.3, under Assumption 7.2 we obtain:

|E [τ̂RR, HT, n]− τRR| ≤
2M1M

2
0

nm3
0

and |Var(τ̂RR, HT, n)− VRR, HT| ≤
2M2

0M1(M1 +M0)

m6
0

7.3.4. RISK RATIO G-FORMULA IN LINEAR MODELS

Lemma 7.6 (see, e.g. (Seber & Lee, 2012)). Grant Assumption 3.8 linear model. Let γ(t) = (c(t), β(t)) ∈ Rd+1

and Z = (1, X). We rearrange the Yi and Zi so that the first n1 observations correspond to T = 1. We then define
Y1 = (Y1, . . . , Yn1)

⊤ and Y0 = (Yn1+1, . . . , Yn)
⊤, as well as Z1 = (Z1, . . . , Zn1)

⊤ and Z0 = (Zn1+1, . . . , Zn)
⊤. Then

for t ∈ {0, 1}, the linear model can be formulated as:

Y (t) = Z⊤γ(t) + ε(t), E[ε(t)|Z] = 0, Var[ε(t)|Z] = σ2,

and the least square estimator is given as

γ̂(t) =

(
1

nt
Z⊤
t Zt

)−1
1

nt
Z⊤
t Yt

Proposition 7.7. Grant Assumption 3.8. Let ê = (
∑n
i=1 Ti)/n and for all t ∈ {0, 1},

Z̄(t) =
1∑n

i=1 1Ti=t

n∑
i=1

1Ti=tZi. (53)

Defining νt = E[X|T = t] and Σt = Var(X|T = t), we have

√
n(θ̂n − θ∞)

d→ N (0,Σ) ,
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where

θn =


Z̄(0)

Z̄(1)

γ̂(0)
γ̂(1)
ê

 , θ∞ =


E[Z|T = 0]
E[Z|T = 1]

γ(0)
γ(1)
e

 , Σ =



Var[Z|T=0]
(1−e) 0 0 0 0

0 Var[Z|T=1]
e 0 0 0

0 0
σ2Q−1

0

1−e 0 0

0 0 0
σ2Q−1

1

e 0
0 0 0 0 e(1− e)

 ,

with Q−1
t =

[
1 + νTt Σ

−1
t νt −νTt Σ−1

t

−Σ−1
t νt Σ−1

t

]
.

Proof. Using M-estimation theory to prove asymptotic normality of the θn, we first define the following:

ψ(T,Z,θ) =


ψ0(T,Z,θ)
ψ1(T,Z,θ)
ψ2(T,Z,θ)
ψ3(T,Z,θ)
ψ4(T,Z,θ)

 :=


(1− T )(Z − θ0)
T (Z − θ1)

(1− T )
(
Zϵ(0)− ZZ⊤ (θ2 − γ(0)

))
T
(
Zϵ(1)− ZZ⊤ (θ3 − γ(1))

)
T − θ4


where θ = (θ0, θ1, θ2, θ3, θ4). We still have that θ̂n = (Z̄(0), Z̄(1), γ̂(0), γ̂(1), ê) is an M-estimator of type ψ (see Stefanski
& Boos, 2002) since

n∑
i=1

ψ(Ti, Zi, θ̂n) = 0.

We now demonstrate that E [ψ(T, Y,θ∞)] = 0. We directly have that E [ψ4(T, Y,θ∞)] = 0. For the other terms we have:

E [ψ1(T,Z,θ∞)] = E [T (Z − E[Z|T = 1])]

= E [E [T (Z − E[Z|T = 1]) |T ]]
= E [T (E [Z|T ]− E[Z|T = 1])]

= E [T (E [Z|T ]− E[Z|T = 1])]

= P [T = 1] (E [Z|T = 1]− E[Z|T = 1])

= 0

We also have that:

E [ψ3(T,Z,θ∞)] = E
[
TZϵ(1)

]
= E

[
ZE

[
Tϵ(1)|Z

]]
= E

[
ZE

[
ϵ(1)|Z, T = 1

]]
= 0.

Similarly, we can show:
E [ψ0(T,Z,θ∞)] = 0 and E [ψ2(T,Z,θ∞)] = 0.

At this point, we note that since ψ(T,Z,θ) is a linear function of θ, θ∞ is the only value of θ such that E [ψ(T,Z,θ)] = 0
We proceed by defining:

A (θ∞) = E
[
∂ψ

∂θ

∣∣∣
θ=θ∞

]
and B(θ∞) = E

[
ψ(T,Z, θ∞)ψ(T,Z, θ∞)T

]
.

Next, we check the conditions of Theorem 7.2 in Stefanski & Boos (2002). First, we compute A (θ∞) and B (θ∞). Since:

∂ψ

∂θ
(T,Z, θ) =


−(1− T ) 0 0 0 0

0 −T 0 0 0
0 0 −(1− T )ZZ⊤ 0 0
0 0 0 −TZZ⊤ 0
0 0 0 0 −1

 ,
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we obtain:

A (θ∞) =


−(1− e) 0 0 0 0

0 −e 0 0 0
0 0 −(1− e)Q0 0 0
0 0 0 −eQ1 0
0 0 0 0 −1

 , where Qt = E
[
ZZ⊤|T = t

]
.

which leads to:

A−1 (θ∞) =


− 1

1−e 0 0 0 0

0 − 1
e 0 0 0

0 0 −Q−1
0

1−e 0 0

0 0 0 −Q−1
1

e 0
0 0 0 0 −1

 .

Regarding B(θ∞), since we have T (1− T ) = 0, elementary calculations show that:

B(θ∞)1,2 = B(θ∞)2,1 = 0
B(θ∞)3,4 = B(θ∞)4,3 = 0

and
B(θ∞)1,4 = B(θ∞)4,1 = 0
B(θ∞)2,3 = B(θ∞)3,2 = 0.

Besides

B(θ∞)2,2 = E
[
T 2(Z − E [Z|T = 1])(Z − E [Z|T = 1])⊤

]
= E

[
T (Z − E [Z|T = 1])(Z − E [Z|T = 1])⊤

]
= E

[
TE

[
(Z − E [Z|T = 1])(Z − E [Z|T = 1])⊤|T

]]
= P [T = 1]E

[
(Z − E [Z|T = 1])(Z − E [Z|T = 1])⊤|T = 1

]
= eVar [Z|T = 1] ,

and similarly,
B(θ∞)1,1 = (1− e)Var [Z|T = 0] .

We can also note that:

B(θ∞)4,4 = E
[
T 2ZZ⊤ϵ2(1)

]
= E

[
TZZ⊤ϵ2(1)

]
= E

[
TE

[
ZZ⊤ϵ2(1)|T

]]
= P [T = 1]E

[
ZZ⊤ϵ2(1)|T = 1

]
= eE

[
ZZ⊤E

[
ϵ2(1)|T = 1, Z

]
|T = 1

]
= eσ2E

[
ZZ⊤|T = 1

]
:= eσ2Q1,

and similarly,
B(θ∞)3,3 = (1− e)σ2Q0.

Finally,

B(θ∞)2,4 = B(θ∞)4,2 = E
[
T 2(Z − E [Z|T = 1])Z⊤ϵ(1)

]
= E

[
T (Z − E [Z|T = 1])Z⊤ϵ(1)

]
= P [T = 1]E

[
(Z − E [Z|T = 1])Z⊤ϵ(1)|T = 1

]
= eE

[
(Z − E [Z|T = 1])Z⊤E

[
ϵ(1)|T = 1, Z

]
|T = 1

]
= 0,
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and similarly,
B(θ∞)1,3 = B(θ∞)3,1 = 0.

We also have that:

B(θ∞)2,5 = B(θ∞)5,2 = E [T (Z − E [Z|T = 1])(T − e)]

= E
[
T 2Z − T 2E [Z|T = 1]− eTZ + eTE [Z|T = 1]

]
= E

[
T 2Z − T 2E [Z|T = 1]− eTZ + eTE [Z|T = 1]

]
= eE [Z|T = 1]− eE [Z|T = 1]− e2E [Z|T = 1] + e2E [Z|T = 1]

= 0

and similarly,
B(θ∞)1,5 = B(θ∞)5,1 = 0.

We also have that :

B(θ∞)4,5 = B(θ∞)5,4 = E
[
(T − e)TZϵ(0)

]
= E

[
(TZϵ(0)

]
− eE

[
(TZϵ(0)

]
= (1− e)E

[
TZϵ(0)

]
= (1− e)E

[
ZE

[
Tϵ(0)|Z

]]
= (1− e)E

[
ZE

[
ϵ(0)|Z, T = 1

]]
= 0

and similarly,
B(θ∞)3,5 = B(θ∞)5,3 = 0.

Gathering all calculations, and since B(θ∞)5,5 = e(1− e), we have

B(θ∞) =


(1− e)Var [Z|T = 0] 0 0 0 0

0 eVar [Z|T = 1] 0 0 0
0 0 (1− e)σ2Q0 0 0
0 0 0 eσ2Q1 0
0 0 0 0 e(1− e)

 ,

Based on the previous calculations, we have:

• ψ(z,θ) and its first two partial derivatives with respect to θ exist for all z and for all θ in the neighborhood of θ∞.

• For each θ in the neighborhood of θ∞, we have for all i, j, k ∈ {0, 2}:∣∣∣∣ ∂2

∂θi∂θj
ψk(z,θ)

∣∣∣∣ ≤ 1

and 1 is integrable.

• A(θ∞) exists and is nonsingular.

• B(θ∞) exists and is finite.

