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ABSTRACT

Transformer models have been gaining substantial interest in the field of computer
vision tasks nowadays. Although a vision transformer contains two important
components which are self-attention module and multi-layer perceptron (MLP)
module, the majority of research tends to concentrate on modifying the former
while leaving the latter in its original form. In this paper, we focus on improving
the MLP module within the vision transformer. Through theoretical analysis, we
demonstrate that the effect of the MLP module primarily lies in providing non-
linearity, whose degree corresponds to the hidden dimensions. Thus, the com-
putational cost of the MLP module can be reduced by enhancing the degree of
non-linearity in the nonlinear function. Leveraging this insight, we propose an
improved MLP (IMLP) module for vision transformers which involves the usage
of the arbitrary GeLU (AGeLU) function and integrating multiple instances of it to
augment non-linearity so that the number of hidden dimensions can be effectively
reduced. Besides, a spatial enhancement part is involved to further enrich the non-
linearity in the proposed IMLP module. Experimental results show that we can
apply our method to a wide range of state-of-the-art vision transformer models ir-
respective of how they modify their self-attention part and the overall architecture,
and reduce FLOPs and parameters without compromising classification accuracy
on the ImageNet dataset.

1 INTRODUCTION

Transformer models with self-attention operation have been applied to the field of computer vision
and achieve impressive results on many tasks such as image classification (Dosovitskiy et al., 2021;
Touvron et al., 2021), object detection (Fang et al., 2021), semantic segmentation (Strudel et al.,
2021) and video analysis (Neimark et al., 2021) nowadays. Compared to convolutional neural net-
works (CNNs), transformer models have less inductive bias due to the low-pass filter property of the
self-attention (Park & Kim, 2022) and have the capability to utilize more training data to enhance
generalization ability. However, when given a limited amount of training data such as ImageNet-1k,
the original Vision Transformer (ViT) model (Dosovitskiy et al., 2021) cannot perform on par with
state-of-the-art CNN models, making it difficult to apply ViT to complicated vision tasks in reality.

The modification of the vanilla ViT model primarily lies in two different parts. The first one is to
change the basic architecture of ViT. Hierarchical ViTs (Heo et al., 2021; Liu et al., 2021) leverage
the advantage of hierarchical architecture of CNNs and reduce the spatial size as well as expand
the channel dimensions multiple times with the help of pooling layers. A convolution stem with
multiple convolutional layers is introduced in He et al. (2019) to replace the non-overlapping patch
embedding operation. The second one is to modify the self-attention module in ViT. Local-enhanced
vision transformers (Huang et al., 2021; Wu et al., 2022) constrain the range of attention and generate
patches within a local region, and then facilitate interactions between these patches to extract and
interpret global information. Efficient self-attention operations reduce computational complexity of
previous self-attention operation from O(n2) to O(n) (Wang et al., 2020) or O(nlog(n)) (Kitaev
et al., 2020).

Although a substantial number of works concentrate on studying the variations of vision trans-
formers, very few of them pay attention to modifying the multi-layer perceptron (MLP) module.
CMT (Guo et al., 2022) uses an inverted residual feed-forward network to replace the original MLP
module, CoAtNet (Dai et al., 2021) uses MBConv blocks (Sandler et al., 2018) to replace some of
the ViT blocks in its network architecture. However, there are multiple modifications in their archi-
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Figure 1: Top-1 classification accuracy versus FLOPs for different models on ImageNet-1k dataset.
Our IMLP module can reduce FLOPs without sacrificing classification performance on different
baseline vision transformer models.

tectures and the effectiveness of modifying MLP module remains unclear. Furthermore, there is a
lack of theoretical analysis explaining why these changes are effective.

In this paper, we first give a thorough analysis of the MLP module in the vision transformer and
show that the effect of the MLP module primarily lies in providing non-linearity whose degree
corresponds to the hidden dimensions. Then, a rather intuitive idea comes that if we can enhance
the degree of non-linearity in the nonlinear function, we could potentially decrease the hidden di-
mensions of the MLP module, thereby reducing the computational cost. Based on this thought,
we introduce the arbitrary GeLU (AGeLU) function which is easy to combine to generate stronger
non-linearity. Besides, a spatial-wise enhancement part is added to further enrich the non-linearity
of the module. By combining them together, we introduce our improved MLP (IMLP) module for
vision transformer. We conduct several experiments on different popular vision transformer mod-
els with various designs of the whole architecture and self-attention module including DeiT, Swin,
PoolFormer, LVT, etc., by replacing their original MLP module into the proposed IMLP module.
Results on ImageNet-1k dataset show that we can effectively reduce FLOPs and parameters without
sacrificing the classification accuracy as shown in Fig. 1 and the experiment section.

