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ABSTRACT

Time Series Foundation Models (TSFMs) have achieved remarkable success
through large-scale pretraining. However, their design primarily targets real-
valued series, limiting their ability to handle general forecasting tasks involving di-
verse and often heterogeneous covariates—such as categorical variables and mul-
timodal data (e.g., images, text)—which are typically task-specific and difficult
to leverage during pretraining. To address this gap, we propose Unified Covariate
Adaptation (UniCA), a framework to bridge TSFMs with general covariate-aware
forecasting. UniCA first performs covariate homogenization to transform hetero-
geneous covariates into high-level homogeneous series representations and then
fuses them via a unified attention-based fusion mechanism. UniCA is compatible
and universal for adaptation with both homogeneous and heterogeneous covari-
ates, incorporating extra covariate information while preserving the generalization
ability of TSFMs. Extensive experiments on multiple unimodal and multimodal
covariate-aware forecasting benchmarks demonstrate the superiority of UniCA,
highlighting the promise of covariate-aware TSFM adaptation in real-world fore-

casting scenarios. Code: https://anonymous.4open.science/t/UniCA-C5EO.

1 INTRODUCTION

Time series forecasting is essential in a wide
range of domains, including environmental
monitoring |Gruca et al.| (2022), traffic man-
agement |[Kadiyala & Kumar| (2014), energy
systems |[Kardakos et al.| (2013), communica-
tion networks [Peng et al.| (2013), and health-
care |[Morid et al.[ (2023). Accurate forecasting
supports critical decisions in planning, policy-
making, and operations. Traditional statisti-
cal models such as ARIMA and Exponential
Smoothing |Box et al.| (2015)) have been widely
used for their simplicity and effectiveness in
specific settings. With the advancement of deep
learning, models based on Recurrent Neural
Networks (RNNs) Hochreiter & Schmidhuber
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Figure 1: TSFMs are pretrained on time series
from diverse domains. However, many tasks con-
tain homo/heterogeneous covariates that are hard
to use in pre-training. Adaptation methods to han-
dle these covariates are important in these tasks.

(1997);/Cho et al.|(2014)); Rangapuram et al. (2018 and Convolutional Neural Networks (CNNs) Bai
et al. (2018); |[Franceschi et al.|(2019) have enabled more expressive modeling of complex temporal
dynamics. Transformer-based architectures |Zhou et al.| (2021); Nie et al.| (2023); Liu et al.| (2024b)
further advanced the field by capturing long-range dependencies and achieving strong performance,
particularly in long-horizon multivariate forecasting. Inspired by the success of foundation models
in NLP and vision Devlin et al.| (2019); [Brown et al.| (2020); [Radford et al.| (2021); Kirillov et al.
(2023)), recent Time Series Foundation Models (TSFMs) Das et al. (2024)); Woo et al.|(2024); Ansari
et al.| (2024); |Goswami et al.| (2024) have shown strong generalization capability by pretraining
on large-scale time series. They learn transferable temporal representations and deliver impressive

performance even in zero-shot scenarios.
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However, most state-of-the-art TSFMs (Ansari et al.| [2024; |Das et al.| [2024; |Goswami et al., [2024)
are fundamentally designed for univariate forecasting, processing each time series in isolation. This
architectural choice renders them unable to leverage the critical relationships between a target se-
ries and its exogenous covariates, limiting their applicability in many real-world scenarios. Some
TSFMs adopt covariate-aware (Woo et al., [2024) strategies during pretraining; yet, models trained
in this manner often fail to achieve stable and superior performance across diverse tasks (Aksu et al.}
2024). More fundamentally, the standard TSFM pretraining paradigm imposes a key limitation: it
can only effectively leverage homogeneous covariates (e.g., real-valued time series similar to the tar-
get variable). This restricts their ability to handle heterogeneous covariates, which are increasingly
common in practical scenarios. Heterogeneous covariates typically includes structured categorical
variables (e.g., item IDs, calendar features) and multimodal inputs (e.g., images, texts) (Ma et al.,
2024; |Liu et al.l [2024a)). The diversity and task-specific nature make their integration into existing
TSFM pipelines non-trivial.

While prior work has addressed unimodal covariate-aware forecasting or multi-modal forecasting
through specialized model architectures [Salinas et al.| (2020); [Lim et al.| (2019); Das et al.[ (2023));
Jin et al.| (2024); Ma et al.| (2024); [Liu et al.| (20244)), these methods are often biased to the task-
specific data, lack the generalization ability, and underperform compared to large-scale pretrained
TSFM models (Aksu et al.| [2024). Therefore, a key challenge remains: How can we adapt powerful
pretrained TSFMs to general covariate-aware forecasting, including homogeneous and heteroge-
neous covariates, without losing the generalization ability obtained from pretraining?

In this paper, we address this challenge by proposing a unified and effective adaptation method
named Unified Covariate Adaptation (UniCA). The core idea is to perform covariate homoge-
nization that transforms heterogeneous covariates into a unified, homogeneous temporal representa-
tion, representing the high-level feature changing over time. This transformation allows us to solve
the general covariate forecasting with a unified framework in the time series modality. In addition,
we design an attention-based fusion mechanism with pre-fusion and post-fusion components that
incorporate covariate information before and after the TSFM backbone, respectively, with the pa-
rameters of the TSFMs unchanged. The adaptation modules fully utilize the encoding and temporal
extraction power of the TSFMs, incorporating the covariates’ information while retaining the fore-
casting ability obtained during their pretraining process. Extensive experiments across a wide range
of benchmarks, including traditional single-modal covariate datasets and challenging multimodal
datasets, demonstrate the effectiveness and flexibility of UniCA. Our results show that by properly
adapting covariate information into the series space, TSFMs can significantly outperform specialized
models, thus opening new possibilities for general-purpose time series forecasting in covariate-rich
environments. Our main contributions are summarized as follows:

¢ We formalize the problem of adapting Time Series Foundation Models (TSFMs) to general
covariate-aware forecasting scenarios, where the heterogeneous covariates, like categorical or
multi-modal covariates, can not be directly utilized by TSFMs.

* We propose Unified Covariate Adaptation (UniCA), a novel framework featuring: (a) covariate
homogenization to transform diverse covariates into a unified temporal representation, and (b) a
dual attention-based fusion mechanism to integrate covariate representation with a frozen TSFM
backbone.

* We conduct comprehensive experiments across single-modal and multimodal covariate datasets,
demonstrating that UniCA enables TSFMs to achieve superior performance compared to task-
specific baselines. The effectiveness of covariate homogenization on TSFMs and specialized
methods also proves that it is a simple way to integrate heterogeneous covariates.

2 RELATED WORK

Time Series Foundation Models (TSFMs). Recent efforts (Ansari et al., 2024; Woo et al.l
2024; |Goswami et al.| [2024; Das et al., [2024; [Ekambaram et al.l [2024) have developed large-
scale pretrained models for time series, enabling zero-shot forecasting or fine-tuning across tasks.
Moirai (Woo et al., [2024), MOMENT (Goswamui et al., [2024)), and TimesFM (Das et al., [2024)
adopt a patch-based transformer architecture, while TTM (Ekambaram et al. [2024) builds on
TSMixer (Ekambaram et al., [2023)), which uses MLPs to mix temporal and feature dimensions.
In contrast, Chronos (Ansari et al.l 2024) tokenizes time series into discrete vocabularies and
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trains language models directly on these sequences. TSFMs are trained based on either channel-
independence (Han et al.l 2024; |Goswami et al., 2024; Das et al.l 2024; |Ansari et al., [2024) that
ignores covariates, or the equivariant attention mechanism (Woo et al.,[2024)) that requires covariates
to be homogeneous. The adaptation to heterogeneous covariates scenarios is an unsolved challenge.

Forecasting with Covariates. Covariates play a crucial role in capturing external signals in fore-
casting tasks. Classical models like ARIMA (Box & Jenkins|, |1968) incorporate them via extra co-
efficients, while deep models such as DeepAR (Salinas et al.,[2020) and TFT (Lim et al.,|2019) inte-
grate them as inputs or through specialized encoders. NBEATSx (Olivares et al.l|2021) concatenates
covariates with the main series for fixed-size input. TTM-CM (Ekambaram et al., [2024) introduces
a fine-tuning approach based on channel mixing. (Chen & Zhaol [2024)) introduces MiTSformer to
handle mixed time series by recovering latent continuous representations from discrete variables to
mitigate heterogeneity. Among TSFMs, only Moirai (Woo et al.,[2024) natively supports covariates
by flattening series and covariates into a joint sequence, using variate IDs for differentiation. None
of the existing methods can handle both homogeneous and heterogeneous, especially multi-modal
covariates, while our method is meant to solve this challenge.

Multimodal Time Series Forecasting. Most multimodal forecasting studies focus on textual en-
hancement. A line of work seeks to utilize the powerful temporal encoding ability of LLM to im-
prove the forecaster (Zhou et al.| 2023} (Gruver et al. [2023)). While these methods provide the pos-
sibility for multimodal forecasting, they usually handle static textual data. Another line combines
numerical time series with dynamic textual data, e.g. news (Dheenadayalan et al., [2022; 'Wang et al.,
2024a)) or weather reports (Obst et al,[2019). Time-MMD (Liu et al.,[20244) introduces a multimodal
dataset and a model that processes time and text modalities independently and merges them via lin-
ear fusion. Towards image covariates, FusionSF (Ma et al., 2024)) proposed the MMSP dataset and a
method meant especially for the satellite scenario. Our approach proposed a new way that converts
information from other modalities into series and handles them uniformly in time series modality.

Adapting TSFMs to handle Covariates. Standard foundation model adaptation, often employ-
ing parameter-efficient methods like adapters (Houlsby et al., 2019) and LoRA (Hu et al.| [2022),
typically assumes consistency between pretraining and downstream task input/output structures.
Adapting TSFMs to handle covariates is more complex. While methods like TimesFM (Das et al.,
2024), which uses an auxiliary regressor for residual correction, and ChronosX (Pineda-Arango
et al., [2025), which injects covariates through linear transformations but limits its application to
only point-wise TSFM. All the current adaptation methods struggle with heterogeneous covariates,
highlighting the need for more flexible adaptation strategies, which our proposed method provides.

3 PROBLEM FORMULATION

General Covariates-Aware Time Series Forecasting. In covariates-aware time series forecast-
ing, the objective is to predict Y7 1.7 7 € R*! by utilizing both past observations of the target
Y1.r € RT>1 and the external covariates, as well as considering their temporal relationships. The
model takes into account both static covariates .S and dynamic covariates Cy.74 g [ﬂto make predic-
tions about the future. Formally, we can express the prediction problem as:

Yrivren = f(Yir, Crrin, S),
where the static covariates S remain unchanged within a series. The dynamic covariates Cy.74
may provide extra information about the past or future state. Both S and C}.74y may contain
homogeneous and heterogeneous covariates.

Heterogeneous Covariates. In traditional time series analysis tasks, exogenous covariates typi-
cally share the same form as the target series, often represented as real-valued numerical variables.
This homogeneity allows exogenous covariates and targets to be processed under a unified model-
ing framework without the need for modality-specific designs (Woo et al., 2024; [Liu et al., 2024b)).
Such covariates are referred to as homogeneous covariates. However, with the advancement of data
collection, covariates in modern forecasting scenarios exhibit increasingly diverse forms. In many
practical applications, covariates are no longer restricted to simple real-valued signals but may in-
volve a wide range of data types. Among these, a particularly significant challenge for TSFMs

'For notational simplicity, we denote both future-known and future-unknown covariates as C1.71 ir. For
future-unknown covariates, the values in the interval [T" 4+ 1 : T' + H| are unobserved at prediction time 7".
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Figure 2: Overview of Unified Covariate Adapter (UniCA). UniCA consists of two key pipelines
(1) Covariate Homogenization: We use a converter to transform heterogeneous covariates into
dense continuous series representations, thus reducing the heterogeneity gap between covariates and
target time series. (2) Modular Fusion: We decompose the TSFM architecture into interpretable
stages and insert Pre-Fusion and Post-Fusion modules to inject covariate information at appropriate
locations without interfering with the model’s pretrained dynamics.

comes from heterogeneous covariates. These covariates can be broadly categorized into two major
types: (1) Categorical covariates: Discrete attributes such as item identifiers, store locations, event
types, or temporal markers. These variables are not inherently numerical and require embedding
techniques or specialized handling to be incorporated into forecasting models. (2) Multimodal co-
variates: High-dimensional, complex data modalities such as images, text descriptions. The emer-
gence of heterogeneous covariates poses fundamental challenges to existing TSFM architectures.
Unlike homogeneous covariates, which can be directly integrated, heterogeneous covariates demand
modality-specific preprocessing, feature extraction, and fusion strategies.

Covariate-Aware Adaptation. Time Series Foundation Models (TSFMs) are designed to model
the temporal dependencies within a given series. These models are trained on diverse time series
from different domains, which makes it hard to incorporate covariates across different domains. co-
variate adaptation involves modifying the model architecture to integrate the covariate information
while fully utilizing the temporal encoding ability. The mathematical formulation of this task can be
expressed as follows: Given a TSFM f,,, the objective is to construct a new forecaster based on the
trained foundation model:

Yri1.148 = Gada © frm(Yir, Crrvm, S), (D
where gq4, is the adaptation module, and g,qq © ffm is the composition model after adaptation. In

contrast to training covariate-aware deep learning models from scratch, covariate adaptation involves
three distinct challenges:

* Compatibility: The adaptation module should be compatible with pretrained TSFMs without
requiring extensive full-model retraining or architecture redesign.

 Universality: It should be able to handle both homogeneous and heterogeneous covariates.

* Generalization Preservation: It should leverage the temporal encoding capabilities learned dur-
ing pretraining while preserving the generalization ability of the foundation model.

In response to these challenges, we propose Unified Covariate Adaptation (UniCA).

4 METHODOLOGY

Unified Covariate Adaptation (UniCA) is a general framework that enables Time Series Founda-
tion Models (TSFMs) to effectively incorporate heterogeneous covariate information without dis-
rupting their pretrained temporal modeling capabilities. At a high level, UniCA follows two key
principles (1) Covariate Homogenization: We transform categorical and multimodal covariates into
dense continuous series representations, thus reducing the heterogeneity gap between covariates and
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target time series. (2) Modular Fusion: We decompose the TSFM architecture into interpretable
stages and insert an attention-based fusion module to inject covariate information at appropriate
locations without interfering with the model’s pretrained dynamics.