Since we have:
n∑
i=1

ψ(Ti, Zi, θ̂n) = 0 and θ̂n
p→ θ∞.

Then, the conditions of Theorem 7.2 in Stefanski & Boos (2002) are satisfied, we have:
√
n
(
θ̂n − θ∞

)
d→ N

(
0, A(θ∞)−1B(θ∞)(A(θ∞)−1)⊤

)
,
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where:

A(θ∞)−1B(θ∞)(A(θ∞)−1)⊤ =



Var[Z|T=0]
(1−e) 0 0 0 0

0 Var[Z|T=1]
e 0 0 0

0 0
σ2Q−1

0

1−e 0 0

0 0 0
σ2Q−1

1

e 0
0 0 0 0 e(1− e)

 ,

Proposition 7.8 (asymptotical normality of τ̂RR,OLS). Assume we have linear model then we have:

√
n(τ̂RR,OLS − τRR)

d→ N (0, VRR-OLS)

with

VRR-OLS

τ2RR
=

∥∥∥∥∥ β(1)

E
[
Y (1)

] − β(0)

E
[
Y (0)

]∥∥∥∥∥
2

Σ

+ σ2

(
1 + (1− e)2∥ν1 − ν0∥2Σ−1

1

eE
[
Y (1)

]2 +
1 + e2∥ν1 − ν0∥2Σ−1

0

(1− e)E
[
Y (0)

]2
)
.

Proof. Let β̂(1) and ĉ(1) be the parameters obtained via fitting an ordinary least square method on the treated individuals
only, that is

(β̂(1), ĉ(1)) ∈ arg min
c(1),β(1)

n∑
i=1

(Y
(1)
i − c(1) − β(1)Xi)

21Ti=1. (54)

Similarly, let β̂(0) and ĉ(0) be the parameters obtained via fitting an ordinary least square method on the control individuals
only, that is

(β̂(0), ĉ(0)) ∈ arg min
c(0),β(0)

n∑
i=1

(Y
(0)
i − c(0) − β(0)Xi)

21Ti=0. (55)

An estimator of the RR using the G-formula approach is thus given by

τ̂RR,OLS =

∑n
i=1

(
ĉ(1) +X⊤

i β̂(1)

)
∑n
i=1

(
ĉ(0) +X⊤

i β̂(0)

) (56)

=
ĉ(1) + X̄⊤β̂(1)

ĉ(0) + X̄⊤β̂(0)
. (57)

Besides, note that assuming a linear model implies that

τ̂RR,OLS =
c(1) + E[X]⊤β(1)

c(0) + E[X]⊤β(0)
. (58)
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Let, for all i, Zi = (1, Xi) and γ(j) = (c(j), β(j)) for all j ∈ {0, 1}. Expanding the following difference, we have:

√
n(τRR,OLS − τRR) =

√
n

(
ĉ(1) + X̄⊤β̂(1)

ĉ(0) + X̄⊤β̂(0)
−
c(1) + E[X]⊤β(1)

c(0) + E[X]⊤β(0)

)
(59)

=
√
n
(
ĉ(1) + X̄⊤β̂(1)

)( 1

ĉ(0) + X̄⊤β̂(0)
− 1

c(0) + E[X]⊤β(0)

)
(60)

+

√
n

c(0) + E[X]⊤β(0)

(
ĉ(1) + X̄⊤β̂(1) − c(1) − E[X]⊤β(1)

)
(61)

=
√
n
(
Z̄⊤γ̂(1)

)( 1

Z̄⊤γ̂(0)
− 1

E[Z]⊤γ(0)

)
(62)

+

√
n

E[Z]⊤γ(0)

(
Z̄⊤γ̂(1) − E[Z]⊤γ(1)

)
(63)

=
√
n

Z̄⊤γ̂(1)

Z̄⊤γ̂(0)E[Z]⊤γ(0)

(
E[Z]⊤γ(0) − Z̄⊤γ̂(0)

)
(64)

+

√
n

E[Z]⊤γ(0)

(
Z̄⊤γ̂(1) − E[Z]⊤γ(1)

)
. (65)

Besides, we have

Z̄ − E[Z] = êZ̄(1) + (1− ê)Z̄(0) − eE[Z|T = 1]− (1− e)E[Z|T = 0]

= (1− e)
(
Z̄(0) − E[Z|T = 0]

)
+ e

(
Z̄(1) − E[Z|T = 1]

)
+
(
Z̄(1) − Z̄(0)

)
(ê− e)

= ζ(θn − θ∞),

where ζ =
[
(1− e)Id+1, eId+1, 0d+1, 0d+1, (Z̄(1) − Z̄(0))

]
∈ R(d+1)×4(d+1)+1 and

θn =


Z̄(0)

Z̄(1)

γ̂(0)
γ̂(1)
ê

 , θ∞ =


E[Z|T = 0]
E[Z|T = 1]

γ(0)
γ(1)
e

 .

Note that for all t ∈ {0, 1},

Z̄⊤γ̂(t) − E[Z]⊤γ(t) = γ̂⊤(t)
(
Z̄ − E[Z]

)
+ E[Z]⊤

(
γ̂(t) − γ(t)

)
= γ̂⊤(t)ζ(θn − θ∞) + E[Z]⊤

(
γ̂(t) − γ(t)

)
= α̂⊤

(t)(θn − θ∞),

with

α̂(t) =


(1− e)γ̂(t)
eγ̂(t)

1t=0E[Z]
1t=1E[Z]

(Z̄(1) − Z̄(0))
⊤γ̂(t).


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. Therefore

√
n(τRR,OLS − τRR) =

√
n

Z̄⊤γ̂(1)

Z̄⊤γ̂(0)E[Z]⊤γ(0)

(
E[Z]⊤γ(0) − Z̄⊤γ̂(0)

)
+

√
n

E[Z]⊤γ(0)

(
Z̄⊤γ̂(1) − E[Z]⊤γ(1)

)
=

√
n

E[Z]⊤γ(0)
α̂⊤
(1)(θn − θ∞)

−
√
n

Z̄⊤γ̂(1)

Z̄⊤γ̂(0)E[Z]⊤γ(0)
α̂⊤
(0)(θn − θ∞)

Therefore, we get that

√
n(τRR,OLS − τRR) =

√
n

(
1

E[Z]⊤γ(0)
α̂(1) −

Z̄⊤γ̂(1)

Z̄⊤γ̂(0)E[Z]⊤γ(0)
α̂(0)

)⊤

(θn − θ∞).

According to the Law of Large Numbers,

1

E[Z]⊤γ(0)
α̂(1) −

Z̄⊤γ̂(1)

Z̄⊤γ̂(0)E[Z]⊤γ(0)
α̂(0)

p→
E[Z]⊤γ(1)
E[Z]⊤γ(0)

(
α(1)

E[Z]⊤γ(1)
−

α(0)

E[Z]⊤γ(0)

)
:= α∞,

with, for all t ∈ {0, 1},

α(t) =


(1− e)γ(t)
eγ(t)

1t=0E[Z]
1t=1E[Z]

(E[Z|T = 1]− E[Z|T = 0])⊤γ(t)


and

α∞ =
E[Z]⊤γ(1)
E[Z]⊤γ(0)



(1−e)γ(1)
E[Z]⊤γ(1)

− (1−e)γ(0)
E[Z]⊤γ(0)

eγ(1)
E[Z]⊤γ(1)

− eγ(0)
E[Z]⊤γ(0)

− E[Z]
E[Z]⊤γ(0)
E[Z]

E[Z]⊤γ(1)
γ⊤
(0)(E[Z|T=1]−E[Z|T=0])

E[Z]⊤γ(0)
− γ⊤

(1)(E[Z|T=1]−E[Z|T=0])

E[Z]⊤γ(1)


. (66)

According to Proposition 7.7, letting Qt = E
[
ZZ⊤|T = t

]
for all t ∈ {0, 1}, we have

√
n(θn − θ∞)

d→ N (0,Σ) where Σ =



Var[Z|T=0]
(1−e) 0 0 0 0

0 Var[Z|T=1]
e 0 0 0

0 0
σ2Q−1

0

1−e 0 0

0 0 0
σ2Q−1

1

e 0
0 0 0 0 e(1− e)

 .

By Slutsky’s theorem,

√
n

(
1

E[Z]⊤γ(0)
α̂(1) −

Z̄⊤γ̂(1)

Z̄⊤γ̂(0)E[Z]⊤γ(0)
α̂(0)

)⊤

(θn − θ∞)
d→ N

(
0, α⊤

∞Σα∞
)
. (67)
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We now compute the covariance matrix

α⊤
∞Σα∞(

E[Z]⊤γ(1)
E[Z]⊤γ(0)

)2 = (1− e)

∥∥∥∥ γ(1)

E[Z]⊤γ(1)
−

γ(0)

E[Z]⊤γ(0)

∥∥∥∥2
Var[Z|T=0]

+ e

∥∥∥∥ γ(1)

E[Z]⊤γ(1)
−

γ(0)

E[Z]⊤γ(0)

∥∥∥∥2
Var[Z|T=1]

(68)

+
σ2

1− e

∥∥∥∥ E[Z]
E[Z]⊤γ(0)

∥∥∥∥2
Q−1

0

+
σ2

e

∥∥∥∥ E[Z]
E[Z]⊤γ(1)

∥∥∥∥2
Q−1

1

+ e(1− e)

∥∥∥∥ γ(1)

E[Z]⊤γ(1)
−

γ(0)

E[Z]⊤γ(0)

∥∥∥∥2
∆∆⊤

, (69)

where ∆ = E[Z | T = 1]− E[Z | T = 0]. This variance can be rewritten as follows. Summing the first two terms and the
last term in (69) leads to ∥∥∥∥ γ(1)