2 RELATED WORKS

Vision transformer (ViT) was first introduced by Dosovitskiy et al. (2021) to extend the transformer
architecture to vision tasks. Since then, researches have focused on improving the performance of
vanilla ViT. For example, DeiT (Touvron et al., 2021) leveraged the knowledge distillation method
and introduced a series of new training techniques to enhance the classification performance on
ImageNet-1k. Swin (Liu et al., 2021) utilized a hierarchical architecture and adopted a local self-
attention mechanism to reduce computational complexity while using shift operation to add interac-
tion across different sub-windows. PoolFormer (Yu et al., 2022) argued that the whole architecture of
ViT was more important than the self-attention operation and replaced the multi-head self-attention
(MHSA) modules with pooling operations.

Methods above focus on modifying the training strategy, the whole architecture of ViT and the
MHSA module. Very little research studied the MLP module in ViT. CMT (Guo et al., 2022) and
PVTv2 (Wang et al., 2022) introduced ViT models with several modifications, and one of them
was to use the inverted residual feed-forward network to replace the MLP module. CoAtNet (Dai
et al., 2021) found that vertically stacking convolution layers and attention layers was surprisingly
effective and replaced some of the ViT blocks with MBConv blocks through neural architecture
search. These studies generated new ViT models with various modifications to the fundamental
architecture. However, the impact of altering the MLP module remains uncertain.
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𝑥𝑐 𝑦𝑐

MLP Module:𝒀 = 𝜙 𝑿𝑾𝑎 𝑾𝑏 , hidden dim = 4

Figure 2: An intuitive illustration of the corollary that the MLP module is a non-linearity generator.
We use ϕ(·) = ReLU(·) in this figure for simplicity. Other formats of nonlinear function can also
be used here to derive the same conclusion.

3 MLP MODULE IS A NON-LINEARITY GENERATOR

Considering an input matrix X ∈ RN×C in which N is the number of patches and C is the dimen-
sion of each patch, the output of the MLP module can be calculated as:

Y = MLP(X) = ϕ(XW a)W b, (1)

where W a = {wa
ij} ∈ RC×C′

and W b = {wb
ij} ∈ RC′×C are weight matrices of two FC layers,

C ′ controls the number of hidden dimensions, and ϕ(·) represents the non-linear function. C ′ = 4C
and ϕ(·) = GeLU(·) are used in the original ViT model.

Without loss of generality, we assume N = 1 and the input matrix X degrades into an input vector
x ∈ RC . Then, we can represents Eq. 1 in its element-wise form:

xW a =

(
C∑
i=1

wa
ic′xi

)C′

c′=1

, ϕ(xW a) =

(
ϕ(

C∑
i=1

wa
ic′xi)

)C′

c′=1

,

y = ϕ(xW a)W b =

 C′∑
j=1

wb
jcϕ(

C∑
i=1

wa
ijxi)

C

c=1

=

 C′∑
j=1

wb
jcϕ(mcjxc + ncj)

C

c=1

, (2)

in which mcj = wa
cj and ncj = f(x1, · · ·, xc−1, xc+1, · · ·, xC) =

∑C
i=1,i̸=c w

a
ijxi. Given Eq. 2, we

can derive the following corollary:

Corollary 1 Given an input vector x ∈ RC , the output of the MLP module in Eq. 1 is denoted as
y ∈ RC . Then:

(1) Each element yc in y is the linear combination of C ′ different nonlinear functions to the input
element xc.

(2) Distinct scales and biases are applied to different input elements xc before passing through the
nonlinear function ϕ(·).
(3) The scale is a learnable weight independent to the input element xc, while the bias is dependent
to all other input elements in x.

The above conclusion brings to light that the MLP module in the vision transformer is no more than
a non-linearity generator with a nonlinear degree of C ′, as intuitively shown in Fig. 2.

4 METHOD

4.1 A MORE POWERFUL NONLINEAR FUNCTION

Based on the corollary in the previous section, a straightforward way is to use the combination of C ′

different nonlinear functions to replace the original MLP module. However, the bias which depends
on the input elements makes it challenging to attain a comparable degree of non-linearity by merely
combining multiple nonlinear functions, and the classification performance does not match that of
using the original MLP module (as shown in Tab. 4).