4.1 COVARIATE HOMOGENIZATION

To address covariate heterogeneity, UniCA introduces a homogenization process that converts all co-
variates into a unified homogeneous space. Specifically, categorical covariates are processed using
embedding layers that map discrete tokens into continuous vectors. Multimodal covariates-such as
images or texts-are initially fed through modality-specific encoders (e.g., convolutional neural net-
works for images, pretrained transformers for text) to obtain dense feature representations H (¢t
Similar to connectors used in multimodal learning (Liu et al., 2023), we use a Covariate Homog-
enizer (CH), a simple linear layer, to transform H ("*!) into latent homogeneous covariates C'(").
These covariates encapsulate the temporal dynamics of high-level features derived from heteroge-
neous covariates:

Clir e = CH(H 7)), @)
where Cih;jz H € R(T+H )de, with d"¢* being a tunable hyperparameter. Finally, all homoge-
neous covariates-whether hidden or observed are aligned along the temporal dimension and concate-
nated to produce a cohesive set of homogeneous series covariates Cy.7y+ g + [Cr.7+H, th;i) H],
enabling their integration into a unified covariate fusion framework. In the following part, we as-
sume the unified covariates representation Cy.p1 g € RT+H)XM \where M is the total number of
homogeneous covariates, including the observed homogeneous and the homogenized heterogeneous
covariates. This homogenization process ensures the universality of UniCA.

4.2 COVARIATE FUSION MODULE

Decomposition of TSFM. To better incorporate covariate information into the TSFM and fully
leverage its capabilities, we first decompose the TSFM architecture according to the functionality:

* Tokenizer: Z = T (Y;.7): This module transforms raw time series inputs Y into a sequence
of tokens Z € RP*? where d is the token dimension, and P is the number of tokens along
the temporal dimension and varies between patch-based (Das et al.| [2024; |Liu et al., 2024c)
and point-based (Ansari et al., 2024; [Hoo et al., 2025} |Shi et al., |2024) methods. The tokenizer
is responsible for generating suitable representations for the temporal encoder, acting as the
connection between the raw representation and the main part of the model.

» Temporal Encoder H = £(Z): Subsequently, the encoder processes the tokenized sequence
Z to extract high-level temporal patterns and dependencies. The most popular encoder is Trans-
former. This stage leverages the pre-trained temporal encoding capabilities of the TSFM.

¢ Predictor YT+1:T+ u = P(H): Finally, the predictor utilizes the encoded representations H

to generate forecasts Y for the future horizon 7' + 1 to T' + H. For decoder-only architec-
tures (Brown et al., 2020} |Das et al., [2024), we regard the linear output layer as the predictor.

This modular decomposition is applicable to the vast majority of TSFMs, ensuring the compatibil-
ity of UniCA and enabling a clean separation of responsibilities and facilitating the integration of
covariate information without disrupting the core temporal processing. Based on this, we propose
attention-based pre/post fusion modules to incorporate past and future covariates into the TSFMs.

Pre-Fusion Module. Prior to the encoding stage, the pre-fusion module integrates past covariate
information with the historical target values. This module enriches the tokens with historical exter-
nal factors, allowing the encoder to capture the joint dynamics between the time series and its past
covariates. Inspired and simplified from [Lim et al.[| (2019), we use a Conditional Attention Pool-
ing(CAP) mechanism to fuse the past information while maintaining interpretability. Concretely,
given past target Y7.7, past covariates C.7 and the static feature S, C1.7 and S are first converted
to embeddings by the tokenizer of the TSFM and a newly initialized embedding layer p:

ECl:T = T(CllT>7 Es = p(S)a €))
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where E¢, , € REPXMxd By ¢ RNX4 (Eg = 0 if no static covariates provided) is the representa-
tion of dynamic and static covariates. Then:

Zc,, = CAP(Eq¢,,, | Es) := softmax(A)V, :
where A = GRN(flat(E¢,.,.), Es) and V = GRN(E¢,,,.). @

GRN is Gated Residual Network (a residual MLP) used in|Lim et al.| (2019), flat(-) flattens the last
two dimension of Ec, ., A € RP*1XM jg the attention affinity on each feature, V' € RF*Mxd,
Then, a Gated Linear Unit (GLU) |Dauphin et al.[(2017) is used to further trade off the influence of
covariates Z:

Z=2Z+GLU(Zc,,). )
This fused representation is then forwarded to the temporal encoder to produce H e RP*:
H=E£(2). (©6)

Post-Fusion Module. The future-known covariates C'r41.74 i provide direct insight into future
conditions, making them particularly valuable for forecasting. Therefore, we choose to use a post-
fusion module to incorporate future covariate information into the encoded representations H after
the temporal extraction process. This step is crucial when future exogenous factors are expected to
influence the forecast. We first tokenize the future-known covariates:

Ecriiopn = T(Crivrin), )
where Ec,. ., represents the tokenzied future covariates. We then apply the conditional attention
pooling mechanism to selectively aggregate the most relevant aspects of these future covariates at
each time step. Formally,

ZCT+1:T+H = CAP(ECT+1;T+H |ES) ®)
Once the most relevant future information is selected and fused, we integrate it with the past se-
quence by feeding both into a self-attention layer. This step enables the model to learn contextual
dependencies between past and future covariates, allowing for an enriched representation that better
captures the interplay between historical and forward-looking information. Mathematically, the final
fused representation is obtained as:

(H,Zcr 1) = SelfAttn((H, Zoy 1y )- 9)
Then we predict the future target Y with the predictor P:
Yriirin = P(H). (10)

Similar to adapters (Houlsby et al.l 2019) in LLM, our UniCA is a plug-in module that keeps the
pretrained model parameters unchanged, thus preserving generalization capabilities of TSFMs.

4.3 LosSs FUNCTION

A key design principle of UniCA is its seamless compatibility with diverse TSFMs. We train the
UniCA adaptation modules using the same loss function the foundation model was originally pre-
trained with. This aligns the adaptation process with the TSFM’s inherent objective. Specifically, we
employ the quantile loss (Wen et al., 2017; [Lim et al., 2019) for Chronos and TimesFM, the Huber
loss (Huber, [1992) for Time-MoE, and Negative Log Likelihood (NLL) for Moirai. For training sta-
bility across series of varying scales, we normalize each target instance by its historical mean and
standard deviation, following the instance normalization approach in Kim et al.| (2021)).

5 EXPERIMENTS

Metrics. Following the evaluation in (Aksu et al.l 2024} Zhou et al., 2021)), we consider four met-
rics to evaluate the performance of forecasters: Mean Absolute Percentage Error (MAPE), Mean
Square Error (MSE), Mean Absolute Error (MAE) for point forecasting ability, and Continuous
Ranked Probability Score (CRPS) for probabilistic forecasting, which is implemented as the mean
Weighted Quantile Loss (WQL) (Park et al.| [2022). In all experiments, the WQL is computed on
quantile levels {0.1, 0.2, ..., 0.9}. For methods generating sample forecasts, we compute the quan-
tiles based on 256 samples, whereas quantile forecasting methods are trained on the same quantile
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Figure 3: Forecasting performance on general covariate-aware forecasting datasets, including 12
unimodal datasets and multi-modal datasets MMSP and Time-MMD. Results are reported as MAPE
averaged over sub-datasets for both unimodal and Time-MMD datasets. For the MMSP dataset,
MAE is used instead, as near-zero target values render MAPE unstable.

levels we use for evaluation. Following the practice in (2024)) to reduce the dataset bias,
we normalize each result by dividing the result of the Naive method (Hyndman & Athanasopoulos,
2018]), where all forecasts have the value of the last observation.

Compared Methods. To comprehensively evaluate the effectiveness of our proposed UniCA
framework, we compare it against a broad set of baseline methods spanning four major categories:
(a) Specialized Models: These models are trained from scratch for specific forecasting tasks. We
include two representative subtypes: (i) univariate methods, which include PatchTST
2023) and (ii) covariate-aware methods, which includes DeepAR (Salinas et al.,[2020), TFT (Lim|
et al.,[2019), TiDE 2023), N-BEATSx (Olivares et al, 2021), TimeXer (Wang et al.,
2024b)). (b) Pretrained TSFM (ZS). They are evaluated in a zero-shot manner without task-specific
fine-tuning. We select three popular TSFMs — Chronos-Bolt (Ansari et al., 2024), TimesFM
, Time-MoE . (c) Fine-tuned TSFM (SFT): Full-parameter fine-tuning
on downstream datasets. (d) Adapter-based Models: These methods introduce additional mod-
ules attached to the TSFM to inject covariate information, allowing adaptation with fewer train-
able parameters. We compare the Linear Regression (LR) adaptation proposed in (Ansari et al.|
[2024} [Das et al, [2024), which regresses the ground truth against covariates and the residuals are
fed to TSFMs, TTM-R2 (Ekambaram et al, [2024), ChronosXP| (Pineda-Arango et al}, 2025). For
multi-modal experiments, we include FusionSF 2024) and MM-TSF(Chronos-Bolt as

TS predictor) (Liu et al.| 2024a) for TS-image task (MMSP); Time-LLM (Jin et al, 2024), MM-
TSF and ChatTime (Wang et al.,[2025) for TS-text task (Time-MMD).

Implementation Details. We adopt default context length for each TSFM, e.g. 2048 for Chronos-
Bolt and 4096 for Time-MoE, while prediction lengths are dataset-specific (Appendix [A). All time
series data is pre-processed such as normalization, as detailed in Appendix [C.3] In all experiments,
learning rates were selected from {1072,107%,107°,107%} based on validation performance. The
homogenizer CH is implemented as a simple linear model. For each heterogeneous covariate, we
select the number of projected hidden series d"¢! in {1,2,4,8,16}. For image covariates, we use
a simple 4-layer CNN (Krizhevsky et all, [2012)) because the satellite images with dimension 64 x
64 x 4 are not regular images. For text covariates, we use GIST (Solatorio, 2024) as the encoder. A
comprehensive list of hyperparameters is presented in Appendix

5.1 UNI-MODAL COVARIATE AWARE FORECASTING

Datasets. We evaluate our method on 12 publicly available datasets commonly employed in
covariate-aware forecasting research (Lim et all, 2019; [Das et al.l 2023} [Oreshkin et al.l 2019}
[Pineda-Arango et all, 2023 [Aksu et al., [2024; |Olivares et al., 2021). To create the test sets, we
employ two distinct strategies based on the number of subseries in each dataset. For datasets with
a relatively large number of subseries, i.e., we reserve the final “prediction length” points of each
subseries as the test set 2019). For datasets with fewer subseries, we partition 10% of the
data as the test set and apply a sliding window approach for evaluation, with a step size of 1
2021). We also spare validation sets with the same points as the test set. Detailed descriptions
of the datasets can be found in Appendix [A]

2This method is especially designed for Chronos-T5 model. Results obtained from our own implementation,
as official code for ChronosX was not available at the time of this work.
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Figure 4: Average relative MAPE on unimodal datasets with model setups (a) Pretrained:
Moirai(ZS), Adapted: Moirai (UniCA). (b) Finetuned: Chronos-Bolt (UniCA) with fine-tuned
backbone, Frozen:freeze backbone; Ablation on (c) structure of covariate homogenizer. (d) hid-
den dimension of covariate homogenizer.

Main results. The results in Figure [3a] highlight the effectiveness of UniCA in uni-modal
covariate-aware forecasting. UniCA consistently outperforms zero-shot TSFMs, achieving optimal
performance among adapter methods (0.506 MAPE for Chronos-Bolt). While standard finetuning
shows minimal gains or degradation, UniCA delivers substantial improvements, confirming its abil-
ity to preserve generalization. UniCA also surpasses specialized methods (0.596-0.738 MAPE),
demonstrating universality across architectures. These results validate UniCA’s design goals of com-
patibility, universality, and generalization preservation.

5.2 MULTI-MODAL COVARIATE-AWARE FORECASTING

Datasets. We evaluated UniCA on tasks involving multi-modal covariates, specifically images and
text. For image-based covariates, we utilized the Multimodal Solar Power (MMSP) dataset from
2024). For text-based covariates, we used the Time-MMD (Liu et al.| 20244) dataset. Details

are in the Appendix [A] Traditional covariate models use no multi-modal information.

Main results. On the Time-MMD dataset (figure [3¢), TimesFM (UniCA) ranks among the top
performers, significantly outperforming most specialized and pretrained baselines. In the MMSP
benchmark (figure B_B[), TFT variants achieve the best results, while our UniCA-enhanced models
show consistent improvements over their base versions. Notably, UniCA provides substantial gains
for TimesFM (6.5% reduction in error) and Chronos-Bolt (5.9% reduction), confirming its effec-
tiveness in multi-modal covariates modeling. This suggests that multi-modal covariates can hinder
forecasting performance if not handled appropriately, but our UniCA framework can robustly con-
trol the information flow through its attention-based fusion module and covariate homogenization,
leading to consistent performance improvements across different foundation models.

Homogenizer on Specialized Methods. To evaluate the generalizability of the Covariate Homog-
enizer (CH), we integrate it into two representative covariate-based forecasting models to support
multi-modal forecasting: TFT and TiDE. The models augmented with CH consistently outperform
their vanilla counterparts. For instance, TFT+CH achieves a notable 5% drop on MMSP and 13.0%
on Time-MMD. Similarly, TiDE+CH demonstrates a substantial improvement, with the MAE re-
duced by 30.1% on MMSP and 10.5% on Time-MMD. These results highlight that CH provides a
simple yet effective way to integrate multimodal information.

5.3 ANALYSIS

Efficiency. The homogenizer of the UniCA uses a linear layer. The pre-/post- fusion module com-
putes the covariate weights and pooling with the weights, introducing complexity only linear to the
number of covariates and the model’s dimension. All the components are lightweight. Figure [33]
shows that UniCA introduces little computation or storage burden for the TSFMs.

Effectiveness of Covariate Adaptation. Figure [ highlights the effectiveness of the adapter-
based covariate integration strategy in leveraging the generalization capabilities of pre-trained
TSFM models. In figure [fa] we observe that the Adapted variant—using our proposed UniCA
adapter—consistently outperforms the Pretrained zero-shot model (Moirai(ZS)) across all met-
rics. This indicates that the diverse reliance of covariates on different datasets is difficult to learn
with a pretrained model. Adaptation with UniCA provides better performance. However, the pre-
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Figure 5: Analysis of UniCA. (a) Efficiency on Time-MMD: The adapter adds minimal overhead in inference
time (left panel) and trainable parameters (right panel). (b) Covariate Homogenization on MMSP: Aligned
heterogeneous covariates reveal meaningful patterns like seasonality and trends. (c) Attention Maps: The
fusion module dynamically attends to different covariates over time for the sample in (b).

trained knowledge should not be fully discarded. In figure fib] compared to fully finetuned back-
bones, the Frozen + Adapter setup achieves better performance, particularly in terms of MAPE and
CRPS. These findings validate our design intuition: adapter-based covariate incorporation serves as
a lightweight yet powerful mechanism to bridge the gap between general-purpose time series repre-
sentations and task-specific covariate contexts, fully utilizing pretrained knowledge while enabling
covariate-aware forecasting.

