

000 001 002 UNICA: UNIFIED COVARIATE ADAPTATION FOR TIME 003 SERIES FOUNDATION MODEL 004 005 006

007 **Anonymous authors**
008 Paper under double-blind review
009
010
011

ABSTRACT

013 Time Series Foundation Models (TSFMs) have achieved remarkable success
014 through large-scale pretraining. However, their design primarily targets real-
015 valued series, limiting their ability to handle general forecasting tasks involving di-
016 verse and often *heterogeneous covariates*—such as categorical variables and mul-
017 timodal data (e.g., images, text)—which are typically task-specific and difficult
018 to leverage during pretraining. To address this gap, we propose Unified Covariate
019 Adaptation (UniCA), a framework to bridge TSFMs with general covariate-aware
020 forecasting. UniCA first performs covariate homogenization to transform hetero-
021 geneous covariates into high-level homogeneous series representations and then
022 fuses them via a unified attention-based fusion mechanism. UniCA is compatible
023 and universal for adaptation with both homogeneous and heterogeneous covari-
024 ates, incorporating extra covariate information while preserving the generalization
025 ability of TSFMs. Extensive experiments on multiple unimodal and multimodal
026 covariate-aware forecasting benchmarks demonstrate the superiority of UniCA,
027 highlighting the promise of covariate-aware TSFM adaptation in real-world fore-
028 casting scenarios. Code: <https://anonymous.4open.science/r/UniCA-C5E0>.
029
030

1 INTRODUCTION

031 Time series forecasting is essential in a wide
032 range of domains, including environmental
033 monitoring Gruca et al. (2022), traffic man-
034 agement Kadiyala & Kumar (2014), energy
035 systems Kardakos et al. (2013), communica-
036 tion networks Peng et al. (2013), and health-
037 care Morid et al. (2023). Accurate forecasting
038 supports critical decisions in planning, policy-
039 making, and operations. Traditional statisti-
040 cal models such as ARIMA and Exponential
041 Smoothing Box et al. (2015) have been widely
042 used for their simplicity and effectiveness in
043 specific settings. With the advancement of deep
044 learning, models based on Recurrent Neural
045 Networks (RNNs) Hochreiter & Schmidhuber
046 (1997); Cho et al. (2014); Rangapuram et al. (2018) and Convolutional Neural Networks (CNNs) Bai
047 et al. (2018); Franceschi et al. (2019) have enabled more expressive modeling of complex temporal
048 dynamics. Transformer-based architectures Zhou et al. (2021); Nie et al. (2023); Liu et al. (2024b)
049 further advanced the field by capturing long-range dependencies and achieving strong performance,
050 particularly in long-horizon multivariate forecasting. Inspired by the success of foundation models
051 in NLP and vision Devlin et al. (2019); Brown et al. (2020); Radford et al. (2021); Kirillov et al.
052 (2023), recent Time Series Foundation Models (TSFMs) Das et al. (2024); Woo et al. (2024); Ansari
053 et al. (2024); Goswami et al. (2024) have shown strong generalization capability by pretraining
on large-scale time series. They learn transferable temporal representations and deliver impressive
performance even in zero-shot scenarios.

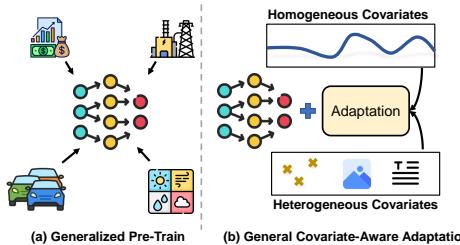


Figure 1: TSFMs are pretrained on time series from diverse domains. However, many tasks contain homo/heterogeneous covariates that are hard to use in pre-training. Adaptation methods to handle these covariates are important in these tasks.

1

054 However, most state-of-the-art TSFMs (Ansari et al., 2024; Das et al., 2024; Goswami et al., 2024)
 055 are fundamentally designed for univariate forecasting, processing each time series in isolation. This
 056 architectural choice renders them unable to leverage the critical relationships between a target se-
 057 ries and its exogenous covariates, limiting their applicability in many real-world scenarios. Some
 058 TSFMs adopt covariate-aware (Woo et al., 2024) strategies during pretraining; yet, models trained
 059 in this manner often fail to achieve stable and superior performance across diverse tasks (Aksu et al.,
 060 2024). More fundamentally, the standard TSFM pretraining paradigm imposes a key limitation: it
 061 can only effectively leverage homogeneous covariates (e.g., real-valued time series similar to the tar-
 062 get variable). This restricts their ability to handle heterogeneous covariates, which are increasingly
 063 common in practical scenarios. Heterogeneous covariates typically includes structured categorical
 064 variables (e.g., item IDs, calendar features) and multimodal inputs (e.g., images, texts) (Ma et al.,
 065 2024; Liu et al., 2024a). The diversity and task-specific nature make their integration into existing
 066 TSFM pipelines non-trivial.

067 While prior work has addressed unimodal covariate-aware forecasting or multi-modal forecasting
 068 through specialized model architectures Salinas et al. (2020); Lim et al. (2019); Das et al. (2023);
 069 Jin et al. (2024); Ma et al. (2024); Liu et al. (2024a), these methods are often biased to the task-
 070 specific data, lack the generalization ability, and underperform compared to large-scale pretrained
 071 TSFM models (Aksu et al., 2024). Therefore, a key challenge remains: *How can we adapt powerful*
 072 *pretrained TSFMs to general covariate-aware forecasting, including homogeneous and heteroge-*
 073 *neous covariates, without losing the generalization ability obtained from pretraining?*

074 In this paper, we address this challenge by proposing a unified and effective adaptation method
 075 named **Unified Covariate Adaptation (UniCA)**. The core idea is to perform *covariate homoge-*
 076 *nization* that transforms heterogeneous covariates into a unified, homogeneous temporal representa-
 077 tion, representing the high-level feature changing over time. This transformation allows us to solve
 078 the general covariate forecasting with a unified framework in the time series modality. In addition,
 079 we design an attention-based fusion mechanism with pre-fusion and post-fusion components that
 080 incorporate covariate information before and after the TSFM backbone, respectively, with the
 081 parameters of the TSFMs unchanged. The adaptation modules fully utilize the encoding and temporal
 082 extraction power of the TSFMs, incorporating the covariates' information while retaining the fore-
 083 casting ability obtained during their pretraining process. Extensive experiments across a wide range
 084 of benchmarks, including traditional single-modal covariate datasets and challenging multimodal
 085 datasets, demonstrate the effectiveness and flexibility of UniCA. Our results show that by properly
 086 adapting covariate information into the series space, TSFMs can significantly outperform specialized
 087 models, thus opening new possibilities for general-purpose time series forecasting in covariate-rich
 088 environments. Our main contributions are summarized as follows:

- 089 • We formalize the problem of adapting Time Series Foundation Models (TSFMs) to general
 090 covariate-aware forecasting scenarios, where the heterogeneous covariates, like categorical or
 091 multi-modal covariates, can not be directly utilized by TSFMs.
- 092 • We propose Unified Covariate Adaptation (UniCA), a novel framework featuring: (a) *covariate*
 093 *homogenization* to transform diverse covariates into a unified temporal representation, and (b) a
 094 dual attention-based fusion mechanism to integrate covariate representation with a frozen TSFM
 095 backbone.
- 096 • We conduct comprehensive experiments across single-modal and multimodal covariate datasets,
 097 demonstrating that UniCA enables TSFMs to achieve superior performance compared to task-
 098 specific baselines. The effectiveness of covariate homogenization on TSFMs and specialized
 099 methods also proves that it is a simple way to integrate heterogeneous covariates.

100 2 RELATED WORK

101 **Time Series Foundation Models (TSFMs).** Recent efforts (Ansari et al., 2024; Woo et al.,
 102 2024; Goswami et al., 2024; Das et al., 2024; Ekambaram et al., 2024) have developed large-
 103 scale pretrained models for time series, enabling zero-shot forecasting or fine-tuning across tasks.
 104 Moirai (Woo et al., 2024), MOMENT (Goswami et al., 2024), and TimesFM (Das et al., 2024)
 105 adopt a patch-based transformer architecture, while TTM (Ekambaram et al., 2024) builds on
 106 TSMixer (Ekambaram et al., 2023), which uses MLPs to mix temporal and feature dimensions.
 107 In contrast, Chronos (Ansari et al., 2024) tokenizes time series into discrete vocabularies and

108 trains language models directly on these sequences. TSFMs are trained based on either channel-
 109 independence (Han et al., 2024; Goswami et al., 2024; Das et al., 2024; Ansari et al., 2024) that
 110 ignores covariates, or the equivariant attention mechanism (Woo et al., 2024) that requires covariates
 111 to be homogeneous. The adaptation to heterogeneous covariates scenarios is an unsolved challenge.
 112

113 **Forecasting with Covariates.** Covariates play a crucial role in capturing external signals in fore-
 114 casting tasks. Classical models like ARIMA (Box & Jenkins, 1968) incorporate them via extra co-
 115 efficients, while deep models such as DeepAR (Salinas et al., 2020) and TFT (Lim et al., 2019) inte-
 116 grate them as inputs or through specialized encoders. NBEATSx (Olivares et al., 2021) concatenates
 117 covariates with the main series for fixed-size input. TTM-CM (Ekambaram et al., 2024) introduces
 118 a fine-tuning approach based on channel mixing. (Chen & Zhao, 2024) introduces MiTSformer to
 119 handle mixed time series by recovering latent continuous representations from discrete variables to
 120 mitigate heterogeneity. Among TSFMs, only Moirai (Woo et al., 2024) natively supports covariates
 121 by flattening series and covariates into a joint sequence, using variate IDs for differentiation. None
 122 of the existing methods can handle both homogeneous and heterogeneous, especially multi-modal
 123 covariates, while our method is meant to solve this challenge.

124 **Multimodal Time Series Forecasting.** Most multimodal forecasting studies focus on textual en-
 125 hancement. A line of work seeks to utilize the powerful temporal encoding ability of LLM to im-
 126 prove the forecaster (Zhou et al., 2023; Gruver et al., 2023). While these methods provide the pos-
 127 sibility for multimodal forecasting, they usually handle static textual data. Another line combines
 128 numerical time series with dynamic textual data, *e.g.* news (Dheenadayalan et al., 2022; Wang et al.,
 129 2024a) or weather reports (Obst et al., 2019). Time-MMD (Liu et al., 2024a) introduces a multimodal
 130 dataset and a model that processes time and text modalities independently and merges them via lin-
 131 ear fusion. Towards image covariates, FusionSF (Ma et al., 2024) proposed the MMSP dataset and a
 132 method meant especially for the satellite scenario. Our approach proposed a new way that converts
 133 information from other modalities into series and handles them uniformly in time series modality.

134 **Adapting TSFMs to handle Covariates.** Standard foundation model adaptation, often employ-
 135 ing parameter-efficient methods like adapters (Houlsby et al., 2019) and LoRA (Hu et al., 2022),
 136 typically assumes consistency between pretraining and downstream task input/output structures.
 137 Adapting TSFMs to handle covariates is more complex. While methods like TimesFM (Das et al.,
 138 2024), which uses an auxiliary regressor for residual correction, and ChronosX (Pineda-Arango
 139 et al., 2025), which injects covariates through linear transformations but limits its application to
 140 only point-wise TSFM. All the current adaptation methods struggle with heterogeneous covariates,
 141 highlighting the need for more flexible adaptation strategies, which our proposed method provides.

3 PROBLEM FORMULATION

144 **General Covariates-Aware Time Series Forecasting.** In covariates-aware time series forecast-
 145 ing, the objective is to predict $\mathbf{Y}_{T+1:T+H} \in \mathbb{R}^{H \times 1}$ by utilizing both past observations of the target
 146 $\mathbf{Y}_{1:T} \in \mathbb{R}^{T \times 1}$ and the external covariates, as well as considering their temporal relationships. The
 147 model takes into account both static covariates \mathbf{S} and dynamic covariates $\mathbf{C}_{1:T+H}$ ¹ to make predic-
 148 tions about the future. Formally, we can express the prediction problem as:

$$\hat{\mathbf{Y}}_{T+1:T+H} = f(\mathbf{Y}_{1:T}, \mathbf{C}_{1:T+H}, \mathbf{S}),$$

149 where the static covariates \mathbf{S} remain unchanged within a series. The dynamic covariates $\mathbf{C}_{1:T+H}$
 150 may provide extra information about the past or future state. Both \mathbf{S} and $\mathbf{C}_{1:T+H}$ may contain
 151 *homogeneous* and *heterogeneous* covariates.

152 **Heterogeneous Covariates.** In traditional time series analysis tasks, exogenous covariates typi-
 153 cally share the same form as the target series, often represented as real-valued numerical variables.
 154 This homogeneity allows exogenous covariates and targets to be processed under a unified model-
 155 ing framework without the need for modality-specific designs (Woo et al., 2024; Liu et al., 2024b).
 156 Such covariates are referred to as *homogeneous covariates*. However, with the advancement of data
 157 collection, covariates in modern forecasting scenarios exhibit increasingly diverse forms. In many
 158 practical applications, covariates are no longer restricted to simple real-valued signals but may in-
 159 volve a wide range of data types. Among these, a particularly significant challenge for TSFMs

160 ¹For notational simplicity, we denote both future-known and future-unknown covariates as $\mathbf{C}_{1:T+H}$. For
 161 future-unknown covariates, the values in the interval $[T + 1 : T + H]$ are unobserved at prediction time T .

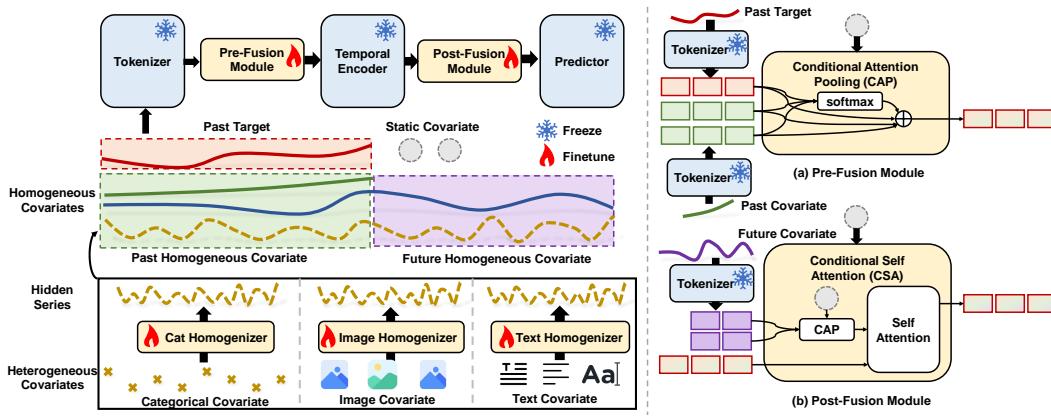


Figure 2: Overview of **Unified Covariate Adapter (UniCA)**. UniCA consists of two key pipelines (1) **Covariate Homogenization**: We use a converter to transform heterogeneous covariates into dense continuous series representations, thus reducing the heterogeneity gap between covariates and target time series. (2) **Modular Fusion**: We decompose the TSFM architecture into interpretable stages and insert Pre-Fusion and Post-Fusion modules to inject covariate information at appropriate locations without interfering with the model’s pretrained dynamics.

comes from *heterogeneous covariates*. These covariates can be broadly categorized into two major types: (1) **Categorical covariates**: Discrete attributes such as item identifiers, store locations, event types, or temporal markers. These variables are not inherently numerical and require embedding techniques or specialized handling to be incorporated into forecasting models. (2) **Multimodal covariates**: High-dimensional, complex data modalities such as images, text descriptions. The emergence of heterogeneous covariates poses fundamental challenges to existing TSFM architectures. Unlike homogeneous covariates, which can be directly integrated, heterogeneous covariates demand modality-specific preprocessing, feature extraction, and fusion strategies.

Covariate-Aware Adaptation. Time Series Foundation Models (TSFMs) are designed to model the temporal dependencies within a given series. These models are trained on diverse time series from different domains, which makes it hard to incorporate covariates across different domains. *covariate adaptation* involves modifying the model architecture to integrate the covariate information while fully utilizing the temporal encoding ability. The mathematical formulation of this task can be expressed as follows: Given a TSFM f_{fm} , the objective is to construct a new forecaster based on the trained foundation model:

$$\tilde{Y}_{T+1:T+H} = g_{ada} \circ f_{fm}(\mathbf{Y}_{1:T}, \mathbf{C}_{1:T+H}, \mathbf{S}), \quad (1)$$

where g_{ada} is the adaptation module, and $g_{ada} \circ f_{fm}$ is the composition model after adaptation. In contrast to training covariate-aware deep learning models from scratch, covariate adaptation involves three distinct challenges:

- **Compatibility**: The adaptation module should be compatible with pretrained TSFMs without requiring extensive full-model retraining or architecture redesign.
- **Universality**: It should be able to handle both homogeneous and heterogeneous covariates.
- **Generalization Preservation**: It should leverage the temporal encoding capabilities learned during pretraining while preserving the generalization ability of the foundation model.

In response to these challenges, we propose **Unified Covariate Adaptation (UniCA)**.

4 METHODOLOGY

Unified Covariate Adaptation (UniCA) is a general framework that enables Time Series Foundation Models (TSFMs) to effectively incorporate heterogeneous covariate information without disrupting their pretrained temporal modeling capabilities. At a high level, UniCA follows two key principles (1) **Covariate Homogenization**: We transform categorical and multimodal covariates into dense continuous series representations, thus reducing the heterogeneity gap between covariates and

target time series. (2) **Modular Fusion**: We decompose the TSFM architecture into interpretable stages and insert an attention-based fusion module to inject covariate information at appropriate locations without interfering with the model’s pretrained dynamics.

4.1 COVARIATE HOMOGENIZATION

To address covariate heterogeneity, UniCA introduces a homogenization process that converts all covariates into a unified homogeneous space. Specifically, categorical covariates are processed using embedding layers that map discrete tokens into continuous vectors. Multimodal covariates—such as images or texts—are initially fed through modality-specific encoders (e.g., convolutional neural networks for images, pretrained transformers for text) to obtain dense feature representations $H^{(het)}$. Similar to connectors used in multimodal learning (Liu et al., 2023), we use a **Covariate Homogenizer (CH)**, a simple linear layer, to transform $H^{(het)}$ into latent homogeneous covariates $C^{(het)}$. These covariates encapsulate the temporal dynamics of high-level features derived from heterogeneous covariates:

$$C_{1:T+H}^{(het)} = \text{CH}(H_{1:T+H}^{(het)}), \quad (2)$$

where $C_{1:T+H}^{(het)} \in \mathbb{R}^{(T+H) \times d^{het}}$, with d^{het} being a tunable hyperparameter. Finally, all homogeneous covariates—whether hidden or observed—are aligned along the temporal dimension and concatenated to produce a cohesive set of homogeneous series covariates $C_{1:T+H} \leftarrow [C_{1:T+H}, C_{1:T+H}^{(het)}]$, enabling their integration into a unified covariate fusion framework. In the following part, we assume the unified covariates representation $C_{1:T+H} \in \mathbb{R}^{(T+H) \times M}$, where M is the total number of homogeneous covariates, including the observed homogeneous and the homogenized heterogeneous covariates. This homogenization process ensures the **universality of UniCA**.

4.2 COVARIATE FUSION MODULE

Decomposition of TSFM. To better incorporate covariate information into the TSFM and fully leverage its capabilities, we first decompose the TSFM architecture according to the functionality:

- **Tokenizer**: $Z = \mathcal{T}(Y_{1:T})$: This module transforms raw time series inputs Y into a sequence of tokens $Z \in \mathbb{R}^{P \times d}$, where d is the token dimension, and P is the number of tokens along the temporal dimension and varies between patch-based (Das et al., 2024; Liu et al., 2024c) and point-based (Ansari et al., 2024; Hoo et al., 2025; Shi et al., 2024) methods. The tokenizer is responsible for generating suitable representations for the temporal encoder, acting as the connection between the raw representation and the main part of the model.
- **Temporal Encoder $H = \mathcal{E}(Z)$** : Subsequently, the encoder processes the tokenized sequence Z to extract high-level temporal patterns and dependencies. The most popular encoder is Transformer. This stage leverages the pre-trained temporal encoding capabilities of the TSFM.
- **Predictor $\hat{Y}_{T+1:T+H} = \mathcal{P}(H)$** : Finally, the predictor utilizes the encoded representations H to generate forecasts \hat{Y} for the future horizon $T + 1$ to $T + H$. For decoder-only architectures (Brown et al., 2020; Das et al., 2024), we regard the linear output layer as the predictor.

This modular decomposition is applicable to the vast majority of TSFMs, ensuring the **compatibility of UniCA** and enabling a clean separation of responsibilities and facilitating the integration of covariate information without disrupting the core temporal processing. Based on this, we propose attention-based pre/post fusion modules to incorporate past and future covariates into the TSFMs.

