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Abstract

In online bilateral trade, a platform posts prices to incoming pairs of buyers and
sellers that have private valuations for a certain good. If the price is lower than the
buyers’ valuation and higher than the sellers’ valuation, then a trade takes place.
Previous work focused on the platform perspective, with the goal of setting prices
maximizing the gain from trade (the sum of sellers’ and buyers’ utilities). Gain
from trade is, however, potentially unfair to traders, as they may receive highly
uneven shares of the total utility. In this work we enforce fairness by rewarding the
platform with the fair gain from trade, defined as the minimum between sellers’
and buyers’ utilities. After showing that any no-regret learning algorithm designed
to maximize the sum of the utilities may fail badly with fair gain from trade, we
present our main contribution: a complete characterization of the regret regimes
for fair gain from trade when, after each interaction, the platform only learns
whether each trader accepted the current price. Specifically, we prove the following
regret bounds: Θ(lnT ) in the deterministic setting, Ω(T ) in the stochastic setting,
and Θ̃(T 2/3) in the stochastic setting when sellers’ and buyers’ valuations are
independent of each other. We conclude by providing tight regret bounds when,
after each interaction, the platform is allowed to observe the true traders’ valuations.

1 Introduction

In the online bilateral trade problem, at each round t = 1,2, . . . a seller and a buyer with private
valuations for a certain good connect to a trading platform. The seller’s valuation St is the smallest
price at which they are willing to sell the good. Similarly, the buyer’s valuation Bt is the highest
price they would pay to get the good. The platform posts a price Pt to both buyer and seller. A trade
happens if and only if both agents agree to trade, i.e., St ≤ Pt ≤ Bt. At the end of the round, St and
Bt remain unknown and the platform only observes I{St ≤ Pt} (i.e., whether the seller accepted the
deal) and I{Pt ≤ Bt} (i.e., whether the buyer accepted the deal).

Previous works [12, 2, 9, 13, 7, 5] focused on minimizing regret with respect to the gain from trade
function GFT∶ (p, s, b)↦ (b − s)I{s ≤ p ≤ b}. The quantity GFT(Pt, St,Bt) corresponds to the sum
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Determistic Stochastic (i.i.d. + independent valuations) Stochastic (i.i.d)
Two-bit feedback lnT T 2/3 T

Full feedback 1
√
T

√
T

Table 1: Summary of our results.

of the seller’s utility Pt − St and the buyer’s utility Bt − Pt at time t when a trade happens, and zero
otherwise. This reward function, however, is oblivious to asymmetries in the utilities of the buyer
and the seller caused by Pt not being close to the mid-price (St +Bt)/2. As argued in [20], prices
generating unequal gains may lead to a reduced participation in the market, which translates to less
trading on the platform.

To address this problem, instead of using the sum of the utilities (i.e., the gain from trade) as reward
function, we use the minimum of the utilities. This reward function ignores any surplus a trader may
achieve at the expense of the other, thus encouraging the platform to set prices Pt as close as possible
to the mid-price, equalizing the profit of sellers and buyers. We call this new reward function fair gain
from trade and denote it by FGFT. Our specific focus on the fair gain from trade objective can be seen
as an implementation of the so-called egalitarian rule in social choice theory (sometimes also called
the max-min rule or the Rawlsian rule), where one favors the alternative that maximizes the minimum
utility of the involved parties to promote fairness. This approach might be especially relevant for
online ride-sharing services like Uber and Lyft, where fairness problems have been previously studied,
although in different settings with metrics different from ours (see, e.g., [31]). Our goal is to design
algorithms minimizing the regret over T rounds. This is the difference between the (expected) total
FGFT achieved by the best fixed price p⋆ and the (expected) total FGFT achieved by the algorithm.
Note that the two bits received as feedback at the end of each round (i.e., I{St ≤ Pt} and I{Pt ≤ Bt})
are not enough to compute bandit feedback (the reward earned by posting the price Pt)—neither for
FGFT nor for GFT.1