E[Z]⊤γ(1)
−

γ(0)

E[Z]⊤γ(0)

∥∥∥∥2
J

,

where J = (1− e)Var(Z | T = 0) + eVar(Z | T = 1) + e(1− e)∆∆⊤. Let us prove that J = Var(Z). Letting Zi the
components of Z for all 1 ≤ i ≤ d+ 1, by the law of total covariance, we have

Cov[Zi, Zj ] = E[Cov[Zi, Zj |T ]] + Cov[E[Zi|T ],E[Zj |T ]], (70)

with, since T ∈ {0, 1},

E[Cov[Zi, Zj |T ]] = eCov[Zi, Zj |T = 1] + (1− e) Cov[Zi, Zj |T = 0]. (71)

Besides, since E[Z] = (1− e)E[Z | T = 0] + eE[Z | T = 1], we can compute the deviations from the unconditional mean:

E[Z | T = 0]− E[Z] = E[Z | T = 0]− ((1− e)E[Z | T = 0] + eE[Z | T = 1])

= (1− (1− e))E[Z | T = 0]− eE[Z | T = 1]

= −e (E[Z | T = 1]− E[Z | T = 0])

= −e∆.

and
E[Z | T = 1]− E[Z] = E[Z | T = 1]− ((1− e)E[Z | T = 0] + eE[Z | T = 1])

= (1− e) (E[Z | T = 1]− E[Z | T = 0])

= (1− e)∆.

Now, we can compute the second term in (70)

Cov[E[Zi|T ],E[Zj |T ]] = E[(E[Zi|T ]− E[Zi])(E[Zj |T ]− E[Zj ])] (72)
= e(E[Zi|T = 1]− E[Zi])(E[Zj |T = 1]− E[Zj ]) (73)
+ (1− e)(E[Zi|T = 0]− E[Zi])(E[Zj |T = 0]− E[Zj ]) (74)

= e(1− e)2∆i∆j + e2(1− e)∆i∆j (75)
= e(1− e)∆i∆j . (76)

Consequently, according to (70),

Cov[Zi, Zj ] = eCov[Zi, Zj |T = 1] + (1− e) Cov[Zi, Zj |T = 0] + e(1− e)∆i∆j , (77)

which leads to

Var[Z] = (1− e)Var(Z | T = 0) + eVar(Z | T = 1) + e(1− e)∆∆⊤. (78)

Similarly the last two remaining terms we have for t ∈ {0, 1}:∥∥∥∥ E[Z]
E[Z]⊤γ(t)

∥∥∥∥2
Q−1

t

=
1

(E[Z]⊤γ(t))2
∥E[Z]∥2Q−1

t

=
1

(E[Z]⊤γ(t))2
E[Z]⊤Q−1

t E[Z]
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Note that we have E[Z] = eE[Z|T = 1] + (1− e)E[Z|T = 0] and that for t ∈ {0, 1},

E[Z|T = t]⊤Q−1
t E[Z|T = t] =

(
1
νt

)⊤(
1 + ν⊤t Σ

−1
t νt −ν⊤t Σ−1

t

−Σ−1
t νt Σ−1

t

)(
1
νt

)
= 1,

and

E[Z|T = 1− t]⊤Q−1
t E[Z|T = 1− t] =

(
1

ν1−t

)⊤(
1 + ν⊤t Σ

−1
t νt −ν⊤t Σ−1

t

−Σ−1
t νt Σ−1

t

)(
1

ν1−t

)
= 1 + ∥ν1−t − νt∥2Σ−1

t
,

and

E[Z|T = t]⊤Q−1
t E[Z|T = 1− t] =

(
1
νt

)⊤(
1 + ν⊤t Σ

−1
t νt −µ⊤

t Σ
−1
t

−Σ−1
t νt Σ−1

t

)(
1

ν1−t

)
= 1.

Therefore, we have

E[Z]⊤Q−1
0 E[Z] = e2∥E[Z|T = 1]∥Q−1

0
+ (1− e)2∥E[Z|T = 0]∥Q−1

0
+ 2e(1− e)⟨E[Z|T = 0],E[Z|T = 1]⟩Q−1

0

= e2∥E[Z|T = 1]∥Q−1
0

+ (1− e)2 + 2e(1− e)⟨E[Z|T = 0],E[Z|T = 1]⟩Q−1
0

= (1− e)2 + e2
(
1 + ∥µ1 − µ0∥2Σ−1

0

)
+ 2e(1− e)

= 1 + e2∥ν1 − ν0∥2Σ−1
0
,

and similarly E[Z]⊤Q−1
1 E[Z] = 1 + (1− e)2∥ν1 − ν0∥2Σ−1

1

. Finally, noting that for all t ∈ {0, 1}

E[Z]⊤γ(t) = E
[
Y (t)

]
and Var [Z] =

0 · · · 0
... Var [X]
0

 ,

we have, letting Σ = Var [X]

VRR,G,OLS = τ2RR

∥∥∥∥∥ β(1)

E
[
Y (1)

] − β(0)

E
[
Y (0)

]∥∥∥∥∥
2

Σ

+ σ2

(
1 + (1− e)2∥ν1 − ν0∥2Σ−1

1

eE
[
Y (1)

]2 +
1 + e2∥ν1 − ν0∥2Σ−1

0

(1− e)E
[
Y (0)

]2
) .

Lemma 7.9 (Comparison of the asymptotic variances of τ̂RR,N and τ̂RR,G under a linear model). Grant Assumption 2.2,
Assumption 2.3 and Assumption 3.8. Recalling that VRR,G,OLS (resp. VRR,G,OLS) is the asymptotic variance of the G-formula
when oracle surface responses are used (resp. when they are estimated via OLS), we have

VRR,N = τ2RR

(∥∥β(1)∥∥2Σ + σ2

eE
[
Y (1)

]2 +

∥∥β(0)∥∥2Σ + σ2

(1− e)E
[
Y (0)

]2
)
, (79)

VRR,G,OLS = τ2RR

∥∥∥∥∥ β(1)

E
[
Y (1)

] − β(0)

E
[
Y (0)

]∥∥∥∥∥
2

Σ

+ σ2

(
1

eE
[
Y (1)

]2 +
1

(1− e)E
[
Y (0)

]2
) (80)

= VRR,G + τ2RRσ
2

(
1

eE
[
Y (1)

]2 +
1

(1− e)E
[
Y (0)

]2
)
, (81)

and

VRR,N − VRR,G,OLS = τ2RR

e(1− e)

∥∥∥∥∥ β(1)

eE
[
Y (1)

] − β(0)

(1− e)E
[
Y (0)

]∥∥∥∥∥
2

Σ

 ≥ 0. (82)
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Proof of Lemma 7.9.

First equality The variance of Y (a) satisfies

Var[Y (a)] = Var[c(t) +X⊤β(t) + ε(t)]

= Var[X⊤β(t) + ε(t)] c(t) is a constant

= Var[X⊤β(t)] + Var[ε(t)] + 2Cov(X⊤β(t), ε(t)) Bienaymé’s identity

= ||β(t)||Σ + σ2, (by linear model)

since

Cov(X⊤β(t), ε(t)) = E[X⊤β(t)ε(t)]− E[X⊤β(t)]E[ε(t)]
= E[X⊤β(t)E[ε(t)|X]]− E[X⊤β(t)]E[E[ε(t)|X]] (by total expectation)
= 0, E[ε(t)|X] = 0,

and, using Eve’s law, Var[ε(t)] = E[Var[ε(t)|X]] + Var[E[ε(t)|X]] = σ2. Thus, VRR,N satisfies

VRR,N = τ2RR

(
Var(Y (1))

eE[Y (1)]2
+

Var(Y (0))

(1− e)E[Y (0)]2

)
(83)

= τ2RR

( ||β(1)||2Σ + σ2

eE[Y (1)]2
+

||β(0)||2Σ + σ2

(1− e)E[Y (0)]2

)
. (84)

Second and third equality According to Proposition 3.9 ,

VRR,G,OLS

τ2RR
=

∥∥∥∥∥ β(1)

E
[
Y (1)

] − β(0)

E
[
Y (0)

]∥∥∥∥∥
2

Σ

+ σ2

(
1 + (1− e)2∥ν1 − ν0∥2Σ−1

1

eE
[
Y (1)

]2 +
1 + e2∥ν1 − ν0∥2Σ−1

0

(1− e)E
[
Y (0)

]2
)

Since we are in a RCT setting, we have that ν1 = ν0 and Σ1 = Σ0 = Σ. Therefore

VRR,G,OLS

τ2RR
=

∥∥∥∥∥ β(1)

E
[
Y (1)

] − β(0)

E
[
Y (0)

]∥∥∥∥∥
2

Σ

+ σ2

(
1

eE
[
Y (1)

]2 +
1

(1− e)E
[
Y (0)

]2
)

The first term corresponds to the Oracle variance of the G-formula. Indeed, for all t ∈ {0, 1},

Var[µ(t)(X)] = Var[E[Y (t)|X]]

= Var[E[c(t)|X] + E[X⊤β(t)|X] + E[ε(t)|X]]

= Var[c(t) + E[X⊤β(t)|X]]

= Var[E[X⊤β(t)|X]]

= Var[X⊤β(t)]

= ∥β(t)∥2Σ.