Pre-Fusion Module. Prior to the encoding stage, the pre-fusion module integrates past covariate information with the historical target values. This module enriches the tokens with historical external factors, allowing the encoder to capture the joint dynamics between the time series and its past covariates. Inspired and simplified from Lim et al. (2019), we use a *Conditional Attention Pooling (CAP)* mechanism to fuse the past information while maintaining interpretability. Concretely, given past target $Y_{1:T}$, past covariates $C_{1:T}$ and the static feature S , $C_{1:T}$ and S are first converted to embeddings by the tokenizer of the TSFM and a newly initialized embedding layer ρ :

$$E_{C_{1:T}} = \mathcal{T}(C_{1:T}), \quad E_S = \rho(S), \quad (3)$$

270 where $\mathbf{E}_{C_{1:T}} \in \mathbb{R}^{P \times M \times d}$, $\mathbf{E}_S \in \mathbb{R}^{N \times d}$ ($\mathbf{E}_S = \mathbf{0}$ if no static covariates provided) is the representation
 271 of dynamic and static covariates. Then:

$$273 \quad \mathbf{Z}_{C_{1:T}} = \text{CAP}(\mathbf{E}_{C_{1:T}} \mid \mathbf{E}_S) := \text{softmax}(\mathbf{A})\mathbf{V}, \quad (4)$$

$$274 \quad \text{where } \mathbf{A} = \text{GRN}(\text{flat}(\mathbf{E}_{C_{1:T}}), \mathbf{E}_S) \text{ and } \mathbf{V} = \text{GRN}(\mathbf{E}_{C_{1:T}}).$$

275 GRN is Gated Residual Network (a residual MLP) used in Lim et al. (2019), $\text{flat}(\cdot)$ flattens the last
 276 two dimension of $\mathbf{E}_{C_{1:T}}$, $\mathbf{A} \in \mathbb{R}^{P \times 1 \times M}$ is the attention affinity on each feature, $\mathbf{V} \in \mathbb{R}^{P \times M \times d}$.
 277 Then, a Gated Linear Unit (GLU) Dauphin et al. (2017) is used to further trade off the influence of
 278 covariates \mathbf{Z}_c :

$$279 \quad \tilde{\mathbf{Z}} = \mathbf{Z} + \text{GLU}(\mathbf{Z}_{C_{1:T}}). \quad (5)$$

280 This fused representation is then forwarded to the temporal encoder to produce $\tilde{\mathbf{H}} \in \mathbb{R}^{P \times d}$:

$$282 \quad \tilde{\mathbf{H}} = \mathcal{E}(\tilde{\mathbf{Z}}). \quad (6)$$

284 **Post-Fusion Module.** The future-known covariates $\mathbf{C}_{T+1:T+H}$ provide direct insight into future
 285 conditions, making them particularly valuable for forecasting. Therefore, we choose to use a post-
 286 fusion module to incorporate future covariate information into the encoded representations \mathbf{H} after
 287 the temporal extraction process. This step is crucial when future exogenous factors are expected to
 288 influence the forecast. We first tokenize the future-known covariates:

$$289 \quad \mathbf{E}_{C_{T+1:T+H}} = \mathcal{T}(\mathbf{C}_{T+1:T+H}), \quad (7)$$

291 where $\mathbf{E}_{C_{T+1:T+H}}$ represents the tokenized future covariates. We then apply the conditional attention
 292 pooling mechanism to selectively aggregate the most relevant aspects of these future covariates at
 293 each time step. Formally,

$$294 \quad \mathbf{Z}_{C_{T+1:T+H}} = \text{CAP}(\mathbf{E}_{C_{T+1:T+H}} \mid \mathbf{E}_S). \quad (8)$$

295 Once the most relevant future information is selected and fused, we integrate it with the past se-
 296 quence by feeding both into a self-attention layer. This step enables the model to learn contextual
 297 dependencies between past and future covariates, allowing for an enriched representation that better
 298 captures the interplay between historical and forward-looking information. Mathematically, the final
 299 fused representation is obtained as:

$$300 \quad [\hat{\mathbf{H}}, \hat{\mathbf{Z}}_{C_{T+1:T+H}}] = \text{SelfAttn}([\tilde{\mathbf{H}}, \mathbf{Z}_{C_{T+1:T+H}}]). \quad (9)$$

301 Then we predict the future target $\hat{\mathbf{Y}}$ with the predictor \mathcal{P} :

$$302 \quad \hat{\mathbf{Y}}_{T+1:T+H} = \mathcal{P}(\hat{\mathbf{H}}). \quad (10)$$

304 Similar to adapters (Houlsby et al., 2019) in LLM, our UniCA is a plug-in module that keeps the
 305 pretrained model parameters unchanged, thus **preserving generalization** capabilities of TSFMs.

306 4.3 LOSS FUNCTION

308 A key design principle of UniCA is its seamless compatibility with diverse TSFMs. We train the
 309 UniCA adaptation modules using the same loss function the foundation model was originally pre-
 310 trained with. This aligns the adaptation process with the TSFM’s inherent objective. Specifically, we
 311 employ the quantile loss (Wen et al., 2017; Lim et al., 2019) for Chronos and TimesFM, the Huber
 312 loss (Huber, 1992) for Time-MoE, and Negative Log Likelihood (NLL) for Moirai. For training sta-
 313 bility across series of varying scales, we normalize each target instance by its historical mean and
 314 standard deviation, following the instance normalization approach in Kim et al. (2021).

316 5 EXPERIMENTS

318 **Metrics.** Following the evaluation in (Aksu et al., 2024; Zhou et al., 2021), we consider four met-
 319 rics to evaluate the performance of forecasters: Mean Absolute Percentage Error (MAPE), Mean
 320 Square Error (MSE), Mean Absolute Error (MAE) for point forecasting ability, and Continuous
 321 Ranked Probability Score (CRPS) for probabilistic forecasting, which is implemented as the mean
 322 Weighted Quantile Loss (WQL) (Park et al., 2022). In all experiments, the WQL is computed on
 323 quantile levels $\{0.1, 0.2, \dots, 0.9\}$. For methods generating sample forecasts, we compute the quan-
 324 tiles based on 256 samples, whereas quantile forecasting methods are trained on the same quantile

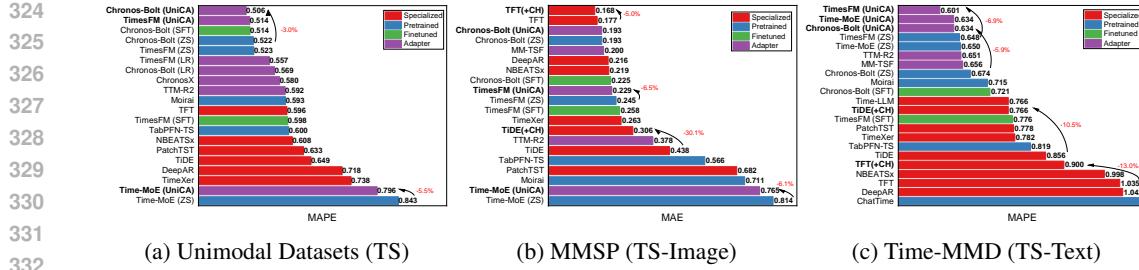


Figure 3: Forecasting performance on general covariate-aware forecasting datasets, including 12 unimodal datasets and multi-modal datasets MMSP and Time-MMD. Results are reported as MAPE averaged over sub-datasets for both unimodal and Time-MMD datasets. For the MMSP dataset, MAE is used instead, as near-zero target values render MAPE unstable.

levels we use for evaluation. Following the practice in Woo et al. (2024) to reduce the dataset bias, we normalize each result by dividing the result of the **Naive** method (Hyndman & Athanasopoulos, 2018), where all forecasts have the value of the last observation.

Compared Methods. To comprehensively evaluate the effectiveness of our proposed UniCA framework, we compare it against a broad set of baseline methods spanning four major categories: (a) **Specialized Models**: These models are trained from scratch for specific forecasting tasks. We include two representative subtypes: (i) *univariate methods*, which include **PatchTST** (Nie et al., 2023) and (ii) *covariate-aware methods*, which includes **DeepAR** (Salinas et al., 2020), **TFT** (Lim et al., 2019), **TIDE** (Das et al., 2023), **N-BEATsX** (Olivares et al., 2021), **TimeXer** (Wang et al., 2024b). (b) **Pretrained TSFM (ZS)**: They are evaluated in a *zero-shot* manner without task-specific fine-tuning. We select three popular TSFMs – **Chronos-Bolt** (Ansari et al., 2024), **TimesFM** (Das et al., 2024), **Time-MoE** (Shi et al., 2024). (c) **Fine-tuned TSFM (SFT)**: Full-parameter fine-tuning on downstream datasets. (d) **Adapter-based Models**: These methods introduce additional modules attached to the TSFM to inject covariate information, allowing adaptation with fewer trainable parameters. We compare the **Linear Regression (LR) adaptation** proposed in (Ansari et al., 2024; Das et al., 2024), which regresses the ground truth against covariates and the residuals are fed to TSFMs, **TTM-R2** (Ekambaram et al., 2024), **ChronosX**² (Pineda-Arango et al., 2025). For **multi-modal** experiments, we include **FusionSF** (Ma et al., 2024) and **MM-TSF** (Chronos-Bolt as TS predictor) (Liu et al., 2024a) for TS-image task (MMSP); **Time-LLM** (Jin et al., 2024), **MM-TSF** and **ChatTime** (Wang et al., 2025) for TS-text task (Time-MMD).

Implementation Details. We adopt default context length for each TSFM, *e.g.* 2048 for Chronos-Bolt and 4096 for Time-MoE, while prediction lengths are dataset-specific (Appendix A). All time series data is pre-processed such as normalization, as detailed in Appendix C.3. In all experiments, learning rates were selected from $\{10^{-3}, 10^{-4}, 10^{-5}, 10^{-6}\}$ based on validation performance. The homogenizer CH is implemented as a simple linear model. For each heterogeneous covariate, we select the number of projected hidden series d^{het} in $\{1, 2, 4, 8, 16\}$. For image covariates, we use a simple 4-layer CNN (Krizhevsky et al., 2012) because the satellite images with dimension $64 \times 64 \times 4$ are not regular images. For text covariates, we use GIST (Solatorio, 2024) as the encoder. A comprehensive list of hyperparameters is presented in Appendix C.7.

5.1 UNI-MODAL COVARIATE AWARE FORECASTING

Datasets. We evaluate our method on 12 publicly available datasets commonly employed in covariate-aware forecasting research (Lim et al., 2019; Das et al., 2023; Oreshkin et al., 2019; Pineda-Arango et al., 2025; Aksu et al., 2024; Olivares et al., 2021). To create the test sets, we employ two distinct strategies based on the number of subseries in each dataset. For datasets with a relatively large number of subseries, *i.e.*, we reserve the final “prediction length” points of each subseries as the test set (Lim et al., 2019). For datasets with fewer subseries, we partition 10% of the data as the test set and apply a sliding window approach for evaluation, with a step size of 1 (Zhou et al., 2021). We also spare validation sets with the same points as the test set. Detailed descriptions of the datasets can be found in Appendix A.

²This method is especially designed for Chronos-T5 model. Results obtained from our own implementation, as official code for ChronosX was not available at the time of this work.

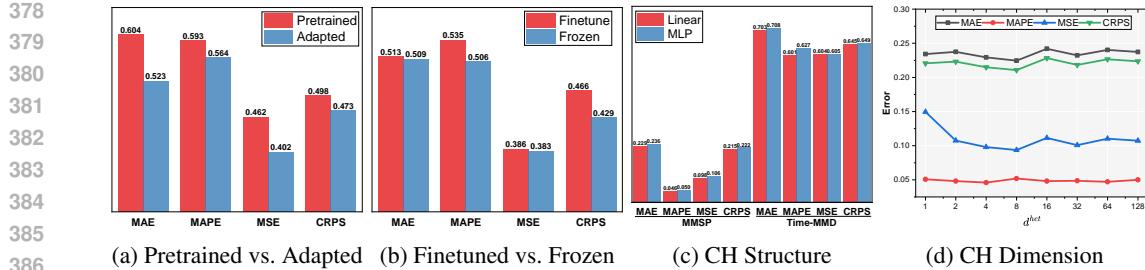


Figure 4: Average relative MAPE on unimodal datasets with model setups (a) **Pretrained**: Moirai(ZS), **Adapted**: Moirai (UniCA). (b) **Finetuned**: Chronos-Bolt (UniCA) with fine-tuned backbone, **Frozen**:freeze backbone; Ablation on (c) structure of covariate homogenizer. (d) hidden dimension of covariate homogenizer.

Main results. The results in Figure 3a highlight the effectiveness of UniCA in uni-modal covariate-aware forecasting. UniCA consistently outperforms zero-shot TSFMs, achieving optimal performance among adapter methods (0.506 MAPE for Chronos-Bolt). While standard finetuning shows minimal gains or degradation, UniCA delivers substantial improvements, confirming its ability to *preserve generalization*. UniCA also surpasses specialized methods (0.596-0.738 MAPE), demonstrating *universality* across architectures. These results validate UniCA’s design goals of *compatibility*, *universality*, and *generalization preservation*.

5.2 MULTI-MODAL COVARIATE-AWARE FORECASTING

Datasets. We evaluated UniCA on tasks involving multi-modal covariates, specifically images and text. For image-based covariates, we utilized the Multimodal Solar Power (MMSP) dataset from (Ma et al., 2024). For text-based covariates, we used the Time-MMD (Liu et al., 2024a) dataset. Details are in the Appendix A. Traditional covariate models use no multi-modal information.

Main results. On the Time-MMD dataset (figure 3c), TimesFM (UniCA) ranks among the top performers, significantly outperforming most specialized and pretrained baselines. In the MMSP benchmark (figure 3b), TFT variants achieve the best results, while our UniCA-enhanced models show consistent improvements over their base versions. *Notably, UniCA provides substantial gains for TimesFM (6.5% reduction in error) and Chronos-Bolt (5.9% reduction), confirming its effectiveness in multi-modal covariates modeling.* This suggests that multi-modal covariates can hinder forecasting performance if not handled appropriately, but our UniCA framework can robustly control the information flow through its attention-based fusion module and covariate homogenization, leading to consistent performance improvements across different foundation models.

Homogenizer on Specialized Methods. To evaluate the generalizability of the Covariate Homogenizer (CH), we integrate it into two representative covariate-based forecasting models to support multi-modal forecasting: TFT and TiDE. The models augmented with CH consistently outperform their vanilla counterparts. For instance, TFT+CH achieves a notable 5% drop on MMSP and 13.0% on Time-MMD. Similarly, TiDE+CH demonstrates a substantial improvement, with the MAE reduced by 30.1% on MMSP and 10.5% on Time-MMD. *These results highlight that CH provides a simple yet effective way to integrate multimodal information.*

5.3 ANALYSIS

Efficiency. The homogenizer of the UniCA uses a linear layer. The pre-/post- fusion module computes the covariate weights and pooling with the weights, introducing complexity only linear to the number of covariates and the model’s dimension. All the components are lightweight. Figure 5a shows that UniCA introduces little computation or storage burden for the TSFMs.

Effectiveness of Covariate Adaptation. Figure 4 highlights the effectiveness of the adapter-based covariate integration strategy in leveraging the generalization capabilities of pre-trained TSFM models. In figure 4a, we observe that the Adapted variant—using our proposed UniCA adapter—consistently outperforms the Pretrained zero-shot model (Moirai(ZS)) across all metrics. This indicates that *the diverse reliance of covariates on different datasets is difficult to learn with a pretrained model*. Adaptation with UniCA provides better performance. However, the pre-

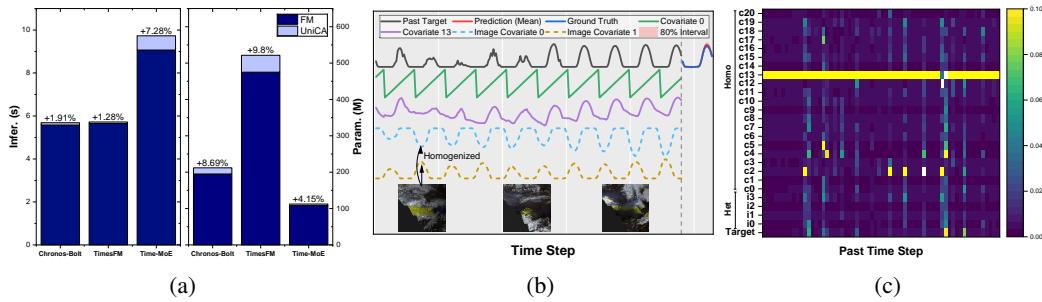


Figure 5: Analysis of UniCA. (a) **Efficiency on Time-MMD**: The adapter adds minimal overhead in inference time (left panel) and trainable parameters (right panel). (b) **Covariate Homogenization on MMSP**: Aligned heterogeneous covariates reveal meaningful patterns like seasonality and trends. (c) **Attention Maps**: The fusion module dynamically attends to different covariates over time for the sample in (b).

trained knowledge should not be fully discarded. In figure 4b, compared to fully finetuned backbones, the Frozen + Adapter setup achieves better performance, particularly in terms of MAPE and CRPS. These findings validate our design intuition: adapter-based covariate incorporation serves as a lightweight yet powerful mechanism to bridge the gap between general-purpose time series representations and task-specific covariate contexts, fully utilizing pretrained knowledge while enabling covariate-aware forecasting.

Homogenizer Architecture. Our evaluation of the homogenizer architecture, detailed in figure 4c, shows that a simple Linear layer and a Multi-Layer Perceptron (MLP) achieve similar performance. Notably, the Linear model slightly outperforms the MLP, indicating that a more parsimonious design is not only sufficient but preferable. Therefore, we use the Linear homogenizer as the default.

Homogenizer Dimension. We conduct an ablation study on the homogenized dimension d^{het} , which controls the projection space for diverse covariates. Varying d^{het} from 1 to 128, we evaluate performance using MAE, MAPE, MSE, and CRPS. As shown in Figure 4d, performance improves sharply from $d^{\text{het}} = 1$ to 4 (e.g., MSE drops from 0.15 to under 0.10), highlighting the benefit of a more expressive projection. Increasing d^{het} beyond 8 yields diminishing returns and slight performance degradation, suggesting redundancy or overfitting. Metrics remain stable in the range [4, 32]. We set $d^{\text{het}} = 4$ by default.

Visualization of Covariate Homogenization. To illustrate UniCA’s behavior and the effect of covariate homogenization, we visualize examples from the MMSP dataset (figure 5b). The homogenized representations of satellite images reveal meaningful temporal patterns: *Image Covariate 1* captures periodicity, while *Image Covariate 0* also reflects trends aligned with target scale. This shows that homogenization effectively transforms heterogeneous covariates into task-relevant representations, validating our alignment design in UniCA.

Attention-based Covariate Selection. Figure 5c shows attention maps before and after fusion for the same sample in figure 5b. The fusion module dynamically adjusts attention weights across time; notably, Covariate 13 consistently receives the highest weights, matching its rich temporal patterns and strong correlation with the target. In contrast, the target itself is not overly emphasized, suggesting the fusion module learns to complement, rather than duplicate, target signals—demonstrating its ability to identify and integrate informative covariates.

6 CONCLUSION

In this work, we address a critical limitation of existing Time Series Foundation Models (TSFMs): their inability to incorporate homogeneous and heterogeneous covariates in general forecasting effectively. To overcome this, we propose **UniCA**, a unified covariate adaptation framework that extends TSFMs to general covariate-aware forecasting scenarios. UniCA achieves this by transforming diverse covariates into high-order homogeneous series and integrates them via an attention-based fusion module, preserving the integrity of pretrained temporal modeling. Extensive experiments on both unimodal and multimodal datasets demonstrate UniCA’s compatibility, universality, and effectiveness across diverse forecasting tasks. A discussion of its limitations and future directions is provided in Appendix I.

486 7 ETHICS STATEMENT
487488 This work complies with the ICLR Code of Ethics . Our study focuses on methodological contributions
489 to time series forecasting with heterogeneous covariates. All experiments are conducted on
490 publicly available benchmark datasets (e.g., M5, Retail, MMSP, Time-MMD), which do not contain
491 personally identifiable or sensitive information. No human subjects or private data were involved,
492 and thus no additional ethical approval was required. We have taken care to ensure that our meth-
493 ods and findings do not pose foreseeable risks of harm, discrimination, or misuse. We believe this
494 research aligns with the principles of responsible stewardship, fairness, transparency, and repro-
495 ducibility.496 497 8 REPRODUCIBILITY STATEMENT
498499 We have made extensive efforts to ensure reproducibility of our results. Detailed descriptions of the
500 model architecture, training procedures, hyperparameters, and evaluation protocols are provided in
501 the main paper and Appendix. We also include ablation studies and additional results in the supple-
502 mentary materials to validate robustness. All datasets used in our experiments are publicly acces-
503 sible, with preprocessing steps clearly documented. To further support reproducibility, we provide
504 anonymous source code and scripts, enabling verification and extension of our findings.505 506 REFERENCES
507508 Taha Aksu, Gerald Woo, Juncheng Liu, Xu Liu, Chenghao Liu, Silvio Savarese, Caiming Xiong,
509 and Doyen Sahoo. Gift-eval: A benchmark for general time series forecasting model evaluation.
510 *CoRR*, abs/2410.10393, 2024.511 Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider, Valentin Flunkert, Jan
512 Gasthaus, Tim Januschowski, Danielle C. Maddix, Syama Rangapuram, David Salinas, Jasper
513 Schulz, Lorenzo Stella, Ali Caner Türkmen, and Yuyang Wang. GluonTS: Probabilistic and
514 Neural Time Series Modeling in Python. *Journal of Machine Learning Research*, 21(116):1–6,
515 2020. URL <http://jmlr.org/papers/v21/19-820.html>.516 Abdul Fatir Ansari, Lorenzo Stella, Ali Caner Türkmen, Xiyuan Zhang, Pedro Mercado, Huibin
517 Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda-Arango, Shubham
518 Kapoor, Jasper Zschiegner, Danielle C. Maddix, Michael W. Mahoney, Kari Torkkola, An-
519 drew Gordon Wilson, Michael Bohlke-Schneider, and Yuyang Wang. Chronos: Learning the
520 language of time series. *CoRR*, abs/2403.07815, 2024.521 522 Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional
523 and recurrent networks for sequence modeling. *CoRR*, abs/1803.01271, 2018.524 525 G. E. P. Box and G. M. Jenkins. Some recent advances in forecasting and control. *Journal of the*
526 *Royal Statistical Society. Series C (Applied Statistics)*, 17(2):91–109, 1968.527 528 George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. *Time series analysis:*
529 *forecasting and control*. John Wiley & Sons, 2015.530 531 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
532 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
533 Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
534 Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
535 Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In *NeurIPS*, 2020.536 537 Jiawei Chen and Chunhui Zhao. Addressing spatial-temporal heterogeneity: Gen-
538 539 eral mixed time series analysis via latent continuity recovery and alignment. In
Advances in Neural Information Processing Systems, volume 37, 2024. URL
https://proceedings.neurips.cc/paper_files/paper/2024/file/1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf.