Our contributions. If sellers’ and buyers’ valuations are independent and drawn i.i.d. from two
fixed but unknown distributions, we obtain an efficient algorithm (Algorithm 1), achieving a regret of
Õ(T 2/3) after T rounds (Theorem 2). This algorithm is built around the key Convolution Lemma
(Lemma 1), which shows how one can estimate the expected FGFT through the feedback the learner
has access to. Algorithm 1 does so by building uniform estimates for the expected FGFT via a discrete
convolution procedure that combines the feedback collected from sellers and buyers across different
time steps. We then derive a lower bound matching this rate up to a logarithmic factor (Theorem 3).
The lower bound construction leverages the relationship between the feedback and the FGFT to build
hard instances of our problem. These hard instances are similar to the ones in the revealing action
problem of partial monitoring (see, e.g., [15]), that force the learner to perform a certain amount
of costly exploration. An analogous phenomenon shows up even in the deterministic case, where
St = s and Bt = b for all t and for some unknown constants s, b. In this simpler setting, we prove that
posting some clearly suboptimal but informative prices is unavoidable, showing that no strategy can
obtain a regret better than Ω(lnT ) (Theorem 4). We complement this result by showing that this rate
is matched by a double binary search algorithm (Theorem 5).

We also show that the independence of sellers’ and buyers’ valuations is necessary to minimize regret
with respect to fair gain from trade: if the pairs (St,Bt) are drawn i.i.d. from an arbitrary joint
distribution, then the FGFT regret must grow linearly with time (Theorem 1).

Finally, we complete the picture by quantifying the cost of partial information. We do so by analyzing
the regret rates at which the platform can learn if the pair (St,Bt) is revealed at the end of each
round—the so-called full feedback model. Here, we show that a regret of O(

√
T ) can be achieved

for any joint distribution of sellers’ and buyers’ valuations (Theorem 6), and we show that this rate is
optimal up to constant factors, even if we assume that the traders’ valuations are independent of each
other (Theorem 7).

Our results are summarized in Table 1.

1In fact, if a trade occurs, we only know that St ≤ Pt ≤ Bt, but this information alone allows us to compute
neither min{St − Pt,Bt − Pt} nor Bt − St.
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Technical challenges. When regret is minimized with respect to the gain from trade, the indepen-
dence of sellers’ and buyers’ valuations is not enough to guarantee sublinear regret, and an additional
smoothness assumption2 is required to compensate for the lack of Lipschitzness of GFT. In [9, 10]
the optimal regret for GFT under the smoothness assumption turns out to be the same as the optimal
rate Θ̃(T 2/3) achievable for FGFT without smoothness. This happens because the fairness condition
confers Lipschitzness to the gain from trade, allowing us to compare against a broader range of
distributions. In fact, the smoothness assumption plays no role in the fair version of the problem. To
further compare the two settings, note that the issue appearing in [9], i.e., a feedback so poor that
is not even sufficient to reconstruct the reward at the posted price, arises here as well. In our case,
however, the specific form of the objective requires new ideas—i.e., our new Convolution Lemma
(Lemma 1)—to recover usable information about the reward function. Another difference is that, in
[9], the realized gain from trade is maximized by posting any price p ∈ [S,B]. In our setting, instead,
we have to address the more delicate task of locating the midpoint p = (S +B)/2. This is the reason
why, as we show in Section 2, even optimal algorithms for bilateral trade can suffer linear regret in
our setting. From the technical viewpoint, note that a direct application of the convolution lemma
in the 2-bit feedback setting would yield a suboptimal upper bound of T 3/4. To obtain the optimal
T 2/3 rate, we carefully define a data-gathering procedure in which each observation contributes to
estimating the convolution of the cdfs at all points.

Another interesting discrepancy between the two settings arises in the deterministic case, where a
learner can devise a strategy whose regret is constant when the reward function is GFT. This is in
contrast to the Θ(lnT ) rate when the reward function is FGFT, as we discuss at the beginning of
Section 4.