44



Quantifying Treatment Effects: Estimating Risk Ratios via Observational Studies

Besides, the covariance between µ1(X) and µ0(X) satisfies

Cov(µ(1)(X), µ(0)(X)) =E[µ(1)(X)µ(0)(X)]− E[Y (0)]E[Y (1)]

=E[(c(1) +X⊤β(1))(c(0) +X⊤β(0))]− E[Y (0)]E[Y (1)]

=E[c(1)c(0)] + E[c(1)X⊤β(0)] + E[c(0)X⊤β(1)]

+ E[X⊤β(0)X
⊤β(1)]− E[Y (0)]E[Y (1)]

=E[X⊤β(0)X
⊤β(1)]

=E

∑
j

Xjβ(0),j
∑
k

Xkβ(1),k


=
∑
j

∑
k

β(0),jβ(1),kE[XkXj ]

=⟨β(0), β(1)⟩Σ.

Therefore,

VRR,G = τ2RR Var

(
µ1(X)

E
[
Y (1)

] − µ0(X)

E
[
Y (0)

]) = τ2RR

(
Var(µ1(X))

E
[
Y (1)

]2 +
Var(µ0(X))

E
[
Y (0)

]2 − 2
Cov(µ0(X), µ1(X))

E
[
Y (0)

]
E
[
Y (1)

] )

= τ2RR

∥∥∥∥∥ β(1)

E
[
Y (1)

]∥∥∥∥∥
2

Σ

+

∥∥∥∥∥ β(0)

E
[
Y (0)

]∥∥∥∥∥
2

Σ

− 2
⟨β(0), β(1)⟩Σ

E
[
Y (0)

]
E
[
Y (1)

]


= τ2RR

∥∥∥∥∥ β(1)

E
[
Y (1)

] − β(0)

E
[
Y (0)

]∥∥∥∥∥
2

Σ

.

Last inequality A simple computation leads to

VRR,N − VRR,G

τ2RR
=

∥∥β(1)∥∥2Σ + σ2

eE
[
Y (1)

]2 +

∥∥β(0)∥∥2Σ + σ2

(1− e)E
[
Y (0)

]2
−

∥∥∥∥∥ β(1)

E
[
Y (1)

] − β(0)

E
[
Y (0)

]∥∥∥∥∥
2

Σ

+ σ2

(
1

eE
[
Y (1)

]2 +
1

(1− e)E
[
Y (0)

]2
)

=

(
1− e

e

) ∥∥β(1)∥∥2Σ
E
[
Y (1)

]2 +

(
e

1− e

) ∥∥β(0)∥∥2Σ
E
[
Y (0)

]2 +
2⟨β(1), β(0)⟩Σ

E
[
Y (1)

]
E
[
Y (0)

]
= e(1− e)

∥∥∥∥∥ β(1)

eE
[
Y (1)

] − β(0)

(1− e)E
[
Y (0)

]∥∥∥∥∥
2

Σ

.

7.3.5. RISK RATIO ONE-STEP ESTIMATOR

Proof of Definition 3.10. We will use (Kennedy, 2022; 2015) notation in this proof. If you are not familiar on how to
compute an influence function, note that it is very similar to compute the derivative of a function. We define our estimand
quantity

ψ =
E [E [Y |T = 1, X]]

E [E [Y |T = 0, X]]
=
ψ1

ψ0
.
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We can now compute the influence function φ of ψ.

φ = IF (ψ) = IF
(
ψ1

ψ0

)
=

IF (ψ1)ψ0 − IF (ψ0)ψ1

ψ2
0

=
IF (ψ1)

ψ0
− ψ

IF (ψ0)

ψ0
.

According to Example 2 in (Kennedy, 2022), we have

IF (ψ1) = µ1(X) + T
Y − µ1(X)

e(X)
− ψ1

and IF (ψ0) = µ0(X) + (1− T )
Y − µ0(X)

1− e(X)
− ψ0.

Therefore,

φ =
IF (ψ1)

ψ0
− ψ

IF (ψ0)

ψ0

=
µ1(X) + T Y−µ1(X)

e(X) − ψ1

ψ0
− ψ

µ0(X) + (1− T )Y−µ0(X)
1−e(X) − ψ0

ψ0

=
µ1(X) + T Y−µ1(X)

e(X)

ψ0
− ψ − ψ

µ0(X) + (1− T )Y−µ0(X)
1−e(X)

ψ0
− 1


=
µ1(X) + T Y−µ1(X)

e(X)

ψ0
− ψ

µ0(X) + (1− T )Y−µ0(X)
1−e(X)

ψ0
.

As referenced in (Kennedy, 2022) regarding the semiparametric von Mises expansion, consider the functional ψ : P → R,
where P represents the true data distribution and P̂ its estimation. The expansion is formulated as:

ψ(P̂ )− ψ(P ) =

∫
φ(z; P̂ )d(P̂ − P )(z) +R2(P̂ , P ), (85)

for all distributions P̂ and P . The influence function φ(z;P ), associated with ψ, is a function with zero mean and finite
variance as defined by (Tsiatis, 2006)∫

φ(z;P )dP (z) = 0 and
∫
φ(z;P )2dP (z) <∞, (86)

and R2(P̂ , P ) denotes a second-order remainder term. According to the expansion in (85), most plug-in estimators ψ(P̂ )
are biased to the first order, evidenced by:

ψ(P ) = ψ(P̂ ) +

∫
φ(z; P̂ )dP (z) +R2(P̂ , P ),

since
∫
φ(z; P̂ )dP̂ (z) = 0. Therefore, a first-order approximation of ψ(P ) is given by ψ(P̂ ) +

∫
φ(z; P̂ )dP (z) which can

be estimated via

τ̂RR-OS = ψ̂ +
1

n

n∑
i=1

φ(Zi)

= ψ̂ +
1

n

n∑
i=1

µ1(Xi) + Ti
Yi−µ1(Xi)
e(Xi)

ψ̂0

− ψ̂
µ0(Xi) + (1− Ti)

Yi−µ0(Xi)
1−e(Xi)

ψ̂0

= ψ̂

1−
1
n

∑n
i=1 µ0(Xi) + (1− Ti)

Yi−µ0(Xi)
1−e(Xi)

ψ̂0

+

1
n

∑n
i=1 µ1(Xi) + Ti

Yi−µ1(Xi)
e(Xi)

ψ̂0

=

∑n
i=1 µ̂1(Xi)∑n
i=1 µ̂0(Xi)

1−
∑n
i=1 µ̂0(Xi) +

(1−Ti)(Yi−µ̂0(Xi))
1−ê(Xi)∑n

i=1 µ̂0(Xi)

+

∑n
i=1 µ̂1(Xi) +

Ti(Yi−µ̂1(Xi))
ê(Xi)∑n

i=1 µ̂0(Xi)
.
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Proof of Proposition 3.11.
Asymptotic bias and variance of the cross-fitted One-step estimator Recall that

ψ(P ) =
EP [EP [Y | X,T = 1]]

EP [EP [Y | X,T = 0]]
=
ψ1

ψ0
(87)

ψ(P̂ ) =

∑n
i=1 µ̂1(Xi)∑n
i=1 µ̂0(Xi)

=
ψ̂1

ψ̂0

(88)

φ(Z; P̂ ) =
µ̂1(Xi) + Ti

Yi−µ̂1(Xi)
ê(Xi)

ψ̂0

− ψ̂
µ̂0(Xi) + (1− Ti)

Yi−µ̂0(Xi)
1−ê(Xi)

ψ̂0

(89)

where P represents the true underlying data distribution and P̂ the distribution where oracle quantities have been replaced
by plug-in estimates. We express ψ(P ) as follows:

ψ(P ) = ψ(P̂ ) +

∫
φ(z; P̂ )dP (z) +R2(P̂ , P ),

where R2 encapsulates higher order remainder terms.

To elucidate, we rearrange to find ψ(P̂ )− ψ(P ):

ψ(P̂ )− ψ(P ) = R2(P, P̂ )−
∫
φ(z; P̂ )dP (z)

=
1

n

n∑
i=1

φ(Zi;P )−
1

n

n∑
i=1

φ(Zi; P̂ )

+
1

n

n∑
i=1

(
φ(Zi; P̂ )− φ(Zi;P )

)
−
∫ (

φ(z; P̂ )− φ(z;P )
)
dP (z)

+R2(P, P̂ ).

Recalling that τ̂RR-OS = ψ(P̂ ) + 1
n

∑n
i=1 φ(Zi; P̂ ) and τRR = ψ(P ), we have

τ̂RR-OS − τRR = ψ(P̂ ) +
1

n

n∑
i=1

φ(Zi; P̂ )− ψ(P ) (90)

=
1

n

n∑
i=1

φ(Zi;P ) (91)

+
1

n

n∑
i=1

(
φ(Zi; P̂ )− φ(Zi;P )

)
−
∫ (

φ(z; P̂ )− φ(z;P )
)
dP (z) (92)

+R2(P, P̂ ). (93)

The first term is a sample average of centered i.i.d. terms since, by definition (86),
∫
φ(z;P )dP (z) = 0. According to the

central limit theorem, it converges to a normally distributed random variable with variance Var(φ(Z))/n.

Following the work of (Vaart, 1998), we consider the second term in (93), that is

1

n

n∑
i=1

(
φ(Zi; P̂ )− φ(Zi;P )

)
−
∫ (

φ(z; P̂ )− φ(z;P )
)
dP (z).