540 Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties
 541 of neural machine translation: Encoder-decoder approaches. In *SSST@EMNLP*, pp. 103–111.
 542 Association for Computational Linguistics, 2014.

543

544 Corporación Favorita. Corporación favorita grocery sales forecasting competition, 2018. URL
 545 <https://www.kaggle.com/c/favorita-grocery-sales-forecasting/>.

546 Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan Mathur, Rajat Sen, and Rose Yu. Long-term
 547 forecasting with tide: Time-series dense encoder. *CoRR*, abs/2304.08424, 2023.

548

549 Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
 550 time-series forecasting. In *ICML*. OpenReview.net, 2024.

551 Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
 552 convolutional networks. In *ICML*, volume 70 of *Proceedings of Machine Learning Research*, pp.
 553 933–941. PMLR, 2017.

554

555 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
 556 bidirectional transformers for language understanding. In *NAACL-HLT*, pp. 4171–4186, 2019.

557 Kumar Dheenadayalan, Nitesh Kumar, Suprabath Reddy, and Sumant Kulkarni. Multimodal neu-
 558 ral network for demand forecasting. In *ICONIP*, volume 13625 of *Lecture Notes in Computer
 559 Science*, pp. 409–421. Springer, 2022.

560

561 Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam.
 562 Tsmixer: Lightweight mlp-mixer model for multivariate time series forecasting. In *KDD*, pp.
 563 459–469, 2023.

564 Vijay Ekambaram, Arindam Jati, Pankaj Dayama, Sumanta Mukherjee, Nam Nguyen, Wesley M.
 565 Gifford, Chandra Reddy, and Jayant Kalagnanam. Tiny time mixers (ttms): Fast pre-trained mod-
 566 els for enhanced zero/few-shot forecasting of multivariate time series. In *2024*, 2024.

567

568 Mostafa Farrokhabadi, Jethro Browell, Yi Wang, Stephen Makonin, Wencong Su, and Hamidreza
 569 Zareipour. Day-ahead electricity demand forecasting competition: Post-covid paradigm. *IEEE
 570 Open Access Journal of Power and Energy*, 9:185–191, 2022. doi: 10.1109/OAJPE.2022.
 571 3161101.

572 Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. Unsupervised scalable representation
 573 learning for multivariate time series. In *NeurIPS*, pp. 4652–4663, 2019.

574

575 Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski. MO-
 576 MENT: A family of open time-series foundation models. In *Forty-first International Conference
 577 on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024.

578 Aleksandra Gruca, Federico Serva, Llorenç Lliso, Pilar Rípodas, Xavier Calbet, Pedro Herruzo,
 579 Jiří Piht, Rudolf Raeovskyi, Petr Šimánek, Matej Choma, et al. Weather4cast at neurips 2022:
 580 Super-resolution rain movie prediction under spatio-temporal shifts. In *NeurIPS 2022 Competi-
 581 tion Track*, pp. 292–313. PMLR, 2022.

582 Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew Gordon Wilson. Large language models are
 583 zero-shot time series forecasters. In *NeurIPS*, 2023.

584

585 Lu Han, Han-Jia Ye, and De-Chuan Zhan. The capacity and robustness trade-off: Revisiting the
 586 channel independent strategy for multivariate time series forecasting. *IEEE Transactions on
 587 Knowledge and Data Engineering*, 36(11):7129–7142, 2024.

588 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural computation*, 9(8):
 589 1735–1780, 1997.

590

591 Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo,
 592 Robin Tibor Schirrmeyer, and Frank Hutter. Accurate predictions on small data with a tabular
 593 foundation model. *Nature*, 01 2025. doi: 10.1038/s41586-024-08328-6. URL <https://www.nature.com/articles/s41586-024-08328-6>.

594 Tao Hong, Pierre Pinson, and Shu Fan. Global energy forecasting competition 2012. *International*
 595 *Journal of Forecasting*, 30:357–363, 2014. URL <https://api.semanticscholar.org/CorpusID:54890724>.

596

597 Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli, and Rob J Hyndman. Probabilistic energy forecasting: Global energy forecasting competition 2014 and beyond. *International Journal of Forecasting*, 32:896–913, 2016. URL <https://api.semanticscholar.org/CorpusID:155534780>.

600

601

602 Tao Hong, Jingrui Xie, and Jonathan D. Black. Global energy forecasting competition 2017: Hierarchical probabilistic load forecasting. *International Journal of Forecasting*, 2019. URL <https://api.semanticscholar.org/CorpusID:159389280>.

603

604

605 Shi Bin Hoo, Samuel Müller, David Salinas, and Frank Hutter. The tabular foundation model
 606 tabpfn outperforms specialized time series forecasting models based on simple features. *CoRR*,
 607 abs/2501.02945, 2025.

608

609 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, An-
 610 drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
 611 NLP. In *ICML*, volume 97 of *Proceedings of Machine Learning Research*, pp. 2790–2799. PMLR,
 612 2019.

613

614 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 615 and Weizhu Chen. Lora: Low-rank adaptation of large language models. In *ICLR*. OpenRe-
 view.net, 2022.

616

617 Peter J Huber. Robust estimation of a location parameter. In *Breakthroughs in statistics: Methodol-*
 618 *ogy and distribution*, pp. 492–518. Springer, 1992.

619

620 Rob J Hyndman and George Athanasopoulos. *Forecasting: principles and practice*. OTexts, 2018.

621

622 Nicholas J. Hourly energy demand, generation, and weather
 623 data. <https://www.kaggle.com/datasets/nicholasjhana/energy-consumption-generation-prices-and-weather>, 2019. Accessed:
 624 2025-05-09.

625

626 Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu Chen,
 627 Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-lm: Time series forecasting
 628 by reprogramming large language models. In *ICLR*. OpenReview.net, 2024.

629

630 Akhil Kadiyala and Ashok Kumar. Multivariate time series models for prediction of air quality
 631 inside a public transportation bus using available software. *Environmental Progress & Sustainable*
 632 *Energy*, 33(2):337–341, 2014.

633

634 Evaggelos G Kardakos, Minas C Alexiadis, Stylianos I Vagropoulos, Christos K Simoglou, Pan-
 635 delis N Biskas, and Anastasios G Bakirtzis. Application of time series and artificial neural network
 636 models in short-term forecasting of pv power generation. In *2013 48th International Universities'*
 637 *Power Engineering Conference (UPEC)*, pp. 1–6. IEEE, 2013.

638

639 Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
 640 versible instance normalization for accurate time-series forecasting against distribution shift. In
 641 *ICLR*, 2021.

642

643 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloé Rolland, Laura Gustafson, Tete
 644 Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross B. Girshick.
 645 Segment anything. In *IEEE/CVF International Conference on Computer Vision, ICCV 2023, Paris, France, October 1-6, 2023*, pp. 3992–4003. IEEE, 2023.

646

647 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. In *NIPS*, pp. 1106–1114, 2012.

648

649 Jesus Lago, Grzegorz Marcjasz, Bart De Schutter, and Rafal Weron. Forecasting day-ahead electric-
 650 ity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark.
 651 *Applied Energy*, 293:116983, 2021.

648 Bryan Lim, Sercan Ömer Arik, Nicolas Loeff, and Tomas Pfister. Temporal fusion transformers for
 649 interpretable multi-horizon time series forecasting. *CoRR*, abs/1912.09363, 2019.
 650

651 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *NeurIPS*,
 652 2023.

653 Haixin Liu, Shangqing Xu, Zhiyuan Zhao, Lingkai Kong, Harshavardhan Kamarthi, Aditya B. Sasa-
 654 nur, Megha Sharma, Jiaming Cui, Qingsong Wen, Chao Zhang, and B. Aditya Prakash. Time-
 655 mmd: Multi-domain multimodal dataset for time series analysis. In *NeurIPS*, 2024a.
 656

657 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
 658 itransformer: Inverted transformers are effective for time series forecasting. In *ICLR*. OpenRe-
 659 view.net, 2024b.

660 Yong Liu, Guo Qin, Xiangdong Huang, Jianmin Wang, and Mingsheng Long. Timer-xl: Long-
 661 context transformers for unified time series forecasting. *CoRR*, abs/2410.04803, 2024c.
 662

663 Ziqing Ma, Wenwei Wang, Tian Zhou, Chao Chen, Bingqing Peng, Liang Sun, and Rong Jin. Fu-
 664 sionsf: Fuse heterogeneous modalities in a vector quantized framework for robust solar power
 665 forecasting. In *SIGKDD*, pp. 5532–5543. ACM, 2024.

666 Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The m5 competition: Back-
 667 ground, organization, and implementation. *International Journal of Forecasting*, 38(4):1325–
 668 1336, 2022.

669 Clayton Miller, Anjukan Kathirgamanathan, Bianca Picchetti, Pandarasamy Arjunan, June Young
 670 Park, Zoltán Nagy, Paul Raftery, Brodie W. Hobson, Zixiao Shi, Forrest Meggers National Univer-
 671 sity of Singapore, University College Dublin, Comision Nacional de Energia Atomica. Argentina.,
 672 Berkeley Education Alliance for Research in Singapore, The University of Texas at Austin, Uni-
 673 versity of California Berkeley, C. Zhang Cardiff University, and Princeton University. The build-
 674 ing data genome project 2, energy meter data from the ashrae great energy predictor iii competi-
 675 tion. *Scientific Data*, 7, 2020. URL <https://api.semanticscholar.org/CorpusID:219259693>.

676 Mohammad Amin Morid, Olivia R Liu Sheng, and Joseph Dunbar. Time series prediction using
 677 deep learning methods in healthcare. *ACM Transactions on Management Information Systems*,
 678 14(1):1–29, 2023.

679 Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
 680 64 words: Long-term forecasting with transformers. In *ICLR*, 2023.

681 David Obst, Badih Ghattas, Sandra Clauzel, Jairo Cugliari, Yannig Goude, and Georges Oppenheim.
 682 Textual data for time series forecasting. *CoRR*, abs/1910.12618, 2019.

683 Kin G. Olivares, Cristian Challu, Grzegorz Marcjasz, Rafal Weron, and Artur Dubrawski. Neural
 684 basis expansion analysis with exogenous variables: Forecasting electricity prices with nbeatsx.
 685 *CoRR*, abs/2104.05522, 2021.

686 Boris N Oreshkin, Dmitri Carpow, Nicolas Chapados, and Yoshua Bengio. N-BEATS: Neural basis
 687 expansion analysis for interpretable time series forecasting. In *ICLR*, 2019.

688 Youngsuk Park, Danielle C. Maddix, François-Xavier Aubet, Kelvin Kan, Jan Gasthaus, and Yuyang
 689 Wang. Learning quantile functions without quantile crossing for distribution-free time series
 690 forecasting. In *AISTATS*, volume 151 of *Proceedings of Machine Learning Research*, pp. 8127–
 691 8150. PMLR, 2022.

692 Yu Peng, Miao Lei, Jia Guo, and Xiyuan Peng. Multiresolution analysis and forecasting of mobile
 693 communication traffic. *Chinese Journal of Electronics*, 22(2):373–376, 2013.

694 Sebastian Pineda-Arango, Pedro Mercado, Shubham Kapoor, Abdul Fatir Ansari, Lorenzo Stella,
 695 Huibin Shen, Hugo Senetaire, Caner Turkmen, Oleksandr Shchur, Danielle C. Maddix, Michael
 696 Bohlke-Schneider, Yuyang Wang, and Syama Sundar Rangapuram. Chronosx: Adapting pre-
 697 trained time series models with exogenous variables. *CoRR*, abs/2503.12107, 2025.

702 Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 703 models are unsupervised multitask learners. 2019.

704

705 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 706 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 707 Learning transferable visual models from natural language supervision. In *ICML*, volume 139 of
 708 *Proceedings of Machine Learning Research*, pp. 8748–8763. PMLR, 2021.

709 Syama Sundar Rangapuram, Matthias W. Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang, and
 710 Tim Januschowski. Deep state space models for time series forecasting. In *NeurIPS*, pp. 7796–
 711 7805, 2018.

712 David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. DeepAR: Probabilistic
 713 forecasting with autoregressive recurrent networks. *International Journal of Forecasting*, 36(3):
 714 1181–1191, 2020.

715

716 Xiaoming Shi, Shiyu Wang, Yuqi Nie, Dianqi Li, Zhou Ye, Qingsong Wen, and Ming Jin. Time-
 717 moe: Billion-scale time series foundation models with mixture of experts. *CoRR*, abs/2409.16040,
 718 2024.

719 Aivin V. Solatorio. Gistembed: Guided in-sample selection of training negatives for text embedding
 720 fine-tuning. *CoRR*, abs/2402.16829, 2024.

721

722 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 723 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
 724 Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
 725 Fu, Wenjin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
 726 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
 727 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
 728 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
 729 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
 730 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Bin
 731 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
 732 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic,
 733 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
CoRR, abs/2307.09288, 2023.

734 Chengsen Wang, Qi Qi, Jingyu Wang, Haifeng Sun, Zirui Zhuang, Jinming Wu, Lei Zhang, and
 735 Jianxin Liao. Chattime: A unified multimodal time series foundation model bridging numerical
 736 and textual data. In *AAAI*, pp. 12694–12702. AAAI Press, 2025.

737

738 Xinlei Wang, Maike Feng, Jing Qiu, Jinjin Gu, and Junhua Zhao. From news to forecast: Integrating
 739 event analysis in llm-based time series forecasting with reflection. In *NeurIPS*, 2024a.

740

741 Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Guo Qin, Haoran Zhang, Yong Liu, Yunzhong Qiu, Jian-
 742 min Wang, and Mingsheng Long. Timexer: Empowering transformers for time series forecasting
 743 with exogenous variables. In *NeurIPS*, 2024b.

744

745 Zhixian Wang, Qingsong Wen, Chaoli Zhang, Liang Sun, Leandro Von Krannichfeldt, and Yi Wang.
 746 Benchmarks and custom package for electrical load forecasting. *CoRR*, abs/2307.07191, 2023.

747

748 Ruofeng Wen, Kari Torkkola, Balakrishnan Narayanaswamy, and Dhruv Madeka. A multi-horizon
 749 quantile recurrent forecaster. *CoRR*, abs/1711.11053, 2017.

750

751 Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.
 752 Unified training of universal time series forecasting transformers. In *ICML*. OpenReview.net,
 753 2024.

754

755 Ashfak Yeafi. Pdb electric power load history. <https://www.kaggle.com/datasets/ashfakyeafi/pbd-load-history>, 2021. Accessed: 2025-05-09.

756

757 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
 758 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *AAAI*, pp.
 759 11106–11115, 2021.

756 Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, and Rong Jin. One fits all: Power general time
 757 series analysis by pretrained LM. In *NeurIPS*, 2023.
 758

763 Appendix

766 Table of Contents

768 Appendices	15
769	
770 A Datasets Descriptions	16
771 A.1 Uni-modal Time Series Datasets	16
772 A.2 Multi-modal Datasets	16
773	
774 B Compared Methods	17
775 B.1 Specialized Method	17
776 B.2 Pretrained Method	18
777 B.3 Multimodal Metehod	19
778 B.4 Finetuned Method	19
779 B.5 Adapter Method	19
780	
781 C Implementation Details	20
782 C.1 Code availability	20
783 C.2 Compute Resource Information	20
784 C.3 Preprocessing	21
785 C.4 Architecture of TSFM	21
786 C.5 Algorithm of UniCA	21
787 C.6 Optimization	22
788 C.7 Hyperparamters	23
789	
790 D Experiment Details	23
791 D.1 Train-Test Splitting.	23
792 D.2 Evaluation Metrics	23
793	
794	
795 E Full Results	25
796 E.1 Robustness Evaluation via Error Bars.	25
797 E.2 Unimodal Forecasting	25
798 E.3 Multi-Modal Forecasting	28
799 E.4 Imputation	29
800	
801 F Showcases	29
802	
803 G More Ablation	31
804 G.1 Fusion Position.	31
805 G.2 Influence of Modality Encoder	31
806 G.3 Architecture of Covariate Homogenizer	36
807 G.4 Influence of Static Covariates	36
808 G.5 Impact of Covariates	38
809 G.6 Robustness to Noisy Covariates	39

810	G.7 Fusion Architecture	39
811		
812	H Correlation Analysis of Homogenized Covariate Embeddings	40
813		
814	I Discussion of Limitation	41
815		
816	J The Use of LLMs	41

819 A DATASETS DESCRIPTIONS

821 A.1 UNI-MODAL TIME SERIES DATASETS

823 Our study employed 12 uni-modal datasets with covariates. Detailed descriptions of the targets,
 824 covariates, and data sources are provided in Table 1, while Table 2 outlines the dataset statistics.
 825 Specifically, a selection of electricity load forecasting datasets, including Covid19 Energy,
 826 GEF12, GEF17, PDB, Spain, BDG-2 Hog, BDG-2 Bull, and BDG-2 Cockatoo, was directly re-
 827 trieval from the Lotsa repository on Hugging Face: https://huggingface.co/datasets/Salesforce/lotsa_data. An exception to this is the GEF14 dataset, which we acquired from
 828 its original source (Hong et al., 2016) due to the absence of covariate data in the version available
 829 on Hugging Face.

831 **Table 1: Dataset Descriptions**

Dataset Name	Descriptions	Covariates	Source
EPF	Day-ahead electricity prices from five major power markets: Nord pool, PJM, FR, BE, and DE	load forecasts, wind generation	(Lago et al., 2021)
M5-daily	M5 competition using 30K hierarchical sales data from Walmar three states CA, TX and WI to forecast the daily sales for the next 28 days.	store ID, item ID, sell prices, week day, month, year, SNAP CA, SNAP TX, SNAP WI, event type	(Makridakis et al., 2022)
Retail	Corporación Favorita Grocery Sales Forecasting competition hosted in Kaggle.	store no., item no., on promotion, oil prices, week day, month, year, holidays events,	(Corporación Favorita, 2018)
BDG-2 Hog	The Building Data Genome 2 (BDG2) dataset in the Hog region. An open dataset that includes non-residential building-level data collected from 3053 electricity meters, which covers 1636 buildings.	air temperature, drew temperature, sea level pressure, wind direction, wind speed	(Miller et al., 2020; Wang et al., 2023; Woo et al., 2024)
BDG-2 Bull	BDG-2 dataset collected from Univ. of Texas at Austin.	air temperature, wind speed sea level pressure	(Miller et al., 2020; Wang et al., 2023; Woo et al., 2024)
BDG-2 Cockatoo	BDG-2 dataset collected from Cornell University.	air temperature	(Miller et al., 2020; Wang et al., 2023; Woo et al., 2024)
Covid19 Energy	3+ years of load data from the Day-Ahead Electricity Demand Forecasting Competition. The purpose is to study the impact of the Covid-19 on the power system.	air temperature	(Farrokhbadi et al., 2022; Wang et al., 2023)
GFC12	20 aggregated-level load series data from the Global Energy Forecasting Competition 2012	Randomly selected second temperature data because there is no one-to-one correspondance between the temperature and load data	(Hong et al., 2014; Wang et al., 2023; Woo et al., 2024)
GFC14	Seven years of load series data from the Global Energy Forecasting Competition 2014	Averaged temperature from the raw 25 temperature data series.	(Hong et al., 2016)
GFC17	Eight load data from year 2016 to 2017 originally from the Global Energy Forecasting Competition 2014	air temperature	(Hong et al., 2019; Wang et al., 2023; Woo et al., 2024)
PDB	Two years of PDB electric power load history data from the Kaggle data competition.	air temperature	(Yeafi, 2021; Wang et al., 2023; Woo et al., 2024)
Spain	Hourly energy demand generation and weather in five major cities in Spain. It is a Kaggle data competition.	air temperature of Barcelona	(J., 2019; Wang et al., 2023; Woo et al., 2024)

850 A.2 MULTI-MODAL DATASETS

853 To evaluate our approach, we utilized two distinct multi-modal datasets: Time-MMD (Liu et al.,
 854 2024a) and the Multimodal Solar Power (MMSP) dataset (Ma et al., 2024).

855 The Time-MMD dataset is a multi-domain resource encompassing nine diverse areas such as Agriculture, Climate, Health, and Traffic. It features paired textual and time series data, where the textual
 856 information is derived from curated reports and web search results, as detailed in (Liu et al., 2024a).
 857 Among the original 9 subsets, we exclude 2 sets (Agriculture and Economy) because we find no
 858 specialized method can outperform the Naive method, thus they may be unpredictable. We reserved
 859 20% of each dataset as the test set. Time-MMD allows for the investigation of models capable of
 860 integrating information across different modalities and domains.