Related work. Attempts to circumvent the linear lower bound for the regret of gain from trade in
adversarial environments include [2], where they focus on 2-regret, and [5], where they consider a
global budget balance condition that allows the learner to subsidize trades with money accumulated
in previous rounds. Recently, online brokerage, a related though incomparable setting where traders
can sell or buy depending on the contingent market conditions, has been studied in [7, 17, 3].

Fairness is an intensively studied topic in online learning, with the goal of understanding the extent
to which the fairness constraints impact on the regret. The work [6] considers online prediction
with expert advice and studies the problem of combining individually non-discriminatory experts
while preserving non-discrimination. An early investigation of fairness in linear bandits is conducted
in [23], where the fairness constraints demand that similar action be assigned approximately equal
probabilities of being pulled, and the similarity metric must be learned via fairness violation feedback.
Fairness in linear bandits is also investigated in [22], where the reward observed by the learner is
biased towards a specific group of actions. In [4], the authors study an online binary classification
problem with one-sided feedback where the fairness constraint requires the false positive rate to be
equal across two groups of incoming users. The paper [19] applies Blackwell’s approachability theory
to investigate online learning under group fairness constraints. A different notion of fairness in bandits
is considered by [28, 30], where each arm has to be pulled at least a pre-specified fraction of times
(see also [8] for related results). This type of fairness requirement is also considered in [32] where
the optimal policy is pulling an arm with a probability proportional to its merit (a problem-specific
function of the arm’s expected reward). Finally, the work [24] considers a K-armed bandit setting in
which pulling an arm yields different rewards for different agents. The algorithm’s goal is to control
regret against the optimal Nash Social Welfare (NSW). The NSW of a probability assignment π over
the arms is the product of the agents’ reward in expectation according to π.

Online learning with fairness constraints is also investigated in online fair division [1], where each
good in a sequence must be allocated to a set of agents who receive some utility that depends
on the good. The goal is to satisfy a given fairness criterion, which is typically not aligned with
the maximization of the agents’ utilities. Traditionally, this problem has been studied under the
assumption that at the beginning of each round agents report their true utilities [29]. Very recently,
the problem was studied in a bandit setting, where only the stochastic utility of the agent receiving
the good is revealed [33]. In that setting, there is a finite set of types and the expected utility of agent
i for type j is fixed but unknown. The regret is then defined in terms of the geometric mean of the
total expected utilities of the agents. Our regret, instead, is defined additively over the minimum

2A distribution is smooth whenever it admits a bounded density; see, e.g., [21, 11].
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of the agents’ utilities in each round, where the utilities of sellers and buyers depend on each other
through the price posted by the platform. Our notion of regret can also be viewed as an online version
of the Kalai–Smorodinsky solution to the bargaining problem, in the sense that we also strive to
equalize the utilities of the two players [25]. The regret typically studied in online fair division,
instead, corresponds to the Nash solution to the bargaining problem.

Finally, we mention that the line of research where online learning is applied to trading problems, was
initiated in one-sided settings, like dynamic pricing, whose seminal paper was [26]. For an interesting
comparison of (a generalization of) the dynamic pricing setting and the bilateral trade setting, see
also [14].

Formal problem definition. We study the following problem. At each time t ∈ N,

1. A seller and a buyer arrive with private valuations St ∈ [0,1] and Bt ∈ [0,1]
2. The platform proposes a trading price Pt ∈ [0,1]
3. If St ≤ Pt ≤ Bt, then the buyer gets the object and pays Pt to the seller

4. I{St ≤ Pt} and I{Pt ≤ Bt} are revealed

The boundedness assumption for valuations and prices is standard in regret minimization settings.
We enforce fairness by rewarding the platform with the minimum of the utilities of sellers and buyers.
More precisely, for any p ∈ [0,1] and any s, b ∈ [0,1], we define the fair gain from trade achieved
with p when the seller’s valuation is s and the buyer’s valuation is b by

FGFT(p, s, b) ∶=min{(p − s)+, (b − p)+} ,

where x+ ∶=max{x,0} for any x ∈ R.