Since our estimator is built on a cross-fitting strategy with K folds I1, . . . IK , containing respectively n1, . . . , nK observa-
tions, the above quantity may be written as

1

n

K∑
k=1

∑
i∈Ik

(
φ(Zi; P̂

−k)− φ(Zi;P )
)
−
∫ (

φ(z; P̂ )− φ(z;P )
)
dP (z),
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where P̂−k corresponds to a data distribution where oracle quantity are replaced by plug-in estimates built on all observations
except those in Ik. We denote this set of observations as I−k. We let φ̂−k(Z) = φ(Z; P̂−k) and

Uk =
(
P(k)
n − P

) (
φ̂−k(Z)− φ(Z)

)
, (94)

where P(k)
n is the empirical measure over Ik. The quantity of interest can thus be written as

1

n

K∑
k=1

∑
i∈Ik

(
φ−k(Zi)− φ(Zi;P )

)
−
∫ (

φ(z; P̂ )− φ(z;P )
)
dP (z) =

1

n

K∑
k=1

nkUk. (95)

The expectation and variance of Uk satisfy

E [Uk | I−k] = E
[(

P(k)
n − P

)
(φ̂−k − φ) | I−k

]
(96)

= E
[
P(k)
n (φ̂−k − φ) | I−k

]
− E

[
P (φ̂−k − φ) | I−k

]
(97)

= E
[
φ̂−k(Z)− φ(Z)

]
− E

[
φ̂−k(Z)− φ(Z)

]
(98)

= 0, (99)

and

Var [Uk | I−k] = Var
[(

P(k)
n − P

)
(φ̂−k − φ) | I−k

]
(100)

= Var
[
P(k)
n (φ̂−k − φ)− P (φ̂−k − φ) | I−k

]
(101)

= Var

[
1

nk

nk∑
i=1

(
φ̂−k(Zi)− φ(Zi)

)
| I−k

]
(102)

=
1

nk
Var
[
φ̂−k(Z)− φ(Z) | I−k

]
(103)

≤ 1

nk
E
[
(φ̂−k(Z)− φ(Z))2 | I−k

]
. (104)

Let a > 0. Applying Chebyshev’s inequality leads to

P

(
|Uk − E[Uk | I−k]|√

Var[Uk | I−k]
≥ a | I−k

)
≤ 1

a2
(105)

⇐⇒P

(
|Uk|√

Var[Uk | I−k]
≥ a | I−k

)
≤ 1

a2
. (106)

Thus,

P

(
|Uk|

√
nk√

E [(φ̂−k(Z)− φ(Z))2 | I−k]
≥ a | I−k

)
≤ P

(
|Uk|√

Var[Uk | I−k]
≥ a | I−k

)
≤ 1

a2
, (107)

which leads to

P (|Uk|
√
nk ≥ a | I−k) ≤

E
[
(φ̂−k(Z)− φ(Z))2 | I−k

]
a2

. (108)

Finally, taking the expectation on both sides leads to

P (|Uk|
√
nk ≥ a) ≤

E
[
(φ̂−k(Z)− φ(Z))2

]
a2

. (109)
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According to (95), the quantity of interest takes the form

1

n

K∑
k=1

nkUk =

K∑
k=1

nk
n
Uk. (110)

Hence,

P
(√

n
nk
n
|Uk| ≤ a

√
nk√
n

)
≥ 1−

E
[
(φ̂−k(Z)− φ(Z))2

]
a2

. (111)

Therefore,

P

(
√
n

K∑
k=1

nk
n
|Uk| ≤ a

K∑
k=1

√
nk√
n

)
≥ 1−

K∑
k=1

E
[
(φ̂−k(Z)− φ(Z))2

]
a2

(112)

⇒ P

(
√
n

K∑
k=1

nk
n
|Uk| ≤ aK

)
≥ 1−

K∑
k=1

E
[
(φ̂−k(Z)− φ(Z))2

]
a2

, (113)

which proves that
∑K
k=1

nk

n Uk = oP (1/
√
n) as K is fixed and φ−k is L2 consistent.

Regarding the last term, note that

R2(P, P̂ ) = ψ(P̂ )− ψ(P ) +

∫
φ(z; P̂ )dP (z) (114)

= ψ(P̂ )− ψ(P ) + E[φ(Z; P̂ )] (115)

= ψ(P̂ )− ψ(P ) + E

 µ̂1(X) + T Y−µ̂1(X)
ê(X)

ψ̂0

− ψ̂
µ̂0(X) + (1− T )Y−µ̂0(X)

1−ê(X)

ψ̂0

 (116)

= ψ(P̂ )− ψ(P ) +
E
[
µ̂1(X) + T Y−µ̂1(X)

ê(X)

]
ψ̂0

− ψ̂
E
[
µ̂0(X) + (1− T )Y−µ̂0(X)

1−ê(X)

]
ψ̂0

(117)

= ψ(P̂ )− ψ(P ) +
E
[
µ̂1(X)− µ1(X) + T Y−µ̂1(X)

ê(X)

]
ψ̂0

+
ψ1

ψ̂0

(118)

− ψ̂
E
[
µ̂0(X)− µ0(X) + (1− T )Y−µ̂0(X)

1−ê(X)

]
ψ̂0

− ψ̂
ψ0

ψ̂0

. (119)

Note that

E
[
µ̂1(X)− µ1(X) + T

Y − µ̂1(X)

ê(X)

]
= E

[
1

ê(X)
(µ1(X)− µ̂1(X))(ê(X)− e(X))

]
(120)

Positivity ≤ 1

η
E [(µ1(X)− µ̂1(X))(ê(X)− e(X))] (121)

Cauchy-Schwarz ≤ 1

η
E
[
(ê(X)− e(X))

2
]1/2

E
[
(µ̂1(X)− µ1(X))

2
]1/2

(122)

= op

(
1√
n

)
. (123)

Similarly,

E
[
µ̂1(X)− µ1(X) + T

Y − µ̂1(X)

ê(X)

]
= op

(
1√
n

)
. (124)
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For the last term in (119), since ψ = ψ1/ψ0 and ψ̂ = ψ̂1/ψ̂0,

ψ̂ − ψ +
ψ1

ψ̂0

− ψ̂
ψ0

ψ̂0

= ψ1

(
1

ψ̂0

− 1

ψ0

)
+ ψ̂

(
1− ψ0

ψ̂0

)
= ψ1

ψ0 − ψ̂0

ψ0ψ̂0

+ ψ̂

(
ψ̂0 − ψ0

ψ̂0

)

=

(
ψ̂0 − ψ0

ψ̂0

)(
ψ̂ − ψ

)
=

(
ψ̂0 − ψ0

ψ̂0

)((
1

ψ̂0

− 1

ψ0

)
ψ̂1 +

1

ψ0

(
ψ̂1 − ψ1

))
=

1

ψ0ψ̂0

(
(ψ̂0 − ψ0)(ψ̂1 − ψ1)− ψ̂(ψ̂0 − ψ0)(ψ̂0 − ψ0)

)
.

By assumption, we have

(ψ̂0 − ψ0)(ψ̂1 − ψ1) = E [µ̂0(X)− µ0(X)]E [µ̂1(X)− µ1(X)] (125)

≤ (E
[
(µ̂0(X)− µ0(X))2

]
)1/2(E

[
(µ̂1(X)− µ1(X))2

]
)1/2 (126)

= op

(
1√
n

)
(127)

and

(ψ̂0 − ψ0)(ψ̂0 − ψ0) = (E [µ̂0(X)]− E [µ0(X)])2

= op

(
1√
n

)
.

By assumption, E
[
(µ̂0(X)− µ0(X))2

]
tends to zero. Thus, ψ̂0 = E[µ̂0] tends to ψ0 = E[µ0(X)]. Thus,

ψ̂ − ψ +
ψ1

ψ̂0

− ψ̂
ψ0

ψ̂0

= op

(
1√
n

)
,

which implies that R2(P, P̂ ) = op
(
n−1/2

)
. Finally,

√
n (τ̂RR-OS − τRR) =

1√
n

n∑
i=1

φ(Zi;P ) + op

(
1√
n

)
and thus

√
n (τ̂RR-OS − τRR)

d→ N (0,Var(φ)) ,

where

Var(φ) = Var

µ1(X) + T Y−µ1(X)
e(X)

ψ0
− ψ

µ0(X) + (1− T )Y−µ0(X)
1−e(X)

ψ0

 (128)

= ψ2 Var

µ1(X) + T Y−µ1(X)
e(X)

ψ1

µ0(X) + (1− T )Y−µ0(X)
1−e(X)

ψ0

 (129)

= τ2RR Var

(
g1(Z)

E
[
Y (1)

] − g0(Z)

E
[
Y (0)

]) . (130)
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Using Bienaymé’s identity, we get

Var

(
g1(Z)

E
[
Y (1)

] − g0(Z)

E
[
Y (0)

]) = Var

(
µ1(X)

E
[
Y (1)

] − µ0(X)

E
[
Y (0)

])+Var

(
T (Y − µ1(X))

E
[
Y (1)

]
e(X)

− (1− T )(Y − µ0(X))

E
[
Y (0)

]
(1− e(X))

)
(131)

+ 2Cov

(
µ1(X)

E
[
Y (1)

] − µ0(X)

E
[
Y (0)

] ; T (Y − µ1(X))

E
[
Y (1)

]
e(X)

− (1− T )(Y − µ0(X))

E
[
Y (0)

]
(1− e(X))

)
. (132)

The second term can be rewritten as

Var

(
T (Y − µ1(X))

E
[
Y (1)

]
e(X)

− (1− T )(Y − µ0(X))

E
[
Y (0)

]
(1− e(X))

)
(133)

= Var

(
T (Y − µ1(X))

E
[
Y (1)

]
e(X)

)
+Var

(
(1− T )(Y − µ0(X))

E
[
Y (0)

]
(1− e(X))

)
− 2Cov

(
T (Y − µ1(X))

E
[
Y (1)