862 The MMSP dataset comprises one and a half years of solar power generation records collected from
 863 88 individual plants. We select the first 10 series as in (Ma et al., 2024). Crucially, it includes temporally
 864 aligned heterogeneous covariates for each plant, consisting of satellite imagery and numerical

864
865 Table 2: Dataset Statistics. Dynamic covariates and past dynamic covariates are covariates that are
866 observed and unobserved in the forecasting horizon, respectively.
867

| 867
868
869
870
871
872
873
874
875
876
877 |
|---|---|---|---|---|---|---|---|---|---|
| Dataset Name | Domain | Num. Series | Freq. | Categorical Cov. | | Real Cov. | | Num. Obs. | Pred. Len. |
| | | | | Static | Dynamic | Dynamic | Past Dynamic | | |
| EPF | Energy/Price | 5 | H | 0 | 0 | 0 | 2 | 218,280 | 48 |
| M5-daily | Sales | 30,490 | D | 5 | 8 | 1 | 0 | 59,181,090 | 28 |
| Retail | Sales | 119,048 | D | 7 | 4 | 0 | 2 | 140,246,203 | 8 |
| BDG-2 Bull | Energy/Load | 41 | H | 0 | 0 | 0 | 3 | 719,304 | 48 |
| BDG-2 Cockatoo | Energy/Load | 1 | H | 0 | 0 | 0 | 1 | 17,544 | 48 |
| Covid19 Energy | Energy/Load | 1 | H | 0 | 0 | 0 | 1 | 31,912 | 48 |
| GFC12 | Energy/Load | 20 | H | 0 | 0 | 0 | 1 | 788,280 | 48 |
| GFC14 | Energy/Load | 1 | H | 0 | 0 | 0 | 1 | 60,600 | 48 |
| GFC17 | Energy/Load | 8 | H | 0 | 0 | 0 | 1 | 140,352 | 48 |
| BDG-2 Hog | Energy/Load | 24 | H | 0 | 0 | 0 | 5 | 421,056 | 48 |
| PDB | Energy/Load | 1 | H | 0 | 0 | 0 | 1 | 17,520 | 48 |
| Spain | Energy/Load | 1 | H | 0 | 0 | 0 | 1 | 35,064 | 48 |

878
879 Table 3: Multi-modal Dataset Descriptions
880

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900	881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900	881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900	881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900	Multi-Modal Covariates			881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900	881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900	
				Text	Image	Time Series			
Time-MMD	Time-MMD	Time-MMD	Time-MMD	Agriculture: retail broiler composite	USDA Broiler Market News Report; Daily National Broiler Market at a Glance, etc.	N/A	N/A	17,520	12
				Climate: US Precipitation Index	Drought Report National Climate Report	N/A	N/A	496	12
				Economy: US trade in goods with World	U.S. International Trade in Goods and Services Economic Indicators Report	N/A	N/A	423	12
				Energy: gasoline price	Annual Energy Outlook from EIA; Weekly Petroleum Status Report	N/A	N/A	1479	12
				Social Good: unemployment statistics in the US	monthly employment situations; annual labor force characteristics by race and ethnicity	N/A	N/A	900	12
				Public Health: InfluenzaLike Illness statistics	Weekly U.S. Influenza Surveillance Report Annual Flu Season Key Studies and News Reports	N/A	N/A	1389	12
				Environment: Outdoor air quality	Daily News	N/A	N/A	11,102	12
				Traffic: Traffic Volume Trends	Weekly Traffic Volume Report	N/A	N/A	531	12
				Security: Disaster and Emergency Grants	Billion-Dollar Weather and Climate Disasters; Disaster and emergency declarations	N/A	N/A	297	12
				Energy: Solar Power Generation	N/A	Satellite Images	Numerical Weather Predictions, (Latitude, Longitude)	1,129,920	24

901
902 weather predictions. This dataset provides a challenging real-world scenario for multi-modal learning-
903 ing, requiring the fusion of visual and numerical information to predict power output.
904

905 B COMPARED METHODS

906 In this section, we provide an overview of the baseline methods employed in our experiments, with
907 a focus on their methodological frameworks and covariate handling strategies. Each approach is an-
908 alyzed in terms of its integration of homogeneous covariates, highlighting strengths and limitations
909 in modeling external dependencies.
910

911 B.1 SPECIALIZED METHOD

912 **PatchTST (Nie et al., 2023)** PatchTST is a model that transforms time series into patches, which
913 are then encoded using a Transformer to produce forecasts. It involves two main components: Patch-
914 ing and Channel Independence. Patching divides time series into subseries-level patches, serving as
915 input tokens to the Transformer. This preserves local temporal patterns while minimizing compu-
916

tational complexity for attention maps, enabling longer history modeling. Channel Independence ensures that each channel uses the same embedding and Transformer weights, treating multivariate inputs as separate but parallel sequences. PatchTST does not incorporate covariate information in forecasting.

NBEATS (Oreshkin et al., 2019) NBEATS (Neural Basis Expansion Analysis for Time Series Forecasting) is a deep learning model designed for univariate time series forecasting. Its core idea is to decompose the time series into interpretable components, typically trend and seasonality, using stack-based architecture where each stack consists of multiple blocks. Each block learns to forecast a portion of the input series using basis expansion functions (approximated by fully connected layers) and subtracts its forecast from the input, passing the residual to the next block or stack. This iterative residual learning allows NBEATS to model complex patterns and achieve strong forecasting performance, often outperforming statistical and hybrid methods, while also offering some interpretability through its decomposition into basis function.

NBEATSx (Olivares et al., 2021) An extension of the purely univariate NBEATS model, NBEATSx incorporates covariates by appending them to the backcast and forecast layers in each neural block. It uses a dual-stack architecture (generic + interpretable) to model both nonlinear dependencies and explicit covariate effects. This makes it effective for scenarios where future covariates (e.g., planned events) are known.

DeepAR (Salinas et al., 2020) Developed by Amazon, DeepAR is a probabilistic RNN-based model that explicitly integrates covariates. Each time step’s dynamic covariates (e.g., temperature, price) are concatenated with the target variable and fed into the RNN. It assumes covariates are known for both training and prediction, making it ideal for applications like demand forecasting where external factors (e.g., marketing campaigns) drive outcomes.

TFT (Lim et al., 2019) Developed by Google, the Temporal Fusion Transformer (TFT) uses a modular design to integrate static covariates (e.g., store IDs), known future inputs (e.g., holidays), and observed variables (e.g., sales). It processes past covariates in the encoder and future covariates in the decoder via gated recurrent networks and variable selection networks. This hierarchical approach ensures robustness to missing or noisy covariates while maintaining interpretability.

TiDE (Das et al., 2023) TiDE (Time-series Dense Encoder) is a deep learning model for multi-variate time series forecasting, distinguished by its efficient, MLP-only architecture. It processes the historical lookback window of the target series and any available past covariates through a dense encoder to learn a latent representation. A separate MLP-based decoder then uses this representation, along with linearly projected future covariate information, to generate multi-step forecasts.

TimeXer (Wang et al., 2024b) TimeXer is a Transformer-based time series model that processes time series as sequences of patches. It uses a hierarchical structure with patch embedding, temporal encoding, and attention mechanisms to capture both short-term and long-term dependencies. TimeXer handles the covariates by employing the “variate-level embedding”. External covariates are embedded and then integrated directly into the patch representations of the target time series. This allows the model to learn how these external factors influence the internal time series dynamics at the patch level, enabling the model to account for the impact of these exogenous variables in its predictions.

B.2 PRETRAINED METHOD

Moirai (Woo et al., 2024)³ Moirai, a time series foundation model from Salesforce, is engineered for universal forecasting across diverse time series data. At its core, Moirai utilizes a Transformer-based architecture and is pre-trained on a massive and varied dataset called LOTSA. A key architectural component is its ability to handle any number and type of covariates, both those known in the future and those that are not. Moirai achieves this by conditioning its probabilistic forecast generation, which uses a flexible output distribution, on these covariates, allowing the model to produce forecasts that are informed by the provided exogenous variables.

³<https://huggingface.co/Salesforce/moirai-1.1-R-small>

972 **TabPFN-TS (Hoo et al., 2025)** ⁴ TabPFN-TS, a regression variant of the TabPFN(Hollmann et al.,
 973 2025) model to time series, is a foundation model pre-trained on pure artificial datasets, enabling
 974 few-shot time series forecasting. When incorporating covariate data, TabPFN-TS typically treats
 975 these exogenous variables as additional features. These covariate features are then concatenated
 976 with the temporal information before being processed by its Transformer-based architecture, which
 977 is adapted for tabular data. The model’s pre-training on tabular data allows it to potentially learn
 978 complex relationships between all input features, including the covariates, even with limited time
 979 series-specific training.

980 **Time-MoE** See section C.4 for the model details.

981 **Chronos-Bolt** See section C.4 for the model details.

982 **TimesFM** See section C.4 for the model details.

983 B.3 MULTIMODAL METEHOD

984 **Time-LLM** Time-LLM (Jin et al., 2024) is a foundation model that adapts a pre-trained Large
 985 Language Model (LLM) for general-purpose time series analysis. Instead of full fine-tuning, it
 986 employs a lightweight “reprogramming” layer. This layer transforms input time series into a text-
 987 prototype format that the frozen LLM can process. By aligning the LLM’s inherent sequence model-
 988 ing capabilities with statistical time series patterns, Time-LLM can perform diverse tasks like fore-
 989 casting, classification, and anomaly detection through simple text prompts, leveraging the LLM’s
 990 reasoning abilities while remaining computationally efficient.

991 **ChatTime** ChatTime (Wang et al., 2025) is a multimodal time series foundation model designed
 992 as a single, end-to-end language model that directly processes interleaved sequences of numerical
 993 time series data and natural language. It introduces key innovations, including a unified time series
 994 tokenizer that represents time series patches as discrete tokens and a temporal-aware attention mech-
 995 anism to effectively capture complex temporal dependencies. By training on this mixed-modality
 996 input, ChatTime can perform diverse analysis tasks like forecasting and classification through a
 997 conversational interface, directly interpreting and responding to queries about the provided data. We
 998 used the checkpoint ChengsenWang/ChatTime-1-7B-Chat⁵ released by the authors in our exper-
 999 iment.

1000 B.4 FINETUNED METHOD

1001 Supervised Fine-Tuning (SFT) is the process of adapting a pre-trained Time Series Foundation
 1002 Model (TSFM) to a specific downstream task or dataset by further training it on target-specific
 1003 labeled data. This allows the model to leverage its general time series understanding learned during
 1004 pre-training and specialize its parameters for improved performance on the new, specific time se-
 1005 ries. In our implementation, we utilized the target time series without the covariates and adopted the
 1006 same hyperparameters (e.g., learning rate) and data split as UniCA for consistency. During training,
 1007 the model adjusts its pre-learned weights to better align with the characteristics of the target series,
 1008 enhancing specialization for the task at hand.

1009 B.5 ADAPTER METHOD

1010 **Linear Regression (LR) Adapter.** In our experiments, we leveraged exogenous variables using a
 1011 linear regression methodology inspired by the approaches of the Chronos(Ansari et al., 2024) and
 1012 TimeFM(Das et al., 2024) time series foundation models. This regressor approach involves decom-
 1013 posing the target series into two components: contributions from the covariates and the target itself.
 1014 Initially, we perform a regression of the target variable against the known covariates. Subsequently,
 1015 we subtract the predicted target values from the actual target values to compute the residuals. These
 1016 residuals serve as the context for the time series foundation models, which forecast future residuals.

1024 ⁴<https://huggingface.co/Prior-Labs/TabPFN-v2-reg>

1025 ⁵<https://huggingface.co/ChengsenWang/ChatTime-1-7B-Chat>

1026 Table 4: Overview of the baseline models, grouped by type and implementation source. We utilized
 1027 implementations from the popular time series libraries GluonTS and NeuralForecast, or the official
 1028 author repository (marked as “Reference”). All experiments were conducted using the default hy-
 1029 perparameters provided by the respective implementation.

1031	Model	Type	Implementation
1032	PatchTST	Specialized	GluonTS
1033	NBEATS	Specialized	GluonTS
1034	DeepAR	Specialized	GluonTS
1035	TFT	Specialized	GluonTS
1036	TiDE	Specialized	GluonTS
1037	NBEATSx	Specialized	NeuralForecast
1038	TimeXer	Specialized	NeuralForecast
1039	Moirai	Pretrained	Reference
1040	TimesFM	Pretrained	Reference
1041	TabPFN-TS	Pretrained	Reference
1042	TTM-R2	Pretrained/Adapter	Reference
1043	FusionSF	Multimodal	Reference
1044	Time-LLM	Multimodal	Reference
1045	ChatTime	Multimodal	Reference

1046
 1047
 1048 The ultimate forecasts are obtained by summing the predicted residuals with the target forecasts
 1049 derived from the covariates.

1050 A notable limitation of the covariate regressor approach is its reliance on covariates that are known
 1051 over the forecasting horizon, such as dynamic categorical and dynamic real covariates. Past covari-
 1052 ates, including past dynamic categorical and past dynamic real covariates, are only available for the
 1053 context window. To address this limitation, we employ the corresponding TSFM to forecast these
 1054 past covariates into the horizon, thus extending their utility beyond the context window.

1055
 1056 **TTM (Ekambaram et al., 2024)** ⁶ Tiny Time Mixers (TTM) are compact models for multivari-
 1057 ate time series forecasting, featuring only 1 million parameters. Built on the efficient TSMixer ar-
 1058 chitecture, TTM use MLPMixer blocks with simple gated attention, offering a faster alternative
 1059 to traditional Transformer self-attention mechanisms. TTM are pre-trained on diverse, large-scale
 1060 datasets from Monash and LibCity, encompassing various domains and temporal scales. TTM’s ar-
 1061 chitecture addresses data heterogeneity through innovations such as Adaptive Patching for adjusting
 1062 patch lengths, Diverse Resolution Sampling for enhancing generalization across resolutions, and
 1063 Resolution Prefix Tuning for embedding resolution info in training. This approach allows TTM to
 1064 excel in resource-limited settings by initially training models channel-independently, followed by
 1065 fine-tuning to integrate target and exogenous channel correlations.

1066 C IMPLEMENTATION DETAILS

1069 C.1 CODE AVAILABILITY

1071 Our code has been made anonymous and is available at [https://anonymous.4open.
 1072 science/r/UniCA-C5E0](https://anonymous.4open.science/r/UniCA-C5E0).

1074 C.2 COMPUTE RESOURCE INFORMATION

1076 For all the experiments, we use 4 GeForce RTX 3090. For baselines, we used cpu instances with 40
 1077 virtual cpus and 384 GiB of memory. The library requirement for reproducing the results is available
 1078 on the above repository.

1079 ⁶<https://huggingface.co/ibm-granite/granite-timeseries-ttm-r2>

1080
1081

C.3 PREPROCESSING

1082
1083
1084
1085
1086
1087
1088
1089
1090

We mainly follow the series preprocessing pipeline proposed in TFT (Lim et al., 2019). We impute missing values in both the target and covariate series using forward filling and add a corresponding binary indicator to mark the imputed timesteps. The time features are generated based on the time series frequency (e.g., hour, weekday, month as periodic features). Then, the time features are vertically stacked with known dynamic features to form a unified feature matrix. Missing static features are filled with a default value of zero. Finally, each time series is assigned a unique identifier to distinguish it in multi-series forecasting. This ensures that the resulting data format meets the input requirements of deep learning models, providing a normalized representation for time series forecasting.

1091
1092
1093
1094
1095
1096

C.4 ARCHITECTURE OF TSFM

1097
1098
1099
1100
1101
1102
1103
1104

In this section, we detail the tokenization, encoding, and decoding procedures of two time series foundation models: Chronos and TimesFM. These decomposition steps provide a clearer understanding of their internal mechanisms and differences.

1105
1106
1107
1108
1109
1110
1111
1112
1113

Chronos-Bolt (Ansari et al., 2024). ⁷ Chronos-Bolt adopts an encoder-decoder architecture based on T5. During tokenization, the input time series undergoes instance normalization. It is then segmented into patches along with its mask, and the two streams are concatenated before embedding. An optional [REG] token can be added to support regression-style outputs. The encoder transforms the tokenized inputs via a stack of T5 encoders, generating contextualized hidden states. These are fed to the decoder, which performs sequence generation conditioned on attention masks, and yields multiple quantile forecasts. Extended prediction lengths are handled through decoding extrapolation. All outputs are rescaled back using stored normalization parameters.

1114
1115
1116
1117
1118
1119
1120
1121
1122
1123

TimesFM (Das et al., 2024). ⁸ TimesFM utilizes a Transformer decoder-only architecture. The tokenization stage includes preprocessing, fixed-length patching, and normalization via mean and standard deviation. Patches are augmented with mask features and projected into embedding space, optionally with positional encodings. The encoder applies multi-layer self-attention to obtain contextual representations. The decoder operates in an auto-regressive manner, iteratively generating future values. Outputs include both mean and quantile predictions, which are de-normalized to restore the original scale. TimesFM also supports frequency-based conditioning and hybrid-frequency modeling for improved multi-scale forecasting.

1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Time-MoE (Shi et al., 2024) ⁹ Time-MoE is the first billion-scale time-series foundation model that marries a decoder-only Transformer with a sparse mixture-of-experts (MoE) backbone to boost capacity without proportional inference cost. Each Transformer block replaces the dense feed-forward layer with a shared pool of eight experts, and a learned router sparsely activates just two experts per token, while rotary positional embeddings and RMSNorm enhance stability. The authors pre-train three variants—Time-MoE-base (50 M activated / 113 M total parameters), Time-MoE-large (200 M / 453 M) and Time-MoE-ultra (1.1 B activated / 2.4 B total)—all support channel-independent forecasting for arbitrary horizons via a multi-resolution head. Training uses Huber loss and the newly curated Time-300B corpus: \approx 48 M sequences and $>$ 300 billion time points drawn from nine domains.

C.5 ALGORITHM OF UNICA

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
222210
222211
222212
222213
222214
222215
222216
222217
222218
222219
222220
222221
222222
222223
222224
222225
222226
222227
222228
222229
2222210
2222211
2222212
2222213
2222214
2222215
2222216
2222217
2222218
2222219
2222220
2222221
2222222
2222223
2222224
2222225
2222226
2222227
2222228
2222229
22222210
22222211
22222212
22222213
22222214
22222215
22222216
22222217
22222218
22222219
22222220
22222221
22222222
22222223
22222224
22222225
22222226
22222227
22222228
22222229
222222210
222222211
222222212
222222213
222222214
222222215
222222216
222222217
222222218
222222219
222222220
222222221
222222222
222222223
222222224
222222225
222222226
222222227
222222228
222222229
2222222210
2222222211
2222222212
2222222213
2222222214
2222222215
2222222216
2222222217
2222222218
2222222219
2222222220
2222222221
2222222222
2222222223
2222222224
2222222225
2222222226
2222222227
2222222228
2222222229
22222222210
22222222211
22222222212
22222222213
22222222214
22222222215
22222222216
22222222217
22222222218
22222222219
22222222220
22222222221
22222222222
22222222223
22222222224
22222222225
22222222226
22222222227
22222222228
22222222229
222222222210
222222222211
222222222212
222222222213
222222222214
222222222215
222222222216
222222222217
222222222218
222222222219
222222222220
222222222221
222222222222
222222222223
222222222224
222222222225
222222222226
222222222227
222222222228
222222222229
2222222222210
2222222222211
2222222222212
2222222222213
2222222222214
2222222222215
2222222222216
2222222222217
2222222222218
2222222222219
2222222222220
2222222222221
2222222222222
2222222222223
2222222222224
2222222222225
2222222222226
2222222222227
2222222222228
2222222222229
22222222222210
22222222222211
22222222222212
22222222222213
22222222222214
22222222222215
22222222222216
22222222222217
22222222222218
22222222222219
22222222222220
22222222222221
22222222222222
22222222222223
22222222222224
22222222222225
22222222222226
22222222222227
22222222222228
22222222222229
222222222222210
222222222222211
222222222222212
222222222222213
222222222222214
222222222222215
222222222222216
222222222222217
222222222222218
222222222222219
222222222222220
222222222222221
222222222222222
222222222222223
222222222222224
222222222222225
222222222222226
222222222222227
222222222222228
222222222222229
2222222222222210
2222222222222211
2222222222222212
2222222222222213
2222222222222214
2222222222222215
2222222222222216
2222222222222217
2222222222222218
2222222222222219
2222222222222220
2222222222222221
2222222222222222
2222222222222223
2222222222222224
2222222222222225
2222222222222226
2222222222222227
2222222222222228
2222222222222229
22222222222222210
22222222222222211
22222222222222212
22222222222222213
22222222222222214
22222222222222215
22222222222222216
22222222222222217
22222222222222218
22222222222222219
22222222222222220
22222222222222221
2222

1134 Table 5: Comparison between Chronos-Bolt, TimesFM and Time-MoE in terms of model architec-
 1135 ture and processing steps.

1136

1137 Component	1138 Chronos-Bolt	1139 TimesFM	1140 Time-MoE
1141 Architecture	1142 T5-based encoder-decoder	1143 Decoder-only	1144 Decoder-only
1145 Tokenizer	1146 Patch-based Residual MLP	1147 Patch-based Residual MLP	1148 Point-based Gated Linear
1149 Encoder	1150 T5 encoder stack	1151 Custom Transformer	1152 Custom Transformer
1153 Predictor	1154 T5 decoder	1155 Residual MLP	1156 Linear
1157 Prediction Output	1158 Multiple quantile predictions	1159 Mean and quantile predictions	1160 Point predictions

1161

1162

1163 the *Pre-Fusion Module*, we integrate historical covariate information into the tokenized target se-
 1164 quence using a conditional global attention mechanism followed by a gating unit. This enriched se-
 1165 quence is passed to the pretrained encoder of the TSFM to extract temporal patterns. After encoding,
 1166 the *Post-Fusion Module* incorporates future-known covariates using another attention-based fusion
 1167 mechanism, allowing the model to dynamically select complementary covariate signals. Finally, the
 1168 predictor of the TSFM generates the future forecasts from the fused representation. This modular
 1169 workflow enables UniCA to flexibly and effectively adapt general-purpose TSFMs to covariate-rich
 1170 forecasting scenarios, while preserving the pretrained temporal modeling capabilities.

