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ABSTRACT

Due to vulnerability of machine learning algorithms under adversarial examples,
it is challenging to defend against them. Recently, various defenses have been pro-
posed to mitigate negative effects of adversarial examples generated from known
attacks. However, these methods have obvious limitations against unknown at-
tacks. Cognitive science investigates that the brain can recognize the same person
with any expression by extracting invariant information on the face. Similarly, dif-
ferent adversarial examples share the invariant information retained from original
examples. Motivated by this observation, we propose a defense framework ADD-
Defense, which extracts the invariant information called perturbation-invariant
representation (PIR) to defend against widespread adversarial examples. Specifi-
cally, realized by adversarial training with additional ability to utilize perturbation-
specific information, the PIR is invariant to known attacks and has no perturbation-
specific information. Facing the imbalance between widespread unknown attacks
and limited known attacks, the PIR is expected to generalize well on unknown
attacks via being matched to a Gaussian prior distribution. In this way, the PIR
is invariant to both known and unknown attacks. Once the PIR is learned, we
can generate an example without malicious perturbations as the output. We eval-
uate our ADD-Defense using various pixel-constrained and spatially-constrained
attacks, especially BPDA and AutoAttack. The empirical results illustrate that our
ADD-Defense is robust to widespread adversarial examples.

1 INTRODUCTION

Machine learning algorithms have made outstanding achievements in many fields, such as computer
vision (He et al., 2016), natural language processing (Sutskever et al., 2014) and speech recognition
(Hinton et al., 2012). However, many algorithms are fragile to the adversarial examples - inputs
generated by adding imperceptible but malicious perturbation on original examples (Goodfellow
et al., 2014). Many pixel-constrained and spatially-constrained perturbations have been proposed,
such as PGD (Madry et al., 2017), DDN (Rony et al., 2019), ST (Xiao et al., 2018), BPDA (Athalye
et al., 2018) and AutoAttack (Croce & Hein, 2020), which makes the machine learning algorithms
output misleading predictions.

Various defenses have been proposed to protect machine learning algorithms (Goodfellow et al.,
2014; Tramèr et al., 2017; Wu et al., 2019), which can mitigate the interference of adversarial exam-
ples generated from known attacks. However, in the real world, attackers can use multiple attacks
and even create unknown attack mechanisms to defeat machine learning algorithms. Generally,
there are more unknown attacks than known attacks. Note that in this paper, we call the attacks used
to train defenses as known attacks, and other attacks as unknown attacks. Many defenses trained
on adversarial examples generated from known attacks may have limitations in reaching stable per-
formances when facing unknown attacks (Papernot et al., 2016; Tramèr et al., 2017). As shown in
Fig 1(a), the accuracy of Def-adv fluctuates significantly on unknown untargeted attacks. Thus, how
to effectively defend against multiple and even unknown attacks deserves to investigate deeply.

Cognitive science gives us some inspiration to solve this problem. Behavioural brain researches
(Mishkin & Ungerleider, 1982; Kanwisher et al., 1997) show that the brain can recognize the same
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Figure 1: Performances of adversarial training (Def-adv) and our ADD-Defense on MNIST (a) and
the illustration of the invariant information (b). The defenses are trained with adversarial examples
generated from untargeted FGSM attack. “Adv” denotes adversarial examples.

person even if the person shows different or even unseen expressions, because the brain can extract
invariant information on the face. Similarly, different adversarial examples share the invariant infor-
mation retained from original examples, such as the semantic features shown in Fig 1(b). Motivated
by the research, we propose a defense framework ADD-Defense, which extracts the shared invariant
information called perturbation-invariant representation (PIR) to defend against widespread adver-
sarial examples. Once such a representation is learned, given an adversarial example generated from
an unknown attack, our defense can remove its unique perturbation and extract the invariant informa-
tion, and further generate an examples without malicious perturbations from the representation. As
shown in Fig 1(a), our ADD-Defense shows a more stable performance on widespread adversarial
examples.

In order to defend the widespread adversarial examples, our PIR is supposed to be an unified repre-
sentation and have no perturbation-specific information generated from both known attacks and un-
known attacks. A unified representation can be obtained simply by minimizing the distance between
different representations, but this mechanism cannot remove the perturbation-specific information.
To solve this problem, we introduce a perturbation discriminator to disentangle and remove the un-
derlying perturbation-specific information in the representation by adversarial training. In addition,
the imbalance between widespread unknown attacks and limited known attacks has a negative im-
pact on removing perturbation-specific information generated from unknown attacks. We reduce this
impact by matching the learned PIR to a Gaussian prior distribution, so that our defense is expected
to generalize well on unknown attacks. Moreover, we introduce a class classifier to ensure that the
PIR retains the correct class-specific information. The classifier simply takes the PIR as the input
and predicts the class label. Empirical results on pixel-constrained attacks (Fig 3) and spatially-
constrained attacks (Fig 4), especially BPDA (Athalye et al., 2018) and AutoAttack (Croce & Hein,
2020) (Fig 5) illustrate that our ADD-Defense has robust performance to widespread adversarial
examples.

This paper makes the following three contributions:

• We propose a defense framework ADD-Defense, which learns a perturbation-invariant
representation (PIR) for defending against widespread adversarial examples based on lim-
ited known attacks.

• The PIR retains the invariant information and has no perturbation-specific information gen-
erated from known and unknown attacks, which is realized by a perturbation discriminator
and a Gaussian prior.

• Our defense is consistently effective on defending malicious pixel-constrained and
spatially-constrained perturbations. More importantly, it also has a great performance on
advanced BPDA and benchmark AutoAttack.

The rest of the paper is organized as follows. We present the related defense strategies in Sec-
tion 2 and introduce our defense in section 3. Then, empirical results based on various attacks and
extensibility evaluations are presented in Section 4.

2 RELATED WORK

In this section, we mainly introduce related defense strategies and discuss their advantages and
limitations. In addition, some attacks are stated in Appendix A.
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Figure 2: An overview of ADD-Defense. We remove perturbation-specific inforamtion generated
from known attacks by a perturbation discriminator. Next, we make the representation generalize
for unknown attacks by matching it with a Gaussian prior. In this way, we can obtain a perturbation-
invariant representation (PIR). A classifier is exploited to preserve class-specific information. Input
an adversarial example x̃u generated from an unknown attack, we can extract the PIR and utilize it
to generate an example which have a correct prediction for the target modelMt.

Augmenting training data: Adversarial training is a widely used strategy for defending mali-
cious perturbation by augmenting the training data with adversarial examples (Szegedy et al., 2013;
Goodfellow et al., 2014; Madry et al., 2017; Wu et al., 2019; Xie et al., 2020). This strategy often
improves the robustness of the target model when the attacker chooses the same attack as that used
to generate adversarial examples in the augmented dataset. However, the strategy usually does not
perform as well when the attacker utilize other malicious perturbations and it tends to cause gradient
mask (Papernot et al., 2016; Tramèr et al., 2017), which would make the robustness more inclined
to white-box attacks than black-box attacks.

