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Abstract
Learning data representations that are useful for
various downstream tasks is a cornerstone of ar-
tificial intelligence. While existing methods are
typically evaluated on downstream tasks such as
classification or generative image quality, we pro-
pose to assess representations through their useful-
ness in downstream control tasks, such as reach-
ing or pushing objects. By training over 10,000
reinforcement learning policies, we extensively
evaluate to what extent different representation
properties affect out-of-distribution (OOD) gen-
eralization. Finally, we demonstrate zero-shot
transfer of these policies from simulation to the
real world, without any domain randomization
or fine-tuning. This paper aims to establish the
first systematic characterization of the usefulness
of learned representations for real-world OOD
downstream tasks.

1 Introduction
Robust out-of-distribution (OOD) generalization is one of
the key open challenges in machine learning. This is par-
ticularly relevant for the deployment of ML models to the
real world, where we need systems that generalize well be-
yond the i.i.d. (independent and identically distributed) data
setting (Schölkopf et al., 2021; Djolonga et al., 2020; Koh
et al., 2020; Barbu et al., 2019; Azulay and Weiss, 2019;
Roy et al., 2018; Gulrajani and Lopez-Paz, 2020; Hendrycks
and Dietterich, 2019; Michaelis et al., 2019). One instance
of such models are agents that learn by interacting with a
training environment but cannot generalize and transfer their
learned skill to other environments with different statistics
(Zhang et al., 2018; Cobbe et al., 2019; Ahmed et al., 2021).
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Consider the example of a robot with the task of moving
a cube to a target position: Such an agent can easily fail
as soon as some aspects of the environment differ with re-
spect to the training setup, e.g. the shape, color, and other
object properties, or when transferring from simulation to
real world. In particular, some of the main issues in deep
reinforcement learning are data inefficiency, brittleness with
respect to changes in the input data distribution, and poor in-
terpretability (Garnelo et al., 2016; Lake et al., 2017; Kaiser
et al., 2019; Li, 2018; Zambaldi et al., 2019; Lyu et al., 2019;
Zhang et al., 2019; Heuillet et al., 2021).

Humans seem to not suffer from these pitfalls when transfer-
ring learned skills beyond a narrow training domain. In fact,
one of the fundamental cognitive capabilities in humans is
to represent visual sensory data in a useful and concise man-
ner (Marr, 1982; Gordon and Irwin, 1996; Lake et al., 2017;
Anand et al., 2019; Spelke, 1990). Therefore, a particularly
promising path is to base decisions and predictions on such
structured and meaningful lower-dimensional representa-
tions of our world (Bengio et al., 2013). The learned rep-
resentation should facilitate efficient downstream learning
(Eslami et al., 2018; Anand et al., 2019) and exhibit better
generalization (Zhang et al., 2020; Srinivas et al., 2020).

While previous work shows that good internal representa-
tions of raw observations are important for domain adapta-
tion (Littman et al., 2001; Pan and Yang, 2009; Finn et al.,
2016a; Barreto et al., 2017), so far representations are typi-
cally evaluated on downstream tasks such as classification
or generative image quality which often serve as proxies
for intended use cases. To move closer to realistic settings,
we present a large-scale study (with 11,520 trained policies)
investigating the relevance of learning representations for
real-world reinforcement learning and OOD generalization.
This study is based on the practically relevant setting of
robotics and empirically analyzes key principles for repre-
sentations and downstream policies in simulation and real
world. See Fig. 1 for an overview of the setup.

We summarize our contributions as follows:

• We conduct a large-scale study training 11,520 poli-
cies and empirically investigate the role of pre-trained
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representations in reinforcement learning tasks from
camera input.1

• We extensively evaluate the out-of-distribution gen-
eralization of these policies to unseen environments
and systematically investigate its dependence on the
pre-trained representations.

• We deploy policies to the corresponding real-world
robotic platform, observe zero-shot sim2real transfer
without fine-tuning or domain randomization, and
investigate the role of representations in this setting.

2 Background
In this section, we provide relevant background on the meth-
ods for representation learning, reinforcement learning, and
evaluation of out-of-distribution generalization.

Variational autoencoders. VAEs (Kingma and Welling,
2014; Rezende et al., 2014) are a framework for optimizing
a latent variable model pθ(x) =

∫
z
pθ(x|z)p(z)dz with pa-

rameters θ, typically with a fixed prior p(z) = N (z;0, I),
using amortized stochastic variational inference. A varia-
tional distribution qφ(z|x) with parameters φ approximates
the intractable posterior pθ(z|x). The approximate posterior
and generative model, typically called encoder and decoder
and parameterized by neural networks, are jointly optimized
by maximizing the ELBO (Evidence Lower BOund) which
is a lower bound to the log likelihood:

log pθ(x) ≥ Eqφ(z|x) [log pθ(x|z)]−DKL (qφ(z|x)‖p(z))

In β-VAEs, the KL term is modulated by a factor β to
enforce a more structured latent space (Higgins et al., 2017a;
Burgess et al., 2018). While VAEs are typically trained
without supervision, in this work we will also employ a form
of weak supervision proposed by Locatello et al. (2020) to
learn disentangled representations.