3



Under review as a conference paper at ICLR 2024

(0,0)

slope: 1

(a) GeLU

(−
𝛾

𝛼
, 𝜃)

slope: 𝛼𝛽

𝛼 > 0, 𝛽 > 0

𝛼 > 0, 𝛽 < 0

𝛼 < 0, 𝛽 > 0

𝛼 < 0, 𝛽 < 0

(b) AGeLU

(𝛾1, 𝛾2)

slope: 1

slope: 𝛽

(c) RPReLU

Figure 3: The comparison among the shapes of GeLU, AGeLU and RPReLU.

In the following paragraph, we first introduce the arbitrary nonlinear function which is flexible and
easy to be concatenated together to form a more powerful nonlinear function. Subsequently, we
demonstrate that the hidden dimension of the MLP module can be effectively reduced with this
enhanced nonlinear function.

Arbitrary nonlinear function. Arbitrary nonlinear function is defined as
ϕ′(x) = βϕ(αx+ γ) + θ, (3)

in which x is the input of the arbitrary nonlinear function, α and β are learnable coefficients before
and after applying the basic nonlinear function ϕ(·), and γ and θ are learnable biases. The inspiration
for introducing arbitrary nonlinear function arises from Eq. 2 where distinct weights and biases are
employed to each element xc before and after applying the basic nonlinear function. Since GeLU is
used as a basic nonlinear function in ViT, we introduce the arbitrary GeLU (AGeLU) to our model:

AGeLU(x) = βGeLU(αx+ γ) + θ. (4)
AGeLU is more flexible than other modified nonlinear functions such as the RPReLU function
proposed in ReActNet (Liu et al., 2020). The latter can only adjust the position of the turning point
compared to PReLU, while AGeLU can also provide a learnable slope of the function and switch the
whole shape by using different positive and negative coefficients α and β. Fig. 3 gives a comparison
among the shapes of GeLU, AGeLU, and RPReLU. Note that other basic activation functions such as
ReLU, PReLU, etc. can be extended using the same way as AGeLU to form AReLU and APReLU.

Reducing the hidden dimension of MLP module with powerful nonlinear function. Rather than
using the original MLP module introduced in Eq. 1, we propose our AMLP module that integrates
two AGeLU functions and forms a powerful nonlinear function to replace the original GeLU and
halve the hidden dimension of the module. Specifically, we have:

Y ′ = AMLP(X) = concat(AGeLU(XW d),AGeLU′(XW d))W e, (5)

where W d = {wd
ij} ∈ RC×C′

2 and W e = {we
ij} ∈ RC′×C are weight matrices of two FC

layers, and AGeLU(·) and AGeLU′(·) are two nonlinear functions proposed in Eq. 4 with different
parameters. With this simple modification, the first FC layer has half the output channels compared
to the original MLP module, and can effectively reduce the FLOPs and parameters in the vision
transformer model. In the following section, we show that the proposed AMLP module can also be
treated as the linear combination of C ′ different nonlinear functions.

We can degrade the input matrix X into an input vector x ∈ RC , and represent Eq. 5 in its element-
wise form:

t0 = xW d =

(
C∑
i=1

wd
ic′xi

)C′
2

c′=1

,

t1 = AGeLU(t0) =

(
βc′GeLU(αc′

C∑
i=1

wd
ic′xi + γc′) + θc′

)C′
2

c′=1

,
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t′1 = AGeLU′(t0) =

(
β′
c′GeLU(α′

c′

C∑
i=1

wd
ic′xi + γ′

c′) + θ′c′

)C′
2

c′=1

,

t2 = concat(t1, t
′
1) =

(
βc′GeLU(αc′

C∑
i=1

wd
i,f(c′)xi + γc′) + θc′

)C′

c′=1

,

y′ = t2W
e =

 C′∑
j=1

we
jc · [βjGeLU(αj

C∑
i=1

wd
i,f(j)xi + γj) + θj ]

C

c=1

,

=

 C′∑
j=1

w
′e
jcGeLU(m′

cjxc + n′
cj) + θj

C

c=1

, (6)

where in the fourth line, we define α′
1, · · ·, α′

C′
2

≜ αC′
2 +1, · · ·, αC′ (the same to β′, γ′ and θ′), and

f(x) = x − C′

2 · 1x>C′
2

in which 1 is the indicator function. w
′e
jc = we

jc · βj , m′
cj = wd

c,f(j) and

n′
cj = func(x1, ·, ·, ·, xc−1, xc+1, ·, ·, ·, xC) =

∑C
i=1,i̸=c w

d
i,f(j)xi + γj .

Note that it is almost the same compared to the original MLP module (Eq. 2), the proposed AMLP
module (Eq. 6) is also a generator that generates the same degree of non-linearity. Each element
y′c in y′ can also be treated as a linear combination of C ′ different nonlinear functions to the input
element xc, each with distinct scales and biases. Each scale is a learnable weight while each bias is
dependent on other input elements.