We assume a stochastic model where the sequence (St,Bt)t∈N of sellers’ and buyers’ valuations is
an i.i.d. process with a fixed but unknown distribution. The regret after T rounds of an algorithm
posting prices P1, P2, . . . is defined by

RT ∶= max
0≤p≤1

E [
T

∑
t=1

FGFT(p,St,Bt)] −E [
T

∑
t=1

FGFT(Pt, St,Bt)] .

In the deterministic setting (which can be viewed as a special case of the above stochastic setting)
there exist s, b ∈ [0,1] such that, for every t ∈ N, it holds that St = s and Bt = b. In both cases, note
that the maximum exists because the expected FGFT is a 1-Lipschitz function of the price.

2 Maximization of gain from trade does not imply fairness

In this section, we show that, in general, a no-regret algorithm for GFT fails to achieve no-regret
guarantees for FGFT.

Consider the stochastic setting, where the sequence (St,Bt)t∈N is an i.i.d. process. Pick 0 < h < 1/2
and, for all t ∈ N, let St be such that St = 0 with probability 1/2 and St = 1 − h with probability 1/2.
Let also Bt = 1 for all t ∈ N. Then, the only prices maximizing GFT are those in the interval [1−h,1].
Now, any price p ∈ [1 − h,1] achieves an expected FGFT of

E[FGFT(p,St,Bt)] =
1

2
⋅ (1 − p) + 1

2
⋅min{(1 − p), (p − (1 − h))}

and the maximum of this quantity is h/2, which is attained, for example, by posting p = 1 − h. On
the other hand, it is easy to see that the maximum of the expected FGFT on the whole interval [0,1]
is 1/4 > h/2, achieved by posting p = 1/2 /∈ [1 − h,1]. So, if we use any no-regret algorithm for
the standard bilateral trade problem to post prices P1, P2, . . . , we suffer linear FGFT regret on this
instance. Even more strikingly, on these instances, for any t ∈ N,

E[FGFT(1 − h,St,Bt)]
E[FGFT(1/2, St,Bt)]

= 2h→ 0+ for h→ 0+ ,
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which implies that there are instances where any no-regret algorithm for the standard bilateral trade
problem fails even if we content ourselves with competing against a fraction of the reward earned by
a no-regret algorithm for the fair bilateral trade problem.3

3 The stochastic case

We begin by providing a linear lower bound on the worst-case regret for the stochastic case. The
idea of the proof is to leverage a lack of observability phenomenon: we can devise two different
distributions whose maximum expected fair gain from trade is achieved in disjoint regions—so
that posting a price that is in the good region for one distribution leads to an instantaneous regret
bounded away from zero for the other distribution—but the learner cannot distinguish which is the
underlying distribution generating the valuations, given that these distributions are designed so that
the (push-forward) distribution of the received feedback is exactly the same for both of them.
Theorem 1. In the stochastic case, for every algorithm for the fair bilateral trade problem, there
exists a joint distribution under which, for an i.i.d. sequence (St,Bt)t∈N of sellers and buyers, we
have, for all T ∈ N,

RT ≥
T

48
.

Proof. For any point x ∈ [0,1]2, let δx be the Dirac measure centered at x. Consider the two
distributions µ ∶= 1

3
(δ(0, 58 ) + δ( 38 , 38 ) + δ( 58 ,1)) and ν ∶= 1

3
(δ(0, 38 ) + δ( 38 ,1) + δ( 58 , 58 )). Suppose

that the sequence of valuations (St,Bt)t∈N is drawn i.i.d. from µ or ν. If the underlying dis-
tribution is µ, the optimal point is 5/16 and, for all p ∈ [1/2,1] and t ∈ N, the difference
E[FGFT(5/16, St,Bt)] − E[FGFT(p,St,Bt)] is at least 1