Deep reinforcement learning. The problem setting in Re-
inforcement Learning (RL) is modeled via a Partially Ob-
servable Markov Decision Process (POMDP) defined by the
tuple (S,A, T,R,Ω, O, γ, ρ0, H) with states s ∈ S, actions
a ∈ A and observations o ∈ Ω determined by the state and
action of the environment O(o|s, a). T (st+1|st, at) is the
transition probability distribution function, R(st, at) is the
reward function, γ is the discount factor, ρ0(s) is the initial
state distribution at the beginning of each episode, and H
is the time horizon per episode. The objective in RL is to
learn a policy π : S ×A→ [0, 1], typically parameterized
by a neural network, that maximizes the total discounted
expected reward J(π) = E

[∑H
t=0 γ

tR(st, at)
]
. There is

a broad range of proposed model-free learning algorithms

1Training the VAEs required approximately 0.62 GPU years
on NVIDIA Tesla V100. Training and evaluating the downstream
policies required about 86.8 CPU years on Intel Platinum 8175M.

to find π∗ by policy gradient optimization or learning value
functions while trading off exploration and exploitation
(Haarnoja et al., 2018; Schulman et al., 2017; Sutton et al.,
1999; Schulman et al., 2015a;b; Silver et al., 2014; Fujimoto
et al., 2018). Here, we optimize the objective above with
Soft Actor Critic (SAC), a widely used off-policy method
in control tasks due to its sample efficiency (Haarnoja et al.,
2018). SAC aims to improve sample-inefficiency and con-
vergence in RL by simultaneously maximizing the expected
reward and the entropy H(π(·|st)).

Robotic setup and related dataset. Recently, Dittadi et al.
(2021) introduced a dataset of over 1M simulated and real
world images derived from the Trifinger robot platform
introduced by Wüthrich et al. (2020) we will base our study
on. The scene comprises a robot finger with three joints that
can be controlled to manipulate a cube in a bowl-shaped
stage. See Fig. 1 (step 1) for an example. The data was
generated from 7 different factors of variation (FoV): angles
of the upper, middle, and lower joints, and position (x and y),
orientation, and color of the cube. This dataset corresponds
to a robotic setup, so that learned representations can be used
for control and reinforcement learning in simulation and in
the real world. However, the focus of that work was to scale
VAE-based learning approaches to this complex dataset and
conduct a large-scale empirical study on generalization to
various transfer scenarios, with a particular emphasis on
disentanglement. For this reason, the role of representations
in robotic control downstream tasks was not investigated.

Measuring out-of-distribution generalization. We
closely follow the framework for measuring out-of-
distribution (OOD) generalization proposed by Dittadi et al.
(2021). First, representations are learned on a training set D.
Then, we investigate OOD generalization by training down-
stream models on a subset D1 ⊂ D to predict ground truth
factor values from the learned representations. These mod-
els are then tested on a set D2 that differs distributionally
from the training set D1, e.g. containing images correspond-
ing to held-out values of a chosen factor of variation (FoV).
Dittadi et al. (2021) consider two flavors of OOD gener-
alization depending on the choice of D2: The case when
D2 ⊂ D, i.e. the OOD test set is a subset of the dataset
for representation learning, is denoted by OOD1, while in
OOD2 D and D2 are disjoint and distributionally different.

For example, consider the case in which distributional shifts
are based on one FoV: the color of the cube in our robotic
setup. Then, we could define these datasets such that im-
ages in D always contain a red or blue object, and those in
D1 ⊂ D always contain a red object. In the OOD1 scenario,
images in D2 would always contain a blue object, whereas
in the OOD2 case they would always contain an object that
is neither red nor blue. Dittadi et al. (2021) consider as re-
gression models Gradient Boosted Trees (GBT) and MLPs
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Figure 1. Overview of our experimental setup for investigating out-of-distribution generalization in downstream tasks. (1) We
train 240 β-VAEs on the robotic dataset from Dittadi et al. (2021) . (2) We then train downstream policies to solve ReachCube or
Pushing, using multiple random RL seeds per VAE. The input to a policy consists of the output of a pre-trained encoder and additional
task-related observable variables. Crucially, the policy is only trained on a subset of the cube colors from the pre-training dataset. (3)
Finally, we evaluate these policies on their respective tasks in four different scenarios: (a) in-distribution, i.e. with cube colors used in
policy training; (b) OOD1, i.e. with cube colours previously seen by the encoder but OOD for the policy; (c) OOD2-sim, having cube
colours also OOD to the encoder; (d) sim2real zero-shot on the real world setup.

with 2 hidden layers. Generalization in D2 is measured
by the (normalized) mean absolute prediction error across
all FoVs except for the one that is OOD. In this work, we
will use the negative error for interpretability, and decom-
pose this metric on a per-factor level as well and refer to
this generalization score as GS-OOD1, GS-OOD2-sim and
GS-OOD2-real accordingly.

In contrast to Dittadi et al. (2021), who focus on intro-
ducing the dataset and evaluating generalization of simple
factor prediction tasks, we leverage the broader potential
of this robotic setup, which is to evaluate the usefulness of
representations for more practically relevant robotic down-
stream tasks. Additionally, we cover more OOD2 scenarios
both in simulation and in the real world, and investigate
the relationship between a wide array of metrics and OOD
generalization in RL tasks.