Modifying the target model: Defensive distillation (Papernot & McDaniel, 2017) uses a variant
of distillation (Hinton et al., 2015) to train the target model in two rounds. It learns a smoother
and reduce the gradient amplitude around the input point, which makes it difficult for attackers to
generate adversarial examples. However, research shows that it fails to fully resist black-box attacks
transferred from other networks. Randomized smoothing (Cohen et al., 2019) strategy use random-
ized smoothing to turn a classifier that classifies well under Gaussian noise into a new classifier
which is robust to perturbations under the L2. But it exhibits limited effectiveness against some
spatially-constrained attacks (Wu et al., 2019), such as RP2 attack (Eykholt et al., 2018).

Adding additional mechanism: Adding an additional defense mechanism to the input of the tar-
get model is another strategy. A detection mechanism Lid (Ma et al., 2018) can detect adversarial
examples, but it cannot remove malicious perturbations. Utilizing a generative network to learn
a mapping strictly from adversarial examples to original examples such as APE-GAN (Shen et al.,
2017) also can defend the target model effectively, but it has no mechanism to guarantee a stable per-
formance against multiple or unknown attacks. Our defense can achieve this guarantee by learning
a perturbation-invariant representation.

3 OUR APPROACH

In this paper, the fundamental purpose of defense is to remove widespread malicious perturbations,
the critical problem of which is learning a perturbation-invariant representation (PIR). Once such a
representation is learned, our ADD-Defense can remove the malicious perturbation generated from
both known and unknown attacks, and generate examples which have no malicious perturbations
and can be classified correctly by the target machine learning algorithm.

Notation: Suppose there are K known attack for a target model Mt, we denote by X̃k =

[x̃k1 , . . . , x̃kN ]
> the adversarial examples generated from attack k ∈ {1, . . . ,K} and by Xk =

[xk1 , . . . , xkN ]
> the restored examples without malicious perturbations, where kN is the number of

adversarial examples generated from the attack k. We call the normal examples from benchmark
datasets as original examples. The original examples are denoted by X̃0 = [x̃01

, . . . , x̃0N
]
> and

their corresponding class labels are denoted by Y = [y1, . . . , yN ]
>, where yi ∈ Rm×1 is an one-hot

vector and m is the number of classes of original examples.
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3.1 PERTURBATION-INVARIANT REPRESENTATION

The PIR is expected to have following properties. One is that the representation should be invariant
to known attacks, that is, the representation should be unified and have no perturbation-specific
information generated from known attacks. Another one is that the invariant representation should
be generalized to unknown attacks. It is noteworthy that if the representations among known attacks
are still different or have much perturbation-specific information, the generalization of the defense
would have poor performance against adversarial examples generated from unknown attacks. The
last one is that the representation should acquire class-specific information, which would be useful
to have a correct prediction for an input with any malicious perturbation.

To learn a unified representation across known attacks, one can simply utilize a encoder to ex-
tract representations in latent space from inputs and apply a measure to align them among differ-
ent attacks. We have encoder E take the examples X̃ as inputs and derive their representations
Z, which then are aligned via the Maximum Mean Discrepancy (MMD) measure. The distance be-
tween multiple representations can be computed in reproducing kernel Hibert spaceH by a extended
multi-domain MMD measure deduced in Appendix B. The objective function of distance between
representations is formulated as:

Lmmd =
1

K2

K−1∑
k,l=0

MMD (Zk, Zl) , (1)

where MMD (Zk, Zl) = ‖µPk
− µPl

‖H is the distance between two representation, Pi is the distri-
bution of representation Zi and µP is a mean map operation to map representations to theH.

However, the aforementioned technical is not guaranteed to remove the perturbation-specific in-
formation from the unified representation, since the MMD measure aligns the representations sim-
ply without considering the perturbation-specific information. To address the problem, we extend
above mechanism to remove the perturbation-specific information from the the representation. This
is achieved by exploiting perturbation discrimination in the latent space to compose a adversarial
network with the encoder E. More precisely, as shown in Fig 2, the introduced perturbation dis-
criminator DP only takes the representation as input and produces the perturbation label prediction.
The DP is trained with perturbation-specific label Y pk . As the adversary of DP , the encoder E aims
to confuse DP from correctly predicting the perturbation label and make the prediction of DP tend
to perturbation-confused label Y pζ , so that the perturbation-specific information in the unified repre-
sentation can be removed and the representation is invariant for perturbations generated by different
known attacks. The objective function of removing perturbation-specific information is defined as:

Lp =
K∑
k=1

[
Y pk · log soft

(
DP

(
E
(
X̃k

)))
− Y pζ · log soft

(
DP

(
E
(
X̃k

)))]
, (2)

where perturbation-specific label is implemented by an one-hot perturbation-specific vector Y pk =

[ξ1, . . . , ξK ]
>, in which ξi is set to ξi = 1 if i = k, otherwise it is set to ξi = 0. The perturbation-

confused label is implemented by Y pζ = [ξ1, . . . , ξK ]
>, in which ξi is set to ξi = 1

K .

Our PIR is also suppose to be invariant to adversarial examples generated from unknown attacks.
One problem we consider is the imbalance between adversarial examples generated from limited
known attacks and those generated from widespread unknown attacks, which leads a risk that the
above invariant representation may be overfitted to known attacks and thus the representation gener-
alize poorly for unknown attacks. Inspired by the method of domain generalization (Li et al., 2018),
we introduce a prior distribution to regularize the representation distribution P with the Jensen-
Shannon Divergence (JSD). In the latent space, the adversarial examples are actually mapped to
Gaussian distributions with different mean and variance, and representations are drawn from these
distributions, we thus adopt a Gaussian distribution N (0, I) according to previous work (Larsen
et al., 2016; Kingma & Welling, 2013) as the prior distribution. The objective function of general-
ization is defined as:

Lg = JSD (P1, · · · , PK) =
1

K

K∑
k=1

KL
(
Pk‖P̄

)
, (3)
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where Pi is the distribution of input examples X̃i. The JSD measure is the average of KL-
divergences of each distribution from the average distribution P̄ , here, we set P̄ = N . In addition,
in order to make PIR preserve more class-specific information from input examples, a class clas-
sifier C in latent space is introduced to identify the class of the input example from the invariant
representation. The objective function of classifier C is written as:

Lc = −
K∑
k=1

Y · log soft
(
C
(
E
(
X̃k

)))
, (4)

where Y is the true class labels of the input examples. Our defense can learn the PIR by jointly
optimization the three components, and the optimization problem for learning a PIR is expressed as:

min
E

max
DP

Lmmd + λ1Lg + λ2Lp + λ3Lc. (5)

3.2 EXAMPLES WITHOUT MALICIOUS PERTURBATIONS

Once the PIR is learned, we further utilize a generator G in our defense to preserve the recovery
ability of our PIR and generate restored examples which have no malicious perturbation. Here, we
take the original examples X̃0 as the target examples to supervise the generatorG with Mean Square