]
e(X)

,
(1− T )(Y − µ0(X))

E
[
Y (0)

]
(1− e(X))

)
,

(134)

with

Var

(
T (Y − µ1(X))

E
[
Y (1)

]
e(X)

)
= E

(T (Y − µ1(X))

E
[
Y (1)

]
e(X)

)2
− E

[
T (Y − µ1(X))

E
[
Y (1)

]
e(X)

]2
. (135)

For the first term in (135),

E

(T Y − µ1(X)

e(X)E
[
Y (1)

])2


= E

(T Y (1) − µ1(X)

e(X)E
[
Y (1)

] )2
 Consistency

= E

E
(T Y (1) − µ1(X)

e(X)E
[
Y (1)

] )2

| X

 Total expectation

= E

E
T (Y (1) − µ1(X)

e(X)E
[
Y (1)

] )2

| X

 T is binary

= E

E
1{T=1}

(
Y (1) − µ1(X)

e(X)E
[
Y (1)

] )2

| X

 T written as an indicator

= E

[
1

e(X)2E
[
Y (1)

]2E [1{T=1}

(
Y (1) − µ1(X)

)2
| X
]]

e(X) is a function of X

= E

[
Var

(
Y (1)|X

)
e(X)2E

[
Y (1)

]2E [1{T=1} | X
]]

Uncounf. & µ1(.) is func. of X

= E

[
Var

(
Y (1)|X

)
e(X)2E

[
Y (1)

]2 e(X)

]
Definition of e(X)

= E

[
Var

(
Y (1)|X

)
e(X)E

[
Y (1)

]2
]
.
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For the second term in (135),

E

[
T (Y − µ1(X))

E
[
Y (1)

]
e(X)

]

= E

[
T (Y (1) − µ1(X))

E
[
Y (1)

]
e(X)

]
Consistency

= E

[
E

[
T
Y (1) − µ1(X)

e(X)E
[
Y (1)

] | X

]]
Total expectation

= E

[
1

e(X)E
[
Y (1)

]E [T (Y (1) − µ1(X)) | X
]]

e(X) is a function of X

= E

[
e(X)

e(X)E
[
Y (1)

] (µ1(X)− µ1(X))

]
Uncounf. & µ1(.) is func. of X

= 0.

Therefore

Var

(
T (Y − µ1(X))

E
[
Y (1)

]
e(X)

)
= E

[
Var

(
Y (1)|X

)
e(X)E

[
Y (1)

]2
]
,

and similarly

Var

(
(1− T )(Y − µ0(X))

E
[
Y (0)

]
(1− e(X))

)
= E

[
Var

(
Y (0)|X

)
(1− e(X))E

[
Y (0)

]2
]
.

Besides,

Cov

(
T (Y − µ1(X))

E
[
Y (1)

]
e(X)

,
(1− T )(Y − µ0(X))

E
[
Y (0)

]
(1− e(X))

)
= E

[
T (Y − µ1(X))

E
[
Y (1)

]
e(X)

(1− T )(Y − µ0(X))

E
[
Y (0)

]
(1− e(X))

]

− E

[
T (Y − µ1(X))

E
[
Y (1)

]
e(X)

]
E

[
(1− T )(Y − µ0(X))

E
[
Y (0)

]
(1− e(X))

]
= 0.

Gathering all these results into (134), we obtain

Var

(
T (Y − µ1(X))

E
[
Y (1)

]
e(X)

− (1− T )(Y − µ0(X))

E
[
Y (0)

]
(1− e(X))

)
= E

[
Var

(
Y (1)|X

)
e(X)E

[
Y (1)

]2
]
+ E

[
Var

(
Y (0)|X

)
(1− e(X))E

[
Y (0)

]2
]
.

In order to rewrite the last term in (132), note that

Cov

(
µ1(X),

T (Y − µ1(X))

e(X)

)
= E

[
µ1(X)

T (Y − µ1(X))

e(X)

]
− E [µ1(X)]E

[
T (Y − µ1(X))

e(X)

]
= E

[
µ1(X)

T (Y − µ1(X))

e(X)

]
= E

[
µ1(X)

e(X)
E
[
T (Y (1) − µ1(X))|X

]]
= E

[
µ1(X)

e(X)
E
[
T (Y (1) − µ1(X))

e(X)
|X
]]

= E
[
µ1(X)e(X)

e(X)
(µ1(X))− µ1(X))

]
= 0.
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Similar calculations leads to

Cov

(
µ1(X)

E
[
Y (1)

] − µ0(X)

E
[
Y (0)

] ; T (Y − µ1(X))

E
[
Y (1)

]
e(X)

− (1− T )(Y − µ0(X))

E
[
Y (0)

]
(1− e(X))

)
= 0.

Finally

VRR,OS = τ2RR

(
Var

(
µ1(X)

E
[
Y (1)

] − µ0(X)

E
[
Y (0)

])+ E

[
Var

(
Y (1)|X

)
e(X)E

[
Y (1)

]2
]
+ E

[
Var

(
Y (0)|X

)
(1− e(X))E

[
Y (0)

]2
])

.

An estimator V̂RR,OS can be derived as follows:

V̂RR,OS =
τ̂2RR,OS,n

n

n∑
i=1

(
∆i −

1

n

n∑
i=1

∆i

)2

(136)

where

∆i =
Γ̂i(1)

Ŝ(1)
− Γ̂i(0)

Ŝ(0)

with the intermediate for t ∈ {0, 1} quantities defined as:

Γ̂i(t) = µ̂t(Xi) + 1Ti=t
Yi − µ̂t(Xi)

êt(Xi)
and Ŝ(t) =

1

n

n∑
j=1

Γ̂j(t)

7.3.6. RISK RATIO AUGMENTED INVERSE PROPENSITY WEIGHTING

Proof of Definition 3.12. We use the derivations established in the proof of Proposition 3.11. Indeed, we showed in
Section 7.3.5 that the influence function φ of ψ = E[E[Y |T=1,X]]

E[E[Y |T=0,X]] can be written:

φ(Z;P ) =
µ1(X) + T Y−µ1(X)

e(X)

ψ0
− ψ

µ0(X) + (1− T )Y−µ0(X)
1−e(X)

ψ0
.

Using Equation (85), and knowing that
∫
φ(z; P̂ )dP̂ (z) = 0, we have:

ψ(P̂ )− ψ(P ) =

∫
φ(z; P̂ )d(P̂ − P )(z) +R2(P̂ , P )

= R2(P, P̂ )−
∫
φ(z; P̂ )dP (z)

=
1

n

n∑
i=1

φ(Zi;P )−
1

n

n∑
i=1

φ(zi; P̂ )

+
1

n

n∑
i=1

(
φ(Zi; P̂ )− φ(Zi;P )

)
−
∫ (

φ(z; P̂ )− φ(z;P )
)
dP (z)

+R2(P, P̂ ).

As outlined in (A.Schuler, 2024), in the estimating equation approach, we assume that the efficient influence function for
any given distribution depends solely on the target parameter ψ and a set of nuisance parameters η. Therefore, instead
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of denoting the efficient influence function as φ(z;P ), we can express it as φ(Z;ψ, η). If the influence function can be
represented in this form, we proceed by first estimating η̂ = (ê, µ̂1, µ̂0) with crossfitting. For any fixed value η̂, we find a
value ψ̂ such that Pnφψ̂,η̂ = 0, that is

1

n

n∑
i=1

µ̂1(Xi) + Ti
Yi−µ̂1(Xi)
ê(Xi)

ψ̂0

− ψ̂
µ̂0(Xi) + (1− Ti)

Yi−µ̂0(Xi)
1−ê(Xi)

ψ̂0

= 0,

which implies

ψ̂ =

∑n
i=1 µ̂1(Xi) + Ti

Yi−µ̂1(Xi)
ê(Xi)∑n

i=1 µ̂0(Xi) + (1− Ti)
Yi−µ̂0(Xi)
1−ê(Xi)

.

Hereafter, we propose a proof of Proposition 3.13 which does not use the influence function theory

Proof of Proposition 3.13.
Asymptotic bias and variance of the crossfitted Ratio AIPW estimator In this alternative proof, we further assume that
Var[Y |X] ≤ σ2 for some σ > 0. Recall that we want to analyze

√
n (τ̂RR,AIPW − τRR). Letting

τ⋆RR,AIPW =

∑n
i=1 µ1(Xi) +

Ti(Yi−µ1(Xi))
e(Xi)∑n

i=1 µ0(Xi) +
(1−Ti)(Yi−µ0(Xi))

1−e(Xi)

:=
τ⋆RR,AIPW, 1

τ⋆RR,AIPW, 0

(137)

be the oracle version of τ̂RR,AIPW where the propensity score and both response surfaces are assumed to be known, we can
rewrite

τ̂RR,AIPW − τRR = τ̂RR,AIPW − τ⋆RR,AIPW + τ⋆RR,AIPW − τRR. (138)

Regarding the first term in (138), we have∣∣τ̂RR,AIPW − τ⋆RR,AIPW

∣∣ (139)

=

∣∣∣∣ τ̂RR,AIPW, 1

τ̂RR,AIPW, 0
−
τ⋆RR,AIPW, 1

τ⋆RR,AIPW, 0

∣∣∣∣ (140)

=
∣∣∣((τ̂RR,AIPW, 0)

−1 −
(
τ⋆RR,AIPW, 0

)−1
)
τ̂RR,AIPW, 1 (141)

+
(
τ⋆RR,AIPW, 0

)−1 (
τ̂RR,AIPW, 1 − τ⋆RR,AIPW, 1

)∣∣∣ (142)

≤
∣∣∣((τ̂RR,AIPW, 0)

−1 −
(
τ⋆RR,AIPW, 0

)−1
)
τ̂RR,AIPW, 1

∣∣∣ (143)

+
∣∣∣(τ⋆RR,AIPW, 0

)−1 (
τ̂RR,AIPW, 1 − τ⋆RR,AIPW, 1

)∣∣∣ . (144)

We now show that ∣∣τ̂RR,AIPW, 1 − τ⋆RR,AIPW, 1

∣∣ = op

(
1√
n

)
and

∣∣τ̂RR,AIPW, 0 − τ⋆RR,AIPW, 0

∣∣ = op

(
1√
n

)
.