4.2 THEORETICAL ANALYSIS

In this section, we analyze the Lipschitz constant of the proposed AMLP module. Note that the
Lipschitz constant serves as a metric for assessing the network’s stability by bounding the rate of
output change in response to input perturbations, while also highlighting the network’s susceptibil-
ity to adversarial attacks. Thus, it is beneficial to study the Lipschitz constant that contributes to
improving the reliability of our module.

Firstly, we give the definition of a Lipschitz constant:

Definition 1 A function f : Rn → Rm is Lipschitz continuous if there exists a non-negative constant
L such that

||f(x)− f(y)||2 ≤ L||x− y||2 for all x, y ∈ Rn, (7)
among which the smallest L is called the Lipschitz constant of function f .

In the following paragraph, we present a lemma to describe the conceptualization of nonlinear ac-
tivation functions, and then use a theorem to derive the bound on the Lipschitz constant of our
proposed AMLP module.

Lemma 1 (Fazlyab et al., 2019) Suppose φ : R → R is slope-restricted on [p, q]. Define the set

Tn = {T ∈ Sn|T =

n∑
i=1

λiieie
⊤
i , λii ≥ 0}. (8)

Then for any T ∈ Tn the vector-valued function ϕ(x) = [φ(x1), · · ·, φ(xn)]
⊤ : Rn → Rn satisfies[

x− y
ϕ(x)− ϕ(y)

]⊤ [ −2pqT (p+ q)T
(p+ q)T −2T

] [
x− y

ϕ(x)− ϕ(y)

]
≥ 0 for all x, y ∈ Rn.

It is easy to prove that our proposed AGeLU activation function satisfies the slope-restricted condi-
tion when the parameters α and β in Eq. 4 are finite. The matrix T is used for deriving the Lipschitz
bound of the AMLP module in the following theorem.
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Theorem 1 Given the AMLP module described by f(x) = W 1concat(ϕ1(W
0x+ b0), ϕ2(W

0x+
b0)) + b1. Suppose ϕi(x) : Rn → Rn = [φi(x1), · · ·, φi(xn)], where φi is slope-restricted on
[pi, qi], i ∈ {1, 2}. Define Tn as in Eq. 8. Suppose there exists ρ1, ρ2 > 0 such that the matrix
inequalities

M(ρi, T ) :=

[
−2piqiW

0⊤TW 0 − ρiIn0
(pi + qi)W

0⊤T

(pi + qi)TW
0 −2T +W 1i⊤W 1i

]
⪯ 0, i ∈ {1, 2}, (9)

holds for some T ∈ Tn, where W 1 = [W 11 W 12]. Then ||f(x) − f(y)||2 ≤ (
√
ρ1 +

√
ρ2)||x −

y||2 for all x, y ∈ Rn0 .

Theorem 1 gives an upper bound of L(f) =
√
ρ1 +

√
ρ2 on the Lipschitz constant of the AMLP

module f(x) = W 1concat(ϕ1(W
0x+b0), ϕ2(W

0x+b0))+b1. The above equation can be treated
as a semi-definite program (SDP) which can be solved numerically to derive its global minimum.
The proof of Theorem 1 is in the Appendix A.1.

4.3 ENHANCING NON-LINEARITY WITH SPATIAL INFORMATION

GeLU

FC Layer

Inputs

Outputs

(a) Original MLP Module (b) IMLP Module (ours)
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Figure 4: The architecture of (a) the original MLP module and
(b) the proposed IMLP module. The channel-wise enhancement
part includes the AGeLU function and concatenation operation.
The spatial-wise enhancement part includes a depthwise block.

Although the AMLP module
generates a same degree of
non-linearity compared to the
original MLP module, we no-
tice that the degree of freedom
of {wd

i,f(j)}
C′

j=1 in Eq. 6 are
halved compared to the original
{wa

ij}C
′

j=1 in Eq. 2. It is similar
to the model quantization meth-
ods that halve the number of
bits used for weights and activa-
tion and may degrade the perfor-
mance. Thus, a straight-forward
way is to treat the original vision
transformer model as the teacher
model and utilize the knowledge
distillation (KD) method (Hin-
ton et al., 2015) to distill the out-
put of the AMLP module. How-
ever, as the size of the model
grows larger, this approach be-
comes infeasible due to insuffi-
cient GPU memory for the KD
training process.