Error (MSE) loss: Lmse =
∑K
k=1

∥∥∥Xk − X̃0

∥∥∥2

2
, whereXk denotes the restored examples generated

from the PIR. Moreover, as noted in Zhao et al. (2017), the generator based on MSE measure tends
to generate blurry examples, which would lead to misleading classification. To overcome the above
limitation, we additionally introduce an image discriminator DI in our defense to form a adversarial
network with generator G. The discriminator DI can improve the images quality of the restored
examplesXk. We define the objective function for adversarial learning between image discriminator
and generator G as:

Ladv = Ex̃0∼Pdata (x̃0) [logDI (x̃0)]− Ex̃k∼Pdata (x̃k) [logDI (G (E (xk)))] , (6)

where x̃0 ∈ ∪Kk=1X̃0 denotes the original example and xk ∈ ∪Kk=1Xk denotes the restored example.
The optimization problem for generating restored examples is expressed as:

min
G E

max
DI

Ladv + θLmse. (7)

For the reconstruction of original examples, since the invariant information extracted from adversar-
ial examples by our defense is retained from original examples, the PIR is expected to be as effective
for original examples as adversarial examples. Moreover, the original examples can also be utilized
to train our defense and the PIR extract the invariant information shared by the original examples
and the adversarial examples.

4 EXPERIMENT

Experiments on malicious pixel-constrained and spatially-constrained perturbations are imple-
mented in Section 4.1, 4.2. The evaluations against two advanced attacks: BPDA and benchmark
AutoAttack are presented in Section 4.3. In addition, some additional evaluations have been made in
Section 4.4 to indicate that our defense has great extensibility. Details of the adversarial examples,
target models and the architecture of our defense are given in the Appendix C.

4.1 DEFENSE AGAINST PIXEL-CONSTRAINED PERTURBATION

Pixel-constrained perturbations are generated by manipulating the pixel values directly on the whole
example by leveraging the Lp distance for penalizing perturbations. The effectiveness of our defense
against pixel-constrained perturbations is evaluated on four datasets: MNIST (LeCun et al., 1998),
Fashion-MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky et al., 2009) and SVHN (Netzer et al.,
2011). We select two attacks as known attacks to generate adversarial examples for training our
defense together with the original examples. The other attacks are regarded as unknown attacks to
generated adversarial examples for testing defenses.
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Figure 3: Performances of defenses on MNIST. The known attacks are the PGD attacks with ε =
0.15 through 40 iterations (a) and DDN attacks (b).

Table 1: Performances on Fashion-MNIST (top), CIFAR-10 (middle) and SVHN (bottom).
Model PGDu PGDt C&Wu C&Wt BAu LSu DDNu DDNt

No defense 0 0.0648 0.0157 0.0567 0 0.058 0 0
APE-GAN 0.4790 0.7730 0.8763 0.8798 0.8507 0.8647 0.8757 0.8724
ADD-Defense 0.8190 0.8652 0.8767 0.8808 0.8823 0.8843 0.8767 0.8804

No attack: 0.9130 Rec-APE: 0.8730 Rec-ADD:0.8867

Model PGDu PGDt C&Wu C&Wt BAu LSu DDNu DDNt
No defense 0 0 0 0.0374 0 0.12 0 0
APE-GAN 0.5217 0.6576 0.7247 0.7159 0.7267 0.6967 0.7313 0.7148
ADD-Defense 0.6027 0.6623 0.7333 0.7210 0.7302 0.7260 0.7373 0.7253

No attack: 0.9230 Rec-APE: 0.7527 Rec-ADD:0.7406

Model PGDu PGDt C&Wu C&Wt BAu LSu DDNu DDNt
No defense 0.0187 0.0497 0 0 0 0.0087 0 0
APE-GAN 0.6582 0.8908 0.9186 0.9233 0.9212 0.8750 0.9198 0.9271
ADD-Defense 0.8331 0.9186 0.9294 0.926 0.9308 0.8940 0.9308 0.9284

No attack: 0.9600 Rec-APE: 0.9372 Rec-ADD:0.9374

We present the distribution of adversarial examples in Fig 6 in Appendix D, our ADD-Defense
has rectified the modification affected by malicious perturbations. We find that the advanced APE-
GAN which also utilizes the generative model can effectively defend against unknown attacks as
shown in Fig 3(a), compared with it, our defense has more stable accuracy. In order to explain
that the improvement of the defense effect is not due to the deepening of network, we construct a
deeper network APE-GAN-D based on APE-GAN. The results of APE-GAN-D illustrate that simply
deepening the network my does not improve the stability of defense. The Fig 3(b) in Appendix C.1
presents the accuracy trained on DDN attacks. Fig 7(a) shows a comparison of the restored examples
against the untargeted L2-C&W attack.

We also evaluate the accuracy on Fashion-MNIST (Table 1 (top)), CIFAR-10 (Table 1 (middle)) and
SVHN (Table 1 (bottom)) datasets. The original examples and adversarial examples generated from
L∞-PGD attack are regarded as training examples. The Fig 7(b) shows the restored examples against
the untargeted DDN attack. It can be seen that our defense have an effective and relatively stable
performance. We further conduct experiments to understand the impact of the different components
as shown in Fig 12 in Appendix D. We can find that using perturbation discriminator is helpful to
remove malicious perturbation generated from widespread attacks, and using a prior distribution
is helpful to learn a invariant representation from adversarial examples generated from unknown
attacks. The details of experimental results in this section are shown in the Appendix D.

4.2 DEFENSE AGAINST SPATIALLY-CONSTRAINED PERTURBATIONS

In addition to pixel-constrained perturbations, some attacks focuse on spatially-constrained per-
turbations, which mimic non-suspicious vandalism or art. The RP2 (Eykholt et al., 2018) attack
generates malicious perturbations by greatly modifying pixel values in a limited space. We evaluate
our defense compared with APE-GAN, randomized smoothing (RS) (Cohen et al., 2019), L∞-PGD
adversarial training and DOA adversarial training (Wu et al., 2019) on LISA dataset (Jensen et al.,
2016) as shown in Fig 4(a). Our defense has effective and stable performance when facing the un-
known attacks. We further retrain the target model based on the reconstructed examples generated
from original examples and obtain a improved accuracy.
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Table 2: Performances of defenses against spatially-constrained attacks. We retrain our defense with
the adversarial examples generated from untargeted ST attack and targeted PGD attack, and obtain
the ADD-Defense-S.

Model No attack STu STu SFWu

Ori 0.9889 0.0025 0 0.3345
APE-GAN 0.9875 0.7954 0.7164 0.8934
ADD-Defense 0.9867 0.8930 0.8736 0.9274
ADD-Defense-S 0.9798 0.9348 0.9206 0.9368
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Figure 4: Performances of defenses against RP2 attack (a) and the restored examples against STu
attack (b). The known attacks are attack 1 and attack2, which generate different adversarial patches.
We also retrain the target model based on the reconstructed examples generated from our defense
and get further improved results as shown in ADD-re. The “ADD-S-rec” denotes the reconstructed
examples by the ADD-Defense-S.