1171

1172

Algorithm 1 UniCA: Unified Covariate Adaptation for TSFM

1173 **Require:** Target series $Y_{1:T}$, static covariates S , dynamic covariates $C_{1:T+H} = \{C_{1:T}, C_{T+1:T+H}\}$, pretrained TSFM $(\mathcal{T}, \mathcal{E}, \mathcal{P})$
 1174 **Ensure:** Forecast $\hat{Y}_{T+1:T+H}$

1175 1: **Covariate Homogenization:**
 1176 2: **for** each heterogeneous covariate **do**
 1177 3: Encode modality to dense feature $H^{(het)}$
 1178 4: Convert to homogeneous covariate via covariate homogenizer $C^{(het)} = \text{CH}(H^{(het)})$
 1179 5: **end for**
 1180 6: Concatenate all homogeneous covariates: $C \leftarrow \{C, C^{(het)}\}$
 1181 7: **Pre-Fusion Module:**
 1182 8: Tokenize past target: $Z = \mathcal{T}(Y_{1:T})$
 1183 9: Tokenize past covariates: $E_{C_{1:T}} = \mathcal{T}(C_{1:T})$
 1184 10: Embed static covariates: $E_S = \rho(S)$
 1185 11: Compute conditional attention: $Z_{C_{1:T}} = \text{CondAttnPool}(E_{C_{1:T}} \mid E_S)$
 1186 12: Fuse covariates with GLU: $\tilde{Z} = Z + \text{GLU}(Z_{C_{1:T}})$
 1187 13: **Temporal Encoding:**
 1188 14: Encode fused sequence: $\tilde{H} = \mathcal{E}(\tilde{Z})$
 1189 15: **Post-Fusion Module:**
 1190 16: Tokenize future covariates: $E_{C_{T+1:T+H}} = \mathcal{T}(C_{T+1:T+H})$
 1191 17: Compute conditional attention: $Z_{C_{T+1:T+H}} = \text{CondAttnPool}(E_{C_{T+1:T+H}} \mid E_S)$
 1192 18: Fuse via self-attention: $[\hat{H}, \hat{Z}_{C_{T+1:T+H}}] = \text{SelfAttn}([\tilde{H}, Z_{C_{T+1:T+H}}])$
 1193 19: **Forecasting:**
 1194 20: Predict target: $\hat{Y}_{T+1:T+H} = \mathcal{P}(\hat{H})$

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

C.6 OPTIMIZATION

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

To prevent overfitting, early stopping is implemented based on validation loss. Training proceeds in mini-batches, with each epoch comprising 50 gradient steps. Model checkpoints are saved corresponding to the epoch that yields the best validation performance.

C.7 HYPERPARAMTERS

For all experiments, we search the hyperparameters listed in table 6.

Table 6: Key hyperparameters, their search spaces, or fixed values used in training UniCA across all datasets.

Hyperparameter	Value / Range	Description
Learning rate	{1e-3,1e-4,1e-5,1e-6}	Initial learning rate for Adam optimizer
Weight decay	{1e-2,1e-4,1e-6}	L2 regularization weight
Scheduler patience	5	Epochs to wait before reducing LR
Scheduler factor	0.5	Multiplicative factor for LR reduction
Batch size	{8,16,32,64}	Number of samples per training batch
Max epochs	100	Maximum number of training epochs
Early stopping patience	10	Epochs to wait for improvement before stopping
Context length	TSFM-specific	Length of input window for encoder
Prediction length	Dataset-specific	Length of prediction window
Embedding dimension	TSFM-specific	Dimension of input embeddings
Homogenizatoin dimension	{1,2,4,8,16}	Dimension of homogenized series of each heterogeneous covariate

D EXPERIMENT DETAILS

D.1 TRAIN-TEST SPLITTING.

The train-test follows the setups in (Aksu et al., 2024). For datasets with large number of series, *i.e.* M5 (Makridakis et al., 2022) and Retail (Lim et al., 2019), we spare the last "prediction length" of each series for test and all the observed points before the test points are used for training. For other datasets, we partition 10% of the data as the test set and apply a sliding window approach for evaluation, with a step size of 1 (Zhou et al., 2021). Among the training points, we also split the validation points.

D.2 EVALUATION METRICS

We use four metrics to evaluate performance of forecasters: Mean Absolute Error (MAE), Mean Square Error (MSE), Mean Absolute Percentage Error (MAPE) for point forecasting ability, and Continuous Ranked Probability Score (CRPS) for probabilistic forecasting. For all metrics, we use GluonTS library implementation to calculate final values (Alexandrov et al., 2020).

MAE The *Mean Absolute Error* (MAE) is a commonly used evaluation metric in time series forecasting that measures the average magnitude of errors between predicted and actual values, without considering their direction. It is defined as:

$$\text{MAE} = \frac{1}{n} \sum_{t=1}^n |Y_t - \hat{Y}_t|,$$

1242 where:

1243

- 1244 • Y_t is the ground truth value at time step t ,
- 1245 • \hat{Y}_t is the predicted value at time step t ,
- 1246 • n is the total number of observations.

1247 MAE is scale-dependent and expresses the error in the same units as the data, making it directly
1248 interpretable. It is robust to outliers compared to squared-error metrics, but does not penalize large
1249 errors as heavily as MSE.

1250 **MSE** The *Mean Squared Error* (MSE) quantifies the average of the squared differences between
1251 predicted and actual values. It is defined as:

$$1255 \quad 1256 \quad 1257 \quad \text{MSE} = \frac{1}{n} \sum_{t=1}^n (Y_t - \hat{Y}_t)^2,$$

1258 where:

1259

- 1260 • Y_t is the actual value at time t ,
- 1261 • \hat{Y}_t is the forecasted value at time t ,
- 1262 • n is the number of observations.

1263 MSE penalizes larger errors more severely due to the squaring operation, which makes it particularly
1264 sensitive to outliers. Like MAE, MSE is also scale-dependent, and it is widely used in regression
1265 and forecasting tasks due to its mathematical properties that facilitate optimization.

1266 **MAPE** MAPE is an evaluation metric used to measure the accuracy of forecasts in time series
1267 analysis. It is defined as the mean of the absolute percentage differences between the actual values
1268 Y_t and the predicted values \hat{Y}_t . The formula for MAPE is:

$$1272 \quad 1273 \quad 1274 \quad \text{MAPE} = \frac{1}{n} \sum_{t=1}^n \left| \frac{Y_t - \hat{Y}_t}{Y_t} \right|,$$

1275 where:

1276

- 1277 • Y_t is the actual value at time t ,
- 1278 • \hat{Y}_t is the forecasted value at time t ,
- 1279 • n is the number of observations.

1280 This metric expresses the forecast error as a percentage of the actual values, making it scale-
1281 independent and easy to interpret. However, it is sensitive to values of Y_t that are zero or close
1282 to zero, as this can lead to division by zero or inflated error percentages.

1283 **CRPS** The *Continuous Ranked Probability Score* (CRPS) is a metric used in probabilistic forecasting
1284 to evaluate the accuracy of predicted cumulative distribution functions (CDFs) against observed
1285 values. Given a predicted distribution with CDF F and a ground truth value y , the CRPS is defined
1286 as:

$$1290 \quad 1291 \quad 1292 \quad \text{CRPS}(F, y) = \int_0^1 2\Lambda_\alpha(F^{-1}(\alpha), y) d\alpha,$$

1293 where the quantile loss $\Lambda_\alpha(q, y)$ is defined as:

$$1294 \quad \Lambda_\alpha(q, y) = (\alpha - \mathbf{1}\{y < q\})(y - q).$$

In practice, computing the CRPS integral can be computationally intensive. To address this, we approximate the CRPS using a discrete sum over a finite set of quantile levels. This approximation, often referred to as the mean weighted quantile loss (Park et al., 2022), is given by:

$$\text{CRPS} \approx \frac{1}{K} \sum_{k=1}^K \text{wQL}[\alpha_k],$$

where K is the number of quantile levels, and $\{\alpha_1, \alpha_2, \dots, \alpha_K\}$ are the selected quantile levels (e.g., $\alpha_k = 0.1k$ for $k = 1, 2, \dots, 9$ when $K = 9$).

The weighted quantile loss $\text{wQL}[\alpha]$ for each quantile level α is calculated as:

$$\text{wQL}[\alpha] = 2 \frac{\sum_t \Lambda_\alpha(\hat{q}_t(\alpha), y_t)}{\sum_t |y_t|},$$

where:

- $\hat{q}_t(\alpha)$ is the predicted α -quantile at time step t ,
- y_t is the actual observed value at time t ,
- $\Lambda_\alpha(\hat{q}_t(\alpha), y_t)$ is the quantile loss at time t for quantile level α .

E FULL RESULTS

E.1 ROBUSTNESS EVALUATION VIA ERROR BARS.

To evaluate the robustness of UniCA under different random seeds, we conduct experiments with seed values $\{41, 42, 43, 44, 45\}$ on all uni-modal datasets and report the average performance along with 1-sigma standard deviation (mean \pm std), as shown in Table 7. Specifically, “C. (UniCA)” and “T. (UniCA)” denote the proposed UniCA framework built on top of Chronos Bolt and TimesFM, respectively.

The results demonstrate that UniCA consistently achieves strong performance with low variance across all metrics, indicating its robustness against random initialization. For example, on the GFC17 dataset, the MSE is 0.096 ± 0.003 for Chronos-based UniCA and 0.094 ± 0.004 for TimesFM-based UniCA, showcasing both accuracy and stability. This pattern holds across other datasets, supporting the statistical reliability and generalization ability of UniCA regardless of the underlying backbone.

Table 7: Error bar results of UniCA on uni-modal datasets. “C.” and “T.” indicate UniCA instantiated with Chronos-Bolt and TimesFM, respectively. All results are averaged over five runs with random seeds $\{41, 42, 43, 44, 45\}$ and are reported as mean \pm standard deviation (1-sigma).

	Average	Bull	Cockatoo	COVID19	EPF	GFC12	GFC14	GFC17	Hog	M5	pdb	Retail	Spain	
C. (UniCA)	Average	0.457 \pm 0.001	0.690 \pm 0.004	0.822 \pm 0.000	0.144 \pm 0.000	0.434 \pm 0.002	0.459 \pm 0.010	0.319 \pm 0.002	0.241 \pm 0.004	0.716 \pm 0.005	0.613 \pm 0.001	0.190 \pm 0.002	0.656 \pm 0.007	0.196 \pm 0.002
	MAE	0.509 \pm 0.001	0.809 \pm 0.002	0.874 \pm 0.000	0.178 \pm 0.000	0.440 \pm 0.001	0.505 \pm 0.012	0.361 \pm 0.002	0.290 \pm 0.005	0.781 \pm 0.004	0.699 \pm 0.002	0.228 \pm 0.002	0.712 \pm 0.005	0.230 \pm 0.002
	MAPE	0.506 \pm 0.002	0.639 \pm 0.014	0.820 \pm 0.002	0.179 \pm 0.000	0.645 \pm 0.004	0.559 \pm 0.009	0.395 \pm 0.002	0.286 \pm 0.004	0.683 \pm 0.005	0.764 \pm 0.002	0.220 \pm 0.002	0.655 \pm 0.017	0.225 \pm 0.002
	MSE	0.383 \pm 0.002	0.700 \pm 0.005	0.746 \pm 0.000	0.041 \pm 0.000	0.356 \pm 0.002	0.285 \pm 0.010	0.166 \pm 0.002	0.096 \pm 0.003	0.701 \pm 0.006	0.566 \pm 0.002	0.078 \pm 0.001	0.769 \pm 0.003	0.089 \pm 0.001
T. (UniCA)	CRPS	0.429 \pm 0.001	0.610 \pm 0.002	0.848 \pm 0.000	0.178 \pm 0.000	0.293 \pm 0.001	0.487 \pm 0.010	0.354 \pm 0.002	0.292 \pm 0.002	0.700 \pm 0.006	0.424 \pm 0.001	0.232 \pm 0.002	0.489 \pm 0.004	0.239 \pm 0.002
	Average	0.472 \pm 0.001	0.730 \pm 0.001	0.838 \pm 0.001	0.143 \pm 0.000	0.440 \pm 0.002	0.468 \pm 0.002	0.321 \pm 0.002	0.237 \pm 0.005	0.766 \pm 0.003	0.612 \pm 0.001	0.180 \pm 0.002	0.655 \pm 0.008	0.267 \pm 0.008
	MAE	0.526 \pm 0.001	0.876 \pm 0.005	0.886 \pm 0.001	0.178 \pm 0.000	0.452 \pm 0.001	0.512 \pm 0.002	0.359 \pm 0.002	0.285 \pm 0.006	0.836 \pm 0.003	0.701 \pm 0.000	0.221 \pm 0.002	0.709 \pm 0.003	0.305 \pm 0.009
	MAPE	0.514 \pm 0.002	0.668 \pm 0.011	0.812 \pm 0.001	0.178 \pm 0.000	0.643 \pm 0.005	0.564 \pm 0.002	0.402 \pm 0.004	0.282 \pm 0.005	0.726 \pm 0.015	0.737 \pm 0.002	0.210 \pm 0.003	0.648 \pm 0.027	0.296 \pm 0.009
MSE	0.403 \pm 0.001	0.757 \pm 0.006	0.784 \pm 0.001	0.040 \pm 0.000	0.364 \pm 0.001	0.299 \pm 0.002	0.168 \pm 0.001	0.094 \pm 0.004	0.758 \pm 0.006	0.587 \pm 0.001	0.068 \pm 0.001	0.776 \pm 0.004	0.147 \pm 0.007	
	CRPS	0.445 \pm 0.001	0.655 \pm 0.004	0.870 \pm 0.001	0.177 \pm 0.000	0.302 \pm 0.001	0.499 \pm 0.002	0.354 \pm 0.001	0.287 \pm 0.005	0.746 \pm 0.005	0.426 \pm 0.000	0.222 \pm 0.002	0.485 \pm 0.001	0.318 \pm 0.009

E.2 UNIMODAL FORECASTING

Main results. To provide a comprehensive comparison across all baseline and proposed methods, we report the detailed forecasting results on the 12 unimodal covariate-aware datasets in Table 8. This includes performance across four common evaluation metrics: MAE, MAPE, MSE, and CRPS. The models compared include traditional baselines (e.g., NBEATS, DeepAR, TFT), pretrained foundation models (e.g., TimesFM, Chronos), and our proposed adaptation strategies (UniCA, SFT, LR, ZS). We average each metric across all datasets and report both the raw values and metric-wise ranks.

To further illustrate the relative performance of each method, Figure 6 shows the average rank of each model across all datasets under each metric. Lower rank indicates better performance. As shown, our method **Chronos-Bolt (UniCA)** consistently outperforms all others in all four evaluation metrics. Notably, both Chronos and TimesFM, when adapted using UniCA, achieve significant improvements over their zero-shot and fine-tuned variants.

Table 8: Forecasting results on 12 unimodal covariate datasets.

		PatchTST	DeepAR	TFT	TIDE	NBEATsX	TimeXer	TTM	Moirai	TabPFN-TS	ChronosX	Chronos (Bolt)				TimesFM				Time-MoE	
												ZS	SFT	LR	UniCA	ZS	SFT	LR	UniCA	ZS	UniCA
Average		0.573	0.743	0.535	0.588	0.554	0.732	0.556	0.539	0.536	0.518	0.472	0.480	0.494	0.457	0.473	0.539	0.493	0.472	0.912	0.808
MAE		0.616	0.806	0.596	0.640	0.600	0.743	0.595	0.604	0.590	0.527	0.521	0.526	0.540	0.509	0.530	0.587	0.546	0.526	0.843	0.796
MAPE		0.633	0.718	0.596	0.649	0.608	0.738	0.592	0.593	0.600	0.580	0.522	0.514	0.569	0.506	0.523	0.598	0.557	0.514	0.946	0.938
MSE		0.531	0.726	0.449	0.525	0.482	0.752	0.440	0.462	0.467	0.471	0.403	0.418	0.413	0.383	0.402	0.466	0.405	0.403	0.971	0.643
CRPS		0.510	0.722	0.499	0.537	0.525	0.696	0.598	0.498	0.488	0.494	0.441	0.460	0.456	0.429	0.437	0.506	0.463	0.445	0.887	0.853
Average		0.758	0.796	0.794	0.795	0.797	0.849	0.783	0.701	0.776	0.782	0.722	0.719	0.716	0.690	0.716	0.723	0.715	0.739	0.892	0.848
MAE		0.871	0.924	0.902	0.881	0.886	0.948	0.869	0.857	0.874	0.862	0.835	0.828	0.815	0.809	0.842	0.837	0.831	0.876	0.968	0.923
MAPE		0.841	0.730	0.809	0.836	0.850	0.916	0.783	0.609	0.762	0.775	0.671	0.686	0.710	0.639	0.679	0.697	0.720	0.668	0.962	0.914
MSE		0.693	0.826	0.809	0.786	0.775	0.798	0.701	0.723	0.835	0.841	0.753	0.744	0.713	0.700	0.730	0.728	0.696	0.757	0.823	0.763
CRPS		0.629	0.705	0.656	0.676	0.677	0.734	0.775	0.616	0.634	0.650	0.628	0.622	0.603	0.610	0.611	0.631	0.613	0.655	0.814	0.790
Average		0.820	0.816	0.777	0.892	0.966	1.934	0.920	0.824	0.939	0.882	0.823	0.953	0.830	0.822	0.818	1.403	0.805	0.838	0.965	0.945
MAE		0.869	0.865	0.827	0.941	0.972	1.738	0.926	0.876	0.971	0.913	0.876	0.977	0.871	0.874	0.875	1.399	0.852	0.886	0.972	0.957
MAPE		0.836	0.853	0.800	0.861	0.906	1.498	0.815	0.831	0.936	0.864	0.803	0.867	0.795	0.820	0.803	1.364	0.782	0.812	0.891	0.874
MSE		0.741	0.732	0.683	0.850	1.002	2.835	0.822	0.761	0.931	0.826	0.755	0.927	0.774	0.746	0.769	1.440	0.729	0.784	0.905	0.879
CRPS		0.835	0.814	0.799	0.915	0.993	1.666	1.116	0.827	0.917	0.924	0.857	1.045	0.881	0.848	0.845	1.409	0.859	0.870	1.093	1.072
Average		0.221	0.186	0.324	0.219	0.272	0.235	0.231	0.264	0.166	0.144	0.140	0.170	0.144	0.143	0.169	0.168	0.143	0.730	0.764	
MAE		0.444	0.271	0.229	0.388	0.259	0.319	0.267	0.277	0.313	0.204	0.178	0.170	0.210	0.178	0.179	0.207	0.207	0.178	0.804	0.834
MAPE		0.458	0.277	0.229	0.398	0.257	0.315	0.266	0.272	0.311	0.205	0.178	0.172	0.212	0.179	0.179	0.207	0.208	0.178	0.804	0.843
MSE		0.191	0.078	0.061	0.146	0.092	0.131	0.082	0.104	0.142	0.054	0.041	0.058	0.052	0.041	0.040	0.048	0.052	0.040	0.564	0.594
CRPS		0.414	0.258	0.225	0.367	0.267	0.323	0.325	0.270	0.291	0.202	0.180	0.177	0.205	0.178	0.174	0.213	0.204	0.177	0.750	0.785
Avg		0.506	0.638	0.542	0.577	0.489	0.626	0.539	0.574	0.528	0.577	0.465	0.423	0.450	0.434	0.449	0.465	0.436	0.440	0.762	0.767
MAE		0.526	0.875	0.574	0.622	0.514	0.663	0.546	0.626	0.541	0.499	0.461	0.442	0.469	0.440	0.459	0.487	0.468	0.452	0.826	0.826
MAPE		0.740	0.534	0.750	0.797	0.688	0.897	0.779	0.772	0.808	0.705	0.725	0.597	0.654	0.645	0.657	0.655	0.589	0.643	1.007	1.031
MSE		0.413	0.554	0.466	0.476	0.407	0.507	0.416	0.482	0.412	0.771	0.365	0.357	0.366	0.356	0.378	0.397	0.376	0.364	0.623	0.613
CRPS		0.345	0.589	0.377	0.412	0.346	0.439	0.415	0.418	0.352	0.335	0.307	0.295	0.309	0.293	0.300	0.320	0.311	0.302	0.594	0.596
Average		0.522	0.817	0.648	0.568	0.511	0.571	0.578	0.521	0.534	0.501	0.479	0.469	0.509	0.459	0.476	0.490	0.537	0.468	0.815	0.818
MAE		0.574	0.880	0.694	0.620	0.559	0.625	0.591	0.571	0.585	0.546	0.525	0.510	0.548	0.505	0.523	0.535	0.532	0.512	0.838	0.841
MAPE		0.616	0.751	0.764	0.661	0.601	0.649	0.640	0.624	0.619	0.595	0.576	0.560	0.987	0.559	0.575	0.601	0.676	0.872	0.881	
MSE		0.345	0.729	0.471	0.391	0.327	0.396	0.368	0.346	0.375	0.335	0.306	0.302	0.323	0.285	0.311	0.304	0.317	0.299	0.670	0.670
CRPS		0.551	0.908	0.654	0.600	0.557	0.613	0.715	0.543	0.558	0.526	0.511	0.502	0.536	0.487	0.497	0.519	0.529	0.499	0.879	0.882
Average		0.349	1.279	0.361	0.376	0.324	0.268	0.398	0.362	0.361	0.339	0.331	0.324	0.344	0.319	0.320	0.330	0.337	0.321	0.707	0.727
MAE		0.391	1.205	0.405	0.421	0.364	0.325	0.438	0.413	0.403	0.368	0.363	0.385	0.361	0.368	0.375	0.359	0.059	0.059	0.059	0.059
MAPE		0.446	1.201	0.449	0.454	0.405	0.313	0.497	0.440	0.449	0.401	0.411	0.409	0.428	0.395	0.401	0.423	0.425	0.402	1.463	1.485
MSE		0.181	1.204	0.198	0.212	0.168	0.215	0.222	0.195	0.202	0.170	0.177	0.169	0.186	0.166	0.168	0.168	0.168	0.168	0.004	0.004
CRPS		0.376	1.434	0.393	0.417	0.361	0.320	0.434	0.397	0.392	0.368	0.367	0.364	0.378	0.354	0.351	0.362	0.368	0.354	1.303	1.359
Average		0.288	0.809	0.320	0.312	0.286	0.340	0.303	0.302	0.284	0.251	0.240	0.238	0.270	0.241	0.242	0.274	0.262	0.237	0.772	0.758
MAE		0.346	0.856	0.377	0.369	0.339	0.402	0.338	0.363	0.341	0.299	0.287	0.283	0.319	0.290	0.295	0.328	0.312	0.285	0.817	0.801
MAPE		0.346	0.820	0.374	0.372	0.337	0.392	0.326	0.351	0.330	0.297	0.284	0.280	0.321	0.286	0.289	0.324	0.309	0.282	0.815	0.813
MSE		0.124	0.623	0.155	0.144	0.127	0.172	0.125	0.141	0.131	0.104	0.097	0.092	0.115	0.096	0.097	0.116	0.106	0.094	0.601	0.590
CRPS		0.337	0.938	0.372	0.362	0.343	0.393	0.421	0.355	0.334	0.302	0.293	0.289	0.328	0.322	0.322	0.328	0.322	0.287	0.854	0.826
Average		0.790	1.553	0.839	0.837	0.886	1.792	0.916	0.873	0.835	0.807	0.771	0.798	0.810	0.760	0.828	0.802	0.766	1.241	0.967	
MAE		0.856	1.518	0.893	0.891	0.914	1.480	0.933	0.951	0.897	0.872	0.838	0.853	0.889	0.781	0.836	0.880	0.868	0.836	1.203	0.976
MAPE		0.786	1.173	0.859	0.868	0.906	1.547	0.814	0.806	0.839	0.706	0.689	0.708	0.683	0.724	0.814	0.789	0.726	1.012	1.024	
MSE		0.767	2.209	0.822	0.807	0.863	2.145	0.902	0.920	0.824	0.864	0.808	0.853	0.817	0.701	0.757	0.814	0.771	0.758	1.554	0.890
CRPS		0.751	1.311	0.784	0.782	0.835	1.994	1.015	0.816	0.781	0.785	0.750	0.782	0.794	0.700	0.723	0.803	0.781	0.746	1.195	0.980
Avg		1.127	0.692	0.624	0.903	0.646	0.629	0.724	0.680	0.663	0.632	0.600	0.629	0.613	0.608	0.629	0.609	0.613	0.739	0.707	
MAE		1.033	0.746	0.728	0.911	1.000	0.745	0.776	0.793	0.759	0.746	0.710	0.690	0.711	0.699						