3
( 5
16
− 3

16
) = 1

24
. Analogously, if the

underlying distribution is ν, the optimal point is 11/16 and, for all p ∈ [0,1/2] and t ∈ N,
E[FGFT(11/16, St,Bt)] − E[FGFT(p,St,Bt)] ≥ 1

24
. This means that the only way for the learner

not to suffer Ω(T ) regret is to distinguish whether the underlying distribution is µ or ν. But a direct
verification shows that the distribution of the feedback is the same for every p ∈ [0,1], regardless
of whether the underlying distribution is µ or ν. Hence, the learner has no means to distinguish
between µ and ν and must suffer Ω(T ) regret. Indeed, let NT be the random number of times
the platform posts a price Pt in [0, 1

2
]. Then NT has the same distribution under µ and ν. If

Eµ[NT ] = Eν[NT ] ≥ T
2

, then the expected regret under ν is at least T
2
⋅ 1
24
= T

48
. Conversely, If

Eµ[NT ] = Eν[NT ] ≤ T
2

, then the expected regret under µ is at least T
48

.

Remark 1. Note that Theorem 1 together with Yao’s Minimax Theorem immediately imply that the
adversarial fair bilateral trade problem—where the goal is to obtain sublinear worst-case expected
regret against the best fixed-price when the sequence of seller/buyer valuations (St,Bt)t∈N is chosen
by an oblivious adversary—is unlearnable.

We now show that we can achieve learnability in the stochastic case by assuming that, for each t ∈ N,
the two valuations St and Bt are independent of each other.

To this end, we first present the Convolution Lemma (Lemma 1), which provides a way to avoid the
aforementioned lack of observability when the traders’ valuations are independent of each other. This
lemma plays for FGFT a role analogous to the one played by the Decomposition Lemma [9, Lemma
1] for GFT.
Lemma 1 (The Convolution Lemma). For all s, b, p ∈ [0,1],

FGFT(p, s, b) = ∫
1

0
I{s ≤ p − u}I{p + u ≤ b}du . (1)

In particular, if S and B are [0,1]-valued independent random variables, for each p ∈ [0,1],

E[FGFT(p,S,B)] = ∫
1

0
P[S ≤ p − u]P[p + u ≤ B]du . (2)

3The reader familiar with the notion of α-regret will note that this is equivalent to saying that any no-regret
algorithm for the standard bilateral trade problem fails to be a no-α-regret algorithm for the fair bilateral trade
problem, regardless of how large α is chosen.
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Proof. If FGFT(p, s, b) = (b − p)+, note that

(b − p)+ = ∫
1

0
I{u ≤ (b − p)+}du = ∫

1

0
I{u ≤ (p − s)+}I{u ≤ (b − p)+}du

= ∫
1

0
I{u ≤ p − s}I{u ≤ b − p}du = ∫

1

0
I{s ≤ p − u}I{p + u ≤ b}du .

The same conclusion holds with an analogous argument if FGFT(p, s, b) = (p − s)+. The stochastic
case follows immediately from Fubini’s theorem and the independence of S and B.

We now explain how the previous lemma can be used to recover the observability of the expected
FGFT under the independence assumption. Note that, given the feedback we have access to, we
can estimate the cumulative distributions of both sellers’ and buyers’ valuations pointwise with
arbitrary precision, and hence, a fortiori, we can estimate (2). However, even if this observation alone
would be enough to ensure learnability, this is not the most efficient way of learning the expected
fair gain from trade function. In fact, we do not really need a careful pointwise estimation of both
cumulative distributions, but just of (2), which involves certain products of their translates. The crucial
observation—from which Lemma 1 takes its name—is that (2) is the (incomplete) convolution of the
cumulative distribution of the sellers’ valuations and the co-cumulative distribution of the buyers’
valuations, and that we have noisy access to these functions at the points we need to estimate them,
though at different time steps. This observation suggests that we can approximate the continuous
(incomplete) convolution by a discrete (incomplete) convolution involving the noisy observations we
collect at different time steps, e.g., by posting prices on a uniform grid. These ideas are exploited in
the design of Algorithm 1 and in the proof of its regret guarantees.