In addition, we evaluate our defense on spatial-transformation attack ST (Xiao et al., 2018) and
geometrical-transformation attack SFW (Wu et al., 2020) on MNIST dataset. As shown in Table 2,
our defense trained on L∞-PGD attack has a more effective and robust performance, but it dose not
remove the spatially-constrained perturbations thoroughly. This may be due to the lack of adversarial
examples generated from spatially-constrained attacks in our training process. Thus, we train our
defense again based on adversarial examples generated from untargeted ST attack and targeted PGD
attack, we name the retrained framework as ADD-Defense-S. It can be seen from Fig 4(b) and
Table 2 that the shape of the digit is corrected on the sixth row, and the accuracy of the target model
against spatially-constrained attacks is improved while our defense remains high accuracy 0.9634
and 0.9749 against untargeted and targeted PGD attack respectively. Moreover, we evaluate the
influence of maximum perturbation value. Overall, within a appropriate range, such as when the
maximum perturbation value is in the range of 0 to 0.2 on MNIST dataset, the defense trained on
adversarial examples generated from the PGD attack with ε = 0.15 can have a relatively stable
performance. The detailed results in this section are shown in Appendix E.

4.3 DEFENSE AGAINST BPDA AND AUTOATTACK

The Backward Pass Differentiable Approximation (BPDA) attack is proposed to effectively attack
the defenses which utilize a obfuscated gradient. The obfuscated gradient is a phenomenon exhibited
by many defenses that makes standard gradient-based attacks fail to generate adversarial examples.
The BPDA can also evaluate the dependence of defenses on the obfuscated gradient. The results
as shown in Fig 5(a) indicate that our defense can resist BPDA effectively, which means that our
defense has less dependence on the obfuscated gradient and is more secure. An advanced attack
AutoAttack proposes two extensions of the PGD attack and combine them with two complementary
existing attacks to form a parameter-free, computationally affordable and user-independent ensem-
ble of attacks. The results of defenses1 against L∞-AutoAttack are shown in Fig 5(a). On MNIST
dataset, our defense trained on original examples and adversarial examples generated fromL∞-PGD
with ε = 0.15 achieves great results. Considering that the adversarial examples based on ε = 0.3
has far greater interference in visual perception than the adversarial examples based on ε = 0.15,
we train our defense again based on L∞-PGD with ε = 0.3 and it achieves a better performance.

1https://github.com/fra31/auto-attack
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Figure 5: Performances of defenses against BPDA on MNIST (a) and AutoAttack (b). For BPDA
attack, the defenses are trained based on L∞-PGD with ε = 0.15. The dotted line represents the
accuracy of the attacked target model and the solid line represents the accuracy of the target model
using defenses. For AutoAttack, our defense is trained based on L∞-PGD with ε = 0.15 and 0.3 on
MNIST and L∞-PGD with ε = 0.03 on CIFAR-10.

On CIFAR-10 dataset, the malicious perturbations are generated based on ε = 8/255. Our defense
trained on original examples and adversarial examples generated from L∞-PGD with ε = 0.03 also
has great performance. The detailed results in this section are shown in Appendix F.

4.4 EXTENSIBILITY EVALUATIONS

Besides the accuracy directly reflects the effectiveness in removing malicious perturbations, we also
demonstrate that our ADD-Defense has good extensibility on the following evaluations:

Hardness inversion: Hardness inversion is a negative phenomenon that the robustness of a defense
is higher for a strictly more powerful attack (Gilmer et al., 2018). Hardness inversion is initially used
to evaluate the performance of a attack, it can also be taken to evaluate the robustness of a defense.
We implement this evaluation on MNIST dataset as shown in Appendix G.1, and the results show
that hardness inversion does not occur.

Local intrinsic dimensionality (Lid): Lid can be utilized to train a binary classifier for distinguish-
ing the adversarial examples from original examples. In this way, we can evaluate our defense on
hidden features rather than the accuracy. When we use it to distinguish the restored examples from
original examples, the binary classifier get a low recall rate, which reflects that our defense can ef-
fectively eliminate the malicious perturbations. The detailed process are presented in Appendix G.2

Examples with non-malicious perturbation: Our defense focuses on removing malicious pertur-
bations and get a perturbation-invariant representation in latent space rather than just learning a
mapping from adversarial examples to original examples. In addition, an example with perturbation
does not mean that it can defeat the target model. We call the perturbation that cannot attack the tar-
get model as the non-malicious perturbation. We design an exploratory experiment in Appendix G.3
and demonstrate that the malicious perturbations have been eliminated in our PIR, and examples
restored from the representation can be classified correctly by the target model even if the restored
examples have some perturbations.

5 CONCLUSION

In this paper, we propose a defense framework ADD-Defense for defending machine learning algo-
rithms against widespread attacks, the crucial problem of which is learning a perturbation-invariant
representation by jointly optimizing a encoder, a perturbation discriminator, generalization function
and a class classifier. Once the PIR is learned, we can generate an example without malicious per-
turbations as the output. Experimental results demonstrate that our defense can effectively remove
malicious perturbation generated from both known attacks and unknown attacks. One limitation of
our defense is that even if the reconstructed examples maintain a good accuracy, but they have more
misleading classification than the original examples. This limitation is elaborated in Appendix H
and we will study how to reduce this negative impact in the future work.
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Jérôme Rony, Luiz G Hafemann, Luiz S Oliveira, Ismail Ben Ayed, Robert Sabourin, and Eric
Granger. Decoupling direction and norm for efficient gradient-based l2 adversarial attacks and
defenses. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 4322–4330, 2019.

Vikash Sehwag, Shiqi Wang, Prateek Mittal, and Suman Jana. On pruning adversarially robust
neural networks. arXiv preprint arXiv:2002.10509, 2020.

Shiwei Shen, Guoqing Jin, Ke Gao, and Yongdong Zhang. Ape-gan: Adversarial perturbation
elimination with gan. arXiv preprint arXiv:1707.05474, 2017.

Alex Smola, Arthur Gretton, Le Song, and Bernhard Schölkopf. A hilbert space embedding for
distributions. In International Conference on Algorithmic Learning Theory, pp. 13–31. Springer,
2007.

10



Under review as a conference paper at ICLR 2020

Chang Song, Hsin-Pai Cheng, Huanrui Yang, Sicheng Li, Chunpeng Wu, Qing Wu, Yiran Chen, and
Hai Li. Mat: A multi-strength adversarial training method to mitigate adversarial attacks. In 2018
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 476–481. IEEE, 2018.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pp. 3104–3112, 2014.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.
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Appendices

A RELATED WORK

Table 3: The summary of attacks: PGD (Madry et al., 2017), C&W (Carlini & Wagner, 2017),
BA (Brendel et al., 2017), LS (Narodytska & Kasiviswanathan, 2016), DDN (Rony et al., 2019),
RP2 (Eykholt et al., 2018), ST (Xiao et al., 2018) and SFW (Wu et al., 2020). The subscPIRt “u”
indicates untargeted attack and the subscPIRt “t” indicates targeted attack.