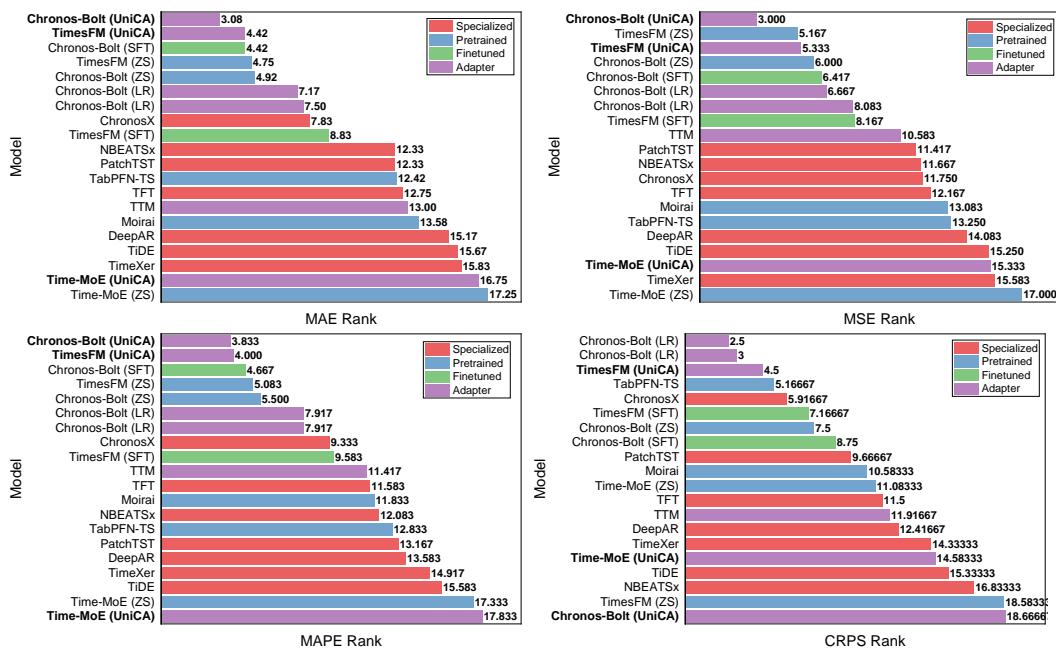


Figure 6: Metrics rank on uni-modal covariate-aware datasets.

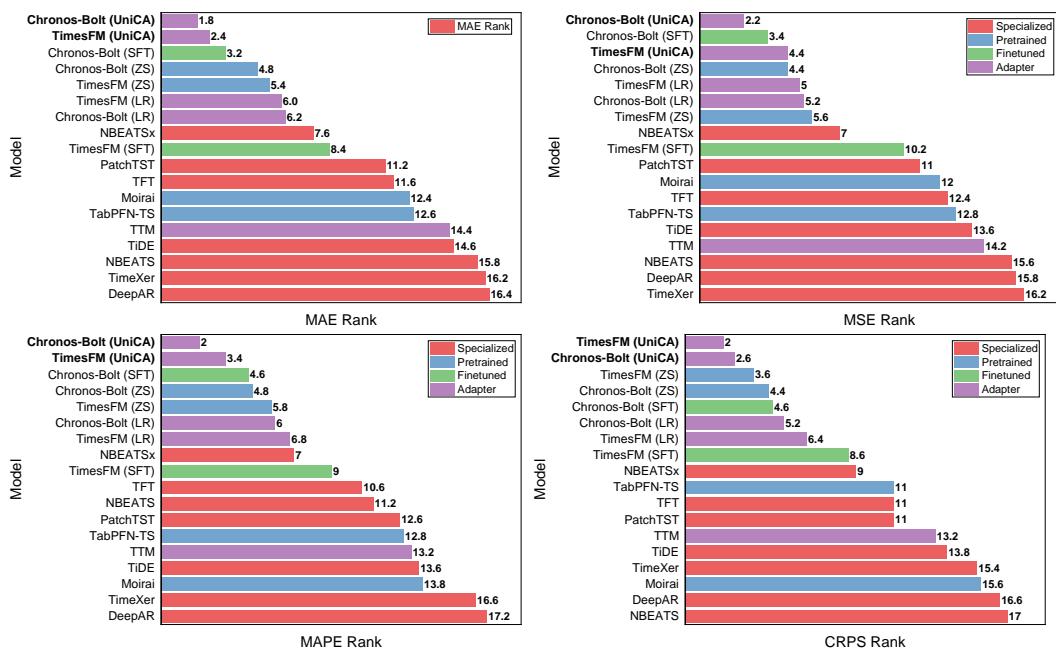


Figure 7: Metrics rank on EPF subsets.

1458 Table 9: Forecasting results on subsets of EPF.
1459

		PatchTST	NBEATS	DeepAR	TFT	Tide	NBEATSx	TimeXer	Moirai	TTM	TabPFN-TS	Chronos-Bolt				TimesFM				
												ZS	SFT	LR	UniCA	ZS	SFT	LR	UniCA	
1460	Average	0.497	0.653	0.666	0.482	0.514	0.438	0.576	0.517	0.510	0.496	0.419	0.410	0.420	0.399	0.415	0.450	0.414	0.405	
		MAE	0.559	0.759	0.771	0.543	0.590	0.496	0.647	0.596	0.558	0.555	0.467	0.456	0.477	0.450	0.467	0.509	0.471	0.458
		MAPE	0.598	0.564	0.780	0.563	0.600	0.519	0.698	0.594	0.600	0.591	0.507	0.495	0.498	0.476	0.500	0.532	0.489	0.487
		MSE	0.413	0.594	0.535	0.422	0.426	0.356	0.481	0.444	0.407	0.427	0.349	0.337	0.348	0.329	0.348	0.383	0.342	0.338
		CRPS	0.417	0.692	0.579	0.399	0.441	0.380	0.476	0.436	0.476	0.411	0.354	0.351	0.357	0.341	0.346	0.377	0.355	0.339
1464	BE	Average	0.416	0.570	0.623	0.432	0.484	0.420	0.546	0.458	0.440	0.410	0.357	0.357	0.358	0.356	0.363	0.407	0.365	0.356
		MAE	0.518	0.704	0.819	0.536	0.605	0.526	0.681	0.574	0.546	0.519	0.452	0.451	0.453	0.451	0.457	0.513	0.456	0.450
		MAPE	0.488	0.640	0.724	0.461	0.572	0.482	0.669	0.520	0.497	0.479	0.399	0.399	0.399	0.391	0.398	0.430	0.400	0.391
		MSE	0.417	0.538	0.558	0.478	0.479	0.416	0.511	0.472	0.420	0.400	0.362	0.363	0.365	0.366	0.385	0.439	0.386	0.374
		CRPS	0.242	0.401	0.390	0.254	0.282	0.257	0.323	0.267	0.298	0.242	0.214	0.216	0.213	0.213	0.245	0.217	0.210	
1466	DE	Average	0.637	0.940	0.652	0.638	0.650	0.567	0.734	0.631	0.680	0.686	0.620	0.556	0.575	0.544	0.555	0.575	0.518	0.534
		MAE	0.630	1.124	0.648	0.649	0.690	0.589	0.727	0.669	0.650	0.679	0.604	0.557	0.592	0.567	0.587	0.557	0.553	
		MAPE	0.861	0.276	0.862	0.836	0.776	0.706	0.948	0.754	0.875	0.916	0.832	0.735	0.724	0.702	0.740	0.751	0.633	0.701
		MSE	0.485	1.104	0.490	0.485	0.498	0.407	0.593	0.504	0.499	0.540	0.487	0.406	0.435	0.404	0.405	0.428	0.366	0.385
		CRPS	0.574	1.257	0.609	0.581	0.635	0.566	0.665	0.599	0.696	0.609	0.559	0.527	0.551	0.516	0.510	0.534	0.517	0.497
1469	FR	Average	0.421	0.808	0.575	0.473	0.499	0.414	0.564	0.493	0.456	0.425	0.349	0.351	0.361	0.350	0.364	0.407	0.374	0.359
		MAE	0.488	0.937	0.672	0.539	0.582	0.472	0.661	0.576	0.521	0.493	0.398	0.392	0.412	0.394	0.412	0.464	0.426	0.408
		MAPE	0.450	0.853	0.724	0.485	0.548	0.440	0.634	0.533	0.472	0.468	0.360	0.356	0.371	0.352	0.366	0.409	0.378	0.362
		MSE	0.421	0.676	0.450	0.515	0.476	0.417	0.521	0.482	0.426	0.410	0.366	0.387	0.385	0.384	0.403	0.441	0.405	0.394
		CRPS	0.325	0.765	0.451	0.355	0.388	0.327	0.441	0.381	0.403	0.328	0.270	0.271	0.275	0.271	0.276	0.314	0.288	0.273
1472	NP	Average	0.704	0.570	0.809	0.543	0.602	0.498	0.641	0.679	0.644	0.632	0.489	0.507	0.529	0.476	0.517	0.564	0.531	0.501
		MAE	0.776	0.588	0.912	0.581	0.650	0.528	0.682	0.749	0.670	0.673	0.523	0.529	0.572	0.506	0.546	0.604	0.555	0.528
		MAPE	0.828	0.653	0.892	0.661	0.709	0.624	0.781	0.794	0.771	0.716	0.612	0.653	0.662	0.614	0.665	0.707	0.689	0.648
		MSE	0.556	0.418	0.642	0.430	0.463	0.367	0.514	0.552	0.496	0.569	0.364	0.374	0.396	0.341	0.387	0.431	0.397	0.375
		CRPS	0.656	0.622	0.792	0.500	0.586	0.474	0.587	0.625	0.638	0.570	0.455	0.472	0.482	0.445	0.469	0.513	0.482	0.452
1474	PIM	Average	0.305	0.374	0.672	0.322	0.335	0.289	0.393	0.325	0.331	0.326	0.281	0.277	0.278	0.268	0.277	0.299	0.283	0.277
		MAE	0.386	0.444	0.804	0.409	0.421	0.363	0.485	0.412	0.401	0.410	0.355	0.353	0.354	0.340	0.352	0.378	0.360	0.352
		MAPE	0.363	0.401	0.697	0.371	0.397	0.344	0.459	0.373	0.385	0.373	0.332	0.330	0.337	0.321	0.333	0.363	0.345	0.333
		MSE	0.184	0.235	0.537	0.204	0.210	0.172	0.265	0.210	0.195	0.215	0.166	0.156	0.157	0.150	0.162	0.175	0.156	0.162
		CRPS	0.286	0.415	0.651	0.305	0.313	0.278	0.363	0.306	0.345	0.305	0.271	0.268	0.265	0.260	0.262	0.279	0.272	0.262

1476 E.3 MULTI-MODAL FORECASTING

1477

1478 **Time-MMD (TS-Text).** Table 10 reports the full forecasting results on the Time-MMD benchmark across seven domains: *Climate*, *Energy*, *Environment*, *Health*, *Security*, *SocialGood*, and *Traffic*. We compare UniCA with strong baselines, including classic models (e.g., DeepAR, TFT), recent pretrained models (e.g., Chronos-Bolt, TimesFM), and domain-specific models (e.g., Time-LLM, TTM, Moirai). Metrics include Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE), and Continuous Ranked Probability Score (CRPS).

1487 UniCA consistently achieves the best or competitive performance across most domains and metrics, demonstrating its versatility and scalability in handling heterogeneous covariates under diverse multimodal forecasting scenarios.

1492 Table 10: Full forecasting results on Time-MMD.

1493

		NBEATSx	PatchTST	DeepAR	TFT	TFT(+CH)	TIDE	TIDE(+CH)	Time-LLM	TTM	Moirai	TabPFN-TS	MM-TSP	ChatTime	Chronos (Bolt)				TimesFM			
															ZS	SFT	LR	UniCA	ZS	SFT	LR	UniCA
1495	Climate	Average	0.840	0.894	1.270	0.971	0.934	0.920	0.889	0.818	0.778	0.742	0.801	0.691	1.213	0.892	0.748	0.774	0.647	0.737	0.794	0.703
		MAE	0.884	1.009	1.219	0.958	0.928	0.976	0.847	0.846	0.821	0.837	0.777	0.647	0.647	0.737	0.794	0.716	0.869	0.703	0.918	0.818
		MAPE	0.717	0.778	0.998	1.042	1.035	0.900	0.856	0.766	0.651	0.715	0.655	2.227	0.674	0.721	0.634	0.646	0.776	0.601	0.648	0.634
		MSE	0.782	0.793	1.605	0.992	0.885	0.869	0.813	0.723	0.685	0.699	0.787	0.618	1.361	0.637	0.647	0.614	0.608	0.732	0.607	0.769
		CRPS	0.980	0.996	1.260	0.891	0.886	0.937	0.932	0.935	0.909	0.735	0.762	0.727	0.618	0.618	0.681	0.799	0.693	0.640	0.841	0.645
1497	Energy	Average	0.628	0.720	0.815	0.708	0.800	0.573	0.578	0.599	0.536	0.545	0.536	0.509	1.799	0.505	0.626	0.515	0.529	0.532	0.555	0.559
		MAE	0.712	0.788	0.779	0.988	0.685	0.682	0.687	0.635	0.705	0.638	0.635	1.000	0.622	0.685	0.624	0.635	0.630	0.635	0.714	0.714
		MAPE	0.510	0.710	1.048	0.744	0.718	0.569	0.589	0.498	0.566	0.393	0.563	0.406	1.361	0.462	0.682	0.462	0.541	0.542	0.255	0.259
		MSE	0.519	0.626	0.706	0.599	0.641	0.541	0.547	0.546	0.547	0.541	0.547	0.541	1.718	0.484	0.586	0.481	0.586	0.587	0.615	0.615
		CRPS	0.721	0.665	0.770	0.676	0.778	0.773	0.774	0.775	0.776	0.777	0.777	0.777	1.742	0.528	0.740	0.779	0.728	0.753	0.799	0.756
1500	Health	Average	0.721	0.665	0.770	0.676	0.646	0.667	0.733	0.733	0.733</											

1512 Table 11: Forecasting performance on MMSP (TS-Image multimodal) dataset.
1513

	PTST	NBS	D.AR	TFT	TFT (+CH)	TIDE	TIDE (+CH)	TTM	Moirai	PFN	ESF	MM-TSF	Chronos (Bolt)			TimesFM			Time-MOE		
													ZS	SFT	UniCA	ZS	SFT	UniCA	ZS	UniCA	
MMSP	Average	0.485	0.152	0.137	0.112	0.103	0.292	0.135	0.408	0.238	0.555	0.378	0.127	0.120	0.140	0.121	0.158	0.167	0.147	0.703	0.607
	MAE	0.682	0.219	0.216	0.177	0.168	0.438	0.206	0.263	0.378	0.711	0.566	0.200	0.193	0.225	0.193	0.245	0.258	0.229	0.814	0.765
	MAPE	0.020	0.030	0.019	0.034	0.021	0.022	0.014	0.090	0.038	0.187	0.016	0.037	0.019	0.023	0.019	0.049	0.080	0.046	0.755	0.337
	MSE	0.662	0.107	0.097	0.067	0.067	0.297	0.100	0.095	0.206	0.633	0.478	0.090	0.090	0.099	0.090	0.113	0.100	0.098	0.538	0.653
	CRPS	0.576	0.252	0.214	0.168	0.157	0.410	0.220	1.183	0.329	0.691	0.452	0.183	0.180	0.212	0.180	0.227	0.231	0.215	0.707	0.672

1518
1519 E.4 IMPUTATION
15201521 UniCA is a general covariate adaptation framework for time-series foundation models (TSFMs). Its
1522 applicability is therefore not limited to forecasting—UniCA can be attached to any downstream task
1523 that the underlying TSFM supports, provided the task is covariate-aware.1524 To demonstrate this, we evaluate UniCA on the *imputation* setting of the MOMENT
1525 TSFM Goswami et al. (2024), which natively supports forecasting, classification, anomaly detec-
1526 tion, and imputation. Among these tasks, only imputation naturally involves multivariate inputs or
1527 covariates, making it the most appropriate benchmark for UniCA.1528 For each dataset (ETTh1, ETTh2, ETTm1, ETTm2, Electricity, Weather), we treat the OT column
1529 as the target variable and use all remaining variables as past dynamic real covariates. Each dataset is
1530 split with a 6:2:2 ratio. Following the MOMENT imputation setup, on the test split we extract slid-
1531 ing windows of length 512 and randomly mask patches of length 8 using MOMENT’s patch-based
1532 masking module at mask ratios 12.5%, 25%, 37.5%, 50%. MOMENT is loaded in “reconstruc-
1533 tion” mode and is never fine-tuned; its RevIN normalizer and reconstruction head remain fixed
1534 throughout.1535 UniCA operates on top of the frozen MOMENT encoder: the target context is tokenized by MO-
1536 MENT; all covariates are homogenized and fused through UniCA’s gated residual and attention
1537 modules; and the fused representation is passed directly into MOMENT’s frozen reconstruction
1538 head. During training, we optimize *only* UniCA’s parameters to minimize squared error on the
1539 masked target positions. MOMENT’s weights remain completely frozen. At evaluation time, we
1540 compare zero-shot MOMENT and MOMENT+UniCA using the same patch masks and report MSE
1541 and MAE over the masked entries only. Results are shown in Table 12.1542 Across all six datasets and all four mask ratios, UniCA consistently improves imputation over
1543 zero-shot MOMENT model. Averaged over mask ratios, UniCA reduces MSE by roughly 33–35%
1544 on ETTh1/ETTh2, about 60–85% on ETTm1/ETTm2, 45% on electricity, and 40% on weather,
1545 with corresponding MAE reductions of about 20–25% (ETTh), 40–65% (ETTm), 25% (electric-
1546 ty), and 23% (weather). The gains are monotonic in the mask ratio: UniCA’s relative improvement
1547 is smallest at 12.5% masking and largest at 50% masking on every dataset, showing that covariate-
1548 aware adaptation becomes increasingly beneficial as the imputation problem becomes harder.1549 F SHOWCASES
15501552 In this section, we present a detailed case study to demonstrate the effectiveness of our proposed
1553 UniCA framework. We analyze the feature attention affinity, important covariates identified by our
1554 model, and compare the prediction performance with and without UniCA adaptation.1556 Figure 8, 9, 10, 11 illustrate our analysis on two time series samples for each dataset, labeled as (a)
1557 and (b). The visualization is organized into three components for each sample: Important Features
1558 Visualization (top), Prediction Comparison (middle), and Feature Weights Visualization (bottom).
1559 The Important Features Visualization reveals how our model identifies and leverages key covari-
1560 ates during prediction. In figure 8 (a), covariate 18 demonstrates high importance (0.8323) while
1561 covariate 7 shows minimal contribution (0.0125). Similarly, in sample (b), covariate 18 maintains
1562 high importance (0.8586) while covariate 24 has low importance (0.0077). This selective attention
1563 mechanism enables UniCA to focus on the most relevant covariates for each specific forecasting
1564 task, effectively filtering out noise from less informative features.1565 The Prediction Comparison clearly demonstrates the superior performance of UniCA-adapted mod-
1566 els compared to their non-adapted counterparts. The middle rows show predictions without UniCA

1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581

Table 12: Imputation performance of zero-shot MOMENT and UniCA-adapted MOMENT on six ETT/electricity/weather benchmarks under four random patch-masking ratios (12.5%, 25%, 37.5%, 50%). Reported metrics are MSE and MAE on the masked target entries, together with percentage-point improvements of UniCA over the MOMENT baseline (negative values indicate lower error with UniCA).