Homogenizer Architecture. Our evaluation of the homogenizer architecture, detailed in figure[Ac]
shows that a simple Linear layer and a Multi-Layer Perceptron (MLP) achieve similar performance.
Notably, the Linear model slightly outperforms the MLP, indicating that a more parsimonious design
is not only sufficient but preferable. Therefore, we use the Linear homogenizer as the default.

Homogenizer Dimension. We conduct an ablation study on the homogenized dimension d",
which controls the projection space for diverse covariates. Varying d" from 1 to 128, we evaluate
performance using MAE, MAPE, MSE, and CRPS. As shown in Figure [dd] performance improves
sharply from d'' = 1 to 4 (e.g., MSE drops from 0.15 to under 0.10), highlighting the benefit of
a more expressive projection. Increasing d" beyond 8 yields diminishing returns and slight perfor-
mance degradation, suggesting redundancy or overfitting. Metrics remain stable in the range [4, 32].
We set d™t = 4 by default.

Visualization of Covariate Homogenization. To illustrate UniCA’s behavior and the effect of
covariate homogenization, we visualize examples from the MMSP dataset (figure [5b). The homog-
enized representations of satellite images reveal meaningful temporal patterns: Image Covariate 1
captures periodicity, while Image Covariate 0 also reflects trends aligned with target scale. This
shows that homogenization effectively transforms heterogeneous covariates into task-relevant rep-
resentations, validating our alignment design in UniCA.

Attention-based Covariate Selection. Figure[5cshows attention maps before and after fusion for
the same sample in figure[5b] The fusion module dynamically adjusts attention weights across time;
notably, Covariate 13 consistently receives the highest weights, matching its rich temporal patterns
and strong correlation with the target. In contrast, the target itself is not overly emphasized, suggest-
ing the fusion module learns to complement, rather than duplicate, target signals—demonstrating its
ability to identify and integrate informative covariates.

6 CONCLUSION

In this work, we address a critical limitation of existing Time Series Foundation Models (TSFMs):
their inability to incorporate homogeneous and heterogeneous covariates in general forecasting ef-
fectively. To overcome this, we propose UniCA, a unified covariate adaptation framework that ex-
tends TSFMs to general covariate-aware forecasting scenarios. UniCA achieves this by transforming
diverse covariates into high-order homogeneous series and integrates them via an attention-based
fusion module, preserving the integrity of pretrained temporal modeling. Extensive experiments on
both unimodal and multimodal datasets demonstrate UniCA’s compatibility, universality, and ef-
fectiveness across diverse forecasting tasks. A discussion of its limitations and future directions is
provided in Appendix [l



Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT
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8 REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure reproducibility of our results. Detailed descriptions of the
model architecture, training procedures, hyperparameters, and evaluation protocols are provided in
the main paper and Appendix. We also include ablation studies and additional results in the supple-
mentary materials to validate robustness. All datasets used in our experiments are publicly acces-
sible, with preprocessing steps clearly documented. To further support reproducibility, we provide
anonymous source code and scripts, enabling verification and extension of our findings.
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A DATASETS DESCRIPTIONS

A.1 UNI-MODAL TIME SERIES DATASETS

Our study employed 12 uni-modal datasets with covariates. Detailed descriptions of the targets,
covariates, and data sources are provided in Table [I] while Table 2] outlines the dataset statis-
tics. Specifically, a selection of electricity load forecasting datasets, including Covidl19 Energy,
GEF12, GEF17, PDB, Spain, BDG-2 Hog, BDG-2 Bull, and BDG-2 Cockatoo, was directly re-
trieved from the Lotsa repository on Hugging Face: https://huggingface.co/datasets/
Salesforce/lotsa_data. An exception to this is the GEF14 dataset, which we acquired from
its original source (Hong et al., [2016) due to the absence of covariate data in the version available
on Hugging Face.

Table 1: Dataset Descriptions

Dataset Name Descriptions Covariates Source
Day-ahead electricity prices from five major power . .
EPF markets: Nord pool, PJM, FR, BE, and DE load forecasts, wind generation Lago et al.|2021
M5 competion using 30K hierarchical sales data from store ID, item ID, sell prices, week day,
M5-daily ‘Walmart in three states CA, TX and WI to forecast the month, year, SNAP CA, SNAP TX, Makridakis et al. {2022
daily sales for the next 28 days. SNAP WI, event type
- Corporacién Favorita Grocery Sales Forecasting store no., item no., on promotion, oil prices, IR
Retail competition hosted in Kaggle. week day, month, year, holidays events, Corporacién Favorita) 2018
The Building Data Genome 2 (BDG2) dataset in the .
Hog region. An open dataset that includes non-residential air temperature, drew temperature, .
BDG-2 Hog o . e . sea level pressure, Miller et al.}|2020{[Wang et al.2023||Woo et al.||2024;
building-level data collected from 3053 electricity meters, N o :
" L wind direction, wind speed
which covers 1636 buildings.
BDG-2 Bull BDG-2 dataset collected from Univ. of Texas at Austin, A (emperature, wind speed Miller et al.|[2020{|Wang et al. 2023/ Woo et al. 2024
sea level pressure
BDG-2 Cockatoo  BDG-2 dataset collected from Cornell University. air temperature Miller et al.}|2020 WZOB ‘Woo et al.}2024
3+ years of load data from the Day-Ahead Electricity
Covid19 Energy ~ Demand Forecasting Competition. The purpose is to study  air temperature Farrokhabadi et al.|[2022{/Wang et al.{2023
the impact of the Covid-19 on the power system.
. N Randomly selected second temperature data
GFC12 20 aggregated-level load series data from the because there is no one-to-one correspondance  (Hong et al.}|2014{|Wang et al.}2023{/Woo et al.}2024
Global Energy Forecasting Competition 2012
between the temperature and load data
Seven years of load series data from the Averaged temperature from the i
GFC14 Global Energy Forecasting Competition 2014 raw 25 temperature data series. [Hong et al. {12016,
Eight load data from year 2016 to 2017 originally from - . i . )
GFC17 the Global Energy Forecasting Competition 2014 air temperature Hong et al.{2019{/Wang et al.;2023{/Woo et al.}[2024
PDB Two ){ears Ot‘ P,DB elec‘.".c power load history data from air temperature Yeafi] 20211 Wang et al.|2023{|Woo et al.|[2024]
the Kaggle data competition.
Spain H?prly‘_er_xergy de‘??“"d gé',]emf“on a"fi W?a[her m .ﬁve air temperature of Barcelona J.12019{/Wang et al.§2023{Woo et al. 2024
major cities in Spain. It is a Kaggle data competition.

A.2 MULTI-MODAL DATASETS

To evaluate our approach, we utilized two distinct multi-modal datasets: Time-MMD (Liu et al.|
and the Multimodal Solar Power (MMSP) dataset [2024).

The Time-MMD dataset is a multi-domain resource encompassing nine diverse areas such as Agri-
culture, Climate, Health, and Traffic. It features paired textual and time series data, where the textual
information is derived from curated reports and web search results, as detailed in 2024a)).
Among the original 9 subsets, we exclude 2 sets (Agriculture and Economy) because we find no
specialized method can outperform the Naive method, thus they may be unpredictable. We reserved
20% of each dataset as the test set. Time-MMD allows for the investigation of models capable of
integrating information across different modalities and domains.

The MMSP dataset comprises one and a half years of solar power generation records collected from
88 individual plants. We select the first 10 series as in 2024). Crucially, it includes tempo-
rally aligned heterogeneous covariates for each plant, consisting of satellite imagery and numerical
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Table 2: Dataset Statistics. Dynamic covariates and past dynamic covariates are covariates that are
observed and unobserved in the forecasting horizon, respectively.

. Num. Categorical Cov. Real Cov. Num. Pred.
Dataset Name Domain Freq. g c c
Series Static Dynamic Dynamic Past Dynamic Obs. Len.
EPF Energy/Price 5 H 0 0 0 2 218,280 48
M5-daily Sales 30,490 D 5 8 1 0 59,181,090 28
Retail Sales 119,048 D 7 4 0 2 140,246,203 8
BDG-2 Bull Energy/Load 41 H 0 0 0 3 719,304 48
BDG-2 Cockatoo  Energy/Load 1 H 0 0 0 1 17,544 48
Covid19 Energy ~ Energy/Load 1 H 0 0 0 1 31,912 48
GFC12 Energy/Load 20 H 0 0 0 1 788,280 48
GFC14 Energy/Load 1 H 0 0 0 1 60,600 48
GFC17 Energy/Load 8 H 0 0 0 1 140,352 48
BDG-2 Hog Energy/Load 24 H 0 0 0 5 421,056 48
PDB Energy/Load 1 H 0 0 0 1 17,520 48
Spain Energy/Load 1 H 0 0 0 1 35,064 48
Table 3: Multi-modal Dataset Descriptions
Dataset . Num. Multi-Modal Covariates Num. Pred.
Domain: Target Freq.
Name Series Text Image Time Series Obs. Len.
Agriculture: USDA Broiler
retail broiler 1w Market News Report; N/A N/A 17520 12
site aily National Broiler
COmpost Market at a Glance, etc.
Climate:
US Precipitation 1 M proveht Report N/A N/A 49 12
ational Climate Report
Index
Economy: U.S. International Trade in
US trade in goods 1 M Goods and Services N/A N/A 423 12
a with World Economic Indicators Report
= -
Energy: Annual Energy Outlook fom EIA;
% gasoline price ! M Weekly Petroleum Status Report N/A N/A 1479 12
E Social Good: monthly employment situations;
unemployment statistics 1 M annual labor force characteristics N/A N/A 900 12
in the US by race and ethnicity
Public Health: Weekly U.S. Influenza Surveillance
InfluenzaLike Illness 1 w Report Annual Flu Season Key N/A N/A 1389 12
statistics Studies and News Reports
Environment: .
Outdoor air quality 1 D Daily News N/A N/A 11,102 12
Traffic:
Traffic Volume Trends 1 M Weekly Traffic Volume Report N/A N/A 531 12
Security: Billion-Dollar Weather
Disaster and Emergency 1 M and Climate Disasters; N/A N/A 297 12
Grants Disaster and emergency declarations
Energy: Numerical Weather
MMSP Solar Power 88 H N/A Satellite Images  Predictions, 1,129,920 24
Generation (Latitude, Longitude)

weather predictions. This dataset provides a challenging real-world scenario for multi-modal learn-
ing, requiring the fusion of visual and numerical information to predict power output.

B COMPARED METHODS

In this section, we provide an overview of the baseline methods employed in our experiments, with
a focus on their methodological frameworks and covariate handling strategies. Each approach is an-
alyzed in terms of its integration of homogeneous covariates, highlighting strengths and limitations
in modeling external dependencies.

B.1 SPECIALIZED METHOD

PatchTST (Nie et al.,[2023) PatchTST is a model that transforms time series into patches, which
are then encoded using a Transformer to produce forecasts. It involves two main components: Patch-
ing and Channel Independence. Patching divides time series into subseries-level patches, serving as
input tokens to the Transformer. This preserves local temporal patterns while minimizing compu-
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tational complexity for attention maps, enabling longer history modeling. Channel Independence
ensures that each channel uses the same embedding and Transformer weights, treating multivariate
inputs as separate but parallel sequences. PatchTST does not incorporate covariate information in
forecasting.

NBEATS (Oreshkin et al., 2019) NBEATS (Neural Basis Expansion Analysis for Time Series
Forecasting) is a deep learning model designed for univariate time series forecasting. Its core idea
is to decompose the time series into interpretable components, typically trend and seasonality, using
stack-based architecture where each stack consists of multiple blocks. Each block learns to forecast a
portion of the input series using basis expansion functions (approximated by fully connected layers)
and subtracts its forecast from the input, passing the residual to the next block or stack. This iterative
residual learning allows NBEATS to model complex patterns and achieve strong forecasting perfor-
mance, often outperforming statistical ans hybrid methods, while also offering some interpretability
through its decomposition into basis function.

NBEATSx (Olivares et al., 2021) An extension of the purely univariate NBEATS model,
NBEATSx incorporates covariates by appending them to the backcast and forecast layers in each
neural block. It uses a dual-stack architecture (generic + interpretable) to model both nonlinear
dependencies and explicit covariate effects. This makes it effective for scenarios where future co-
variates (e.g., planned events) are known.

DeepAR (Salinas et al), 2020) Developed by Amazon, DeepAR is a probabilistic RNN-based
model that explicitly integrates covariates. Each time step’s dynamic covariates (e.g., temperature,
price) are concatenated with the target variable and fed into the RNN. It assumes covariates are
known for both training and prediction, making it ideal for applications like demand forecasting
where external factors (e.g., marketing campaigns) drive outcomes.

TFT (Lim et al., [2019) Developed by Google, the Temporal Fusion Transformer (TFT) uses a
modular design to integrate static covariates (e.g., store IDs), known future inputs (e.g., holidays),
and observed variables (e.g., sales). It processes past covariates in the encoder and future covari-
ates in the decoder via gated recurrent networks and variable selection networks. This hierarchical
approach ensures robustness to missing or noisy covariates while maintaining interpretability.

TiDE (Das et al., 2023) TiDE (Time-series Dense Encoder) is a deep learning model for multi-
variate time series forecasting, distinguished by its efficient, MLP-only architecture. It processes the
historical lookback window of the target series and any available past covariates through a dense en-
coder to learn a latent representation. A separate MLP-based decoder then uses this representation,
along with linearly projected future covariate information, to generate multi-step forecasts.

TimeXer (Wang et al.,[2024b) TimeXer is a Transformer-based time series model that processes
time series as sequences of patches. It uses a hierarchical structure with patch embedding, tem-
poral encoding, and attention mechanisms to capture both short-term and long-term dependencies.
TimeXer handles the covariates by employing the “variate-level embedding”. External covariates
are embedded and then integrated directly into the patch representations of the target time series.
This allows the model to learn how these external factors influence the internal time series dynamics
at the patch level, enabling the model to account for the impact of these exogenous variables in its
predictions.

B.2 PRETRAINED METHOD

Moirai (Woo et al.,[2024) Moirai, a time series foundation model from Salesforce, is engineered
for universal forecasting across diverse time series data. At its core, Moirai utilizes a Transformer-
based architecture and is pre-trained on a massive and varied dataset called LOTSA. A key architec-
tural component is its ability to handle any number and type of covariates, both those known in the
future and those that are not. Moirai achieves this by conditioning its probabilistic forecast gener-
ation, which uses a flexible output distribution, on these covariates, allowing the model to produce
forecasts that are informed by the provided exogenous variables.