Algorithm 1: Convolution Pricing (Stochastic Setting)
Input: K ∈ N;
Initialization: for each t ∈ Z, set Vt ∶=Wt ∶= 0;
for time t = 1,2, . . . ,K do

Post price Pt ∶= t
K

and set Vt ∶= I{St ≤ Pt},Wt ∶= I{Pt ≤ Bt};
Let I ∈ argmaxi∈[K]

1
K ∑

K−1
k=0 Vi−kWi+k;

for t =K + 1,K + 2, . . . , T do
Post price Pt ∶= I/K;

Theorem 2. In the stochastic case, under the additional assumption that for each t ∈ N the seller’s
valuation St is independent of the buyer’s valuation Bt, by setting K ∶= ⌊T 2/3⌋, the regret suffered by
Algorithm 1 is Õ(T 2/3).

Proof. For each k ∈ [K], define qk ∶= k
K

. Note that for each t ∈ N the function p ↦
E[FGFT(p,St,Bt)] is 1-Lipschitz being the expectation of (random) 1-Lipschitz functions. Hence,
if for each p ∈ [0,1] we denote by k⋆(p) the index of the closest point to p in the grid {q1, . . . , qK},
we have, for each t ∈ N, that,

E[FGFT(p,St,Bt)] −E[FGFT(qk⋆(p), St,Bt)] ≤
1

K
. (3)

Let F be the common cumulative function of the random variables in the process (St)t∈N and let G
be the common co-cumulative function of the random variables in the process (Bt)t∈N, i.e., for each
t ∈ N and each p ∈ R, define F (p) ∶= P[S ≤ p] and G(p) ∶= P[p ≤ B]. Note that F (u) = 0 for each
u ≤ 0, that G(u) = 0 for each u ≥ 1, and that for each p ∈ [0,1], the function u↦ F (p − u)G(p + u)
is non-increasing, being the product of two non-increasing functions. Hence, for each t ∈ N and each
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k ∈ [K], by Lemma 1, we can sandwich the quantity 1
K ∑

K−1
i=0 F (qk−i)G (qk+i) as follows:

E[FGFT(qk, St,Bt)] = ∫
1

0
F (qk − u)G(qk + u)du =

K−1
∑
i=0
∫

i+1
K

i
K

F (qk − u)G(qk + u)du

≤
K−1
∑
i=0
∫

i+1
K

i
K

F ( k
K
− i

K
)G( k

K
+ i

K
) du = 1

K

K−1
∑
i=0

F (qk−i)G (qk+i)

≤ 1

K
+ 1

K

K−1
∑
i=0

F (qk−(i+1))G (qk+(i+1)) =
1

K
+

K−1
∑
i=0
∫

i+1
K

i
K

F ( k
K
− i + 1

K
)G( k

K
+ i + 1

K
) du

≤ 1

K
+

K−1
∑
i=0
∫

i+1
K

i
K

F (qk − u)G(qk + u)du =
1

K
+ ∫

1

0
F (qk − u)G(qk + u)du

= 1

K
+E[FGFT(qk, St,Bt)] . (4)

Now, by the independence assumption,

1

K

K−1
∑
i=0

F (qk−i)G (qk+i) =
1

K

K−1
∑
i=0

E[Vk−i]E[Wk+i] = E [
1

K

K−1
∑
i=0

Vk−iWk+i]

and, by noting that for each k ∈ [K] we have that 1
K ∑

K−1
i=0 Vk−iWk+i is the empirical mean of K

{0,1}-valued independent random variables, by Hoeffding’s inequality and a union bound, we have
that, for any ε > 0,

P [max
k∈[K]

∣ 1
K

K−1
∑
i=0

Vk−iWk+i −
1

K

K−1
∑
i=0

F (qk−i)G (qk+i)∣ ≥ ε] ≤ 2K exp(−2ε2K) .