3 Related work
Lower-dimensional representations that can be flexibly used
for a multitude of downstream tasks are considered an
important component of any robust and generalizing ma-
chine learning system (Bengio et al., 2013; Schölkopf et al.,
2021). In machine learning, these representations are typi-
cally learned from labels or rewards, which is often sample-
inefficient. More sample-efficient alternatives that leverage
the large amount of unstructured information in raw data
include unsupervised (Kingma and Welling, 2014; Rezende
et al., 2014; Dinh et al., 2016; Dumoulin et al., 2016) and

self-supervised learning (Pathak et al., 2016; Doersch and
Zisserman, 2017; Kolesnikov et al., 2019; Chen et al., 2020).
In particular, disentangled representation learning aims at
inferring the (causal) factors of the generative model of the
data by enforcing sufficient structure on the latent space
(Higgins et al., 2017a; Kim and Mnih, 2018; Burgess et al.,
2018; Kumar et al., 2018; Chen et al., 2018; Locatello et al.,
2019a; 2020).

Evaluating representations. In generative modeling, rep-
resentations are typically evaluated by log likelihood, ELBO,
or perceptual metrics such as FID (Heusel et al., 2017), IS
(Salimans et al., 2016), or precision/recall (Sajjadi et al.,
2018; Kynkäänniemi et al., 2019). Compression capability
can also be evaluated e.g. in the context of bits-back cod-
ing, where it is formally related to the ELBO (Honkela and
Valpola, 2004; Townsend et al., 2019; Kingma et al., 2019;
Ruan et al., 2021). In general, representation quality has
also been measured in terms of disentanglement (Higgins
et al., 2017a; Kim and Mnih, 2018; Chen et al., 2018; Ridge-
way and Mozer, 2018; Kumar et al., 2018; Eastwood and
Williams, 2018), robustness (Suter et al., 2019), or the com-
plexity of learning downstream predictors (Whitney et al.,
2020). The evaluation framework in this paper is related to
recent work that focuses on evaluating generalization in vari-
ous practically relevant out-of-distributions settings (Gondal
et al., 2019; Träuble et al., 2020; Dittadi et al., 2021). To
the best of our knowledge, there is no rigorous and sys-
tematic study on the role of representations on downstream
performance in robotic downstream tasks.
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Learning representations for control. Learning low-
dimensional representations that are capturing an environ-
ments’ variations for RL agents in control scenarios is also
often being described as state representation learning (Lesort
et al., 2018): Methods therein are typically based on autoen-
coders (Watter et al., 2015; Ha and Schmidhuber, 2018; Hig-
gins et al., 2017b; Van Hoof et al., 2016), video prediction
(Oh et al., 2015; Finn et al., 2016b) or contrastive learning
(Aytar et al., 2018; Sermanet et al., 2018; Anand et al., 2019).
Learning policies from high-dimensional pixel observations
is typically not very sample-efficient, a well-known problem
of deep RL (Lake et al., 2017; Kaiser et al., 2019). It is thus
becoming increasingly popular to leverage pre-trained repre-
sentations and effectively decouple representation learning
and policy learning in pixel-based environments (Eslami
et al., 2018; Cuccu et al., 2018). For instance, Stooke et al.
(2020) propose that decoupling representation learning from
RL is more efficient than learning reward structure from pix-
els on their contrastive method. Similarly, CURL (Srinivas
et al., 2020) investigates contrastive representation learning
simultaneously with an off-policy RL algorithm, and match
the sample-efficiency of policy learning from state-based
features. Previous works highlight that for domain adap-
tation it is important to have good internal representations
of raw observations (Littman et al., 2001; Pan and Yang,
2009; Finn et al., 2016a; Barreto et al., 2017). It is argued
that these representations should be learned from the source
domain only, because it might be difficult or expensive to ob-
tain training data from the target domain (Finn et al., 2017;
Rusu et al., 2017). Importantly, by simply training deep RL
from scratch, the policies will often overfit to the source
distribution (Rusu et al., 2017; Lake et al., 2017).

Closing the (sim2real) generalization gap in real-world
RL. A key unsolved challenge in RL is that agents are very
brittle to distribution shifts in their environment, even if
the underlying structure is largely unchanged (Cobbe et al.,
2019; Ahmed et al., 2021). DARLA (Higgins et al., 2017b)
focuses on domain adaptation and zero-shot transfer for RL
in DeepMind Lab and MuJoCo environments, and claim
disentangled representations improve robustness. To obtain
better transfer capabilities, Asadi et al. (2020) argue for
discretizing the state space in continuous control domains
by clustering together states where the optimal policy is
similar. Transfer becomes especially challenging from the
simulation to the real-world, a phenomenon often referred
to as the sim2real gap. This is particularly crucial in RL, as
real-world training is expensive, requires sample-efficient
methods and is sometimes unfeasible if the reward struc-
ture requires accurate ground truth labels (Dulac-Arnold
et al., 2019; Kormushev et al., 2013). Typically this issue is
tackled by using large-scale domain randomization in simu-
lation (Akkaya et al., 2019; James et al., 2019). Yan et al.
(2020) propose using segmentation as a domain-invariant

state representation.