In the previous section, we extend the non-linearity of the MLP module through the channel dimen-
sion. Therefore, in this section we further enhance non-linearity with spatial information. Many
previous studies use convolution operation in vision transformers. For example, CMT (Guo et al.,
2022) uses inverted residual FFN in the network, and CoAtNet (Dai et al., 2021) replaces some of
the attention blocks with inverted bottlenecks. However, they do not mention the relationship be-
tween these blocks and the extension of non-linearity. VanillaNet (Chen et al., 2023) proposes series
informed activation function to enrich the approximation ability which is formulated as:

ϕs(xh,w,c) =
∑

i,j∈{−n,n}

ai,j,cϕ(xi+h,j+w,c + bc), (10)

where ϕ(·) is the activation function. We found that this is equal to going through the non-linear
function followed by a n × n depthwise convolution (DW Conv), which means that DW Conv
after the non-linear function utilizes the spatial information and enhances non-linearity by learning
global information from its neighbors. Thus, we modify our AMLP module by introducing a DW
Block (DW Conv with BN and GeLU) after AGeLU, and form the final improved MLP (IMLP)
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module as shown in Fig. 4. The IMLP module has two main differences compared to the original
MLP module. The first is the channel-wise enhancement part that includes the AGeLU function and
concatenation operation proposed in section 4.1 to extend non-linearity through channel dimension.
The second is the spatial-wise enhancement part with a DW Block to enhance non-linearity with
spatial information. A 3× 3 DW Conv is used as default unless specified in the experiments.

5 EXPERIMENTS

In this section, we conduct experiments on the ImageNet-1k dataset for image classification and
then ablate different parts of IMLP through ablation studies. Experiments on object detection and
semantic segmentation are shown in the Appendix A.2 and A.3.

5.1 IMAGE CLASSIFICATION ON IMAGENET-1K

We empirically verify the effectiveness of the proposed IMLP module on the ImageNet-1k dataset
which contains 1.28M training images from 1000 different classes and 50K validation images.

Implementation details. We treat our IMLP module as a plug-in and replacement module that is
used to replace the original MLP in different vision transformers. Thus the training strategies are
exactly the same as the original methods. There are two hyper-parameters that can be tuned in the
IMLP module. The first is the expansion ratio r of the first FC layer, and the second is the kernel
size n of the depthwise convolution operation in the spatial-wise enhancement part. We use r = 2
and n = 3 in the following experiments if not specified.

Baseline models. We select several widely used state-of-the-art vision transformer models as our
baseline models, including DeiT (Touvron et al., 2021), Swin (Liu et al., 2021), PoolFormer (Yu
et al., 2022) and portable vision transformer such as LVT (Yang et al., 2022).

Experimental results. We replace all the MLP modules in each baseline method with the proposed
IMLP module. The experimental results are shown in Tab. 1. We can see that almost all the models
can reduce over 10% FLOPs and parameters without loss of classification accuracy. For example,
we can reduce the parameter count of the DeiT-Ti model by 12.6% and FLOPs by 12.7% while in-
creasing the top-1 accuracy by 0.4%. As the model becomes larger, the amount of parameter/FLOPs
reduction also increases as the proportion of the MLP module in the computation grows. Similar re-
sults can be seen in other baseline models. PoolFormer models exhibit higher FLOPs and parameter
reduction (over 20%) since most of their calculations come from the MLP module.

5.2 ABLATION STUDIES

In this section, we ablate various design choices for each part of the IMLP module to empirically
verify the effectiveness of the proposed method.

Effect of channel/spatial-wise enhancement part. In Tab. 2 we separately use channel-wise and
spatial-wise enhancement parts in the IMLP module. When using channel-wise enhancement alone,
we also verify the effectiveness of the KD method. When using spatial-wise enhancement alone, we
replace the channel-wise enhancement part with the original GeLU activation function. We can see
that channel-wise enhancement can reduce the FLOPs and parameters of the model but there is a
performance degradation compared to the baseline. Using the KD method can make up for the gap
but the GPU memory usage during training will be increased significantly, thus is abandoned in our
method. Combining the channel-wise and spatial-wise enhancement brings about a smaller model
with better classification accuracy.

Effect of AGeLU function. Note that we use two AGeLU functions and a concatenation operation
in the channel-wise enhancement part. In the following experiment, we compare the classification
performance of using AGeLU and GeLU functions with and without concatenation operation. The
first line is the baseline DeiT-Ti model, and the second line changes GeLU in MLP modules to
AGeLU. Line 4 is the proposed method, and line 3 changes the proposed AGeLU to GeLU. We
observe from Tab. 3 that when setting the expansion ratio r = 4 without concatenation, the proposed
AGeLU function does not demonstrate superiority over the original GeLU function. However, when
using r = 2 with concatenation, the AGeLU function exhibits improved performance. This is
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Table 1: Image classification results on ImageNet-1k datasets. Several widely used state-of-the-art
vision transformer models are used as the baseline models, and the original MLP modules in them
are replaced with the proposed IMLP module. ‘*’ indicates that we use n = 5 for the depthwise
convolution operation in the spatial-wise enhancement part.