In particular, if we set εT ∶=
√

ln(2T )
2⌊T 2/3⌋ , recalling that K = ⌊T 2/3⌋, and defining the (good) event

ET ∶= {maxk∈[K] ∣ 1K ∑
K−1
i=0 Vk−iWk+i − 1

K ∑
K−1
i=0 F (qk−i)G (qk+i)∣ < εT }, we have

P[EcT ] ≤
1

T 1/3 . (5)

Now, let p⋆ ∈ argmaxp∈[0,1]E[FGFT(p,St,Bt)] (whose definition is independent of t, given that the
process (St,Bt)t∈N is i.i.d.) and, recalling the definition of I from Algorithm 1, note, for each t >K,
that

E[FGFT(Pt, St,Bt)] = E[FGFT(qI , St,Bt)] = E[E[FGFT(qI , St,Bt) ∣ I]]

= E[[E[FGFT(qk, St,Bt)]]
k=I
] ≥ E [[ 1

K

K−1
∑
i=0

F (qk−i)G (qk+i) −
1

K
]
k=I
]

= E [ 1
K

K−1
∑
i=0

F (qI−i)G (qI+i)] −
1

K
≥ E [IET ⋅

1

K

K−1
∑
i=0

VI−iWI+i] − εT −
1

K

≥ E [IET ⋅
1

K

K−1
∑
i=0

Vk⋆(p⋆)−iWk⋆(p⋆)+i] − εT −
1

K
≥ E [ 1

K

K−1
∑
i=0

Vk⋆(p⋆)−iWk⋆(p⋆)+i] − P[EcT ] − εT −
1

K

= 1

K

K−1
∑
i=0

F (qk⋆(p⋆)−i)G (qk⋆(p⋆)+i) − P[EcT ] − εT −
1

K
≥ E[FGFT(p⋆, St,Bt)] − P[EcT ] − εT −

2

K
,

where the third equality follows from the Freezing Lemma (see, e.g., [18, Lemma 8]), the first
inequality from the sandwich inequalities in (4), the second inequality from the definition of ET , the
third inequality from the definition of I , and the last inequality from the sandwich inequalities in (4)
and inequality (3). Putting everything together, we can upper bound the regret as follows

RT ≤K +
T

∑
t=K+1

E[FGFT(p⋆, St,Bt) − FGFT(Pt, St,Bt)] ≤K +
T

∑
t=K+1

(P[EcT ] + εT +
2

K
) .

Recalling that K = ⌊T 2/3⌋, εT =
√

ln(2T )
2⌊T 2/3⌋ , and (5), we obtain the conclusion.
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We now prove that the strategy employed by Algorithm 1 is worst-case optimal, up to logarithmic
factors. At a high level, the reason why the T 2/3 rate is optimal is that the fair bilateral trade problem
contains instances that closely resemble the revealing action problem in partial monitoring [15],
where, in order to distinguish which one of two actions is optimal, we have to play for a significant
amount of time a third highly suboptimal action to gather this information. We formalize this intuition
in the following theorem, whose full proof is deferred to Appendix A due to space constraints.

Theorem 3. There exists a constant c > 0 such that the following holds. For every algorithm for
the fair bilateral trade problem and for every time horizon T ∈ N, there exists an i.i.d. sequence
(St,Bt)t∈[T ] of pairs of sellers’ and buyers’ valuations such that, for each t ∈ [T ], St is independent
of Bt, and the algorithm suffers regret of at least cT 2/3 on that sequence.