3https://huggingface.co/Salesforce/moirai-1.1-R-small
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TabPFN-TS (Hoo et al.,[2025) E]TabPFN-TS, aregression variant of the TabPFN(Hollmann et al.,
2025) model to time series, is a foundation model pre-trained on pure artificial datasets, enabling
few-shot time series forecasting. When incorporating covariate data, TabPFN-TS typically treats
these exogenous variables as additional features. These covariate features are then concatenated
with the temporal information before being processed by its Transformer-based architecture, which
is adapted for tabular data. The model’s pre-training on tabular data allows it to potentially learn
complex relationships between all input features, including the covariates, even with limited time
series-specific training.

Time-MoE See section[C.4] for the model details.
Chronos-Bolt See section[C.4] for the model details.

TimesFM See section for the model details.

B.3 MULTIMODAL METEHOD

Time-LLM Time-LLM (Jin et al) 2024) is a foundation model that adapts a pre-trained Large
Language Model (LLM) for general-purpose time series analysis. Instead of full fine-tuning, it
employs a lightweight “reprogramming” layer. This layer transforms input time series into a text-
prototype format that the frozen LLM can process. By aligning the LLM’s inherent sequence model-
ing capabilities with statistical time series patterns, Time-LLM can perform diverse tasks like fore-
casting, classification, and anomaly detection through simple text prompts, leveraging the LLM’s
reasoning abilities while remaining computationally efficient.

ChatTime ChatTime (Wang et al [2025) is a multimodal time series foundation model designed
as a single, end-to-end language model that directly processes interleaved sequences of numerical
time series data and natural language. It introduces key innovations, including a unified time series
tokenizer that represents time series patches as discrete tokens and a temporal-aware attention mech-
anism to effectively capture complex temporal dependencies. By training on this mixed-modality
input, ChatTime can perform diverse analysis tasks like forecasting and classification through a con-
versational interface, directly interpreting and responding to queries about the provided data. We
used the checkpoint ChengsenWang/ChatTime—l—7B—Cha1E] released by the authors in our experi-
ment.

B.4 FINETUNED METHOD

Supervised Fine-Tuning (SFT) is the process of adapting a pre-trained Time Series Foundation
Model (TSFM) to a specific downstream task or dataset by further training it on target-specific
labeled data. This allows the model to leverage its general time series understanding learned during
pre-training and specialize its parameters for improved performance on the new, specific time se-
ries. In our implementation, we utilized the target time series without the covariates and adopted the
same hyperparameters (e.g., learning rate) and data split as UniCA for consistency. During training,
the model adjusts its pre-learned weights to better align with the characteristics of the target series,
enhancing specialization for the task at hand.

B.5 ADAPTER METHOD

Linear Regression (LR) Adapter. In our experiments, we leveraged exogenous variables using a
linear regression methodology inspired by the approaches of the Chronos(Ansari et al.l [2024) and
TimeFM(Das et al., |2024)) time series foundation models. This regressor approach involves decom-
posing the target series into two components: contributions from the covariates and the target itself.
Initially, we perform a regression of the target variable against the known covariates. Subsequently,
we subtract the predicted target values from the actual target values to compute the residuals. These
residuals serve as the context for the time series foundation models, which forecast future residuals.

*https://huggingface.co/Prior-Labs/TabPFN-v2-reg
>https://huggingface.co/ChengsenWang/ChatTime-1-7B-Chat
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Table 4: Overview of the baseline models, grouped by type and implementation source. We utilized
implementations from the popular time series libraries GluonTS and NeuralForecast, or the official
author repository (marked as “Reference”). All experiments were conducted using the default hy-
perparameters provided by the respective implementation.

Model Type Implementation
PatchTST Specialized GluonTS
NBEATS Specialized GluonTS
DeepAR Specialized GluonTS

TFT Specialized GluonTS

TiDE Specialized GluonTS
NBEATSx Specialized NeuralForecast
TimeXer Specialized NeuralForecast
Moirai Pretrained Reference
TimesFM Pretrained Reference
TabPFN-TS  Pretrained Reference
TTM-R2 Pretrained/Adapter  Reference
FusionSF Multimodal Reference
Time-LLM  Multimodal Reference
ChatTime Multimodal Reference

The ultimate forecasts are obtained by summing the predicted residuals with the target forecasts
derived from the covariates.

A notable limitation of the covariate regressor approach is its reliance on covariates that are known
over the forecasting horizon, such as dynamic categorical and dynamic real covariates. Past covari-
ates, including past dynamic categorical and past dynamic real covariates, are only available for the
context window. To address this limitation, we employ the corresponding TSFM to forecast these
past covariates into the horizon, thus extending their utility beyond the context window.

TTM (Ekambaram et al., [2024) E]Tiny Time Mixers (TTM) are compact models for multivari-
ate time series forecasting, featuring only 1 million parameters. Built on the efficient TSMixer ar-
chitecture, TTMs use MLPMixer blocks with simple gated attention, offering a faster alternative
to traditional Transformer self-attention mechanisms. TTMs are pre-trained on diverse, large-scale
datasets from Monash and LibCity, encompassing various domains and temporal scales. TTM’s ar-
chitecture addresses data heterogeneity through innovations such as Adaptive Patching for adjusting
patch lengths, Diverse Resolution Sampling for enhancing generalization across resolutions, and
Resolution Prefix Tuning for embedding resolution info in training. This approach allows TTMs to
excel in resource-limited settings by initially training models channel-independently, followed by
fine-tuning to integrate target and exogenous channel correlations.

C IMPLEMENTATION DETAILS

C.1 CODE AVAILABILITY

Our code has been made anonymous and is available at https://anonymous.4open.
science/r/UniCA-C5EQ.

C.2 COMPUTE RESOURCE INFORMATION

For all the experiments, we use 4 GeForce RTX 3090. For baselines, we used cpu instances with 40
virtual cpus and 384 GiB of memory. The library requirement for reproducing the results is available
on the above repository.

Shttps://huggingface.co/ibm-granite/granite-timeseries-ttm-r2
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C.3 PREPROCESSING

We mainly follow the series preprocessing pipeline proposed in TFT (Lim et al., 2019). We impute
missing values in both the target and covariate series using forward filling and add a correspond-
ing binary indicator to mark the imputed timesteps. The time features are generated based on the
time series frequency (e.g., hour, weekday, month as periodic features). Then, the time features are
vertically stacked with known dynamic features to form a unified feature matrix. Missing static fea-
tures are filled with a default value of zero. Finally, each time series is assigned a unique identifier
to distinguish it in multi-series forecasting. This ensures that the resulting data format meets the
input requirements of deep learning models, providing a normalized representation for time series
forecasting.

C.4 ARCHITECTURE OF TSFM

In this section, we detail the tokenization, encoding, and decoding procedures of two time series
foundation models: Chronos and TimesFM. These decomposition steps provide a clearer under-
standing of their internal mechanisms and differences.

Chronos-Bolt (Ansari et al.,[2024). E]Chronos-Bolt adopts an encoder-decoder architecture based
on T5. During tokenization, the input time series undergoes instance normalization. It is then seg-
mented into patches along with its mask, and the two streams are concatenated before embedding.
An optional [REG] token can be added to support regression-style outputs. The encoder transforms
the tokenized inputs via a stack of T5 encoders, generating contextualized hidden states. These are
fed to the decoder, which performs sequence generation conditioned on attention masks, and yields
multiple quantile forecasts. Extended prediction lengths are handled through decoding extrapolation.
All outputs are rescaled back using stored normalization parameters.

TimesFM (Das et al., 2024). TimesFM utilizes a Transformer decoder-only architecture. The
tokenization stage includes preprocessing, fixed-length patching, and normalization via mean and
standard deviation. Patches are augmented with mask features and projected into embedding space,
optionally with positional encodings. The encoder applies multi-layer self-attention to obtain con-
textual representations. The decoder operates in an auto-regressive manner, iteratively generating
future values. Outputs include both mean and quantile predictions, which are de-normalized to re-
store the original scale. TimesFM also supports frequency-based conditioning and hybrid-frequency
modeling for improved multi-scale forecasting.

Time-MoE (Shi et al., [2024) E]Time-MoE is the first billion-scale time-series foundation model
that marries a decoder-only Transformer with a sparse mixture-of-experts (MoE) backbone to boost
capacity without proportional inference cost. Each Transformer block replaces the dense feed-
forward layer with a shared pool of eight experts, and a learned router sparsely activates just two
experts per token, while rotary positional embeddings and RMSNorm enhance stability. The authors
pre-train three variants—Time-MoE-base (50 M activated / 113 M total parameters), Time-MoE-
large (200 M / 453 M) and Time-MoE-ultra (1.1 B activated / 2.4 B total)—all support channel-
independent forecasting for arbitrary horizons via a multi-resolution head. Training uses Huber loss
and the newly curated Time-300B corpus: ~ 48 M sequences and > 300 billion time points drawn
from nine domains.

C.5 ALGORITHM OF UNICA

We summarize the entire forecasting process of UniCA in Algorithm[I] The procedure begins with
Covariate Homogenization, where heterogeneous covariates such as categories, images, or text are
first encoded into dense features and then mapped into a latent homogeneous space via the Co-
variate Homogenizer (CH). These transformed covariates are then temporally aligned and concate-
nated with any observed homogeneous covariates to form the unified covariate sequence. Next, in

https://huggingface.co/amazon/chronos-bolt-base
8https://huggingface.co/google/timesfm-2.0-500m-pytorch
*https://github.com/time-moe/time-moe
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Table 5: Comparison between Chronos-Bolt, TimesFM and Time-MOoE in terms of model architec-
ture and processing steps.

Component Chronos-Bolt TimesFM Time-MoE

Architecture T5-based encoder-decoder Decoder-only Decoder-only

Tokenizer Patch-based Residual MLP Patch-based Residual MLP Point-based Gated Linear
Encoder TS encoder stack Custom Transformer Custom Transformer
Predictor TS decoder Residual MLP Linear

Prediction Output ~ Multiple quantile predictions Mean and quantile predictions  Point predictions

the Pre-Fusion Module, we integrate historical covariate information into the tokenized target se-
quence using a conditional global attention mechanism followed by a gating unit. This enriched se-
quence is passed to the pretrained encoder of the TSFM to extract temporal patterns. After encoding,
the Post-Fusion Module incorporates future-known covariates using another attention-based fusion
mechanism, allowing the model to dynamically select complementary covariate signals. Finally, the
predictor of the TSFM generates the future forecasts from the fused representation. This modular
workflow enables UniCA to flexibly and effectively adapt general-purpose TSFMs to covariate-rich
forecasting scenarios, while preserving the pretrained temporal modeling capabilities.

Algorithm 1 UniCA: Unified Covariate Adaptation for TSFM

Require: Target series Yi.p, static covariates S, dynamic covariates Ci.r+pm =
{C1.7,Cri1.7+ 1}, pretrained TSFM (T, &, P)
Ensure: Forecast YT+1:T+ H

1: Covariate Homogenization:

2: for each heterogeneous covariate do

3 Encode modality to dense feature H ("¢t)

4 Convert to homogeneous covariate via covariate homogenizer C("¢!) = CH(H (h¢"))
5: end for
6
7
8

: Concatenate all homogeneous covariates: C «+ {C, C(h¢t)}
: Pre-Fusion Module:
: Tokenize past target: Z = T (Yi.1)
9: Tokenize past covariates: Ec, . = T(Ci.7)
10: Embed static covariates: Es = p(S)
11: Compute conditional attention: Z¢, . = CondAttnPool(E¢, .. | Es)
12: Fuse covariates with GLU: Z = Z + GLU(Z¢, )
13: Temporal Encoding:
14: Encode fused sequence: H = £(Z)
15: Post-Fusion Module:
16: Tokenize future covariates: Ec,. ..., = T(Cri1.174+H)
17: Compute conditional attention: Z¢,., ., , = CondAttnPool(Ec,.,, .., | Es)
18: Fuse via self-attention: [, ZCT+1;T+H] = SelfAttn((H, Zcyy.ri i)
19: Forecasting:
20: Predict target: YT+1:T+ H= P(ﬁ )

C.6 OPTIMIZATION

We train our models using the Adam optimizer. The initial learning rate is set to a fixed value and
subject to adjustment viaa ReduceLROnP lateau learning rate scheduler. The scheduler monitors
validation loss (if available) or training loss and reduces the learning rate by a factor of 0.5 when
the monitored metric has not improved for a specified number of epochs (patience). No weight
decay is applied to regularize the model.
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To prevent overfitting, early stopping is implemented based on validation loss. Training proceeds
in mini-batches, with each epoch comprising 50 gradient steps. Model checkpoints are saved corre-
sponding to the epoch that yields the best validation performance.

C.7 HYPERPARAMTERS
For all experiments, we search the hyperparameters listed in table[6]

Table 6: Key hyperparameters, their search spaces, or fixed values used in training UniCA across all
datasets.

Hyperparameter Value / Range Description

Learning rate {1e-3, le-4,1e-5, 1e—6} In.itial learning rate for Adam opti-
mizer

Weight decay {le-2,1e-4,1e-6} L2 regularization weight

Scheduler patience 5 Epochs to wait before reducing LR

Scheduler factor 0.5 Multiplicative factor for LR reduction

Batch size {8,16,32,64} Number of samples per training batch

Max epochs 100 Maximum number of training epochs

Early stopping patience 10 Epochs to wait for improvement be-
fore stopping

Context length TSFM-specific Length of input window for encoder

Prediction length Dataset-specific Length of prediction window

Embedding dimension TSFM-specific Dimension of input embeddings

Homogenizatoin dimension  {1,2,4,8,16} Dimension of homogenized series of

each heterogeneous covariate

D EXPERIMENT DETAILS

D.1 TRAIN-TEST SPLITTING.

The train-test follows the setups in (Aksu et al., [2024). For datasets with large number of series,
i.e. M5 (Makridakis et al.,|2022)) and Retail (Lim et al., 2019), we spare the last ’prediction length”
of each series for test and all the observed points before the test points are used for training. For
other datasets, we partition 10% of the data as the test set and apply a sliding window approach for
evaluation, with a step size of 1 (Zhou et al., 2021). Among the training points, we also split the
validation points.

D.2 EVALUATION METRICS

We use four metrics to evaluate performance of forecasters: Mean Absolute Error (MAE), Mean
Square Error (MSE), Mean Absolute Percentage Error (MAPE) for point forecasting ability, and
Continuous Ranked Probability Score (CRPS) for probabilistic forecasting. For all metrics, we use
GluonTsS library implementation to calculate final values (Alexandrov et al.| 2020).