Attack Knowledge Goal Perturbation
PGDu white box gradient-based untargeted pixel-constrained
PGDt white box gradient-based targeted pixel-constrained
C&Wu white box gradient-based untargeted pixel-constrained
C&Wt white box gradient-based targeted pixel-constrained
BAu black-box decision-based untargeted pixel-constrained
LSu black-box score-based untargeted pixel-constrained
DDNu white box gradient-based untargeted pixel-constrained
DDNt white box gradient-based targeted pixel-constrained
RP2u white box gradient-based untargeted spatially-constrained
STu white box score-based untargeted spatially-constrained
STt white box score-based targeted spatially-constrained
SFWu white box gradient-based untargeted spatially-constrained

The adversarial examples as shown in Table 3 can be described in three ways: 1) white-box and
black-box attacks: Considering the knowledge of the target model parameters, the white-box attacks
can utilize the all knowledge when the black-box attacks can only query the results of the target
models. 2) targeted and untargeted attacks: There is a significant distinction between situations
where the objective is to induce the target model to produce a specific error versus those where
any error suffices (Gilmer et al., 2018). Following Papernot et al. (2016), the former is referred as
targeted attack and the latter is referred as untargeted attack. 3) pixel-constrained and spatially-
constrained perturbation: many advanced attack models manipulate the pixel values directly on the
whole example by leveraging the Lp distance for penalizing perturbations to generate adversarial
examples, when some attackers focus on non-suspicious perturbation that mimic vandalism or art to
reduce the likelihood of detection by a casual observer, such as spatially-constrained perturbations,
which break the limitation of small Lp distance measures.

attacks usually aim to find a indistinguishable perturbation δ to generate a adversarial example
xadv = x + δ and the δ is expected to be small enough that the xadv can remain undetectable.
In addition, some attacks generate non-suspicious adversarial examples, which have no strict con-
straints on the perturbation value as long as it would appear to a human to be a real input (Gilmer
et al., 2018). Here, we provide a brief description of six utilized attacks in experiments:

A.1 PROJECT GRADIENT DESCENT ATTACK (PGD)

Given an input x and its corresponding true label y, the perturbation δ is set to:

δ = ε ∗ sign (∇xJ(x, y)) . (8)

The PGD attack (Madry et al., 2017) computes the perturbation iteratively and obtain the adversarial
example:

x̃t+1 =
∏
x+s

(
x̃t + α · sign

(
∇xJ

(
x̃t, y

))
. (9)

It determines the direction with the sign of the gradient to change the corresponding pixel value. In
addition, the perturbation δ can be applied to targeted attack by modifying the cost function J and
replacing label y with target label.
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A.2 THE CARLINI-WAGNER ATTACK (C&W)

Carlini & Wagner (2017) propose three attacks for the L0, L2, L∞ distance metric.In this paper, we
just consider the L2 attack and the objective is set to :

minδ
[
‖x̃− x‖22 + c · f(x̃)

]
,

where f(x̃) = max (maxi 6=t {Z(x̃)i} − Z(x̃)t,−κ) ,

and x̃ = 1
2 (tanh(arctanh(x) + δ) + 1),

(10)

where Z(x̃)i is the logits corresponding to the i − th class, κ is used to control the confidence of
adversarial examples and c is a constant. The model is an effective optimization-based attack and it
shows less perturbations than PGD.

A.3 DECOUPLING DIRECTION AND NORM ATTACK (DDN)

The DDN attack (Rony et al., 2019) is proposed to solve the difficulty of finding the appropriate
constant c for the optimization in C&W attack. The norm is constrained by projecting the malicious
perturbation δ on an ε− sphere around the original example x rather than impose a penalty on the
L2 during the optimization. Then, the L2 is modified through a binary decision, and in the iterative
process of training, if the example xk is not adversarial at step k, the norm is increased for step k+1,
otherwise decreased. The DDN attack has similar attack effect with C&W attack, but the former is
faster than the latter.

A.4 BOUNDARY ATTACK (BA)

The BA model (Brendel et al., 2017) is a powerful decision-based attack that solely relies on the
final decision of the model. The attack is initialized from a point that is already adversarial and then
performs a random walk along the boundary between the adversarial and the the non-adversarial
region such that it stays in the adversarial region and the distance towards the target example is re-
duced. The perturbations δk has a relation with the distance between the perturbed example towards
the original input and needs to reduce the distance:∥∥δk∥∥

2
= η · d

(
x, x̃k−1

)
,

and d
(
x, x̃k−1

)
− d

(
x, x̃k−1 + δk

)
= ε · d

(
x, x̃k−1

)
,

(11)

where η and ε are related hyper parameters. The attack is simple and requires neither gradients nor
probabilities, but it spends more time cost.

A.5 LOCAL SEARCH ATTACK (LS)

The LS attack (Narodytska & Kasiviswanathan, 2016) craft adversarial examples by carefully con-
structing a small set of pixels to perturb by using the idea of greedy local-search. The objective
function which equals the probability assigned by the target model that the input example x belongs
to class c(x), is set to :

fc(x)(x) = oc(x), (12)
where oj denotes the probability as determined by the target model that example x belongs to class j.
In each round of iterations, it finds some pixel locations to perturb using the fc(x)(x) and then applies
a transformation function to these selected pixels to construct a perturbed example. It terminates if
it succeeds to push the true label below the k− th place in the confidence score vector at any round.
Otherwise, it proceeds to the next round.

A.6 ROBUST PHYSICAL PERTURBATIONS (RP2)

The RP2 attack (Eykholt et al., 2018) can attack the target physically by synthesizing non-suspicious
adversarial patches, which belongs to spatially constrained perturbations. The objective function is
set to:

min
δ
λ‖δ‖p − J(f(x+ δ), y), (13)
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where λ is a hyperparameter that controls the regularzation of the distortion. In this paper, the
utilized RP2 attack restricts the terms of the objective function to operate exclusively on masked
pixels and the function is modified to:

min
δ
λ ‖Mx · δ‖p +

k∑
i=1

J (f (xi +Mx · δ) , y∗) , (14)

where Mx is a perturbation mask matrix.

B DERIVATION OF MMD FOR MULTI-ATTACK

Theorem 1. (Muandet et al., 2013): P̄ and Pk denote the probability across the K attacks domain
and the probability of attack domain k ∈ {0, 1, · · ·K − 1} respectively, µP̄ and µPk

denote the
mean embedding element across all attack domains and that for attack domain k. The distribution
variance 1

k

∑K−1
k=0 ‖µPk

− µP̄ ‖ = 0 if and only if P0 = P1 = · · · = PK−1.