The following decomposition holds

√
n
∣∣τ̂RR,AIPW, 1 − τ⋆RR,AIPW, 1

∣∣ = 1√
n

∑
i∈Ik

(
µ̂
I−k

1 (Xi) + Ti
Yi − µ̂

I−k

1 (Xi)

ê (Xi)
− µ1 (Xi)− Ti

Yi − µ1 (Xi)

e (Xi)

)

Further denoted Akn =
1√
n

∑
i∈Ik

((
µ̂
I−k

1 (Xi)− µ1 (Xi)
)(

1− Ti
e (Xi)

))
Further denoted Bkn +

1√
n

∑
i∈Ik

Ti

(
(Yi − µ1 (Xi))

(
1

ê (Xi)
− 1

e (Xi)

))
Further denoted Ckn − 1√

n

∑
i∈Ik

Ti

((
µ̂
I−k

1 (Xi)− µ1 (Xi)
)( 1

ê (Xi)
− 1

e (Xi)

))
.
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In the following, we prove that the first two terms tend to zero in L2.

Regarding Akn One can show that the expectation of Akn/
√
n is null:

E
[
Akn√
n
| I−k

]
=

1

n

∑
i∈Ik

E
[(
µ̂
I−k

1 (Xi)− µ1 (Xi)
)(

1− Ti
e (Xi)

)
| I−k

]
=

|Ik|
n

E
[(
µ̂
I−k

1 (X)− µ1 (X)
)(

1− T

e (X)

)
| I−k

]
i.i.d.

=
|Ik|
n

E
[
E
[(
µ̂
I−k

1 (X)− µ1 (X)
)(

1− T

e (X)

)
| X, I−k

]
| I−k

]
=

|Ik|
n

E
[(
µ̂
I−k

1 (X)− µ1 (X)
)
E
[(

1− T

e (X)

)
| X, I−k

]
| I−k

]
=

|Ik|
n

E
[(
µ̂
I−k

1 (X)− µ1 (X)
)(

1− e (X)

e (X)

)
| I−k

]
= 0.

We will make use of this results in several calculations. Now,

E

[(
Akn√
n

)2

| I−k

]
= Var

[
1

n

∑
i∈Ik

((
µ̂
I−k

1 (Xi)− µ1 (Xi)
)(

1− Ti
e (Xi)

))
| I−k

]

=
1

n2
Var

[∑
i∈Ik

((
µ̂
I−k

1 (Xi)− µ1 (Xi)
)(

1− Ti
e (Xi)

))
| I−k

]

=
1

n2

∑
i∈Ik

Var

[(
µ̂
I−k

1 (Xi)− µ1 (Xi)
)(

1− Ti
e (Xi)

)
| I−k

]
iid

=
|Ik|
n2

E

[((
µ̂
I−k

1 (X)− µ1 (X)
)(

1− T

e (X)

))2

| I−k

]

=
|Ik|
n2

E

[
E

[((
µ̂
I−k

1 (X)− µ1 (X)
)(

1− T

e (X)

))2

|X, I−k

]
| I−k

]

=
|Ik|
n2

E

[(
µ̂
I−k

1 (X)− µ1 (X)
)2

E

[(
1− T

e (X)

)2

|X, I−k

]
| I−k

]

=
|Ik|
n2

E

[(
µ̂
I−k

1 (X)− µ1 (X)
)2 1

e (X)
2E
[
(e (X)− T )

2 |X, I−k
]
| I−k

]

=
|Ik|
n2

E

[(
µ̂
I−k

1 (X)− µ1 (X)
)2 e (X) (1− e (X))

e (X)
2 | I−k

]

=
|Ik|
n2

E
[(
µ̂
I−k

1 (X)− µ1 (X)
)2( 1

e (X)
− 1

)
| I−k

]
≤ |Ik|
ηn2

E
[(
µ̂
I−k

1 (X)− µ1 (X)
)2

| I−k
]

Overlap.

Taking the expectation, we obtain

E

[(
Akn√
n

)2
]
≤ |Ik|
ηn2

E
[(
µ̂
I−k

1 (X)− µ1 (X)
)2]

, (145)

that is

E
[(
Akn
)2] ≤ 1

η
E
[(
µ̂
I−k

1 (X)− µ1 (X)
)2]

. (146)
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Thus Akn converges to zero in L2 and thus in probability.

Regarding Bkn The second term Bkn can also be controlled using similar arguments. By assumption,

η

2
≤ ê(X) ≤ 1− η

2
.

Thus,

1

ê(X)
− 1

e(X)
=
e(X)− ê(X)

ê(X)e(X)
≤ 2

(
e(X)− ê(X)

η2

)
.

Derivations are very close to the ones for the first term, noting that,

E

[
E

[
1

n

∑
i∈Ik

Ti

(
(Yi − µ1 (Xi))

(
1

êI−k (Xi)
− 1

e (Xi)

))
| Xi, I−k

]
| I−k

]
= 0,

so that,

E

[(
Bkn√
n

)2

| I−k

]
= Var

[
1

n

∑
i∈Ik

Ti (Yi − µ1 (Xi))

(
1

êI−k (Xi)
− 1

e (Xi)

)
| I−k

]

=
1

n2

∑
i∈Ik

Var

[
Ti (Yi − µ1 (Xi))

(
1

êI−k (Xi)
− 1

e (Xi)

)
| I−k

]
iid

=
|Ik|
n2

E

[
T (Y − µ1 (X))

2

(
1

êI−k (X)
− 1

e (X)

)2

| I−k

]

≤ 4|Ik|
η4n2

E
[
T (Y − µ1 (X))

2 (
êI−k (X)− e (X)

)2 | I−k
]

≤ 4|Ik|
η4n2

E
[
(Y − µ1 (X))

2 (
êI−k (X)− e (X)

)2 | I−k
]

Sicne T ≤ 1

≤ 4|Ik|
η4n2

E
[
E
[
(Y − µ1 (X))

2 (
êI−k (X)− e (X)

)2 |X, I−k] | I−k]
≤ 4|Ik|
η4n2

E
[
E
[
(Y − µ1 (X))

2 |X, I−k
] (
êI−k (X)− e (X)

)2 | I−k
]

≤ 4|Ik|
η4n2

E
[
Var [Y |X]

(
êI−k (X)− e (X)

)2 | I−k
]

≤ 4Var [Y |X] |Ik|
η4n2

E
[(
êI−k (X)− e (X)

)2 | I−k
]
.

Taking the expectation on both sides, since Var [Y |X] ≤ σ2, we get

E

[(
Bkn√
n

)2
]
≤ 4σ2|Ik|

η4n2
E
[(
êI−k (X)− e (X)

)2 | I−k
]
, (147)

which leads to

E
[(
Bkn
)2] ≤ 4σ2

η4
E
[(
êI−k (X)− e (X)

)2 | I−k
]
. (148)

Since, by assumption, the right-hand side term converges to zero, Bkn converges to zero in L2.
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Regarding Ckn Regarding the last term, the approach is different and will involve another assumption on the product of
residuals. More precisely,

E[|Ckn|] =
√
n
1

n

∑
i∈Ik

E
[∣∣∣∣Ti (µ̂I−k

1 (Xi)− µ1 (Xi)
)( 1

êI−k (Xi)
− 1

e (Xi)

)∣∣∣∣]

=

√
n

η2
1

n

∑
i∈Ik

E
[∣∣∣Ti (µ̂I−k

1 (Xi)− µ1 (Xi)
) (
e(Xi)− êI−k(Xi)

)∣∣∣]
=

√
n|Ik|
η2

1

n
E
[∣∣∣T (µ̂I−k

1 (X)− µ1 (X)
) (
e(X)− êI−k(X)

)∣∣∣]
≤

√
n

η2
E
[∣∣∣(µ̂I−k

1 (X)− µ1 (X)
) (
e(X)− êI−k(X)

)∣∣∣]
≤

√
n

η2

√
E
[(
µ̂
I−k

1 (X)− µ1 (X)
)2]

E
[
(e(X)− êI−k(X))

2
]
,

which tends to zero by assumption. Each term Akn, Bkn, and Ckn has been shown to be bounded by a term in oP(1). Thus,

√
n
∣∣τ̂RR,AIPW, 1 − τ⋆RR,AIPW, 1

∣∣ = K∑
k=1

Akn +Bkn + Ckn (149)

tends to zero in probability. Similarly, one can show that
√
n
∣∣τ̂RR,AIPW, 1 − τ⋆RR,AIPW, 1

∣∣ p−→ 0. (150)

According to (144), since for all t ∈ {0, 1}, |τ̂RR,AIPW,t| tends to τ⋆RR,AIPW,t which is lower and upper bounded, we have

√
n
∣∣τ̂RR,AIPW − τ⋆RR,AIPW

∣∣ ≤ √
n

∣∣∣∣ τ̂RR,AIPW, 1

τ̂RR,AIPW, 0τ⋆RR,AIPW, 0

∣∣∣∣ ∣∣τ̂RR,AIPW, 0 − τ⋆RR,AIPW, 0

∣∣
+
√
n

∣∣∣∣ 1

τ⋆RR,AIPW, 0

∣∣∣∣ ∣∣τ̂RR,AIPW, 1 − τ⋆RR,AIPW, 1

∣∣
which tends to zero.