MAE The Mean Absolute Error (MAE) is a commonly used evaluation metric in time series fore-
casting that measures the average magnitude of errors between predicted and actual values, without
considering their direction. It is defined as:

n

1 N
MAE= -3 [V, -Yi,

t=1
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where:

* Y, is the ground truth value at time step ¢,

* Y, is the predicted value at time step ¢,

¢ n is the total number of observations.

MAE is scale-dependent and expresses the error in the same units as the data, making it directly
interpretable. It is robust to outliers compared to squared-error metrics, but does not penalize large
errors as heavily as MSE.

MSE The Mean Squared Error (MSE) quantifies the average of the squared differences between
predicted and actual values. It is defined as:

1 — .
MSE = - (Y = Y))%,

t=1
where:

¢ Y, is the actual value at time ¢,
o }A’t is the forecasted value at time ¢,
¢ n is the number of observations.
MSE penalizes larger errors more severely due to the squaring operation, which makes it particularly

sensitive to outliers. Like MAE, MSE is also scale-dependent, and it is widely used in regression
and forecasting tasks due to its mathematical properties that facilitate optimization.

MAPE MAPE is an evaluation metric used to measure the accuracy of forecasts in time series
analysis. It is defined as the mean of the absolute percentage differences between the actual values

Y; and the predicted values }A’t The formula for MAPE is:

n

1
MAPE = ~ Z

t=1

Y -V,
Y;

b

where:

¢ Y, is the actual value at time ¢,
. Yt is the forecasted value at time ¢,
* n is the number of observations.
This metric expresses the forecast error as a percentage of the actual values, making it scale-

independent and easy to interpret. However, it is sensitive to values of Y; that are zero or close
to zero, as this can lead to division by zero or inflated error percentages.

CRPS The Continuous Ranked Probability Score (CRPS) is a metric used in probabilistic forecast-
ing to evaluate the accuracy of predicted cumulative distribution functions (CDFs) against observed
values. Given a predicted distribution with CDF F' and a ground truth value y, the CRPS is defined
as:

CRPS(F, y) — /O 2L (F(a), y) da,

where the quantile loss A, (g, y) is defined as:
Aalq,y) = (a =y < q})(y —q)
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In practice, computing the CRPS integral can be computationally intensive. To address this, we
approximate the CRPS using a discrete sum over a finite set of quantile levels. This approximation,
often referred to as the mean weighted quantile loss (Park et al., [2022), is given by:

K
1
CRPS ~ — ;1 wQL[ov],

where K is the number of quantile levels, and {aq, as, ..
(e.g,ap=0.1kfork=1,2,...,9 when K =9).

., ak } are the selected quantile levels

The weighted quantile loss wQL[«] for each quantile level « is calculated as:

2y Aa(@i() ye)

La] = 2

where:

* §i(«) is the predicted a-quantile at time step ¢,
* 7, is the actual observed value at time ¢,

* An(Ge(@), ye) is the quantile loss at time ¢ for quantile level a.

E FuULL RESULTS

E.1 ROBUSTNESS EVALUATION VIA ERROR BARS.

To evaluate the robustness of UniCA under different random seeds, we conduct experiments with
seed values {41, 42,43, 44, 45} on all uni-modal datasets and report the average performance along
with 1-sigma standard deviation (mean =+ std), as shown in Table[7} Specifically, “C. (UniCA)” and
“T. (UniCA)” denote the proposed UniCA framework built on top of Chronos Bolt and TimesFM,
respectively.

The results demonstrate that UniCA consistently achieves strong performance with low variance
across all metrics, indicating its robustness against random initialization. For example, on the GFC17
dataset, the MSE is 0.096 + 0.003 for Chronos-based UniCA and 0.094 4 0.004 for TimesFM-based
UniCA, showcasing both accuracy and stability. This pattern holds across other datasets, supporting
the statistical reliability and generalization ability of UniCA regardless of the underlying backbone.

Table 7: Error bar results of UniCA on uni-modal datasets. “C.” and “T.” indicate UniCA instantiated
with Chronos-Bolt and TimesFM, respectively. All results are averaged over five runs with random
seeds {41, 42, 43,44, 45} and are reported as mean =+ standard deviation (1-sigma).

Average

Bull

Cockatoo

COVID19

EPF

GFC12

GFC14

GFC17

Hog

M5

pdb

Retail

Spain

Average
MAE
MAPE
MSE
CRPS

0.457+0.001
0.509+0.001
0.506+0.002
0.383+0.002
0.429+0.001

0.690+0.004
0.809+0.002
0.639+0.014
0.700+0.005
0.610+0.002

0.822+0.000
0.8740.000
0.820+0.002
0.7460.000
0.848+0.000

0.144+0.000
0.1780.000
0.179+0.000
0.041£0.000
0.178+0.000

0.434+0.002
0.440+0.001
0.645+0.004
0.356+0.002
0.293+0.001

0.459+0.010
0.505+0.012
0.559+0.009
0.285+0.010
0.487+0.010

0.319+0.002
0.361+0.002
0.39540.002
0.166+0.002
0.354+0.002

0.241+0.004
0.290+0.005
0.286+0.004
0.096+0.003
0.292+0.005

0.716+0.005
0.781+0.004
0.683+0.005

0.701+0.006 0.5

0.700+0.006

0.613+0.001
0.699+0.002
0.764+0.002
6:0.002
0.424+0.001

0.190+0.002
0.228+0.002
0.220+0.002
0.078+0.001
0.232+0.002

0.656+0.007
0.712+0.005
0.655+0.017
0.769+0.003
0.489+0.004

0.196+0.002
0.230+0.002
0.225+0.002
0.089+0.001
0.239+0.002

Average
MAE
MAPE
MSE
CRPS

T. (UniCA) | C. (UniCA)

0.47240.001
0.526+0.001
0.514+0.002
0.403+0.001
0.44540.001

0.739+0.001
0.876+0.005
0.668+0.011
0.757+0.006
0.655+0.004

0.838+0.001
0.886:0.001
0.812+0.001
0.784+0.001
0.870=0.001

0.143+0.000
0.178£0.000
0.178+0.000
0.040+0.000
0.177+0.000

0.440+0.002
0.452+0.001
0.643+0.005
0.364+0.001
0.302+0.001

0.468+0.002
0.512-£0.002
0.564+0.002
0.299+0.002
0.499+0.002

0.32140.002
0.35940.002
0.402+0.004
0.168+0.001
0.354+0.001

0.23740.005
0.285+0.006
0.28240.005
0.094+0.004
0.28740.005

0.766+0.003
0.836+0.003
0.726+0.015
0.758+0.006
0.746+0.005

0.613+0.001
0.7010.000
0.

0.180+0.002
0.221£0.002

002 0.210+0.003

0.58740.001
0.4260.000

0.068+0.001
0.222+0.002

0.655+0.005
0.709-£0.003
0.648+0.027
0.776+0.004
0.485+0.001

0.267+0.008
0.305-£0.009
0.296+0.009
0.147+0.007
0.318+0.009

E.2 UNIMODAL FORECASTING

Main results. To provide a comprehensive comparison across all baseline and proposed methods,
we report the detailed forecasting results on the 12 unimodal covariate-aware datasets in Table [§]
This includes performance across four common evaluation metrics: MAE, MAPE, MSE, and CRPS.
The models compared include traditional baselines (e.g., NBEATS, DeepAR, TFT), pretrained foun-
dation models (e.g., TimesFM, Chronos), and our proposed adaptation strategies (UniCA, SFT, LR,
ZS). We average each metric across all datasets and report both the raw values and metric-wise
ranks.
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To further illustrate the relative performance of each method, Figure [6] shows the average rank of
each model across all datasets under each metric. Lower rank indicates better performance. As
shown, our method Chronos-Bolt (UniCA) consistently outperforms all others in all four evalua-
tion metrics. Notably, both Chronos and TimesFM, when adapted using UniCA, achieve significant
improvements over their zero-shot and fine-tuned variants.

Table 8: Forecasting results on 12 unimodal covariate datasets.

PatchTST DeepAR TFT TiDE NBEATSx TimeXer TTM Moirai TabPFN-TS ChronosX Chronos (Bolt) TimesFM Time-MoE

SFT IR SFT LR UniCA 7S5 UniCA

Avg 0.573 0.743 0.535  0.588 0.554 0.732 0.556 0.539 0.536 0518 0.480 0.494 0.539 0493 0472 0.912 0.808

3 MAE 0.616 0.806 0.596  0.640 0.600 0.743 0.595 0.604 0.590 0.527 0.526  0.540 0.587 0.546  0.526 0.843 0.796
§ MAPE 063 0718 059 0649 0608 0738 0592 0593 0600 0580 0514 0569 0514 0946 0938
2 MSE 0531 0726 09 055 0482 0752 0440 0462 0467 0471 0418 0413 2 0403 0971 0643
CRPS 0510 0722 0499 0537 0525 0696 0598 0498 0488 0.494 0460 0456 0429 0437 0445 0887 0853
Average 0.758 0.796 0.794  0.795 0.797 0.849 0.783 0.701 0.776 0.782 0.719  0.710 0.690 0.716 0.739 0.892 0.848

_ MAE 0871 0924 0902 0881 0886 0943 0869 0857 0874 0562 0825 0815 0809 0842 0876 0968 0923
S MAPE 084 0730 0809 083 0850 0916 0785 0609 0762 0775 0686 0710 0639 0679 0668 0962 0914
MSE 0.693 0.826 0.809 0.786 0.775 0.798 0.701 0.723 0.835 0.841 0.744  0.713 0.700  0.730 0.757 0.823 0.763
CRPS 0.629 0.705 0.656 0.676 0.677 0.734 0.775 0.616 0.634 0.650 0.622  0.603 0.610 0.611 0.655 0.814 0.790

~ Average 0820 0816 0777 0892 0968 1934 0920 0824 0939 0582 0953 0830 082 0818 0838 0965 0945
8 MAE 0869 0865 0827 0941 0972 1738 0926 0876 0971 0913 0977 0871 0874 0875 0886 0972 0957
8 MAPE 0.836 0.853 0.800 0.861 0.906 1.498 0.815 0.831 0.936 0.864 0.863 0.795 0.820 0.803 0.812 0.891 0.874
2 OMSE 0741 0732 0683 0850 1002 2835 082 0761 0931 0526 0927 0774 0746 0769 0784 0905 0879
CRPS 0835 0814 0799 0915 0993 1666 1116 0827 0917 0924 1045 0881 0848 0825 0870 1093 1072

o Average 0.377 0.221 0.186 0324 0.219 0.272 0.235 0.231 0.264 0.166 0.140  0.170 0.144 0.143 0.143 0.730 0.764
E MAE 0.444 0.271 0.229  0.388 0.259 0.319 0.267 0.277 0313 0.204 0.171  0.210 0.178 0.179 0.178 0.804 0.834
S MAPE 0458 0277 020 0304 025 0315 0266 0272 0311 0205 0172 0212 0179 0179 078 0804 0843
2 0191 0078 0061 0146 0092 0131 0082 0104 0142 0054 0041 0040 0. 0040 0564 0594
2 0414 0258 0225 0367 0267 0323 0325 0210 0291 0202 0178 0174 0213 0204 0177 0750 0785
0506 0638 0542 0577 0489 0626 0539 0574 0528 0577 0434 0449 0465 0436 0440 0762 0767

. 0526 0875 0514 062 0514 0663 0546 0626 0541 0499 0440 0459 0487 0468 0452 0826 0826
£ 0740 053 0750 0797 0688 0897 0779 0772 0808 0705 0645 0657 0655 0589 0643 1007 1031
= 0413 0.554 0.466 0476 0.407 0.507 0416 0.482 0412 0.771 0.356 0.378 0.364 0.623 0.613
0.345 0.589 0377 0412 0.346 0.439 0415 0418 0.352 0.335 0.293 0.300 0.302 0.594 0.596

Average 0522 0817 0646 0568 0511 0571 0578 0521 0534 0501 0459 0476 0468 0815 0818

Q MAE 0.574 0.880 0.694  0.620 0.559 0.625 0.591 0.571 0.585 0.546 0.505 0.523 0512 0.838 0.841
E;) MAPE 0.616 0.751 0.764  0.661 0.601 0.649 0.640  0.624 0.619 0.559 0.575 0.564 0.872 0.881
5 MSE 0345 0729 0471 0391 0327 039 0368 0346 0375 0285 0311 0299 0670 0670
CRPS 0551 0908 0654 0600 0557 0613 0715 0543 0558 0487 0497 0499 0879 0882
Average 0.349 1.279 0361  0.376 0.324 0.268 0.398 0.362 0.361 0.319 0.320 0.321 0.707 0.727

= MAE 0391 1279 0405 0421 0364 0325 0438 0413 0403 0361 0361 0359 0059 0059
S MAPE 0446 1201 044 0454 0405 0313 0497 0440 0449 0395 0401 0402 1463 1485
5 MSsE  oisi 1204 0198 0212 0168 0115 0223 0195 0202 0166 0.168 0168 0004 0004
CRPS 0.376 1.434 0393 0417 0.361 0.320 0.434 0.397 0.392 0.354 0.351 0.354 1.303 1.359
Average 0255 0809 0320 0312 0285 0340 0303 0302 0284 0241 0242 0237 0772 0758

= MAE 0346 085 0377 0369 0339 0402 0338 0363 0341 029 0295 0285 0817 0801
S MAPE 034 0820 0374 0372 0337 0392 0328 0351 0330 0286 0289 0282 0815 0813
o MSE 0.124 0.623 0.155  0.144 0.127 0.172 0.125 0.141 0.131 0.096 0.097 0.094 0.601 0.590
CRPS 0337 0938 0372 0362 0343 0393 0421 0355 0334 0292 0289 0287 0854 0826
Average 0790 1553 0839 0837 0880 1792 0916 0873 0835 0716 0760 0828 0802 0766 1241 0967

o0 MAE 0.856 1518 0.893  0.891 0914 1.480 0.933 0.951 0.897 0.781 0.836  0.880 0.868 0.836 1.203 0.976
£ MAPE 078 1173 085 0868 0906 1547 0814 0806 0839 0683 0724 0814 0789 0726 1012 1024
MSE 0767 2209 0822 0807 0863 2145 0902 0920 0524 0701 0757 0814 0771 0758 1554 0890
CRPS 0751 1311 0784 0782 0835 1994 1015 0816 0781 0700 0723 0803 0781 0746 1195 0980

Avg 1.127 0.692 0.624  0.902 0.936 0.646 0.629 0.724 0.680 0.606  0.629 0.613 0.608 0.629 0.609 0.613 0.739 0.707