The MMD loss in RKHS is formulated as (Gretton et al., 2007) MMD (Zk, Zl) = ‖µPk
− µPl

‖H ,
where µP = EZ∼P [φ(Z)] = EZ∼P [k(Z, ·)] is the mean embedding element of distribution P with
a feature mapping φ(·) : Rd → H and a kernel function k (·, ·) (Smola et al., 2007). We derive the
MMD for representation distribution from various attacks according to Theorem 1. The µP̄ can be
equal to 1

K

∑K−1
l=0 µPl

and the variance for multiple distributions is denoted as:

1

K

K−1∑
k=0

‖µPk
− µP̄ ‖H =

1

K

K−1∑
k=0

∥∥∥∥∥ 1

K

K−1∑
l=0

µPk
− 1

K

K−1∑
l=0

µPl

∥∥∥∥∥
H

=
1

K

K−1∑
k=0

∥∥∥∥∥ 1

K

K−1∑
l=0

(µPk
− µPl

)

∥∥∥∥∥
H

≤ 1

K2

K−1∑
k,l=0

MMD (Zk, Zl) .

We take the upper bound of the variance as the loss Lmmd and Use an empirical estimation as a
substitute for the mean embedding element: µPk

:= 1
N

∑N
n=1 φ (znk ) (Gretton et al., 2007). The

MMD measure is written as follows:

MMD (Zk, Zl) =

∥∥∥∥∥ 1

N

N∑
n=1

φ (znk )− 1

N

M∑
m=1

φ (zml )

∥∥∥∥∥
H

=

 1

N2

N∑
n,n′=1

k
(
znl , z

n′

l

)
− 2

MN

N,M∑
n,m=1

k (znk , z
m
l ) +

1

M2

N∑
m,m′=1

k
(
zml , z

m′

l

) 1
2

,

where M and N denote the batch size of training data. The k (·, ·) is the radial basis function (RBF):
k (x, x′) = exp

(
− 1

2σ2 ‖x− x′‖2
)

, where σ is the bandwidth parameter.

C EXPERIMENT PREPARATION

C.1 DATASETS AND ADVERSARIAL EXAMPLES

We use five image datasets in this experiment, we select 60000 the training images as a training
set and 10000 the testing images as testing set in MNIST, Fashion-MNIST, CIFAR-10 and SVHN
dataset. We select 3508 the training images as a training set and 1164 testing images as testing
set in LISA. The untargeted and targeted L∞-PGD, L2-C&W, L∞-DDN, ST and untargeted LS
attacks are implemented by utilizing Advertorch Toolbox (Ding et al., 2019). The untargeted BA
attack is implemented by Foolbox Library (Rauber et al., 2017). The specific parameters of each
attack can be found in (Ding et al., 2019; Rauber et al., 2017). The untargeted RP2 and SFW can be
implemented from the open source code 2 3. Here, we present the main parameters for each attack:

2https://github.com/tongwu2020/phattacks/tree/master/sign/experiment
3https://github.com/watml/fast-wasserstein-adversarial
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C.1.1 PGD ATTACK

MNIST: eps (maximum distortion): 0.15, nb iter (number of iterations): 40;

Fashion-MNIST: eps : 0.15, nb iter : 40;

CIFAR-10: eps : 0.03, nb iter : 40;

SVHN: eps : 0.025, nb iter : 40,

C.1.2 C&W ATTACK

MNIST: binary search steps (number of binary search times to find the optimum): 9,
max iterations (the maximum number of iterations): 300;

Fashion-MNIST: binary search steps: 9, max iterations: 200;

CIFAR-10: binary search steps: 9, max iterations: 50;

SVHN: binary search steps: 9, max iterations: 200,

C.1.3 DDN ATTACK

MNIST: nb iter (number of iterations): 100, gamma (factor to modify the norm at each iteration):
0.05;

Fashion-MNIST: nb iter: 100, gamma: 0.05;

CIFAR-10: nb iter: 100, gamma: 0.05;

SVHN: nb iter: 200, gamma: 0.05,

C.1.4 LS ATTACK

MNIST: p (parameter controls pixel complexity): 10, r (perturbation value): 1.5, t (the number of
pixels perturbed at each round): 300;

Fashion-MNIST: p: 10, r: 1.5, t: 300;

CIFAR-10: p: 10, r: 1.5, t: 15;

SVHN: p: 10, r: 1.5, t: 300,

C.1.5 BA ATTACK

MNIST: steps (Maximum number of steps to run): 5000;

Fashion-MNIST: steps: 5000;

CIFAR-10: steps: 2000;

SVHN: steps: 5000,

C.1.6 ST ATTACK

maxiterations: (Maximum number of iterations): 5000, searchsteps: (number of search times to
find the optimum): 20,

C.1.7 SFW ATTACK

eps (maximum distortion): 0.15, nb iter (number of iterations): 300.

C.2 TARGET MODELS

The target model on MNIST dataset is the LeNet network (LeCun et al., 1998) embedded in the
Advertorch Toolbox, the target model on Fashion-MNIST dataset is composed of 3 convolutional
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networks with maxpool layer and a fully-connected layer. 4. A ResNet-110 network5 (He et al.,
2016) is utilized to classify on CIFAR-10 dataset. On SVHN dataset, a network composed of 4
convolutional layers with maxpool layer and dropout (0.3) is trained 6 to classify the real-world
digits. The target model on LISA is composed of 3 convolutional layers and one fully-connected
layer. 7.

The accuracy Accu against untargeted attack and the accuracy Acct against targeted attack are for-
mulated as:

Accu = numu/NUM,

Acct = (numt − numr) / (NUM − numr) ,

where numu, numt demote the the number of examples correctly classified, and the numr repre-
sents the number of target items, for example, the goal of the targeted attack is to have all examples
classified into class 3, and numr is the number of examples which belong to class 3 in all correctly
classified examples.

C.3 ARCHITECTURE OF OUR DEFENSE

The architecture of our defense is given in Table C.3. In what follows:

• Conv(m, k, s, p) refers to a convolutional layer withm feature maps, filter size k×k, stride
s and padding p,

• Deconv(m, k, s, p) refers to a convolutional layer with m feature maps, filter size k × k,
stride s and padding p,

• FC(m) refers to a fully-connected layer with m outputs,

• LeakyReLU refers to the leaky version of the Rectified Linear Unit.

Table 4: The architecture of our defense
E G DP DI

Conv(128, 4, 2, 1) Deconv(1024, 4, 2, 1) FC(1024) Conv(32, 4, 2, 1)
LeakyReLU LeakyReLU LeakyReLU LeakyReLU

Conv(256, 4, 2, 1) Deconv(512, 4, 2, 1) FC(256) Conv(64, 4, 2, 1)
LeakyReLU LeakyReLU LeakyReLU LeakyReLU

Conv(512, 4, 2, 1) Deconv(256, 4, 2, 1) FC(64) Conv(128, 4, 2, 1)
LeakyReLU LeakyReLU LeakyReLU LeakyReLU

Conv(1024, 4, 2, 1) Deconv(128, 4, 2, 1) FC(3) Conv(256, 4, 2, 1)
LeakyReLU LeakyReLU LeakyReLU

Conv(2048, 4, 2, 1) Deconv(3, 4, 2, 1) FC(512)
LeakyReLU

FC(1)

D DEFENSE AGAINST PIXEL-CONSTRAINED PERTURBATION

Fig 6 shows the change of distributions on MNIST dataset by using t-distributed stochastic neighbor
embedding (t-SNE) (Maaten & Hinton, 2008). The malicious perturbations generated from PGD
attack modify the distribution of original examples, and our defense has largely rectified the mod-
ification. The positive parameters are set as λ1 = e−4, λ2 = e0, λ3 = e−3, θ = e3 on MNIST,
Fashion-MNIST and SVHN, and λ1 = e−6, λ2 = e−1, λ3 = e−3, θ = e1 on CIFAR-10.