4 Study design
Fig. 1 provides an overview of our setup. We study the role
of visual representation learning for reinforcement learning
in two control tasks:

1. ReachCube: Reach a fixed cube at random posi-
tions with a time limit of 2 seconds.

2. Pushing: A more challenging task, where the goal
is to push the cube to a random goal pose in the arena
within a maximum time of 4 seconds.

We derive both tasks from the CausalWorld benchmark envi-
ronments (Ahmed et al., 2021). The scene comprises a robot
finger with three joints that can be controlled to manipulate
a cube in a bowl-shaped stage. The robot is derived from
the TriFinger design from Wüthrich et al. (2020). The input
variables at time t are the camera observation ot and a vector
of observable variables xt, which contains the joint angles
and velocities in both tasks, as well as the target position
for the cube in Pushing. We then feed the camera obser-
vation ot into a given encoder e that was pre-trained on the
dataset in Dittadi et al. (2021). The resulting zt = e(ot) is
concatenated with xt, yielding a state vector st = [xt, zt].
For each task we then use SAC to train the policy with st
as input, implemented with (Hill et al., 2018). The policy,
value and Q networks are all implemented as MLPs with 2
hidden layers of size 256. Note that the representation func-
tion is fixed when training the policies, i.e. the encoder is
not fine-tuned, as our goal is to investigate the link between
representation properties and downstream RL performance.
We perform a large-scale empirical study on the setup intro-
duced above by training 11,520 policies across both tasks.
The hyperparameter sweep is defined as follows:

• We train 240 β-VAEs, with a subset of the hyperpa-
rameter configurations and neural architecture from
Dittadi et al. (2021). Specifically, we consider β ∈
{1, 2, 4}, β annealing in {0, 50000} steps, unsuper-
vised and weakly supervised training (Higgins et al.,
2017a; Locatello et al., 2020), with and without input
noise, and 10 random seeds per configuration. The
latent space size is fixed to 10.

• For the ReachCube task, we train 20 downstream
policies (with different random seeds) for each of the
240 VAEs. This results in 4,800 policies, which we
train with SAC for 400k steps (approximately 2,400
episodes).

• Since the Pushing task takes substantially longer
to train, we limit the number of policies to be trained
on this task. First, we choose a subset of 96 VAEs
corresponding to using only 4 random seeds for the
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VAEs. Then, we only use 10 random seeds per repre-
sentation. The resulting 960 policies are trained with
SAC for 3M steps (approximately 9,000 episodes).

• Finally, for both tasks we also investigate the role of
regularization on the policy. More specifically, we
repeat the two training sweeps from above (5,760
policies), with the difference that now the policies are
trained with L1 regularization on the first layer.

We evaluate the generalization of policies in three different
environments: (1) in the training environment which is the
default setting in RL, (2) the OOD1 setting where we use
cube colors that are OOD for the MLP policy but still in-
distribution for the encoder, and (3) the more challenging
OOD2-sim setting where the cube colors are also OOD
for the encoder. Finally, we evaluate zero-shot sim2real
transfer on the real-world robotic platform. We refer to this
generalization scenario as OOD2-real (this corresponds to
OOD2-B in (Dittadi et al., 2021)). See Appendix A for
further implementation details.

5 Results
We split the discussion of our results into three parts: We
start in Section 5.1 by presenting the training results of
our large-scale sweep, and how different components of
the pre-trained representations and regularization affects in-
distribution performance and training reward. Next, an ex-
tensive account of predictive factors for out-of-distribution
generalization for RL from pre-trained representations is
given in Section 5.2, focusing on the simulated environment.
Finally, we extensively evaluate zero-shot sim2real transfer
to the real robot without any fine-tuning in Section 5.3 and
also discuss predictors for OOD generalization when going
to the real world.

5.1 Results in the training environment

Fig. 2 shows the training curves of all policies for
ReachCube and Pushing in terms of the task-specific
success metric. While here we use success metrics for in-
terpretability, in general we will measure performance by
the cumulative reward. In ReachCube, the success metric
indicates progress from the initial end effector position to
the optimal distance from the center of the cube. It is 0 if the
final distance is greater than or equal to the initial distance,
and 1 if the end effector is touching the center of a face of
the cube. In Pushing, the success metric is defined as the
volumetric overlap of the cube with the goal cube, and the
task can be visually considered solved with a score around
80%.

From the training curves we can conclude that both
tasks can be consistently solved from pixel data us-
ing pre-trained representations. In particular, all

policies on ReachCube attain almost perfect scores.
Pushing is a much more complex tasks, involv-
ing learning the non-linear rigid-body interactions.

Figure 3. Rewards on the training
environment (in distrib.) correlate
with OOD rewards.