MAE 1033 0746 0728 0911 1000 0745 0776 0793 0759 0690 0711 0699 0705 0715 0714 0701 0873 0831

© MAPE 1085 0836 0713 0878 1000 0722 0654 0885 080l 0761 0787 0764 0731 0775 0719 0737 0694 0747
MSE 1.747 0.695 0.617 1.254 1.000 0.657 0.588 0.732 0.705 0.555 0598 0.566 0.579 0.605 0.578 0.587 0.770 0.647
CRPS 0.643 0.489 0438 0.565 0.742 0.460 0.500  0.488 0.454 0416 0422 0.424 0419 0423 0426 0426 0.619 0.603
Average 0260 0242 0272 0278 0240 0314 0230 0238 0234 0229 0205 0190 0181 0227 0209 080 0726 0742

. MAE 0313 029 0332 0334 0288 037 0262 0288 0282 0267 0249 0228 0254 0221 0783 0787
= MAPE 0.306 0.279 0318 0332 0.276 0.353 0.251 0.275 0.269 0.258 0.241 0.220 0 0.264 0.245 0.210 0.797 0.812
& MSE 0.112 0.101 0.120  0.122 0.102 0.154 0.084 0.102 0.103 0.095 0.083 0.078 0.070 0.094 0.084  0.068 0.540 0.580
CRPS 0310 0295 0319 0323 0293 0371 0324 028 0281 0204 0246 0232 0219 0274 0254 0222 0783 0789
0.689 0.705 0.685  0.807 0.715 0.756 0.759 0.760 0.668 0.664  0.666 0.656 0.653 0712 0714 0.655 1.789 0.856

= 0.732 0.757 0.762  0.862 0.779 0.809 0.788 0.816 0.729 0.708  0.729 0.712 0.706 0755 0.767 0.709 1.135 0.885
3 0690 0785 0676 0907 0751 0788 0869 0850 0702 0670 0.638 0655 0681 0805 0783 0648 1162 0978
g 0835 0769 0775 0883 0779 0865 0768 0826 0752 0788 0804 0769 0750 0775 0792 0776 3941 0852
0.499 0.510 0.528 0.574 0.550 0.560 0.610  0.549 0.490 0.490 0493 0.489 0474 0514 0516 0485 0918 0.707

0387 0348 0374 0387 0282 0419 0386 0360 0332 0.193 0240 0309 0219 0316 0267 0802 0792

- 0443 0404 0432 0444 0325 0483 0413 0411 0384 0223 0282 0355 0362 0305 0840 0830
H 0445 0382 0410 0432 0319 0467 0406 0400 0374 0216 0273 5 0345 0246 0350 0296 0875 0856
7 0.223 0.189 0213 0224 0.145 0.245 0.199 0.216 0.195 0.089 0.124 0.089 0.175  0.099 0.183 0.147 0.655 0.632
0.437 0416 0441 0449 0.340 0.482 0.524 0415 0.374 0246 0243 0.283 0.239 0362 0279 0370 0318 0.839 0.850

EPF subsets. The Electricity Price Forecasting (EPF) dataset is often treated as a collection of
distinct sub-datasets representing different markets: BE, DE, FR, NP, and PJM. These subsets exhibit
diverse distributional characteristics and covariate dynamics. Table[D]and figure[7]present the average
performance as well as the relative performance, including MAE, MAPE, MSE, and CRPS.

We compare traditional deep forecasting models, pretrained time series foundation models (e.g.,
TimesFM and Chronos), and their adapted variants using zero-shot (ZS), supervised fine-tuning
(SFT), linear adaptation (LR), and our unified covariate adapter (UniCA).

Across all EPF subsets, the UniCA adaptation strategy consistently delivers competitive or leading
performance, especially when applied to pretrained models like Chronos and TimesFM. Notably,
TimesFM (UniCA) and Chronos (UniCA) show particularly strong results on BE, PJM, and DE,
indicating effective covariate adaptation and transferability across markets.
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1428 Figure 6: Metrics rank on uni-modal covariate-aware datasets.
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Table 9: Forecasting results on subsets of EPF.

Chronos-Bolt TimesFM
SFT LR UniCA ZS SFT LR

PatchTST NBEATS DeepAR TFT Tide NBEATSx TimeXer Moirai TTM TabPFN-TS

Average 0.497 0.653 0.666 0482 0514 0.438 0.576 0.517  0.510 0.496 0410 0420 0399 0415 0450 0414
& MAE 0.559 0.759 0.771 0.543  0.590 0.496 0.647 0.596  0.558 0.555 0456 0477 0450 0467 0.509 0471
g MAPE 0.598 0.564 0.780  0.563  0.600 0.519 0.698 0.594  0.600 0.591 0495 0498 0476 0500 0.532 0.489
Z MSE 0.413 0.594 0422 0426 0.356 0.481 0444 0.407 0.427 0337 0348 0329 0348 0.383 0.342

CRPS 0.417 0.692 0.399  0.441 0.380 0.476 0436 0476 0411 0351 0357 0341 0346 0377 0.355

Average 0.416 0.570 0432 0.484 0.420 0.546 0458  0.440 0.410 0357 0357 0358 0356 0363 0407 0.365

MAE 0.518 0.704 0.536  0.605 0.526 0.681 0.574  0.546 0.519 0452 0451 0453 0451 0457 0513 0456
§ MAPE 0.488 0.640 0461 0.572 0.482 0.669 0.520  0.497 0.479 0399 0399 0399 0391 0398 0430 0.400

MSE 0.417 0.538 0.478 0479 0416 0.511 0472 0420 0.400 0.362 0363 0365 0366 0385 0439 0.386

CRPS 0.242 0.401 0.254  0.282 0.257 0.323 0267  0.298 0.242 0214 0216 0213 0214 0213 0245 0217

Average 0.637 0.940 0.638  0.650 0.567 0.734 0.631  0.680 0.686 0.620 0.556 0.575 0.544  0.555 0.575 0.518

MAE 0.630 1.124 0.649  0.690 0.589 0.727 0.669  0.650 0.679 0.604 0.557 0.592 0.556 0567 0.587 0.557
g MAPE 0.861 0.276 0.836  0.776 0.706 0.948 0.754  0.875 0.916 0.832 0735 0724 0702 0740 0.751 0.633

MSE 0.485 1.104 0.485  0.498 0.407 0.593 0.504  0.499 0.540 0487 0406 0435 0404 0405 0428 0.366

CRPS 0.574 1.257 0.581 0.635 0.566 0.665 0.599  0.696 0.609 0.559 0.527 0.551 0516 0510 0.534 0.517

Average 0.421 0.808 0473 0.499 0414 0.564 0493 0.456 0.425 0.349 0351 0361 0364 0407 0.374

MAE 0.488 0.937 0.539  0.582 0.472 0.661 0.576  0.521 0.493 0398 0.392 0412 0412 0464 0426
E MAPE 0.450 0.853 0485  0.548 0.440 0.634 0.533 0472 0.468 0.360 0.356 0.371 0.366 0409 0.378

MSE 0.421 0.676 0.515  0.476 0417 0.521 0482 0426 0.410 0.366 0.387 0.385 0403 0441 0.405

CRPS 0.325 0.765 0.355  0.388 0.327 0.441 0.381  0.403 0.328 0.270 0.271 0.275 0.276 0.314 0.288

Average 0.704 0.570 0.543  0.602 0.498 0.641 0.679  0.644 0.632 0.507  0.529 0.517  0.564 0.531

MAE 0.776 0.588 0.581  0.650 0.528 0.682 0.749  0.670 0.673 0.529 0.572 0.546  0.604 0.555
% MAPE 0.828 0.653 0.661  0.709 0.624 0.781 0.790  0.771 0.716 0.653  0.662 0.665 0.707 0.689

MSE 0.556 0.418 0.430  0.465 0.367 0.514 0.552  0.496 0.569 0.374  0.398 0.387 0431 0397

CRPS 0.656 0.622 0.500 0.586 0.474 0.587 0.625  0.638 0.570 0472 0482 0469 0.513  0.482

Average 0.305 0.374 0322 0335 0.289 0.393 0325 0331 0.326 0.281 0.277 0278 0.277  0.299 0.283

MAE 0.386 0.444 0409 0421 0.363 0.485 0412 0401 0.410 0355 0353 0354 0352 0378  0.360
E MAPE 0.363 0.401 0.371  0.397 0.344 0.459 0373 0.385 0.373 0.337 0.333  0.363 0.345
A MSE 0.184 0.235 0.204 0.210 0.172 0.265 0210 0.195 0.215 0.157 0.162  0.175 0.156

CRPS 0.286 0.415 0305 0313 0.278 0.363 0.306  0.345 0.305 0.265 0262 0279 0.272

E.3 MULTI-MODAL FORECASTING

Time-MMD (TS-Text). Table |10| reports the full forecasting results on the Time-MMD bench-
mark across seven domains: Climate, Energy, Environment, Health, Security, SocialGood, and Traf-
fic. We compare UniCA with strong baselines, including classic models (e.g., DeepAR, TFT), re-
cent pretrained models (e.g., Chronos-Bolt, TimesFM), and domain-specific models (e.g., Time-
LLM, TTM, Moirai). Metrics include Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE), Mean Squared Error (MSE), and Continuous Ranked Probability Score (CRPS).

UniCA consistently achieves the best or competitive performance across most domains and met-
rics, demonstrating its versatility and scalability in handling heterogeneous covariates under diverse
multimodal forecasting scenarios.

Table 10: Full forecasting results on Time-MMD.

NBEATSx PatchTST DeepAR TFT TFT(+CH) TiDE TiDE(+CH) Time-LLM TTM Moirai TabPFN-TS MM-TSF ChatTime Chronos (Bolt) TimesFM Time-MOE
s

SFT  UniCA SFT UniCA ZS UniCA

Average  0.840 0.894 1270 0971 0.934 0.920 0.889 0818 0778 0742 0.801 0.691 1213 0682 0738  0.671 0.804 0.638 0821 0815

& MAE 0.884 1.009 1219 0958 0928 0.976 0.952 0.847 0866 0.821 0.837 0.777 0.647 0737 0794 0742 0869 0703 0918 0918
£ MAPE 0717 0778 0998 1.042 1.035 0.900 0.856 0.766 0.651 0715 0819 0.655 2227 0674 0721 0634 0776 0.601  0.648 0634
Z MSE 0.782 0793 1605 0992 0885 0.869 0813 0723 0.685  0.696 0.787 0.618 1361 0637 0647 0614 0732 0.604 0781 0769
"~ CRPS 0.980 0.996 1260 0.891 0.886 0.937 0.932 0.935 0909 0735 0.762 0.727 0.618 0681 0791 0693 0841 0.645 0937 0938
Average  0.628 0815 0708  0.800 0.573 0578 0599 0.536 0545 0.536 0.509 1799 0505 0626 0515 0.555 0559

£  MAE 0712 0779 0768 0885 0.685 0.682 0.687 0.635 0706 0.638 0.635 0.622 0685 0.624 0714 0714
E MAPE 0510 L0438 0744 0718 0.569 0.598 0.498 0.566 0393 0.568 0.406 0462 0.682 0466 0255 0259
5 MSE 0519 0623 0599 0819 0.465 0461 0.468 0408 0488 0.407 0418 0397 0481 0412 0511 0511
CRPS 0.773 0809 0719 0778 0.574 0.571 0.746 0.535 0593 0.529 0.571 0.537  0.656 0557 0739 0753
Average 1475 2981 0.995 0.952 1.209 0.923 1.204 1120 1.039 1.167 0.896 0925 0894 0932 1162 1109

7 MAE 1.429 2368 1004 0987 1138 0.974 1161 1042 1.035 1.163 0.944 0938 0957 0947 1199 1.146
5 MAPE 1.068 0.621 0926 0883 0.928 0.467 1.056 0834 1123 0.970 0.849 0963 0.730  0.968 0.847 0834
& MSE 1.706 6.328 1.047 0.947 1.391 0.924 1217 1019 1.024 1.370 0.872 0.889  0.859  0.886 1283 1.203
CRPS 1.699 2.607 1.004 0.989 1.379 1.326 1.380 1.587  0.975 1.167 0.920 0911 1.031 0929 1320 1.251
Average 0721 0721 0670 0676 0.640 0.644 0.707 0.630 0658 0.667 0.655 0.626 0.690  0.612 0717 0712
MAE 0.809 0822 0763 0.766 0.778 0773 0.774 0777 0756 0772 0.742 0740 0779 0728 0.830 0826
MAPE 0.706 0819 0.766 0.776 0.646 0.667 0.733 0.586  0.710 0.735 0.743 0.664  0.791  0.660 0.689  0.681
MSE 0.628 0.648  0.601 0.612 0.572 0.574 0.617 0.546  0.623 0611 0.597 0562 0.615 0533 0.615  0.610
CRPS 0.739 0.596  0.550 0.551 0.564 0.562 0.707 0.609  0.543 0.550 0.539 0.538 0.574  0.525 0.734  0.732
Average 0.834 1070 0.984 0.867 0913 0.938 0.746 0.894  0.760 1.089 0.642 0.616 0.828  0.624 0934 0953

£ MAE 0.860 1.118 1.004 0.934 992 1.011 0.846 0989 0.821 1.008 0.718 0.690 0826  0.708 1001 1.019
' MAPE 0.715 0.886  0.895 0.701 733 0.766 0.398 0678 0.710 1.448 0.612 0611 0873 0593 0750 0.782
= MSE 0.739 1.023 1.059 0.883 0916 0.943 0.735 0906 0.722 0.964 0.511 0475 0.699  0.487 0939 0.941
CRPS 1.020 1.251 0.979 0.948 1.010 1.031 1.004 1.002  0.786 0.936 0.727 0.686 0915  0.707 1.045  1.070
Average 0.835 1.448 1.469 1.256 1.555 1.540 0.878 0739 0718 0.649 0.819 0.697 0.823  0.694 0.685  0.686

£ MAE 0.927 1.607 1.409 1.142 1.767 1.752 0.951 0.880  0.856 0.764 0.987 0.822 0.966  0.788 0.815 0814
5 MAPE 0.799 1.535 1.679 1.965 1.657 1.639 0.926 0.666  0.633 0.565 0.706 0619 0.744  0.662 0.500  0.505
& MSE 0.692 1078 1614 0839 1.260 1.241 0.690 0676 0.669 0612 0712 0.640  0.708  0.634 0.648  0.649
CRPS 0.922 1571 L1175 1.078 1.535 1.528 0.946 0732 0714 0.657 0.872 0707 0.876  0.693 0.778 0777

5 Average 0823 1429 1378 1.380 0.998 1.044 1.069 0898 0.725 0.882 0778 0838 0781 0818 0.856  0.900
g MAE 0.843 1403 LI72 1.166 0.943 0.947 1.036 1062 0.803 0912 0.840 0.804 0798 0.806 0969 1.077
S MAPE 0.701 1558 1721 1.651 1137 1227 1.120 0652 0558 0.820 0.635 0.803 0.708 0782 0670 0.595
g MSE 0.780 1231 1469 1512 0973 1.046 0932 0816 0735 0917 0.781 0932 0762 0.883 0770 0818
% CRPS 0.967 1523 1150 1.189 0.941 0.958 1.188 1061 0.804 0.881 0.855 0813 0.855  0.803 1016 1110
Average  0.568 0430 059  0.605 0.554 0.553 0.521 0.630 0749 0.619 0.539 0.567 0.525 0502 0.838 0786

2 MAE 0.608 0435 0589 0618 0.528 0.528 0475 0679 0772 0.605 0.572 0539 0.547 0595 0901 0.831
£ MAPE 0518 0517 0563 0.548 0.630 0.627 0.630 0577 0.881 0.629 0.545 0.596 0520  0.307 0.825  0.780
& MSE 0.408 0305 0552 0583 0.506 0.504 0.401 0428 0610 0.631 0.437 0.561 0402 0.466 0700 0.653
CRPS 0.737 0462 0657 0671 0.553 0.552 0.576 0.834 0731 0.611 0.604 0571 0.632  0.639 0926 0.877
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Table 11: Forecasting performance on MMSP (TS-Image multimodal) dataset.