Fig 8(a) shows adversarial examples generated by various attacks. The results of different defense
are presented in Fig 8(b), 8(c). Fig 9(a), Fig 10(a) and 11(a) shows adversarial examples generated
by various attacks on Fashion-MNIST, CIFAR-10 and SVHN. The results of our ADD-Defense
and APE-GAN are presented in Fig 9(b), 9(c), 10(b), 10(c), 11(b) and 11(c). Fig 7(c) shows the

4https://github.com/GunjanChhablani/CNN-with-FashionMNIST
5https://github.com/tongwu2020/phattacks/tree/master/cifar/ori200
6https://github.com/aaron-xichen/pytorch-playground
7https://github.com/tongwu2020/phattacks/tree/master/sign/experiment
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Figure 6: Illustration of examples distribution. “un” indicates untargeted attack and ”ta” indicates
targeted attack. The top images are the distributions of original examples and adversarial examples.
The bottom images are the reconstructed and restored examples by our defense. Different colors
represent the different classes. It can be seen that our defense corrects the change of the distribution
of adversarial examples.
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Figure 7: The illustration of restored examples on MNIST (a) and CIFAR-10 (b). The red superscript
represents the wrong classification and the green superscript represents the correct classification.
The representations with the size of 16 * 16 are taken from the 10-th channel of first activation layer
of the encoder E (c).

output representation of the first activation layer of the encoder E on CIFAR-10 dataset. The input
images are the original examples and adversarial example generated by untargeted and targeted
PGD and C&W attack. It is difficult to distinguish the unique perturbation of each attack, and the
representation of each attack are very similar, which means the specific perturbations of each attacks
are eliminated . The Fig 12 shows the impact of different components on performance.
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Figure 8: Adversarial examples generated by various attacks on MNIST dataset (a). The restored
images of our defense (b) and APE-GAN (c) on MNIST dataset.
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Figure 9: Adversarial examples generated by various attacks on Fashion-MNIST dataset (a). The
restored images of our defense (b) and APE-GAN (c) on Fashion-MNIST dataset.
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Figure 10: Adversarial examples generated by various attacks on CIFAR-10 dataset (a). The restored
images of our defense (b) and APE-GAN (c) on CIFAR-10 dataset.
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Figure 11: Adversarial examples generated by various attacks on SVHN dataset (a). The restored
images of our defense (b) and APE-GAN(c) on SVHN dataset.
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Figure 12: Performance against attacks on SVHN. The defense is removed some different compo-
nents, such as the perturbation discriminator and the prior distribution.

18



Under review as a conference paper at ICLR 2020

mask1

mask2

mask3

mask4

mask5

ORI
8 10 15 13 14 2 4 14 10

11 10 6 13 0 11 4 0 10

8 13 4 13 14 4 4 14 13

8 13 4 13 12 4 4 14 10

11 10 6 13 0 11 10 0 10

8 8 2 13 15 14 14 14 13

(a)

mask1

mask2

mask3

mask4

mask5

REC
8 10 15 13 14 2 4 14 10

8 10 15 13 14 2 4 14 10

8 10 15 13 14 2 4 14 10

8 10 15 13 14 2 4 14 10

8 10 15 13 14 2 4 14 10

8 10 15 13 14 2 4 14 10

(b)

Figure 13: Adversarial examples generated with different adversarial patches (a) and the restored
images of our defense (b) on LISA dataset.
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Figure 14: Adversarial examples generated from ST and FSW attack on MNIST on the top three
rows. The restored examples of our defense ADD-Defense, improved framework ADD-Defense-S
and APE-GAN are shown on the next rows.

E DEFENSE AGAINST SPATIALLY-CONSTRAINED PERTURBATIONS

Fig 13(a) shows adversarial examples generated by RP2 on LISA dataset and the results of our
ADD-Defense are presented in Fig 13(b). The positive parameters are set as λ1 = e−5, λ2 =
e0, λ3 = e−3, θ = e3. Five different masks are utilized to cause five different RP2 attacks. The
three different sigma values in RS (Section 4.2) are 0.25, 0.5 and 1 respectively, the four strategies
in DOA are (sticker size with 10 * 5, exhaustive search), (sticker size with 10 ∗ 5, gradient Based
search), (sticker size with 7∗7, exhaustive search) and (sticker size with 7∗7, gradient Based search).

Fig 14 shows adversarial examples generated by ST attack and FSW attack on MNIST dataset,
whose perturbation produces deformation. The positive parameters are set as λ1 = e−4, λ2 =
e0, λ3 = e−3, θ = e3. The number of search times of ST attack is set to 20 and the perturbation
of SFWu is set to 0.15. The results of our ADD-Defense, ADD-Defense-S and APE-GAN are also
presented in Fig 14.

We evaluate the influence of maximum perturbation values on accuracy. Fig 15 shows that the in-
crease of perturbation generated by white-box attack PGD and black-box attack LSu has little effect
on accuracy, and the increase of perturbation generated by geometric attack SFWu has obvious neg-
ative effect on accuracy. However, with the increase of the perturbation value, adversarial examples
become more unnatural and perceptible, and they even cause obvious classification errors in human
perception, as shown in Fig 16.
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Figure 15: Performance against attacks with various maximum perturbation values. The rose line
represents the accuracy of the target model to the adversarial examples, and the cerulean line repre-
sents the accuracy after defense. Fig (b) is an enlarged view of the cerulean part in Fig (a)
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Figure 16: Misclassified images with deception. The perturbation value of SFWu is 0.40. The
images in first, sixth, eighth and ninth columns are easily mistaken for the number “8, 9, 3, 9” in
visual perception.

F DEFENSE AGAINST BPDA AND AUTOATTACK

The Backward Pass Differentiable Approximation (BPDA) attack (Athalye et al., 2018) is proposed
to attack the defenses effectively which utilize obfuscated gradients. The adversarial examples and
restored examples against BPDA attack with different maximum number of iterations are shown in
Fig 17. The accuracy of defenses against AutoAttack is shown in Table 5.

Table 5: Performance of defenses against AutoAttack, including CROWN (Zhang et al., 2019), IBP
(Gowal et al., 2018), Fast (Wong et al., 2020), Unlabled (Carmon et al., 2019) and HYDRA (Sehwag
et al., 2020).