Unsurprisingly, this task
requires significantly
more training, and
the variance of perfor-
mance across policies
is larger. Nonetheless,
almost all policies
learn to solve the
task satisfactorily. To
investigate the effect of
representations on the
training reward, we now
compute its Spearman
rank correlations with
various supervised and
unsupervised metrics of
the representations (Fig. 2 bottom). On ReachCube, the
final reward correlates with ELBO and reconstruction loss.
A simple supervised metric to evaluate a representation
is how well a small downstream model can predict the
ground-truth FoV. Following Dittadi et al. (2021), we use
the MLP10000 and GBT10000 metrics, where MLPs and
GBTs are trained for predicting the FoVs from 10,000
samples (we will simply call these metrics MLP and GBT
in the following). Training reward correlates with these
metrics as well, especially with the MLP accuracy. This
is not entirely surprising: if an MLP can predict the FoVs
from the representations, our policies using the same MLP
architecture could in principle internally compute the FoVs
relevant for the task. Interestingly, the correlation with the
overall MLP accuracy mostly stems from the prediction
accuracy of the cube pose FoVs, which are in fact the
ones that are not included in the ground-truth robot state
xt. These results suggest that these metrics can be used
to select good representations for downstream RL. On
the more challenging task of Pushing, the correlations
are milder but most of them still statistically significant.
In general, all correlations discussed in this paper are
statistically significant (colored coefficients in figures
whenever p<0.05).

Summary. Both tasks can be consistently solved from pix-
els using pre-trained representations. Unsupervised (ELBO,
reconstruction loss) and supervised (ground-truth factor pre-
diction) metrics of the representations are correlated with
reward in the training environment.

5.2 Out-of-distribution generalization in simulation

From train time performance to OOD generalization.
Fig. 3 shows that in-distribution reward correlates with
OOD1 performance on both tasks, especially with L1 regu-
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Figure 2. Top: Average training success, aggregated over all policies from the sweep (median, quartiles, 5th/95th percentiles). Bottom:
Rank correlations between representation metrics and training reward, in the case without policy regularization.

larization. Moreover, rewards in OOD1 and OOD2 environ-
ments are positively correlated to a similar extent in both
tasks, with or without regularization. As a reminder, OOD1
means that the downstream policy is OOD but the encoder
is still in-distribution, while OOD2 means that the encoder
is also OOD.

Unsupervised metrics and informativeness. In Fig. 4
(left) we assess the relation of OOD reward with unsuper-
vised metrics (ELBO and reconstruction loss) and down-
stream performance on factor prediction (using MLP and
GBT). Both ELBO and reconstruction loss exhibit a cor-
relation with OOD1 reward, but not with OOD2 reward.
These unsupervised metrics can thus be useful for selecting
representations that will lead to more robust downstream RL
tasks, as long as the representation function is in-distribution.
While the GBT score is not correlated with reward under
distribution shift, we observe a significant correlation be-
tween OOD1 reward and the MLP score, which measures
downstream factor prediction accuracy of an MLP with the
same architecture as the one parameterizing the policies.
As in Section 5.1, we further investigate the source of this
correlation, and find it in the pose parameters of the cube.
Correlations in the OOD2 setting are much weaker, thus
we conclude that these metrics do not appear helpful for
model selection in this case. Our results on Pushing con-
firm these conclusions although correlations are generally
weaker, presumably due to the more complicated nature of
this task. (see Appendix B.2).

Representation robustness. We continue by analysing the
link between generalization in RL and the generalization
scores (GS) discussed in Section 2. We stress that, while the
MLP metrics considered in the previous paragraph measure
downstream FoV prediction in the VAE’s training distribu-
tion, the GS scores assess the generalization of FoV pre-
dictors (using an MLP) under distribution shifts for a given
representation. For both OOD scenarios, the distribution

shifts underlying these GS scores are the same as the ones
in the RL tasks in simulation. We summarize our findings in
Fig. 4 (right) on the ReachCube task without regulariza-
tion. Reward in the OOD1 setting is significantly correlated
with the GS-OOD1 metric of the policies’ underlying repre-
sentation. We observe an even stronger correlation between
the reward in the simulated OOD2 setting and the corre-
sponding GS-OOD2-sim and GS-OOD2-real scores. On
a per-factor level, we see that the source of the observed
correlations primarily stems from the generalization scores
w.r.t. the pose parameters of the cube. The OOD gener-
alization metrics can therefore be used as proxies for the
corresponding form of generalization in downstream RL
tasks. This has practical implications for the training of RL
downstream policies which are generally known to be brittle
to distribution shifts, as we can assess a representations’
generalization score from a few labeled images. This allows
for selecting representations that yield more generalizing
downstream policies.

Disentangled representations. Almost perfect dis-
entanglement has been shown to be helpful for down-
stream performance and OOD1 generalization even with
MLP downstream tasks (Dittadi et al., 2021). However,
in ReachCube without regularization, we only observe
a weak correlation with some disentanglement metrics
(Fig. 5). In agreement with (Dittadi et al., 2021), disen-
tanglement does not seem to correlate with OOD2 general-
ization. Dittadi et al. (2021) observed that disentanglement
correlates with the informativeness of a representation. To
understand if these weak correlations originate from this
common confounder, we investigate whether disentangle-
ment is still correlated with a higher OOD1 reward if we
compare representations with similar MLP FoV prediction
accuracy. Given two representations with the same MLP ac-
curacy, does the more disentangled one exhibit better OOD1
generalization? To measure this we predict success from the
MLP accuracy using kNN (k=5) (Locatello et al., 2019b)
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Figure 4. Rank correlations of representation properties (left: unsupervised metrics and informativeness, right: transfer metrics) with
OOD1 and OOD2 reward on ReachCube without regularization. Numbering when splitting metrics by FoV: (1) cube color; (2–4) joint
angles; (5–7) cube position and rotation.