Chronos (Bolt) TimesFM Time-MOE
SFT  UniCA YA SFT UniCA ZS UniCA

Average 0485 0.152 0.137 2 0.103 0.292 0.135 0.408 0238 0555 0.378 0.127 0.120 0.140 0.121 0.158 0.167 0.147  0.703 0.607
MAE 0.682 0219 0216 177 0.168 0.438 0.206 0.263 0378  0.711 0.566 0.200 0.193 0225 0.193 0245 0258 0229 03814 0.765
MAPE  0.020 0.030 0.019 0.034 0.021 0.022 0.014 0.090 0.038 0.187 0.016 0.037 0.019 0.023 0.019 0.049 0.080 0.046 0.755 0.337
MSE 0.662  0.107 0.097 0.067 0.067 0.297 0.100 0.095 0206 0.633 0.478 0.090 0.090 0.099 0.090 0.113 0.100 0.098 0.538 0.653
CRPS 0.576 0252 0214 0.168 0.157 0.410 0.220 1.183 0329 0.691 0452 0.183 0.180 0212 0.180 0227 0231 0215 0.707 0.672

PTST NBS DAR TFT TFT(+CH) TiDE TiDE (+CH) TTM Moirai PFN FSF MM-TSF

MMSP

E.4 IMPUTATION

UniCA is a general covariate adaptation framework for time-series foundation models (TSFMs). Its
applicability is therefore not limited to forecasting—UniCA can be attached to any downstream task
that the underlying TSFM supports, provided the task is covariate-aware.

To demonstrate this, we evaluate UniCA on the imputation setting of the MOMENT
TSFM |Goswami et al.| (2024), which natively supports forecasting, classification, anomaly detec-
tion, and imputation. Among these tasks, only imputation naturally involves multivariate inputs or
covariates, making it the most appropriate benchmark for UniCA.

For each dataset (ETThl, ETTh2, ETTm1, ETTm2, Electricity, Weather), we treat the OT column
as the target variable and use all remaining variables as past dynamic real covariates. Each dataset is
split with a 6:2:2 ratio. Following the MOMENT imputation setup, on the test split we extract slid-
ing windows of length 512 and randomly mask patches of length 8 using MOMENT’s patch-based
masking module at mask ratios 12.5%, ,25%, , 37.5%, , 50%. MOMENT is loaded in “reconstruc-
tion” mode and is never fine-tuned; its RevIN normalizer and reconstruction head remain fixed
throughout.

UniCA operates on top of the frozen MOMENT encoder: the target context is tokenized by MO-
MENT; all covariates are homogenized and fused through UniCA’s gated residual and attention
modules; and the fused representation is passed directly into MOMENT’s frozen reconstruction
head. During training, we optimize only UniCA’s parameters to minimize squared error on the
masked target positions. MOMENT’s weights remain completely frozen. At evaluation time, we
compare zero-shot MOMENT and MOMENT+UniCA using the same patch masks and report MSE
and MAE over the masked entries only. Results are shown in Table[I2]

Across all six datasets and all four mask ratios, UniCA consistently improves imputation over
zero-shot MOMENT model. Averaged over mask ratios, UniCA reduces MSE by roughly 33-35%
on ETTh1/ETTh2, about 60-85% on ETTm1/ETTm2, 45% on electricity, and 40% on weather,
with corresponding MAE reductions of about 20-25% (ETTh), 40-65% (ETTm), 25% (electric-
ity), and 23% (weather). The gains are monotonic in the mask ratio: UniCA’s relative improvement
is smallest at 12.5% masking and largest at 50% masking on every dataset, showing that covariate-
aware adaptation becomes increasingly beneficial as the imputation problem becomes harder.

F SHOWCASES

In this section, we present a detailed case study to demonstrate the effectiveness of our proposed
UniCA framework. We analyze the feature attention affinity, important covariates identified by our
model, and compare the prediction performance with and without UniCA adaptation.

Figure 8] [0] [T0} [TT]illustrate our analysis on two time series samples for each dataset, labeled as (a)
and (b). The visualization is organized into three components for each sample: Important Features
Visualization (top), Prediction Comparison (middle), and Feature Weights Visualization (bottom).
The Important Features Visualization reveals how our model identifies and leverages key covari-
ates during prediction. In figure [8| (a), covariate 18 demonstrates high importance (0.8323) while
covariate 7 shows minimal contribution (0.0125). Similarly, in sample (b), covariate 18 maintains
high importance (0.8586) while covariate 24 has low importance (0.0077). This selective attention
mechanism enables UniCA to focus on the most relevant covariates for each specific forecasting
task, effectively filtering out noise from less informative features.

The Prediction Comparison clearly demonstrates the superior performance of UniCA-adapted mod-
els compared to their non-adapted counterparts. The middle rows show predictions without UniCA
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Table 12: Imputation performance of zero-shot MOMENT and UniCA-adapted MOMENT on
six ETT/electricity/weather benchmarks under four random patch-masking ratios (12.5%, 25%,
37.5%, 50%). Reported metrics are MSE and MAE on the masked target entries, together with
percentage-point improvements of UniCA over the MOMENT baseline (negative values indicate
lower error with UniCA).

Dataset Mask Ratio MSE MAE
MOMENT UniCA Improve MOMENT UniCA Improve
12.5% 0.016 0.012 -23.9% 0.093 0.079 -14.5%
25.0% 0.022 0.016 -27.9% 0.110 0.090 -18.4%
ETThl 37.5% 0.030 0.019 -35.4% 0.128 0.100 -21.6%
50.0% 0.041 0.025 -38.3% 0.152 0.115 -24.4%
Average 0.027 0.018 -33.3% 0.121 0.096 -20.4%
12.5% 0.042 0.026 -37.8% 0.150 0.108 -27.6%
25.0% 0.059 0.039 -33.8% 0.176 0.128 -27.3%
ETTh2 37.5% 0.086 0.059 -31.8% 0.212 0.154 -27.0%
50.0% 0.131 0.084 -35.5% 0.269 0.188 -30.2%
Average 0.079 0.052 -34.5% 0.202 0.145 -28.2%
12.5% 0.007 0.003 -48.4% 0.057 0.039 -31.3%
25.0% 0.010 0.004 -58.0% 0.068 0.043 -37.5%
ETTml 37.5% 0.015 0.005 -62.9% 0.083 0.048 -42.1%
50.0% 0.021 0.007 -65.4% 0.102 0.056 -45.4%
Average 0.013 0.005 -61.1% 0.077 0.046 -40.2%
12.5% 0.015 0.002 -83.1% 0.080 0.032 -59.6%
25.0% 0.028 0.004 -85.0% 0.108 0.040 -63.0%
ETTm2 37.5% 0.051 0.007 -86.2% 0.148 0.051 -65.6%
50.0% 0.082 0.014 -83.3% 0.195 0.068 -65.0%
Average 0.044 0.007 -84.4% 0.133 0.048 -63.9%
12.5% 0.124 0.098 -20.6% 0.258 0.234 -9.3%
25.0% 0.159 0.110 -30.4% 0.290 0.248 -14.4%
electricity ~ 37.5% 0.232 0.127 -45.2% 0.351 0.266 -24.2%
50.0% 0.376 0.151 -59.9% 0.458 0.288 -37.0%
Average 0.223 0.122 -45.4% 0.339 0.259 -23.6%
12.5% 0.000 0.000 -19.5% 0.008 0.007 -10.6%
25.0% 0.000 0.000 -35.0% 0.009 0.008 -19.4%
weather 37.5% 0.000 0.000 -43.9% 0.012 0.008 -26.8%
50.0% 0.000 0.000 -45.2% 0.014 0.010 -30.2%
Average 0.000 0.000 -39.5% 0.011 0.008 -23.3%
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adaptation, while the lower rows display predictions with UniCA adaptation. Both models generate
prediction intervals (10%-90%), but the UniCA-adapted model produces forecasts that align more
closely with the ground truth values. Notably, the predictions with UniCA show better alignment
with the temporal patterns and magnitude of the ground truth, particularly in the forecast horizon
(the shaded area after the vertical dotted line).

The Feature Weights Visualization at the bottom provides insight into how attention is distributed
across different feature dimensions and sequence positions. The heatmaps reveal that certain feature
dimensions consistently receive higher attention weights (shown in brighter yellow), indicating their
greater influence on the final prediction. These patterns vary between samples (a) and (b), highlight-
ing UniCA’s ability to adapt dynamically to different time series characteristics.

Our case study demonstrates that UniCA effectively identifies important covariates through its at-
tention mechanism and significantly improves prediction accuracy by incorporating this covariate
information. The comparison between adapted and non-adapted models confirms that UniCA suc-
cessfully bridges TSFMs with covariate-aware forecasting while preserving the foundation model’s
generalization capabilities. Furthermore, the feature weight visualizations provide interpretability
insights, showing which dimensions and temporal positions are most influential for specific fore-
casting tasks.

G MORE ABLATION

G.1 FUSION POSITION.

To further understand the impact of fusion positions in integrating covariate information, we con-
duct an ablation study by varying where the past and future covariates are fused within the TSFM
pipeline. Specifically, we compare four fusion strategies: Pre—Pre, Post—-Pre, Post-Post, and
Pre-Post (our default setting). These denote whether past and future covariates are fused before
(Pre) or after (Post) the temporal encoder.

As shown in Figure [T2] the results indicate that the choice of fusion position has a relatively minor
impact on the overall forecasting performance. On TimesFM, all variants achieve similar perfor-
mance, with the aggregated error ranging from 0.472 to 0.476. Interestingly, although Post-Post
slightly underperforms the others, the differences remain marginal. On Chronos-Bolt, all configura-
tions perform nearly identically, with Post-Post achieving the lowest error (0.455), reinforcing
the robustness of our fusion design. These findings suggest that while the timing of fusion can
affect the model’s attention mechanism and how it contextualizes covariate information, UniCA re-
mains stable and effective regardless of specific fusion positions. This reflects the flexibility of our
attention-based fusion modules and their adaptability across model architectures.

G.2 INFLUENCE OF MODALITY ENCODER

To investigate the effect of different text modality encoders on forecasting performance, we con-
duct a comprehensive evaluation on the Time-MMD benchmark across six domains: Climate, En-
ergy, Environment, Health, Security, and SocialGood. We embed the same textual covariates us-
ing four representative pretrained language models—GIST (Solatorio, [2024) ET] (a text embedding
model), BERT (Devlin et al., 2019) GPT-2 (Radford et al.l [2019) and LLAMA-2 (Touvron
et al., 2023 E—and report forecasting results under two forecasting backbones: Chronos-Bolt and
TimesFM, both implemented via the UniCA framework. The results are summarized in Table
Chronos consistently benefits from text embeddings, with minor variation across encoder types.
In contrast, TimesFM exhibits significantly larger fluctuations in performance depending on the en-
coder. For instance, under the Environment domain, the MAE of TimesFM ranges from 0.756 (GIST)
to 1.181 (BERT), whereas Chronos maintains stable performance across all encoders (MAE = 0.738
for all). Among all text encoders, GIST demonstrates the most consistent performance across both
Chronos and TimesFM, achieving the lowest average forecasting errors in domains such as Security

https://huggingface.co/avsolatorio/GIST-small-Embedding-v0
https://huggingface.co/google-bert/bert-base-uncased
Phttps://huggingface.co/openai-community/gpt2
Bhttps://huggingface.co/meta-llama/Llama-2-7b-hf
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Figure 12: Ablation study on fusion position. Pre-Pre, Post-Pre, Post-Post, and
Pre-Post indicate the fusion positions of past and future covariates (before or after the temporal
encoder). Results are shown on TimesFM and Chronos-Bolt. Performance remains stable across all
configurations, demonstrating the fusion position does not affect the performance much.

(MAE = 0.707) and SocialGood (MAE = 0.860) for TimesFM. On the other hand, large language
models such as LLAMA do not necessarily outperform smaller encoders. In several cases, GPT and
BERT lead to degraded performance in TimesFM, especially for domains with noisier text (e.g.,
Environment and Security). The optimal encoder choice appears domain-dependent. For example,
in the Health domain, GPT yields the best MAE (0.609) under Chronos, while GIST performs best
under TimesFM (MAE = 0.692). In the Security domain, TimesFM benefits the most from GIST
(MAE = 0.707), which is substantially better than other encoders.

These findings suggest that the selection of the modality encoder impacts model performance, de-
pending on the dataset and base model. However, we also warn that the number of observed points
in Time-MMD may not be enough to draw a consistent conclusion. This experiment only shows
preliminary results.

G.3 ARCHITECTURE OF COVARIATE HOMOGENIZER

We examine how the architecture of the covariate homogenizer affects forecasting performance in
our unified framework. Specifically, we compare two designs: a simple Linear layer and a two-layer
MLP, implemented under two different model backbones—Chronos-Bolt and TimesFM, both with
UniCA. Results are reported on the MMSP and MMSP' benchmarks, as shown in Table

From the results, we observe that for Chronos, the homogenizer design has negligible impact on per-
formance: both Linear and MLP yield nearly identical errors across all metrics. In contrast, TimesFM
shows a consistent preference for the Linear homogenizer. For instance, in MMSP, the Average er-
ror increases from 0.147 to 0.154 when switching from Linear to MLP, with similar degradation
observed in MAE, MSE, and CRPS. This trend holds across both MMSP and MMSP?.

These results suggest that more complex homogenizer structures like MLP may introduce unneces-
sary parameterization and lead to overfitting in already expressive models such as TimesFM, while
simpler designs suffice for both backbones. Therefore, we adopt the Linear homogenizer as the
default in all main experiments.