Methods Architecture Parameters (M) FLOPs (G) Top-1 Accuracy (%)

DeiT

DeiT-Ti 5.72 1.26 72.2
+ IMLP 5.00 (-12.6%) 1.10 (-12.7%) 72.6
DeiT-S 22.05 4.60 79.9
+ IMLP 18.84 (-14.6%) 3.93 (-14.6%) 80.0
DeiT-B 86.57 17.57 81.8

+ IMLP∗ 73.66 (-14.9%) 14.92 (-15.1%) 81.8

Swin

Swin-Ti 28.29 4.50 81.2
+ IMLP 24.29 (-14.1%) 3.88 (-13.8%) 81.5
Swin-S 49.61 8.75 83.2
+ IMLP 42.40 (-14.5%) 7.49 (-14.4%) 83.2
Swin-B 87.77 15.44 83.5

+ IMLP∗ 75.45 (-14.0%) 13.34 (-13.6%) 83.4

PoolFormer

PoolFormer-S12 11.92 1.82 77.2
+ IMLP 9.80 (-17.8%) 1.48 (-18.7%) 77.2

PoolFormer-S24 21.39 3.40 80.3
+ IMLP 17.15 (-19.8%) 2.72 (-20.0%) 80.7

PoolFormer-S36 30.86 4.99 81.4
+ IMLP 24.50 (-20.6%) 3.97 (-20.4%) 81.5

PoolFormer-M36 56.17 8.78 82.1
+ IMLP 44.19 (-21.3%) 6.93 (-21.1%) 82.1

PoolFormer-M48 73.47 11.56 82.5
+ IMLP∗ 58.62 (-20.2%) 9.46 (-18.2%) 82.3

Portable ViT

LVT-R1 5.52 0.76 73.9
+ IMLP∗ 4.98 (-9.8%) 0.68 (-10.5%) 74.0
LVT-R2 5.52 0.84 74.8
+ IMLP∗ 4.98 (-9.8%) 0.76 (-9.5%) 74.6
LVT-R3 5.52 0.92 74.6
+ IMLP∗ 4.98 (-9.8%) 0.84 (-8.7%) 74.8
LVT-R4 5.52 1.00 74.9
+ IMLP∗ 4.98 (-9.8%) 0.92 (-8.0%) 74.9

Table 2: Ablation study on channel/spatial-wise enhancement part. The experiments are conducted
using the DeiT-Ti model on the ImageNet dataset.

Methods Parameters (M) FLOPs (G) Top-1 Accuracy (%)

DeiT-Ti 5.72 1.26 72.2
w/ channel 4.89 1.08 70.5

w/ channel + KD 4.89 1.08 72.0
w/ spatial 5.83 1.28 72.8

w/ channel & spatial 5.00 1.10 72.6

because in the former setting the two activation functions have the same degree of non-linearity,
while in the latter the two GeLU functions with the same scale and bias cause a simple replication
along the channel dimension and lead to a degradation of the performance and the two AGeLU
functions do not decrease the degree of non-linearity (according to the analysis in Sec. 3).
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Table 3: Ablation study on whether or not us-
ing AGeLU function and the concatenation op-
eration in channel-wise enhancement part. The
experiments are conducted using the DeiT-Ti
model on the ImageNet dataset.

Methods ratio Top-1 Acc (%)

GeLU (baseline) 4 72.2
AGeLU 4 72.1

GeLU+concat 2 72.3
AGeLU+concat (ours) 2 72.6

Table 4: Using the addition of 4C number of
nonlinear functions to replace the original MLP
module. GeLU and AGeLU are used as the ba-
sic nonlinear functions. The experiments are
conducted based on the DeiT-Ti model.