Figure 5. Box plots: fractional success on ReachCube split ac-
cording to low (blue), medium-high (orange), and almost perfect
(green) disentanglement. Although from the correlation matrix
(left) we observe a mild correlation between some disentangle-
ment metrics and OOD1 (but not OOD2) generalization, this does
not hold when adjusting for representation informativeness. L1
regularization in the first layer of the MLP policy has a positive
effect on OOD1 and OOD2 generalization with minimal sacrifice
in terms of training reward (see scale).

and compute the residual reward by subtracting the amount
of reward explained by the MLP accuracy. In Fig. 5 we
see that this resolves the remaining correlations with dis-
entanglement. Thus, for the downstream tasks considered
here, disentanglement does not seem to be useful for down-
stream OOD generalization. We present similar results on
Pushing in Appendix B.2.

Policy regularization and observation noise. It might
seem unsurprising that disentanglement is not useful for
generalization in RL, as MLP policies do not have any
explicit inductive bias to exploit it. Thus, we attempt to
introduce such inductive bias by repeating all experiments
with L1 regularization on the first layer of the policy. As
discussed in Appendix B.2, although regularization has a
positive effect on OOD1 and OOD2 generalization in gen-
eral (Fig. 5, right), we see no link with disentanglement.
In agreement with (Dittadi et al., 2021), we also find that
observation noise when training representations is beneficial
for OOD2 generalization (see Appendix B.2).

Strong OOD shifts: evaluating on a novel shape. On the
ReachCube task, we also tested generalization w.r.t. a
novel object shape by replacing the cube with an unmovable
sphere. This corresponds to a strong OOD2-type shift, since

shape was never varied when training the representations.
We then evaluated the trained policies as before, with the
same color splits. Surprisingly, the policies appear to handle
the novel shape. In fact, when the sphere has the same
colors that the cube had during policy training, all policies
get closer than 5cm to the sphere on average, with a mean
success metric of about 95%. On sphere colors from the
OOD1 split, more than 98.5% move the finger closer than
this threshold, and on the strongest distribution shift (OOD2-
sim colors and cube replaced by sphere) almost 70% surpass
that threshold with an average success metric above 80%.

Summary. Reward from the training environment is signif-
icantly correlated with OOD generalization reward, as long
as the encoder remains in its training distribution (OOD1
generalization). The OOD1 reward is significantly corre-
lated with ELBO, reconstruction loss, and the MLP accu-
racy. This however does not hold for the OOD2-sim reward,
hence these metrics cannot be used to predict OOD2 gen-
eralization in our experiments. The generalization metrics
from (Dittadi et al., 2021), which measure robustness to
distribution shifts, are significantly correlated with RL per-
formance under similar distribution shifts. These metrics are
thus useful for selecting representations that will yield ro-
bust downstream policies. Disentanglement does not seem
to be beneficial for generalization in this setting, while input
noise when training representations is beneficial for OOD2
generalization.

5.3 Deploying policies to the real world

We now evaluate a large subset of the trained models
sim2real on the equivalent real robot (Wüthrich et al., 2020)
without any additional fine-tuning. We are interested in
quantifying if our models are able to generalize zero-shot
on the real robot and attempt to uncover relevant metrics for
predicting real world performance.

Reaching. We chose 960 policies trained in simulation,
based on 96 representations and 10 random seeds, and eval-
uate them on two (randomly chosen, but significantly far
apart) goal positions using a red cube. Note that although a
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Figure 6. Zero-shot sim2real on ReachBlock. Top: Statisti-
cally significant rank-correlations on the real platform with a red
cube. Bottom left: Training encoders with additive noise improves
sim2real generalization. Bottom right: Histogram of fractional
success in the more challenging OOD2-real-{green,blue} scenario
from 50 policies across 4 goal positions.

red cube was in the training distribution in simulation, we
consider this to be OOD2 because real world images already
represent a strong distribution shift for the encoder (Dittadi
et al., 2021; Djolonga et al., 2020). Although sim2real in
robotics is considered to be very challenging without do-
main randomization or fine-tuning (Tobin et al., 2017; Finn
et al., 2017; Rusu et al., 2017), many of our trained poli-
cies obtain a high fractional success score without resorting
to these methods. In addition, in Fig. 6 (top) we observe
consistent correlations between zero-shot real-world perfor-
mance and some relevant quantities discussed previously.
First, there is a positive correlation with the OOD2-sim re-
ward: Policies that generalize well on unseen cube colors
in simulation seem to generalize well to the real world, too.
Second, representations with high GS-OOD2-sim and (es-
pecially) GS-OOD2-real scores are promising candidates
for good sim2real transfer. Third, if no FoV labels are avail-
able, the weak statistically significant correlation with the
reconstruction loss on the simulated images can be exploited
for representation selection. Finally, as observed in (Dit-
tadi et al., 2021) for significantly easier downstream tasks,
input noise while learning representations is beneficial for
sim2real generalization (see also Fig. 6, bottom left).