G.4 INFLUENCE OF STATIC COVARIATES

Our UniCA model incorporates the static covariate that most of the datasets do not include. To isolate
and quantify the benefit of this feature, we conduct an ablation study on two datasets with static
covariates: M5 and Retail'. |E| The results, presented in table indicate that incorporating static
covariates generally improves performance. The performance gains are most pronounced on the
highly diverse Retail dataset, where UniCA improves all metrics for both base models (e.g., reducing
the Average metric for TimesFM from 0.672 to 0.655). While on the M5 dataset, the improvements

14The M5 dataset includes static covariates ‘item id”, “depeartment id”, “category id”, “store id”, and “state

CLITS ’ CLITS

id”. The Retail dataset includes “city”, “state”, “type”, “cluster”, “family”, “class”, and “perishable”
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Table 13: Forecasting error on Time-MMD subsets with different text encoder.

Chronos-Bolt (UniCA) TimesFM (UniCA)

GIST Bert GPT LLAMA GIST Bert GPT LLAMA
Average  0.507  0.507  0.507 0.507 0.533 0541  0.542 0.533
% MAE 0.628  0.628  0.628 0.628 0.635  0.630  0.631 0.635
£ MAPE 0.421 0.421 0.423 0.421 0.543 0577  0.578 0.543
5 MSE 0.411 0.411 0411 0.411 0.402  0.401  0.402 0.402
CRPS 0568  0.568  0.567 0.567 0.552 0558  0.556 0.552
Average  0.879  0.890  0.893 0.903 0904 0915  0.907 0.954
) MAE 0921 0929 0928 0.937 0957 0972 0934 0.968
g MAPE 0.831 0.850  0.866 0.876 0.795 0811  0.925 0.971
5 MSE 0.865 0874 0.871 0.882 0934 0935 0.866 0.934
CRPS 0.899 0907 0.906 0.916 0928 0944  0.903 0.944
S Average 0.625 0.625 0.625 0.625 0.642 1.103  0.661 1.024
E MAE 0.738  0.738  0.738 0.738 0.756 1.181  0.754 1.095
g MAPE 0.666  0.667  0.666 0.666 0.656 1.189  0.716 1.145
E MSE 0.560  0.561 0.560 0.560 0.599 1.114  0.620 0.982
& CRPS 0.536  0.536  0.536 0.536 0.556 0930 0.554 0.875
Average  0.612  0.609  0.609 0.617 0.692  0.693  0.710 0.709
= MAE 0.697  0.694  0.694 0.702 0.753  0.754  0.769 0.764
El MAPE 0.565  0.569  0.565 0.573 0.684  0.679  0.698 0.718
= MSE 0.484 0479  0.481 0.490 0.600  0.604  0.623 0.612
CRPS 0.699  0.696  0.695 0.703 0.733  0.735  0.750 0.742
Average  0.705  0.706  0.702 0.698 0.593  0.663  0.879 0.642
= MAE 0.860  0.862  0.858 0.854 0.707  0.785  1.009 0.762
’é‘ MAPE 0.536  0.537  0.532 0.526 0.467 0553  0.854 0.526
2 MSE 0.660  0.660  0.658 0.656 0.578  0.624  0.747 0.613
CRPS 0.764  0.765  0.761 0.757 0.621  0.689  0.907 0.668
~ Average 0790 0.790  0.781 0.790 0.664  0.656  0.661 0.654
g MAE 0.860  0.860  0.834 0.860 0.699  0.689  0.695 0.687
% MAPE 0.666  0.666 0.673 0.666 0.547 0530  0.541 0.529
g MSE 0.784  0.784  0.791 0.784 0717 0711  0.717 0.716
] CRPS 0.850  0.850  0.827 0.850 0.694  0.692  0.690 0.683

Table 14: Forecasting error on MMSP with different designs of covariate homogenizer.

Chronos-Bolt (UniCA)  TimesFM (UniCA)

Linear MLP Linear MLP

Average 0.121 0.120 0.147 0.154

& MAE 0.193 0.193 0.229 0.236
= MAPE 0.019 0.019 0.046 0.050
= MSE 0.090 0.090 0.098 0.106
CRPS 0.180 0.180 0.215 0.222
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Figure 13: Comparison between the full UniCA model (red) and an ablated version (UniCA wo/
Cov, blue) where the covariate adaptation parameters are introduced but the covariate influence is
intentionally gated to zero. A lower score is better.

are modest but still noticeable in several metrics (e.g., Chronos-Bolt’s MAPE drops from 0.779
to 0.764, MSE from 0.581 to 0.566). These findings suggest that static variables provide useful
categorical and contextual information that enhances model generalization, especially in datasets
with diverse item-level characteristics like Retail.

Table 15: Ablation study on the impact of static covariates, conducted on the M5 and Retail datasets.
Results show that adding static variables generally improves performance, especially on the Retail
dataset, indicating their importance for capturing categorical and contextual information.

Dataset Metric Chronos-Bolt TimesFM

wo/ static w/ static wo/ static w/ static

Average 0.625 0.613 0.609 0.613

MAE 0.706 0.699 0.699 0.701

M5 MAPE 0.779 0.764 0.731 0.737
MSE 0.581 0.566 0.581 0.587

CRPS 0.432 0.424 0.425 0.426

Average 0.680 0.656 0.672 0.655

MAE 0.720 0.712 0.712 0.709

Retail MAPE 0.702 0.655 0.707 0.648
MSE 0.799 0.769 0.781 0.776

CRPS 0.499 0.489 0.486 0.485

G.5 IMPACT OF COVARIATES

To see whether UniCA’s performance gains simply stem from the introduction of additional trainable
parameters rather than the effective integration of covariates, we designed a crucial ablation study.
We created an ablated model, denoted as UniCA wo/ Cov, which retains the exact same model
structure and the same number of trainable parameters as the full UniCA model. However, in this
ablated version, we intentionally set the gating mechanism for all covariates to zero throughout
the training and inference processes. This ensures that while the extra parameters are present
and trained, the adapted covariate features are prevented from influencing the TSFM backbone. We
compare the full UniCA model against this UniCA wo/ Cov variant using both Chronos-Bolt and
TimesFM backbones across all metrics.

The results of this ablation study are presented in Figure[T3] For nearly all metrics and both back-
bones, the full UniCA model (red bars) significantly outperforms the ablated UniCA wo/ Cov
model (blue bars). For instance, with the Chronos-Bolt backbone, UniCA achieves 0.509 MAE and
0.383 MSE, substantially better than the wo/ Cov model’s 0.517 MAE and 0.396 MSE. A similar
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pattern holds for TimesFM, particularly for the MAE and MAPE metrics. The consistent degrada-
tion in performance for the wo/ Cov configuration clearly demonstrates that the performance gain
is not merely due to the additional parameters introduced by the adaptation layer. Instead, the gains
are primarily attributable to the effective and meaningful integration of external covariate infor-
mation enabled by the learned adaptation and gating mechanism, thereby validating the core design
of UniCA.

G.6 ROBUSTNESS TO NOISY COVARIATES

To verify UniCA’s stability against irrelevant external information, we conducted a robustness ex-
periment by introducing a purely noisy covariate to all benchmark datasets. This synthetic feature
was generated as white noise, sampled from N(0, 1), and is entirely uninformative and future-
unknowable, simulating a low-quality input that a robust model should ignore. The UniCA model
in its w/ Noise configuration processes this noise alongside any existing covariates. We com-
pared the performance of UniCA (w/ Noise) against the Zero-Shot (ZS) baseline and the original
UniCA configuration, testing both Chronos-Bolt and TimesFM backbones, with the goal of ensuring
the adaptation mechanism does not catastrophically integrate non-predictive features.

Table 16: Performance comparison of UniCA and the Zero-Shot (ZS) baseline when UniCA is pro-
vided with a purely random, future-unknowable noisy covariate (w/ Noise). Results are averaged
across all benchmark datasets, demonstrating UniCA’s resilience to irrelevant noise inputs.

\ Chornos-Bolt \ TimesFM
\ ZS  UniCA w/Noise ZS UniCA w/ Noise

Avg 0472 0457 0.468 0473 0472 0.475
MAE | 0.521  0.509 0.518 0.530  0.526 0.526
MAPE | 0.522  0.506 0.516 0.523 0.514 0.523
MSE | 0.403 0.383 0.397 0.402  0.403 0.403
CRPS | 0.441 0.429 0.441 0.437  0.445 0.446

The results, summarized in Table confirm UniCA’s strong resilience to noisy covariates. With
the Chronos-Bolt backbone, UniCA (w/ Noise) shows only a marginal performance degradation
(Avg Metric 0.457 — 0.468) and still outperforms the ZS baseline (0.468 vs 0.472). This suggests
the model’s feature integration module effectively suppresses the disturbance from the pure noise.
The stability is even clearer with the TimesFM backbone, where the performance is nearly identical
(0.472 — 0.475). This high degree of stability validates the design of the UniCA architecture: its
adaptation layer is highly effective at identifying and mitigating the impact of uninformative or noisy
input features, ensuring that the integration of external data does not compromise the model’s core
forecasting accuracy.

G.7 FUSION ARCHITECTURE

To justify the choice of Gated Residual Network (GRN) and Gated Linear Unit (GLU) for covariate
adaptation and fusion, we conducted an ablation study against a simpler alternative. The reviewer
questioned the necessity of these specific non-linear structures. We thus implemented a baseline
fusion mechanism, termed Weight Fusion, where the complex GRN/GLU adaptation module is re-
placed by a simple, weight-learnable linear combination (a single fully connected layer followed by
a linear output) before fusion with the TSFM backbone’s representations. This alternative maintains
a similar parameter count but removes the complex gating and non-linear residual structure. We
compare the performance of the full UniCA model against this simpler Weight Fusion approach,
as well as the Zero-Shot (ZS) baseline, across all metrics and both Chronos-Bolt and TimesFM
backbones.

The results of the fusion mechanism ablation are presented in the table. Across all metrics and
both backbones, the full UniCA model consistently achieves the best performance. Specifically, the
simple Weight Fusion mechanism performs noticeably worse than the full UniCA model and, in
many cases (e.g., Chronos-Bolt Avg: 0.471, TimesFM Avg: 0.478), its performance degrades close
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Table 17: Performance comparison between the full UniCA model (using GRN/GLU for adaptation)
and an alternative ”Weight Fusion” mechanism where the complex adaptation module is replaced
by a simple trainable weighted summation. A lower score is better, validating the superiority of the
non-linear GRN/GLU structure.

\ Chornos-Bolt \ TimesFM
| ZS  UniCA Weight Fusion | ZS  UniCA Weight Fusion
Avg 0472 0457 0.471 0473 0472 0.478
MAE 0.521 0.509 0.519 0.530 0.526 0.532
MAPE | 0.522 0.506 0.529 0.523 0.514 0.523
MSE 0.403 0.383 0.396 0.402 0.403 0.408
CRPS | 0.441 0.429 0.439 0.437 0.445 0.450

to or even below the Zero-Shot (ZS) baseline (TimesFM Avg: 0.473). For example, with Chronos-
Bolt, UniCA’s MAE is 0.509, while Weight Fusion’s is 0.519. This significant performance gap
strongly validates our architectural choice. The GRN and GLU structures are critical because their
gated, non-linear, and residual design allows the model to selectively adapt and dynamically weigh
the contribution of each covariate feature, which is essential for effective fusion with the general-
purpose TSEM representations. Simple linear fusion, in contrast, fails to capture the necessary com-
plexities for optimal TSFM adaptation.

H CORRELATION ANALYSIS OF HOMOGENIZED COVARIATE EMBEDDINGS

To address the reviewer’s concern regarding the interpretability and meaningfulness of the homog-
enized covariate embeddings, we conducted an analysis of the feature space. The core idea of ho-
mogenization is to transform the diverse covariate inputs into a unified, rich representation space
suitable for fusion with the TSFM’s temporal embeddings. To demonstrate that these features cap-
ture meaningful temporal structure, we calculated the Pearson Correlation Coefficient between the
first four dimensions of the final homogenized covariate embedding (just before it enters the TSFM
backbone) and the target time series for a diverse set of benchmark datasets.

Table 18: Pearson Correlation of Homogenized Embedding Dimensions with the Target Series. The
table presents the Pearson correlation coefficient between the first four dimensions of the homoge-
nized embeddings (before fusion) and the corresponding target time series across various datasets.
The results show that different embedding dimensions capture distinct and meaningful temporal
structure related to the target.

MMSP Climate Energy Environment Health Security SocialGood Traffic

Feature 1 -0.149  -0.058 0.068 -0.055 0.033 0.052 0.434 0.271
Feature 2 0.415 0.058 -0.419 -0.001 -0.114  0.063 -0.114 0.127
Feature 3 0.310 -0.117 0.113 0.042 0.087 0.105 0.459 0.289
Feature 4  0.222 0.024 0.224 0.037 -0.023  -0.084 -0.371 -0.104

The correlation results are presented in the table. While the absolute value of the correlation varies
significantly by dataset and feature dimension, the patterns strongly support our claim that the ho-
mogenized embeddings capture meaningful, yet diverse, temporal structures. For instance, in the
SocialGood dataset, Feature 3 exhibits a strong positive correlation (0.4593), whereas Feature 4
shows a moderate negative correlation (—0.3713), indicating that different dimensions of the embed-
ding are learning to capture distinct aspects of the underlying temporal dynamics of the target series.
The general non-zero correlations across datasets (e.g., strong correlation in MMSP and Traffic)
confirms that the adaptation process successfully transforms the raw, disparate covariate informa-
tion into a fixed-length embedding that is temporally structured and relevant to the forecasting task,
which is a necessary condition for effective fusion.

40



Under review as a conference paper at ICLR 2026

I DISCUSSION OF LIMITATION

UniCA assumes temporal alignment between covariates and the target series, which we approximate
using imputation and missing-value indicators. However, more effective alignment strategies may
exist. Additionally, noisy or conflicting covariates can degrade performance. Future work may in-
corporate uncertainty-aware fusion, handle non-aligned or partially observed covariates, and embed
task-specific inductive biases to enhance the robustness and generalizability of TSFM adaptation.

J THE USE OF LLMS

We utilized a Large Language Model (LLM) to assist in the writing process of this paper. The pri-
mary use of the LLM was for improving the language, style, and readability of the text. This included
refining sentence structure, correcting grammatical errors, and ensuring consistency in terminology.
All intellectual contributions, including the research ideas, methodology, and conclusions, are solely
the work of the human authors. The authors have reviewed and take full responsibility for the entire
content of this paper, ensuring its originality and scientific accuracy.
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