Methods Top-1 Acc (%)

DeiT-Ti 72.2
GeLU 50.4

AGeLU 53.3

Table 5: Using different kernel sizes n for depthwise convolution in the spatial-wise enhancement
part. The experiments are conducted using the DeiT-Ti model on the ImageNet dataset.

n Parameters (M) FLOPs (G) Top-1 Accuracy (%)

1 4.92 1.08 72.0
3 5.00 1.10 72.6
5 5.15 1.13 72.8
7 5.37 1.17 72.9

Effect of directly combining multiple nonlinear functions. In Sec. 4.1 we analyze that the
straightforward way of directly using 4C different nonlinear functions to replace the original MLP
module is challenging to attain a comparable degree of non-linearity. Here we use GeLU and
AGeLU as the basic nonlinear functions. In Tab. 4 we empirically show the results of adding 4C
number of nonlinear functions (e.g. y = AGELU1(x) + · · · + AGELU4C(x)). We can see that
none of these variants is comparable to the classification performance of the baseline with the MLP
module, since according to Corollary 1 the biases of these nonlinear functions should be different
and are dependent on all other input elements which is hard to apply in reality and is the main reason
that causes the performance degradation. Experiments are conducted using the DeiT-Ti model on
the ImageNet dataset.

Effect of using different kernel-size. Finally, we use different kernel size for depthwise convo-
lution in the spatial-wise enhancement part to explore the relationship between the classification
performance and the amount of spatial information used to enhance the non-linearity. In Tab. 5,
we can see that as the kernel size n increases, the classification performances are getting better and
better with a little increased FLOPs and parameters. The benefit is obvious from n = 1 to n = 3
since global information from the neighbors are used. The profit becomes marginal as the kernel
size continues to grow.

6 CONCLUSION

In this paper, we thoroughly analyze the effect of the MLP module in the vision transformer and
show that the original MLP module is no more than a non-linearity generator whose nonlinear de-
gree corresponds to the number of hidden dimensions. Based on this observation, we propose a
flexible activation function AGeLU and combine multiple of them to form a more powerful non-
linear function that extends non-linearity through channel dimension. Furthermore, we enhance
non-linearity with spatial information using depthwise block. With the above modification, we can
use fewer hidden dimensions which reduces the FLOPs and parameters of the model without loss
of classification performance. We also give a theoretical analysis of the Lipschitz bound of the
proposed module by which the stability of the network can be measured. We conduct experiments
on several state-of-the-art vision transformer models using the benchmark dataset ImageNet-1k by
replacing the original MLP module with the proposed IMLP module, and the results demonstrate
the effectiveness of our method.
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A APPENDIX

A.1 PROOF OF THEOREM 1

Given
f(x) = W 1concat(ϕ1(W

0x+ b0), ϕ2(W
0x+ b0)) + b1, (11)

it is easy to rewrite the function as
f(x) = g(x) + h(x)

=
(
W 11ϕ1(W

0x+ b0) + b11
)
+
(
W 12ϕ2(W

0x+ b0) + b12
)
, (12)

in which W 1 = [W 11 W 12] and b1 = [b11 b12]. Thus, the function f(x) can be divided into two
parts g(x) and h(x). In the following analysis, we give the proof of Lipschitz bound on g(x), and
the bound on h(x) can be derived in the same way.

Define x1 = ϕ1(W
0x+b0) ∈ Rn and y1 = ϕ1(W

0y+b0) ∈ Rn for two arbitrary inputs x, y ∈ Rn0 .
Using the conclusion in Lemma 1, we have:[

(W 0x+ b0)− (W 0y + b0)
x1 − y1

]⊤ [ −2p1q1T (p1 + q1)T
(p1 + q1)T −2T

] [
(W 0x+ b0)− (W 0y + b0)

x1 − y1

]
≥ 0,

where T ∈ Tn (Eq. 8). The above inequality can be rewritten as:[
x− y
x1 − y1

]⊤ [
−2p1q1W

0⊤TW 0 (p1 + q1)W
0⊤T

(p1 + q1)TW
0 −2T

] [
x− y
x1 − y1

]
≥ 0, (13)

By left and right multiply M(ρ1, T ) in Eq. 9 by [(x− y)⊤ (x1− y1)⊤] and [(x− y)⊤ (x1− y1)⊤]⊤

respectively, we have:[
x− y
x1 − y1

]⊤ [
−2p1q1W

0⊤TW 0 (p1 + q1)W
0⊤T

(p1 + q1)TW
0 −2T

] [
x− y
x1 − y1

]
≤
[
x− y
x1 − y1

]⊤ [
ρ1In0

0

0 −W 11⊤W 11

] [
x− y
x1 − y1

]
. (14)
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Combining Eq. 13 and Eq. 14, we have:

0 ≤
[
x− y
x1 − y1

]⊤ [
ρ1In0

0

0 −W 11⊤W 11

] [
x− y
x1 − y1

]
, (15)

which can also be written as:

(x1 − y1)⊤W 11⊤W 11(x1 − y1) ≤ ρ1(x− y)T (x− y). (16)