1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619

Dataset	Mask Ratio	MSE			MAE		
		MOMENT	UniCA	Improve	MOMENT	UniCA	Improve
ETTh1	12.5%	0.016	0.012	-23.9%	0.093	0.079	-14.5%
	25.0%	0.022	0.016	-27.9%	0.110	0.090	-18.4%
	37.5%	0.030	0.019	-35.4%	0.128	0.100	-21.6%
	50.0%	0.041	0.025	-38.3%	0.152	0.115	-24.4%
	Average	0.027	0.018	-33.3%	0.121	0.096	-20.4%
ETTh2	12.5%	0.042	0.026	-37.8%	0.150	0.108	-27.6%
	25.0%	0.059	0.039	-33.8%	0.176	0.128	-27.3%
	37.5%	0.086	0.059	-31.8%	0.212	0.154	-27.0%
	50.0%	0.131	0.084	-35.5%	0.269	0.188	-30.2%
	Average	0.079	0.052	-34.5%	0.202	0.145	-28.2%
ETTm1	12.5%	0.007	0.003	-48.4%	0.057	0.039	-31.3%
	25.0%	0.010	0.004	-58.0%	0.068	0.043	-37.5%
	37.5%	0.015	0.005	-62.9%	0.083	0.048	-42.1%
	50.0%	0.021	0.007	-65.4%	0.102	0.056	-45.4%
	Average	0.013	0.005	-61.1%	0.077	0.046	-40.2%
ETTm2	12.5%	0.015	0.002	-83.1%	0.080	0.032	-59.6%
	25.0%	0.028	0.004	-85.0%	0.108	0.040	-63.0%
	37.5%	0.051	0.007	-86.2%	0.148	0.051	-65.6%
	50.0%	0.082	0.014	-83.3%	0.195	0.068	-65.0%
	Average	0.044	0.007	-84.4%	0.133	0.048	-63.9%
electricity	12.5%	0.124	0.098	-20.6%	0.258	0.234	-9.3%
	25.0%	0.159	0.110	-30.4%	0.290	0.248	-14.4%
	37.5%	0.232	0.127	-45.2%	0.351	0.266	-24.2%
	50.0%	0.376	0.151	-59.9%	0.458	0.288	-37.0%
	Average	0.223	0.122	-45.4%	0.339	0.259	-23.6%
weather	12.5%	0.000	0.000	-19.5%	0.008	0.007	-10.6%
	25.0%	0.000	0.000	-35.0%	0.009	0.008	-19.4%
	37.5%	0.000	0.000	-43.9%	0.012	0.008	-26.8%
	50.0%	0.000	0.000	-45.2%	0.014	0.010	-30.2%
	Average	0.000	0.000	-39.5%	0.011	0.008	-23.3%

adaptation, while the lower rows display predictions with UniCA adaptation. Both models generate prediction intervals (10%-90%), but the UniCA-adapted model produces forecasts that align more closely with the ground truth values. Notably, the predictions with UniCA show better alignment with the temporal patterns and magnitude of the ground truth, particularly in the forecast horizon (the shaded area after the vertical dotted line).

The Feature Weights Visualization at the bottom provides insight into how attention is distributed across different feature dimensions and sequence positions. The heatmaps reveal that certain feature dimensions consistently receive higher attention weights (shown in brighter yellow), indicating their greater influence on the final prediction. These patterns vary between samples (a) and (b), highlighting UniCA’s ability to adapt dynamically to different time series characteristics.

Our case study demonstrates that UniCA effectively identifies important covariates through its attention mechanism and significantly improves prediction accuracy by incorporating this covariate information. The comparison between adapted and non-adapted models confirms that UniCA successfully bridges TSFMs with covariate-aware forecasting while preserving the foundation model’s generalization capabilities. Furthermore, the feature weight visualizations provide interpretability insights, showing which dimensions and temporal positions are most influential for specific forecasting tasks.

G MORE ABLATION

G.1 FUSION POSITION.

To further understand the impact of fusion positions in integrating covariate information, we conduct an ablation study by varying where the past and future covariates are fused within the TSFM pipeline. Specifically, we compare four fusion strategies: Pre-Pre, Post-Pre, Post-Post, and Pre-Post (our default setting). These denote whether past and future covariates are fused before (Pre) or after (Post) the temporal encoder.

As shown in Figure 12, the results indicate that the choice of fusion position has a relatively minor impact on the overall forecasting performance. On TimesFM, all variants achieve similar performance, with the aggregated error ranging from 0.472 to 0.476. Interestingly, although Post-Post slightly underperforms the others, the differences remain marginal. On Chronos-Bolt, all configurations perform nearly identically, with Post-Post achieving the lowest error (0.455), reinforcing the robustness of our fusion design. These findings suggest that while the timing of fusion can affect the model’s attention mechanism and how it contextualizes covariate information, UniCA remains stable and effective regardless of specific fusion positions. This reflects the flexibility of our attention-based fusion modules and their adaptability across model architectures.

G.2 INFLUENCE OF MODALITY ENCODER

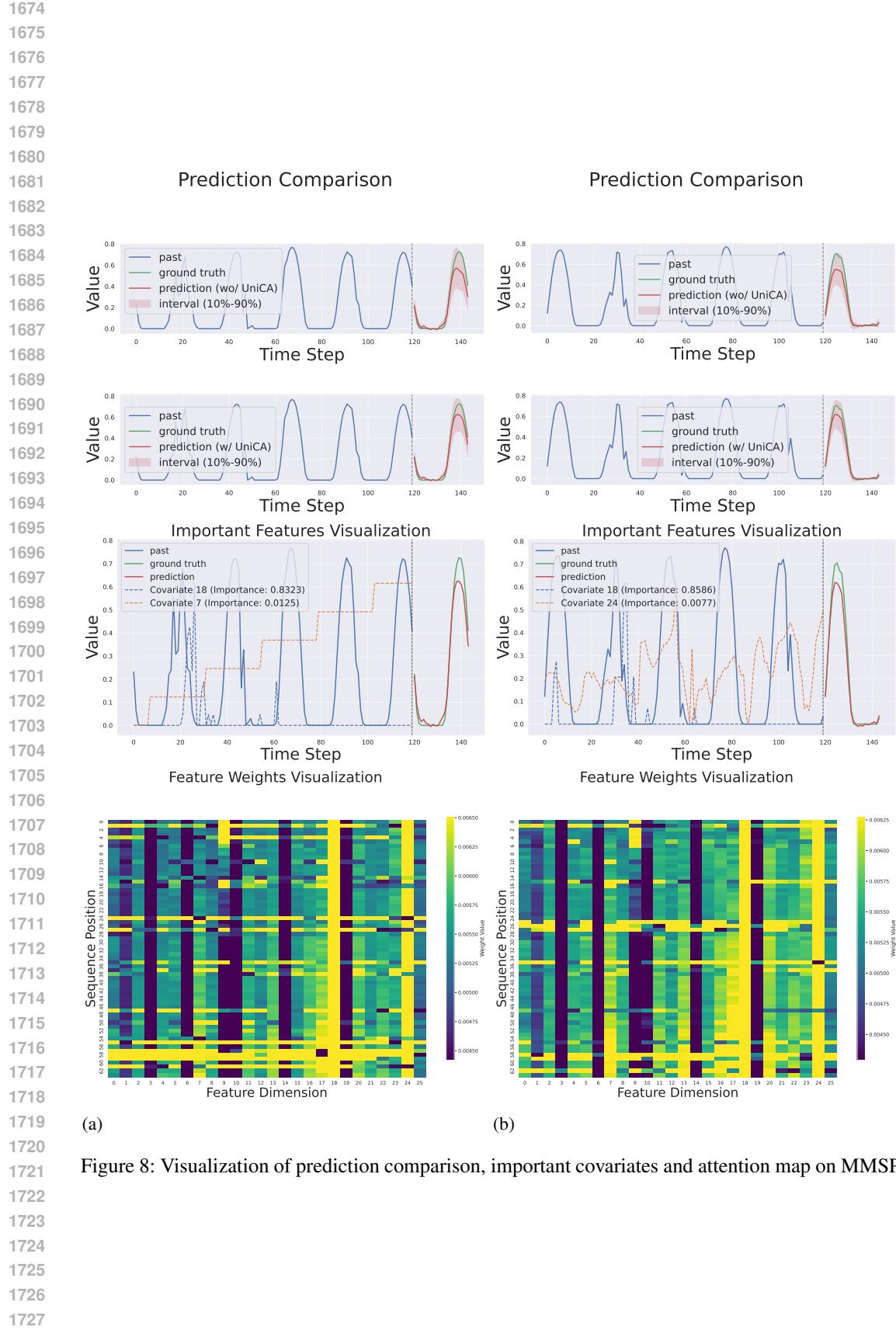
To investigate the effect of different text modality encoders on forecasting performance, we conduct a comprehensive evaluation on the Time-MMD benchmark across six domains: *Climate*, *Energy*, *Environment*, *Health*, *Security*, and *SocialGood*. We embed the same textual covariates using four representative pretrained language models—GIST (Solatorio, 2024)¹⁰ (a text embedding model), BERT (Devlin et al., 2019)¹¹, GPT-2 (Radford et al., 2019)¹², and LLAMA-2 (Touvron et al., 2023)¹³—and report forecasting results under two forecasting backbones: Chronos-Bolt and TimesFM, both implemented via the UniCA framework. The results are summarized in Table 13. Chronos consistently benefits from text embeddings, with minor variation across encoder types. In contrast, TimesFM exhibits significantly larger fluctuations in performance depending on the encoder. For instance, under the *Environment* domain, the MAE of TimesFM ranges from 0.756 (GIST) to 1.181 (BERT), whereas Chronos maintains stable performance across all encoders (MAE = 0.738 for all). Among all text encoders, GIST demonstrates the most consistent performance across both Chronos and TimesFM, achieving the lowest average forecasting errors in domains such as *Security*

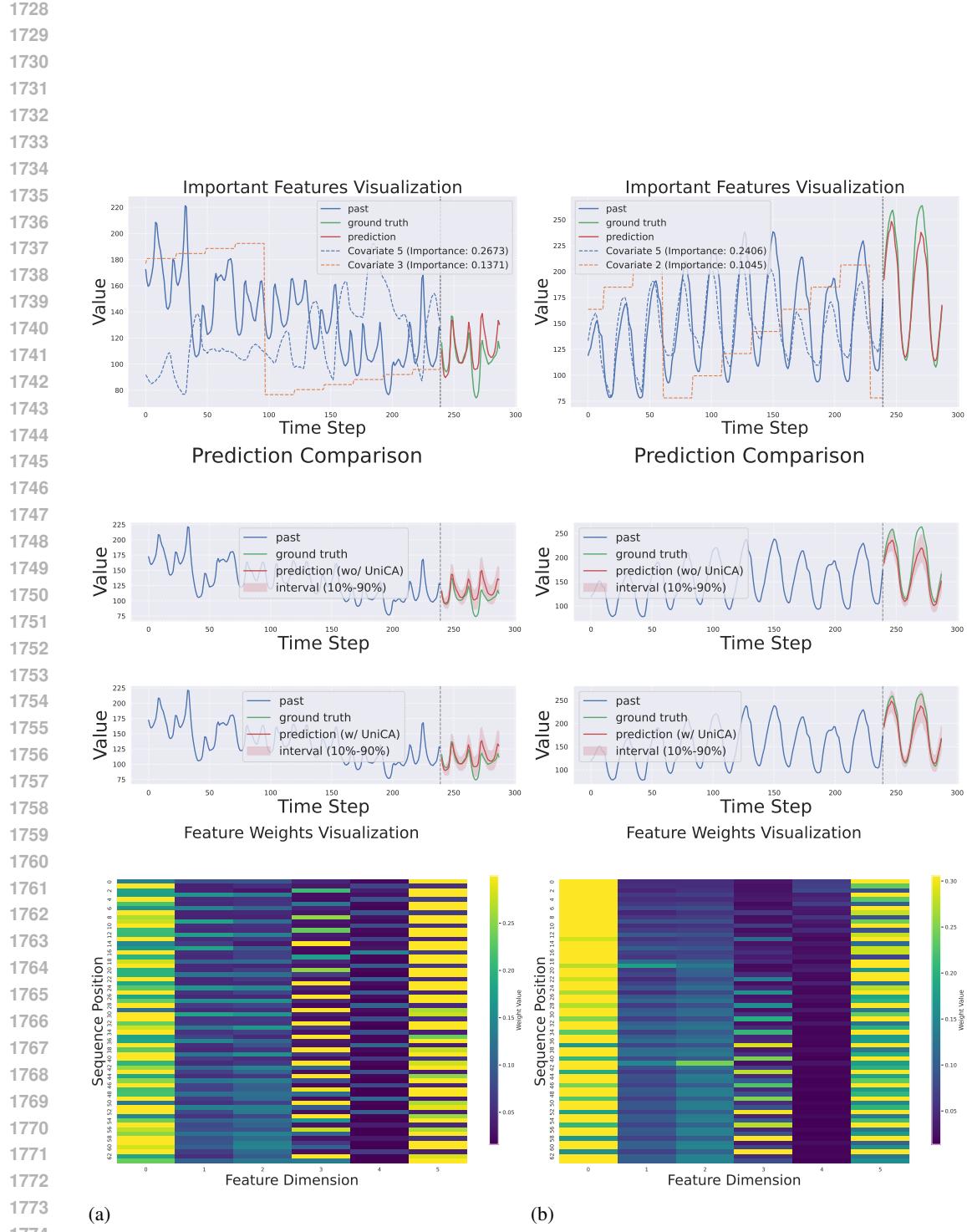
¹⁰<https://huggingface.co/avsolatorio/GIST-small-Embedding-v0>

¹¹<https://huggingface.co/google-bert/bert-base-uncased>

¹²<https://huggingface.co/openai-community/gpt2>

¹³<https://huggingface.co/meta-llama/Llama-2-7b-hf>





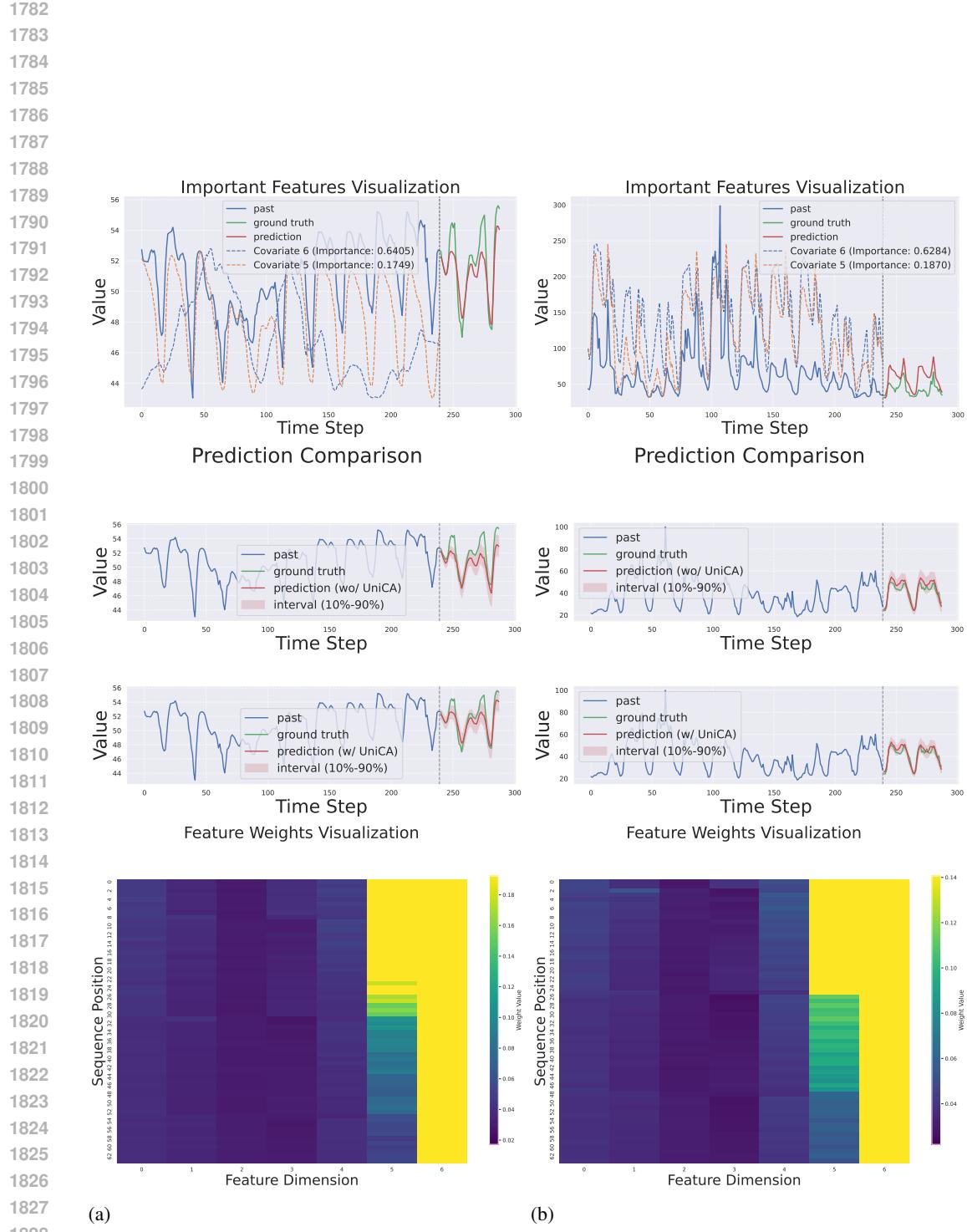
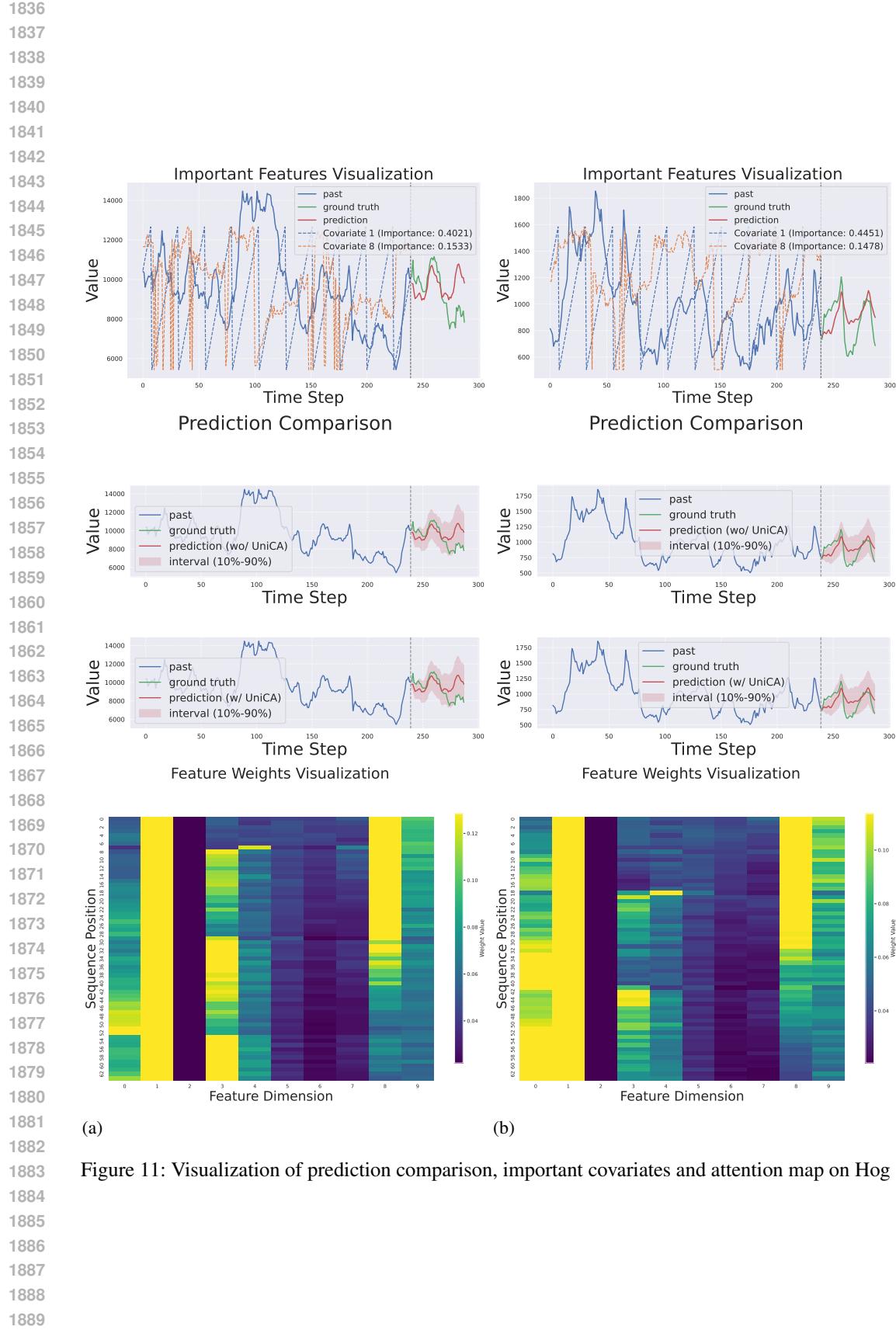


Figure 10: Visualization of prediction comparison, important covariates and attention map on EPF



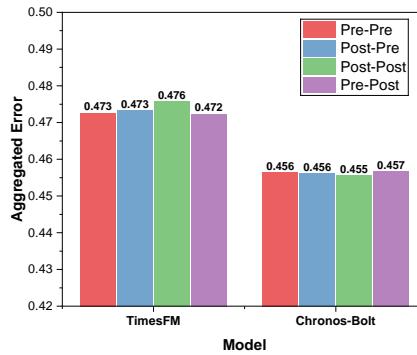


Figure 12: Ablation study on fusion position. Pre-Pre, Post-Pre, Post-Post, and Pre-Post indicate the fusion positions of past and future covariates (before or after the temporal encoder). Results are shown on TimesFM and Chronos-Bolt. Performance remains stable across all configurations, demonstrating the fusion position does not affect the performance much.