MNIST-Linf CIFAR-10-Linf
Our (eps=0.3) CROWN IBP Our (eps=0.1) Fast Our Unlabled HYDRA

0.9765 0.9396 0.9283 0.9011 0.8293 0.6071 0.5953 0.5714

G EXTENSIBILITY EVALUATIONS

G.1 HARDNESS INVERSION

Hardness inversion occurs when the reported robustness is higher for a strictly more powerful at-
tacker (Gilmer et al., 2018). In general, we would expect defense methods to become less effective
as the adversary has fewer limitations, since a more powerful adversary can always mimic a weaker
one. One example of hardness inversion is when a paper reports higher robustness to white-box
attacks than black-box attacks. Another example would be reporting higher accuracy against an un-
targeted attacker than a targeted attacker (Song et al., 2018). Although hardness inversion is initially
used to evaluate attack performance, it can also be taken to evaluate the robustness of defense: the
defense appears should be more robust to a more rigorous attacker (Gilmer et al., 2018). Fig 18(a)
shows the radar map of the performance of our defense against targeted and untargeted attack on
the MNIST data set, and Fig 18(b) shows the that against black-box and white-box attack. Slightly
different from the Acct in Appendix C.2, in Fig 18(a), in order to compare the effect fairly, we re-
move all examples which belong to the target class for attackers, and the accuracy Accu and Acct
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APEadv APEdef ADDadv ADDdef

Figure 17: The images in BPDA experiment. The subscPIRt “adv” denotes the adversarial examples
of BPDA for different defenses. The subscPIRt “def” denotes the restored images of defense. From
the first row to the third row, the maximum number of iterations is 1,10 and 20 respectively.

are modified as:
Accu = (numu − numc) / (NUM − numc)

Acct = (numt −mumc) / (NUM − numc)

where numc denotes the number of examples belong to target class for attackers. The results showed
that the hardness inversion does not occur in the two evaluations
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Figure 18: Illustration of hardness inversion on MNIST dataset. “-u” indicates untargeted attack and
”-t” indicates targeted attack. The two colored lines represent the results based on different known
attacks respectively. Fig(a) shows the results against targeted and untargeted attacks and Fig(b)
shows the results against white-box and black-box attacks. The accuracy against targeted attacks
and black-box attacks is higher than that against untargeted attacks and white-box attacks.

G.2 LOCAL INTRINSIC DIMENSIONALITY (LID)

Lid (Ma et al., 2018) can reveal the essential difference between normal examples and adversarial
examples, and can be used to distinguish them. The negative examples is composed of the original
examples and the noise examples, and the positive examples is composed of the adversarial exam-
ples. Both positive and negative examples account for half of the testing data. Recall rate can reflect
the probability that the adversasrial examples are detected. We use Lid to evaluate the difference
between the original examples and the restored examples by our defense. The binary classifier based
on Lid can not effectively distinguish the restored examples from the original examples in view of
the result that the recall rate of Lid for restored examples is close to 0, which reflects that our defense
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can effectively eliminate the malicious perturbations. The Table 6 shows the ROC score, precision
and recall of binary classification based on Lid.

Table 6: Results of binary classification based on Lid. The attack for training is L2 − C&Wattack,
the ”adv” indicates the identification results of the binary classifier based on Lid for the adversarial
examples. The ”def” indicates the identification results of the binary classifier based on Lid for the
restored examples

Dataset Data ROC-AUC Precision Recall
adv 0.9901 0.9787 0.8378MNIST def 0.5775 0.4098 0.0126
adv 0.9859 0.9268 0.9398CIFAR def 0.5874 0.5331 0.0848

G.3 EXAMPLES WITH NON-MALICIOUS PERTURBATION

The previous experiments are to eliminate perturbation and generate original example similar to
original examples. Our defense focuses on removing perturbations in latent space rather than just
generating original examples. Moreover, each adversarial example is calculated by the attacker on
each single example, and an example with perturbation does not mean that it can interfere the target
model. We call the perturbation that cannot attack the target model as non-malicious perturbation.
We design an exploratory experiment on MNIST dataset: As an extreme case, we replace original
examples with adversarial examples generated by untargeted C&W attack as target examples, and
use the original examples and adversarial examples generated by targeted and untargeted C&W at-
tacks as the training data. We then repeat this experiment using DDN attack. The Table 7 indicate
that most of the generated examples have no malicious perturbation. This also illustrates that learn-
ing a mapping to the data distribution composed of adversarial examples which is generated for each
specific original example separately, is not necessarily beneficial for attackers to generate effective
malicious perturbation.

(a) (b)

ADD-
Defense

Target 

APE-
GAN

APE-per

ADD-per

Figure 19: The examples with non-malicious perturbation. The target images in figure (left) are
the adversarial examples generated by untargeted C&W attack. The target images in figure (right)
are the adversarial examples generated by untargeted DDN attack. The images on fourth and fifth
rows reflect the difference in pixels between the generated images and the target images. The blue
pixels indicate that the pixel value in generated images is lower than that in the target images, and
red pixels indicates that pixel value in generated images is higher than that in the target images.

Compared with APE-GAN, our results have higher accuracy. This may be due to the positive role
of PIR in removing perturbation and extracting invariant information, or it may be that our defense
is not as good as APE-GAN in learning the distribution of target examples with malicious perturba-
tions, resulting in a bigger gap between the generated examples and the target examples. We notice
that although the example generated by APE-GAN has more obvious perturbations in visual per-
ception, they are not completely consistent with the perturbations in the target examples. Thus, we
calculate the gap for each pixel in all examples. As shown in Fig 19, the gap between the examples
generated by APE-GAN and the target examples is greater than our defense, which indicates that our
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Table 7: Accuracy of the target model to the examples with non-malicious perturbations. The target
images on first row is the adversarial examples generated by untargeted C&W attack. The accuracy
of reconstructed images (”-rec”) and restored images (”-def”) against untargeted C&W attack is
presented. Similarly, the accuracy against DDN attack is presented on the second row.

Model APE-rec APE-def ADD-rec ADD-def
C&W 0.9647 0.6808 0.9699 0.9544
DDN 0.9323 0.7425 0.9739 0.9608

ORI

REC

6 6 4 7 7

4 4 9 2 2

Figure 20: The misclassified reconstructed images on MNIST dataset. The images reconstructed by
our defense are shown on the second row. In visual perception, the number reflected in the image is
similar to the error class.

defense learns better mapping than APE-GAN and the design of eliminating malicious perturbation
in potential space is effective and robust.

H LIMITATION AND FUTURE WORK

We notice that our defense has a slight negative effect on the target model for the original examples.
At the same time, as shown in Fig 20, we find that many of the misclassified examples are visually
deceptive and the slight deformation and blurring of the reconstructed images mislead the target
model. We also find that some of the original examples which is misclassified by the target model are
classified correctly after defense, so, the sensitivity of the target model to deformation and blurring
also has a impact on accuracy. For future work, we will further study the effect of retraining the target
model based on the reconstructed image, as tested in section 4.2, and further reduce the deformation
and blur of the image generated by our defense.
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