Recall that g(x) = W 11x1 + b1 and g(y) = W 11y1 + b1, then the inequality 16 can be written as:

||g(x)− g(y)||2 ≤ √
ρ1||x− y||2 for all x, y ∈ Rn. (17)

Similarly, we have:

||h(x)− h(y)||2 ≤ √
ρ2||x− y||2 for all x, y ∈ Rn. (18)

Given f(x) = g(x) + h(x) in Eq. 12, we can derive:

||f(x)− f(y)||22 = ||(g(x)− g(y)) + (h(x)− h(y))||22
= ||g(x)− g(y)||22 + ||h(x)− h(y)||22 + 2 (g(x)− g(y))

⊤
(h(x)− h(y))

≤ ||g(x)− g(y)||22 + ||h(x)− h(y)||22 + 2||g(x)− g(y)||2||h(x)− h(y)||2
≤ ρ1||x− y||22 + ρ2||x− y||22 + 2

√
ρ1ρ2||x− y||22

= (
√
ρ1 +

√
ρ2)

2||x− y||22. (19)

Finally, the above inequality implies

||f(x)− f(y)||2 ≤ (
√
ρ1 +

√
ρ2)||x− y||2 for all x, y ∈ Rn, (20)

which gives the upper bound of L(f) =
√
ρ1 +

√
ρ2 on the Lipschitz constant of f(·) based on the

Definition 1.

A.2 OBJECT DETECTION ON COCO

In order to better verify the effectiveness of the proposed IMLP module, we conduct experiments
for object detection on the COCO 2017 dataset, which contains 118K training images, 5K validation
images and 20K test-dev images. Mask R-CNN (He et al., 2017) is considered the object detection
framework and Swin-Ti is used as the baseline model. Other training settings are the same as Swin-
Ti.

Table 6: Results on COCO object detection.

Backbone APbox APbox
50 APbox

75 #param FLOPs

Swin-Ti 46.0 67.1 50.3 48M 267G
Swin-Ti + IMLP 46.0 67.2 50.3 44M 251G

We can see in Tab. 6 that our IMLP module can reduce over 4M parameters and 16G FLOPs com-
pared to the original Swin-Ti model with a same box AP, which shows the priority of the proposed
method.

A.3 SEMANTIC SEGMENTATION ON ADE20K

We also conduct experiments for the semantic segmentation task on the ADE20K dataset, which
contains 20K training images, 2K validation images and 3K test images from 150 different semantic
categories. As in Swin (Liu et al., 2021), we use UperNet (Xiao et al., 2018) as the base semantic
segmentation framework and Swin-Ti as the baseline model. Other training settings are the same as
Swin-Ti.
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Table 7: Results on ADE20K semantic segmentation.

Backbone mIoU mAcc #param FLOPs

Swin-Ti 44.5 55.6 60M 945G
Swin-Ti + IMLP 45.0 57.3 56M 928G

As shown in Tab. 9, we achieve a 0.5 mIoU improvement while reducing FLOPs by 17G and pa-
rameters by 4M compared to the baseline model Swin-Ti.

A.4 EXPERIMENTS USING DIFFERENT ACTIVATION FUNCTIONS

In the following table, we change the activation function in DeiT from GeLU to SoftPlus, and
apply our method using ASoftPlus. The results show that we can achieve consistent improvement
regardless of the usage of basic activation functions.

Table 8: Using different activation functions on DeiT-Ti.

Model FLOPs (G) Parameters (M) Top-1 Acc (%)

DeiT with SoftPlus 5.72 1.26 71.6
+ IMLP 5.00 (-12.6%) 1.10 (-12.7%) 72.0

A.5 THROUGHPUTS OF THE MODEL

The throughputs with batchsize=32 are shown in the following table. We conduct experiments on
the DeiT model. We can see that although the latency improvements on GPU are marginal, the
improvements on CPU are obvious and they come from the decrease of FLOPs, which shows the
priority of our method. We use V100 GPU and Intel 6136 CPU @ 3GHz CPU in the experiments.

Table 9: Throughputs of DeiT model on CPU and GPU.

Model Throughputs on CPU (imgs/s) Throughputs on GPU (imgs/s)

DeiT-Ti 63.6 988.6
DeiT-Ti+IMLP 69.9 (+9.9%) 1003.6 (+1.5%)

DeiT-S 40.0 596.6
DeiT-S+IMLP 42.9 (+7.3%) 604.3 (+1.3%)

DeiT-B 20.3 275.6
DeiT-B+IMLP 22.1 (+8.9%) 277.8 (+0.8%)
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