Based on these findings, we select 50 policies with high
GS-OOD2-real, and evaluate them on the real world with
a green and a blue cube, which is an even stronger OOD2
distribution shift than the one considered before. In Fig. 6
(bottom right), where performance metrics are averaged over
4 cube positions per policy, we observe that most policies
can still reliably solve the task: approximately 80% of them
position the finger less than 5 cm from the cube. Lastly,
we mirrored the evaluations in simulation on an unseen

Figure 7. We select pushing control policies according to OOD2-
real generalization with encoders trained on noisy input. We find
that on the real robot setup (Wüthrich et al., 2020), these policies
can zero-shot solve the task and push a cube to a specified goal
position (transparent blue cube).

green sphere object, and saw a surprisingly consistent finger
movement to even such a new unseen object. We refer to
Appendix B.3 in the supplementary material.

Pushing. We now test whether our real-world findings on
ReachCube also hold for Pushing. We again selected a
few policies with encoders being trained with added noise
on the input and a high GS-OOD2-real score. We recorded
episodes on diverse goal positions and cube colors to support
our finding that it was also possible to obtain generalizing
pushing policies on the real robot (Wüthrich et al., 2020)
purely trained in simulation. In Fig. 7 we depict three repre-
sentative episodes with successful task completions.

Summary. Policies trained solely within simulation can
zero-shot solve the task on the real robot equivalent with-
out any domain randomization or fine-tuning. We observe
that OOD2 robustness of the underlying image encoder is
a good predictor for real world performance as is the re-
construction loss of the VAE on simulated images and RL
reward measured in a simulated OOD2 setting. For real-
world application, we recommend using GS-OOD2-sim and
GS-OOD2-real for model selection, and training the image
encoder with additive noise.

6 Conclusion
Robust out-of-distribution (OOD) generalization is still one
of the key open challenges in machine learning. With this
work we presented a principled investigation of OOD gener-
alization in the context of two practical downstream control
tasks using RL from vision in simulation and the real world
and how this is being driven by pre-trained representations.
We worked out key predictors for various OOD generaliza-
tion scenarios, whose statistical significance is supported by
the over 10,000 control policies trained in this study. Ideally,
our extensive investigation of representation learning for
out-of-distribution generalization in reinforcement learning
should encourage further work in this direction.
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A Implementation details
Task definitions and rewards. We derived both tasks,
ReachCube and Pushing, from the CausalWorld envi-
ronments introduced by Ahmed et al. (2021). We pre-train
representations on the dataset introduced by Dittadi et al.
(2021), and allow only one finger to move in our RL ex-
periments. We propose the ReachCube environment as
an intermediate simpler RL environment that involves a
fixed cube that cannot be moved. We used reward structures
similar to those in Ahmed et al. (2021):

• ReachCube: rt = −750 [d(gt, et)− d(gt−1, et−1)]

• Pushing: rt = −750 [d(ot, et)− d(ot−1, et−1)] −
250 [d(ot, gt)− d(ot−1, gt−1)] + ρt

where t denotes the time step, ρt ∈ [0, 1] is the fractional
overlap with the goal cube at time t, et ∈ R3 is the end-
effector position, ot ∈ R3 the cube position, gt ∈ R3 the
goal position, and d(·, ·) denotes the Euclidean distance.
The cube in ReachCube is fixed, i.e. ot = gt for all t.

Besides the accumulated reward along episodes, that is de-
termined by the reward function, we also report two reward-
independent normalized success definitions for better inter-
pretability: In ReachCube, the success metric indicates
progress from the initial end effector position to the opti-
mal distance from the center of the cube. It is 0 if the final
distance is greater than or equal to the initial distance, and
1 if the end effector is touching the center of a face of the
cube. In Pushing, the success metric is defined as the
volumetric overlap of the cube with the goal cube, and the
task can be visually considered solved with a score around
80%. We observed that accumulated reward and success are
highly correlated with each other, thus allowing to use one
or the other for measuring performance.

During training, the goal position is randomly sampled at
every episode. Similarly, the object color is being sampled
from the 4 specified train colors from D1 that are corre-
sponding to the OOD1-B split from Dittadi et al. (2021).

For each policy evaluation (in-distribution and out-of-
distribution variants), we average the accumulated reward
and final success across 200 episodes with randomly sam-
pled cube positions and the respective object color in both
tasks.

SAC implementation. Our implementation of SAC builds
upon the stable-baselines package (Hill et al., 2018).
We used the same SAC hyperparameters used for pushing
in Ahmed et al. (2021). When using L1 regularization, we
add to the loss function the L1 norm of the first layers of
all MLPs, scaled by a coefficient α. We gradually increase
regularization by linearly annealing α from 0 to 5 · 10−7 in

200,000 time steps in ReachCube, and from 0 to 6 · 10−8

in 3,000,000 time steps in Pushing.

B Additional results

B.1 Training environment

Fig. 2 in the main text shows correlations of unsuper-
vised and supervised metrics with in-distribution reward
for ReachCube and Pushing, only in the case without
regularization. In Fig. 8 we also show these results in the
case with regularization, as well as when adjusting for MLP
informativeness.

B.2 Out-of-distribution generalization in simulation

In Section 5.2 we discussed rank-correlations of OOD re-
wards with unsupervised, informativeness and generaliza-
tion scores on ReachCube without regularization. In
Fig. 9 we also show these results for the case with regu-
larization and on Pushing, as well as when adjusting for
MLP informativeness. Without regularization, we observe
on Pushing very similar correlations along all metrics as
we observed on ReachCube, confirming our conclusions
on this more complex task. When using regularization, rank
correlations are very similar across both tasks. Interestingly,
the correlation between GS-OOD2 scores and OOD2 gen-
eralization of the policy is even stronger when using the
here studied type of regularization. In contrast to our obser-
vations without regularization, we find that the correlation
between GS-OOD1 and OOD1 generalization of the policy
disappears when adjusting for MLP informativeness.