(MAE = 0.707) and *SocialGood* (MAE = 0.860) for TimesFM. On the other hand, large language models such as LLAMA do not necessarily outperform smaller encoders. In several cases, GPT and BERT lead to degraded performance in TimesFM, especially for domains with noisier text (e.g., *Environment* and *Security*). The optimal encoder choice appears domain-dependent. For example, in the *Health* domain, GPT yields the best MAE (0.609) under Chronos, while GIST performs best under TimesFM (MAE = 0.692). In the *Security* domain, TimesFM benefits the most from GIST (MAE = 0.707), which is substantially better than other encoders.

These findings suggest that the selection of the modality encoder impacts model performance, depending on the dataset and base model. However, we also warn that the number of observed points in Time-MMD may not be enough to draw a consistent conclusion. This experiment only shows preliminary results.

G.3 ARCHITECTURE OF COVARIATE HOMOGENIZER

We examine how the architecture of the covariate homogenizer affects forecasting performance in our unified framework. Specifically, we compare two designs: a simple Linear layer and a two-layer MLP, implemented under two different model backbones—Chronos-Bolt and TimesFM, both with UniCA. Results are reported on the MMSP and MMSP[†] benchmarks, as shown in Table 14.

From the results, we observe that for Chronos, the homogenizer design has negligible impact on performance: both Linear and MLP yield nearly identical errors across all metrics. In contrast, TimesFM shows a consistent preference for the Linear homogenizer. For instance, in MMSP, the Average error increases from 0.147 to 0.154 when switching from Linear to MLP, with similar degradation observed in MAE, MSE, and CRPS. This trend holds across both MMSP and MMSP[†].

These results suggest that more complex homogenizer structures like MLP may introduce unnecessary parameterization and lead to overfitting in already expressive models such as TimesFM, while simpler designs suffice for both backbones. Therefore, we adopt the Linear homogenizer as the default in all main experiments.

G.4 INFLUENCE OF STATIC COVARIATES

Our UniCA model incorporates the static covariate that most of the datasets do not include. To isolate and quantify the benefit of this feature, we conduct an ablation study on two datasets with static covariates: M5 and Retail¹. ¹⁴ The results, presented in table 15, indicate that incorporating static covariates generally improves performance. The performance gains are most pronounced on the highly diverse Retail dataset, where UniCA improves all metrics for both base models (e.g., reducing the Average metric for TimesFM from 0.672 to 0.655). While on the M5 dataset, the improvements

¹⁴The M5 dataset includes static covariates ‘item id’, ‘depeartment id’, ‘category id’, ‘store id’, and ‘state id’. The Retail dataset includes ‘city’, ‘state’, ‘type’, ‘cluster’, ‘family’, ‘class’, and ‘perishable’

1944
1945
1946
1947
1948

1949 Table 13: Forecasting error on Time-MMD subsets with different text encoder.

1950

		Chronos-Bolt (UniCA)				TimesFM (UniCA)			
		GIST	Bert	GPT	LLAMA	GIST	Bert	GPT	LLAMA
Climate	Average	0.507	0.507	0.507	0.507	0.533	0.541	0.542	0.533
	MAE	0.628	0.628	<u>0.628</u>	0.628	0.635	0.630	0.631	0.635
	MAPE	0.421	0.421	0.423	0.421	0.543	0.577	0.578	0.543
	MSE	0.411	0.411	0.411	0.411	0.402	0.401	<u>0.402</u>	0.402
	CRPS	0.568	0.568	0.567	0.567	0.552	0.558	0.556	<u>0.552</u>
Energy	Average	0.879	<u>0.890</u>	0.893	0.903	0.904	0.915	0.907	0.954
	MAE	0.921	0.929	<u>0.928</u>	0.937	0.957	0.972	0.934	0.968
	MAPE	0.831	0.850	0.866	0.876	0.795	<u>0.811</u>	0.925	0.971
	MSE	0.865	0.874	0.871	0.882	0.934	0.935	<u>0.866</u>	0.934
	CRPS	0.899	0.907	0.906	0.916	0.928	0.944	<u>0.903</u>	0.944
Environment	Average	0.625	0.625	0.625	0.625	0.642	1.103	0.661	1.024
	MAE	<u>0.738</u>	0.738	0.738	0.738	0.756	1.181	0.754	1.095
	MAPE	0.666	0.667	0.666	<u>0.666</u>	0.656	1.189	0.716	1.145
	MSE	<u>0.560</u>	0.561	0.560	0.560	0.599	1.114	0.620	0.982
	CRPS	0.536	0.536	<u>0.536</u>	0.536	0.556	0.930	0.554	0.875
Health	Average	0.612	<u>0.609</u>	0.609	0.617	0.692	0.693	0.710	0.709
	MAE	0.697	0.694	0.694	0.702	0.753	0.754	0.769	0.764
	MAPE	<u>0.565</u>	0.569	0.565	0.573	0.684	0.679	0.698	0.718
	MSE	0.484	0.479	<u>0.481</u>	0.490	0.600	0.604	0.623	0.612
	CRPS	0.699	<u>0.696</u>	0.695	0.703	0.733	0.735	0.750	0.742
Security	Average	0.705	0.706	0.702	0.698	0.593	0.663	0.879	<u>0.642</u>
	MAE	0.860	0.862	0.858	0.854	0.707	0.785	1.009	<u>0.762</u>
	MAPE	0.536	0.537	0.532	0.526	0.467	0.553	0.854	<u>0.526</u>
	MSE	0.660	0.660	0.658	0.656	0.578	0.624	0.747	<u>0.613</u>
	CRPS	0.764	0.765	0.761	0.757	0.621	0.689	0.907	0.668
SocialGood	Average	0.790	0.790	0.781	0.790	0.664	<u>0.656</u>	0.661	0.654
	MAE	0.860	0.860	0.834	0.860	0.699	<u>0.689</u>	0.695	0.687
	MAPE	0.666	0.666	0.673	0.666	0.547	<u>0.530</u>	0.541	0.529
	MSE	0.784	0.784	0.791	0.784	0.717	0.711	0.717	<u>0.716</u>
	CRPS	0.850	0.850	0.827	0.850	0.694	0.692	0.690	0.683

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986 Table 14: Forecasting error on MMSP with different designs of covariate homogenizer.

1987

		Chronos-Bolt (UniCA)		TimesFM (UniCA)	
		Linear	MLP	Linear	MLP
MMSP	Average	0.121	0.120	0.147	0.154
	MAE	0.193	0.193	0.229	0.236
	MAPE	0.019	0.019	0.046	0.050
	MSE	0.090	0.090	0.098	0.106
	CRPS	0.180	0.180	0.215	0.222

1993

1994

1995

1996

1997

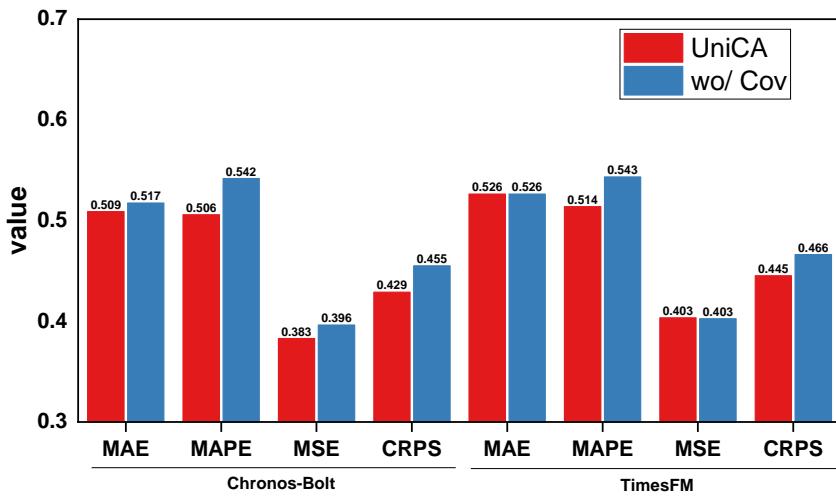


Figure 13: Comparison between the full UniCA model (red) and an ablated version (UniCA w/o Cov, blue) where the covariate adaptation parameters are introduced but the covariate influence is intentionally gated to zero. A lower score is better.

are modest but still noticeable in several metrics (e.g., Chronos-Bolt’s MAPE drops from 0.779 to 0.764, MSE from 0.581 to 0.566). These findings suggest that static variables provide useful categorical and contextual information that enhances model generalization, especially in datasets with diverse item-level characteristics like Retail.

Table 15: Ablation study on the impact of static covariates, conducted on the M5 and Retail datasets. Results show that adding static variables generally improves performance, especially on the Retail dataset, indicating their importance for capturing categorical and contextual information.

Dataset	Metric	Chronos-Bolt		TimesFM	
		wo/ static	w/ static	wo/ static	w/ static
M5	Average	0.625	0.613	0.609	0.613
	MAE	0.706	0.699	0.699	0.701
	MAPE	0.779	0.764	0.731	0.737
	MSE	0.581	0.566	0.581	0.587
	CRPS	0.432	0.424	0.425	0.426
Retail	Average	0.680	0.656	0.672	0.655
	MAE	0.720	0.712	0.712	0.709
	MAPE	0.702	0.655	0.707	0.648
	MSE	0.799	0.769	0.781	0.776
	CRPS	0.499	0.489	0.486	0.485

G.5 IMPACT OF COVARIATES

To see whether UniCA’s performance gains simply stem from the introduction of additional trainable parameters rather than the effective integration of covariates, we designed a crucial ablation study. We created an ablated model, denoted as UniCA w/o Cov, which retains the exact same model structure and the same number of trainable parameters as the full UniCA model. However, in this ablated version, we intentionally **set the gating mechanism for all covariates to zero throughout the training and inference processes**. This ensures that while the extra parameters are present and trained, the adapted covariate features are prevented from influencing the TSFM backbone. We compare the full UniCA model against this UniCA w/o Cov variant using both Chronos-Bolt and TimesFM backbones across all metrics.

The results of this ablation study are presented in Figure 13. For nearly all metrics and both backbones, the full UniCA model (red bars) significantly outperforms the ablated UniCA w/o Cov model (blue bars). For instance, with the Chronos-Bolt backbone, UniCA achieves 0.509 MAE and 0.383 MSE, substantially better than the w/o Cov model’s 0.517 MAE and 0.396 MSE. A similar

2052 pattern holds for TimesFM, particularly for the MAE and MAPE metrics. The consistent degra-
 2053 dation in performance for the `w/o Cov` configuration clearly demonstrates that the performance gain
 2054 is not merely due to the additional parameters introduced by the adaptation layer. Instead, the gains
 2055 are primarily attributable to the **effective and meaningful integration of external covariate infor-**
 2056 **mation** enabled by the learned adaptation and gating mechanism, thereby validating the core design
 2057 of UniCA.

2058 G.6 ROBUSTNESS TO NOISY COVARIATES

2061 To verify UniCA’s stability against irrelevant external information, we conducted a robustness ex-
 2062 periment by introducing a purely noisy covariate to all benchmark datasets. This synthetic feature
 2063 was generated as white noise, sampled from $\mathcal{N}(0, 1)$, and is entirely uninformative and future-
 2064 unknowable, simulating a low-quality input that a robust model should ignore. The UniCA model
 2065 in its `w/ Noise` configuration processes this noise alongside any existing covariates. We com-
 2066 pared the performance of UniCA (`w/ Noise`) against the Zero-Shot (ZS) baseline and the original
 2067 UniCA configuration, testing both Chronos-Bolt and TimesFM backbones, with the goal of ensuring
 2068 the adaptation mechanism does not catastrophically integrate non-predictive features.

2069 Table 16: Performance comparison of UniCA and the Zero-Shot (ZS) baseline when UniCA is pro-
 2070 vided with a purely random, future-unknowable noisy covariate (`w/ Noise`). Results are averaged
 2071 across all benchmark datasets, demonstrating UniCA’s resilience to irrelevant noise inputs.

	Chronos-Bolt			TimesFM		
	ZS	UniCA	w/ Noise	ZS	UniCA	w/ Noise
Avg	0.472	0.457	0.468	0.473	0.472	0.475
MAE	0.521	0.509	0.518	0.530	0.526	0.526
MAPE	0.522	0.506	0.516	0.523	0.514	0.523
MSE	0.403	0.383	0.397	0.402	0.403	0.403
CRPS	0.441	0.429	0.441	0.437	0.445	0.446

2081 The results, summarized in Table 16, confirm UniCA’s strong resilience to noisy covariates. With
 2082 the Chronos-Bolt backbone, UniCA (`w/ Noise`) shows only a marginal performance degradation
 2083 (Avg Metric $0.457 \rightarrow 0.468$) and still outperforms the ZS baseline (0.468 vs 0.472). This suggests
 2084 the model’s feature integration module effectively suppresses the disturbance from the pure noise.
 2085 The stability is even clearer with the TimesFM backbone, where the performance is nearly identical
 2086 ($0.472 \rightarrow 0.475$). This high degree of stability validates the design of the UniCA architecture: its
 2087 adaptation layer is highly effective at identifying and mitigating the impact of uninformative or noisy
 2088 input features, ensuring that the integration of external data does not compromise the model’s core
 2089 forecasting accuracy.

2091 G.7 FUSION ARCHITECTURE

2093 To justify the choice of Gated Residual Network (GRN) and Gated Linear Unit (GLU) for covariate
 2094 adaptation and fusion, we conducted an ablation study against a simpler alternative. The reviewer
 2095 questioned the necessity of these specific non-linear structures. We thus implemented a baseline
 2096 fusion mechanism, termed **Weight Fusion**, where the complex GRN/GLU adaptation module is re-
 2097 placed by a simple, weight-learnable linear combination (a single fully connected layer followed by
 2098 a linear output) before fusion with the TSFM backbone’s representations. This alternative maintains
 2099 a similar parameter count but removes the complex gating and non-linear residual structure. We
 2100 compare the performance of the full UniCA model against this simpler Weight Fusion approach,
 2101 as well as the Zero-Shot (ZS) baseline, across all metrics and both Chronos-Bolt and TimesFM
 2102 backbones.

2103 The results of the fusion mechanism ablation are presented in the table. Across all metrics and
 2104 both backbones, the full UniCA model consistently achieves the best performance. Specifically, the
 2105 simple Weight Fusion mechanism performs noticeably worse than the full UniCA model and, in
 many cases (e.g., Chronos-Bolt Avg: 0.471, TimesFM Avg: 0.478), its performance degrades close

2106 Table 17: Performance comparison between the full UniCA model (using GRN/GLU for adaptation)
 2107 and an alternative "Weight Fusion" mechanism where the complex adaptation module is replaced
 2108 by a simple trainable weighted summation. A lower score is better, validating the superiority of the
 2109 non-linear GRN/GLU structure.

	Chornos-Bolt			TimesFM		
	ZS	UniCA	Weight Fusion	ZS	UniCA	Weight Fusion
Avg	0.472	0.457	0.471	0.473	0.472	0.478
MAE	0.521	0.509	0.519	0.530	0.526	0.532
MAPE	0.522	0.506	0.529	0.523	0.514	0.523
MSE	0.403	0.383	0.396	0.402	0.403	0.408
CRPS	0.441	0.429	0.439	0.437	0.445	0.450

2119
 2120
 2121 to or even below the Zero-Shot (ZS) baseline (TimesFM Avg: 0.473). For example, with Chronos-
 2122 Bolt, UniCA's MAE is 0.509, while Weight Fusion's is 0.519. This significant performance gap
 2123 strongly validates our architectural choice. The GRN and GLU structures are critical because their
 2124 **gated, non-linear, and residual design** allows the model to selectively adapt and dynamically weigh
 2125 the contribution of each covariate feature, which is essential for effective fusion with the general-
 2126 purpose TSFM representations. Simple linear fusion, in contrast, fails to capture the necessary com-
 2127 plexities for optimal TSFM adaptation.

2128 H CORRELATION ANALYSIS OF HOMOGENIZED COVARIATE EMBEDDINGS

2129 To address the reviewer's concern regarding the interpretability and meaningfulness of the homog-
 2130 enized covariate embeddings, we conducted an analysis of the feature space. The core idea of homog-
 2131 enization is to transform the diverse covariate inputs into a unified, rich representation space
 2132 suitable for fusion with the TSFM's temporal embeddings. To demonstrate that these features cap-
 2133 ture meaningful temporal structure, we calculated the **Pearson Correlation Coefficient** between the
 2134 first four dimensions of the final homogenized covariate embedding (just before it enters the TSFM
 2135 backbone) and the target time series for a diverse set of benchmark datasets.

2136 Table 18: Pearson Correlation of Homogenized Embedding Dimensions with the Target Series. The
 2137 table presents the Pearson correlation coefficient between the first four dimensions of the homoge-
 2138 nized embeddings (before fusion) and the corresponding target time series across various datasets.
 2139 The results show that different embedding dimensions capture distinct and meaningful temporal
 2140 structure related to the target.

	MMSP	Climate	Energy	Environment	Health	Security	SocialGood	Traffic
Feature 1	-0.149	-0.058	0.068	-0.055	0.033	0.052	0.434	0.271
Feature 2	0.415	0.058	-0.419	-0.001	-0.114	0.063	-0.114	0.127
Feature 3	0.310	-0.117	0.113	0.042	0.087	0.105	0.459	0.289
Feature 4	0.222	0.024	0.224	0.037	-0.023	-0.084	-0.371	-0.104

2150
 2151 The correlation results are presented in the table. While the absolute value of the correlation varies
 2152 significantly by dataset and feature dimension, the patterns strongly support our claim that the homog-
 2153 enized embeddings capture meaningful, yet diverse, temporal structures. For instance, in the
 2154 **SocialGood** dataset, Feature 3 exhibits a strong positive correlation (0.4593), whereas Feature 4
 2155 shows a moderate negative correlation (-0.3713), indicating that different dimensions of the embed-
 2156 ding are learning to capture distinct aspects of the underlying temporal dynamics of the target series.
 2157 The general non-zero correlations across datasets (e.g., strong correlation in **MMSP** and **Traffic**)
 2158 confirms that the adaptation process successfully transforms the raw, disparate covariate informa-
 2159 tion into a fixed-length embedding that is temporally structured and relevant to the forecasting task,
 which is a necessary condition for effective fusion.

2160 I DISCUSSION OF LIMITATION

2161
2162 UniCA assumes temporal alignment between covariates and the target series, which we approximate
2163 using imputation and missing-value indicators. However, more effective alignment strategies may
2164 exist. Additionally, noisy or conflicting covariates can degrade performance. Future work may in-
2165 incorporate uncertainty-aware fusion, handle non-aligned or partially observed covariates, and embed
2166 task-specific inductive biases to enhance the robustness and generalizability of TSFM adaptation.

2168 J THE USE OF LLMs

2169
2170 We utilized a Large Language Model (LLM) to assist in the writing process of this paper. The pri-
2171 mary use of the LLM was for improving the language, style, and readability of the text. This included
2172 refining sentence structure, correcting grammatical errors, and ensuring consistency in terminology.
2173 All intellectual contributions, including the research ideas, methodology, and conclusions, are solely
2174 the work of the human authors. The authors have reviewed and take full responsibility for the entire
2175 content of this paper, ensuring its originality and scientific accuracy.

2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213