Regarding the second term in (138), we can use Theorem 7.1 with g1(Z) = µ1(X) + T (Y−µ1(X))
e(X) and g0(Z) = µ0(X) +

(1−T )(Y−µ0(X))
(1−e(X)) where Z = (T,X, Y ). Hence, we have that g1(Z) is square integrable:

E
[
g1(Z)

2
]
≤ 2E

[
(µ1(X)2

]
+ 2E

[(
T (Y − µ1(X))

e(X)

)2
]
,

where E
[
(µ1(X)2

]
= Var(Y (1)) + E

[
Y (1)

]2
is finite. Using Consistency, Unconfoundedness, and definition or µ1(X) =

E[Y | X,T = 1], simple calculations show that

E

[(
T
Y − µ1(X)

e(X)

)2
]
= E

[(
T
Y (1) − µ1(X)

e(X)

)2
]

Consistency

= E

[
E

[(
T
Y (1) − µ1(X)

e(X)

)2

| X

]]
Total expectation

= E

[(
Y (1) − µ1(X)

)2
e(X)

]

≤ Var(µ1(X))

η
.
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Similarly, we can show that g0(Z) is square integrable. Since E [g0(Z)] = E
[
Y (0)

]
and E [g1(Z)] = E

[
Y (1)

]
, we can

apply Theorem 7.1 and conclude that
√
n(τ⋆RR,AIPW − τRR) → N (0, VRR,OS). (151)

Finally, √
n(τ̂AIPW − τRR) =

√
n(τ̂RR,AIPW − τ⋆RR,AIPW)︸ ︷︷ ︸

p−→ 0

+
√
n(τ⋆RR,AIPW − τRR)︸ ︷︷ ︸
d→ N

(
0, VRR,OS

)
,

where

VRR,OS = τ2RR

(
Var

(
µ1(X)

E
[
Y (1)

] − µ0(X)

E
[
Y (0)

])+ E

[
Var

(
Y (1)|X

)
e(X)E

[
Y (1)

]2
]
+ E

[
Var

(
Y (0)|X

)
(1− e(X))E

[
Y (0)

]2
])
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8. Simulation
For the simulations we have implemented all estimators in Python using Scikit-Learn for our regression and classification
models. All our experiments were run on a 8GB M1 Mac. The propensity scores is estimated based on the provided training
data and covariate names. Depending on the chosen method, it either uses logistic regression with a high regularization
parameter (parametric) or a random forest classifier with parameters determined by the training data size (non-parametric).
The response surface is estimated based on the training data, covariate names, the method (parametric or non-parametric),
and whether the response is binary or continuous. For parametric methods, it uses a stochastic gradient descent classifier for
binary responses and a linear regression model for continuous responses. For non-parametric methods, it employs a random
forest classifier for binary responses and a random forest regressor for continuous responses. Both methods fit the model
using the training data to estimate the respective scores and surfaces, enabling flexible handling of various datasets and
assumptions for causal inference analysis.

8.1. Randomized Controlled Trials

In this part we will simulate Randomized Controlled Trials (RCT) and test the following Ratio estimators: Ratio Neyman,
Ratio Horvitz Thomson and the Ratio G-formula. Since we are in a Randomized Controlled Trials, the propensity score e(.)
is constant.

8.1.1. LINEAR RCT

The first DGP has linear outcome models (linear treatment effect and the baseline). The data is generated using:

m(X) = (c1 − c0) + (β1 − β0)
⊤X

b(X) = c0 + β⊤
0 X

e(X) = 0.5

c0 = 6, c1 = 12
β1 = (2,−5, 2, 8,−2, 8)
β0 = (3,−7, 1, 4,−2, 2)

Figure 6. Comparison of RCT estimators in a Linear RCT

Given that X has a zero mean, it follows that τRR = c1/c0 = 2. This scenario aligns with the linear setting outlined in
Assumption 3.8. Referring to Figure 6, as proved in the previous sections all estimators converge to the true Risk Ratio as
n increases. Additionally, within this linear framework as per Lemma 7.9, the variance of the Neyman estimator exceeds
the one of the G-formula. In such a linear environment, the parametric G-formula performs better than its non-parametric
counterpart. Additionally, the Ratio Neyman estimator demonstrates lower variance compared to the Horvitz-Thomson
estimator as indicated in Equation (5).
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8.1.2. NON-LINEAR RCT

This DGP is also a Randomized Controlled Trials however, the outcomes are not linear this time:

m(X) = sin(X1) ·X2
2 +

X3

X4 + 1
− log(X5 + 1) +X3

6 + 1

b(X) = 4 ∗max(X1 +X2 +X3, 0)−min(X4 +X6, 0) and e(X) = 0.5

Figure 7. Comparison of RCT estimators in a Non-Linear RCT

The presence of trigonometric, exponential, logarithmic, and polynomial terms makes this setting non-linear. It’s important
to note that since we are in a Randomized Controlled Trial (RCT), the propensity function remains constant. As the
sample size (n) increases, all proposed estimators converge. A bias can be seen in 7 but decreases to 0 as (n) increases as
predicted in previous sections. Linear regression struggles with small n values, failing to capture the intricate relationships
between features and non-linearities. On the other hand, Random Forest, a non-parametric method, excels in capturing these
complexities by segmenting the feature space and predicting based on response averages within those segments. However,
predicting the complex function can be challenging, the Neyman estimator might outperform the G-formula, particularly
when both parametric and non-parametric responses may lack consistency. Although we do not fall in assumptions of
Equation (5) the Ratio Neyman estimator demonstrates lower variance compared to the Horvitz-Thomson estimator.

8.2. Observational Studies

8.2.1. NON-LINEAR AND NON-LOGISTIC DGP

We use the same simulations as in (Nie & Wager, 2020) using nonlinear models for every quantity, as detailed below, with
X ∼ Unif(0, 1)6

m(X) = sin (πX1X2) + 2 (X3 − 0.5)
2
+X4 + 0.5X5 − (X1 +X2) /4

b(X) = (X1 +X2) /2

e(X) = max{0.1,min(sin (πX1) , 0.9)}.

Results are presented in Figure 9. At first glance, all methods seem to have similar performances. However, estimators
based on parametric estimators (last four) fail to converge to the correct quantity. They present an intrinsic bias, which does
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Figure 8. Histogram of the propensity score of Logistic DGPs
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Figure 9. Estimations of the Risk Ratio with weighting, outcome based and augmented estimators as a function of the sample size for the
non-Linear-non-Logistic DGP. Parametric (Regression) and non parametric (Forest) estimations of nuisance are displayed.
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Figure 10. Average coverage (left) and average length (right) of asymptotic confidence interval derived from Section 2 and Section 3 for
different estimators with n = 1000 and 300 repetitions for a Non-Linear and Non-Logistic DGP.

not vanish as the sample size increases. This was expected as linear methods are unable to model the complex non-linear
generative process of this simulation. On the other hand, methods that employ random forests estimators achieve good
performances: they are consistent and unbias even for small sample sizes. Note that RIPW has a larger variance than the
other methods, with a small bias for very small sample sizes. Therefore, the G-formula and the two doubly-robust estimators
that use random forests are competitive in this setting. Here again, both double robust estimators give similar performances.
No estimator achieves 95% coverage, which is expected given the non-linear, non-logistic DGP. Linear estimators, such as
Linear RR-G and RR-AIPW, struggle to accurately estimate the nuisance functions in this context. Additionally, the limited
number of observations prevents the Forest estimators from converging effectively.
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8.3. Semi-synthetic simulations

In our semi-synthetic experiment, we retain the original co-variates, X , and first regenerate the treatment assignment, T ,
using a logistic regression (see Section 8.3 for random forests classifier) trained on the original 17 co-variates to predict the
observed treatment. Based on the estimated probabilities from this model, we sample a binary treatment from a Bernoulli
distribution. Next, we simulate potential outcomes using two separate logistic regressions: one for the treated group and
another for the control group, incorporating all co-variates. This process yields the potential outcomes, Y (0) and Y (1), for
each individual, enabling us to compute the true relative risk, τRR = 1.2. Finally, we estimate the relative risk and its
variance using bootstrap resampling across different sample sizes (300, 1000, and 3000). Results are displayed in Figure 11.
All estimators except Neyman appear to converge to the true value of the Risk Ratio. As anticipated, doubly-robust estimators
are consistent and efficient (smallest asymptotic variance).

Figure 11. RR estimations with weighting, outcome based and augmented estimators as a function of the sample size for the logistic
Semi-synthetic data. Parametric (Linear) and non parametric (Forest) estimations of nuisance are displayed.

In this approach, we replace logistic regression with random forest classifiers to model the treatment T and the potential
outcomes Y (1) and Y (0). As observed, all estimators, except for RR-N, converge toward the true value of the Risk Ratio.
Moreover, since both the treatment assignment and potential outcomes are generated using Random Forest, estimators that
also leverage Random Forest demonstrate reduced bias and lower variance. Conversely, linear estimators exhibit higher bias,
likely due to model misspecification.

Figure 12. RR estimations with weighting, outcome based and augmented estimators as a function of the sample size for the Semi-synthetic
data. Parametric (Linear) and non parametric (Forest) estimations of nuisance are displayed.
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