Disentangled representations. As discussed in Sec-
tion 5.2 for ReachCubewithout regularization, we observe
in Fig. 9 a weak correlation between some disentanglement
metrics and OOD1 reward, which however vanishes when
adjusting for MLP informativeness. In agreement with Dit-
tadi et al. (2021), we observe no significant correlation be-
tween disentanglement and OOD2 generalization, for both
tasks, with and without regularization. From Fig. 10 we
see that in some cases, especially without regularization, a
very high DCI score seems to lead to better performance on
average. However, this behavior is not significant (within
error bars), as opposed to the results shown in simpler down-
stream tasks by Dittadi et al. (2021). Furthermore, this trend
is likely due to representation informativeness, since the
correlations with disentanglement disappear when adjusting
for the MLP score, as discussed above.

Regularization. As seen in Fig. 10, regularization gener-
ally has a positive effect on OOD1 and OOD2 generaliza-
tion, especially prominent in the OOD1 setting. On the other
hand, it leads to lower training rewards both in ReachCube
and in Pushing. In the latter, the performance drop is par-
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Figure 8. Rank correlations between metrics and in-distribution reward, with and without adjusting for informativeness.

Figure 9. Rank correlations between metrics and OOD reward, with and without adjusting for informativeness.
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Figure 10. Fractional success on ReachCube (top) and Pushing (bottom), split according to low (blue), medium-high (orange), and
almost perfect (green) disentanglement. Results for ReachCube are also reported in Fig. 5 in Section 5.2.

ticularly significant, while in ReachCube it is negligible.

Sample efficiency. In addition to the analysis reported
in the main paper, we performed an analysis on repre-
sentation properties affecting sample efficiency, which we
summarize in Fig. 11 for ReachCube and Fig. 12 for
Pushing. Specifically, we stored checkpoints of our poli-
cies at t ∈ {20k, 50k, 100k, 400k} for ReachCube and
t ∈ {200k, 500k, 1M, 3M} for Pushing. We then evalu-
ate policies at these time step on the same three different
environments as before: (1) on the cube colors form train-
ing; (2) on the OOD1 cube colors; and (3) on the OOD2-sim
cube colors.

On ReachCube (Fig. 11), we observe very similar trends
with and without regularization: Unsupervised metrics
(ELBO and reconstruction loss) display a correlation with
the training reward, as do the supervised informative-
ness metrics (GBT and MLP). This is strongest on early
timesteps, meaning these scores could be important for sam-
ple efficiency. Similarly, we observe a correlation with the
disentanglement scores DCI, MIG and SAP. With the help
of the additional evaluation of rewards adjusted for MLP in-
formativeness, we can attribute this correlation again to this
common confounder. Lastly, we see that the generalization
scores are correlated with generalization of the correspond-

ing policies under OOD1 and OOD2 shifts for all recorded
time steps.

On Pushing (Fig. 12), many correlations at early check-
points are significantly reduced, especially with regulariza-
tion. This behavior might be due to the more complicated
nature of the task, which involves learning to reach the cube
first, and then push it to the goal. Correlations are primar-
ily seen towards the end of training, with similar spurious
correlations with disentanglement as elaborated above. Im-
portantly, correlations between generalization scores and
policy generalization under the same distribution shift re-
main strong and statistically significant.

Generalization to a novel shape. As mentioned in Sec-
tion 5.2, on the ReachCube task, we also tested general-
ization w.r.t. a novel object shape by replacing the cube
with an unmovable sphere. Remember, this corresponds to a
strong OOD2-type shift, since shape was never varied when
training the representations. We then evaluated a subset of
960 trained policies as before, with the same color splits.
Surprisingly, the policies appear to handle the novel shape
as we see from the histograms in Fig. 13 in terms of success
and final distance. In fact, when the sphere has the same
colors that the cube had during policy training, all policies
get closer than 5cm to the sphere on average, with a mean
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Figure 11. Sample efficiency analysis for ReachCube. Rank correlations of rewards with relevant metrics along multiple time steps

Figure 12. Sample efficiency analysis for Pushing. Rank correlations of rewards with relevant metrics along multiple time steps
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success metric of about 95%. On sphere colors from the
OOD1 split, more than 98.5% move the finger closer than
this threshold, and on the strongest distribution shift (OOD2-
sim colors and cube replaced by sphere) almost 70% surpass
that threshold with an average success metric above 80%.

B.3 Deploying policies to the real world

In Fig. 14 we depict three representative episodes of testing
a reach policy on the real robot for the strong OOD shift
with a novel sphere object shape instead of the cube from
training.
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Figure 13. Testing ReachCube policies under the same IID, OOD1 and OOD2 evaluation protocols regarding object color in simulation
but replacing the cube with a novel shape in the form of a sphere.

Figure 14. Transferring ReachCube models to the real robot setup without any fine-tuning on a green sphere (unseen shape and color).
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