Proof sketch. For each ε ∈ [−1,1], consider the distribution µε ∶= 1+ε
2
δ0 + 1−ε

2
δ1/4 where δa is the

Dirac measure centered at a point a ∈ R. For each ε ∈ [−1,1], let (Sε
t )t∈N be an i.i.d. sequence whose

distribution is µε. For each t ∈ N, let Bt = 1. Then, for each ε ∈ [−1,1], the sequence (Sε
t ,Bt)t∈N is

i.i.d. and for each t ∈ N the valuation Sε
t is (obviously) independent of the (deterministic) valuation

Bt. Now, one can show that if ε > 0 the optimal price to post in order to maximize the expected
fair gain from trade over the sequence (Sε

t ,Bt)t∈N is 1/2 while if ε < 0 the optimal price is 5/8. If
ε > 0 and we post prices greater or equal than 9/16 we suffer instantaneous regret of at least order
of ∣ε∣, while if ε < 0 and we post prices less or equal than 9/16 we suffer instantaneous regret of
at least order of ∣ε∣. Hence, to avoid suffering Ω(∣ε∣T) regret we need to distinguish the sign of ε.
Given that what we see are the two bits in the feedback, the only way to discriminate the sign of ε
is to post prices in the region between 0 and 1/4. In this case, the feedback we see is equivalent to
seeing a Bernoulli of parameter 1+ε

2
, and hence, due to information-theoretic arguments, we need

Ω(1/ε2) to distinguish the sign of ε. Now, every price in the region [0,1/4] suffers instantaneous
regret of order Ω(1). Hence, any algorithm has to suffer Ω ( 1

ε2
+ ∣ε∣T ) regret, which is Ω(T 2/3)

when ∣ε∣ = Θ(T −1/3).

Remark 2. The T 2/3 rate we achieve in Theorem 3 was also the regret rate for the standard bilateral
trade problem in [9], where in order to achieve learnability, on top of the stochastic and independent
valuations assumptions, it was also required that the valuations admitted a bounded density. In that
case, the regret rate degraded multiplicatively with the upper bound on that density. Instead, we
manage to obtain this rate without the extra bounded density assumption and our bound does not
explode if the bounded density constant diverges. The reason is that, differently from the discontinuous
gain from trade function, the fair gain from trade is 1-Lipschitz.

4 The deterministic case

In this section, we study the deterministic case where there exist fixed but unknown constants
s, b ∈ [0,1] such that, for all time t ∈ N, St = s and Bt = b. In this case, we note that if b < s no trade
can occur while, if b = s, even though a trade can occur for the posted price Pt = b = s, no gain from
trade or fair gain from trade can be obtained from it. Consequently, we focus on the only interesting
case s < b.
We begin by the following remark: in the standard bilateral trade setting where the reward function
is the gain from trade p ↦ (b − s)I{s ≤ p ≤ b}, we can devise an algorithm that achieves constant
regret. In fact, the learner can post prices following a binary search (starting by posting the price 1/2),
move to the next dyadic point to the left (resp., right) if both valuations were lower (resp., higher)
than the proposed price, while keep playing the same price as soon as a successful (dyadic) price
p is proposed, i.e., a price p ∈ [s, b]. This way, if the learner fails n times before the first success,
an upper bound on the cumulative regret suffered in the “failure” phase is n ⋅ 2−n ≤ 1, and from the
subsequent rounds the instantaneous regret is always zero.

In contrast, the deterministic fair bilateral trade problem is still sufficiently layered that a costly
exploration phase is unavoidable to achieve learnability given the intertwined relationship between
the reward function and the feedback. This is also in contrast to what happens in the stochastic setting,
where the standard bilateral trade problem required the extra bounded density assumption to achieve
learnability (and hence, in this sense, was harder) than the fair bilateral trade problem.
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Theorem 4. In the deterministic case, for any horizon T ≥ 17, any algorithm suffers a worst-case
regret larger than or equal to 1

32
log2(T ).

For the full proof of this result, see Appendix B.

Proof sketch. Since the setting is deterministic, we can restrict the proof to deterministic algorithms
without loss of generality. Then, the key property we leverage is that for any k ∈ N, if a deterministic
algorithm posts at most k prices in [0, 1

4
], then there is an interval Ek ⊂ [0, 14] of length Θ(2−k) such

that, for each s, s′ ∈ Ek, the algorithm receives the same feedback from the environments defined by
seller/buyer pairs (s,1) and (s′,1), therefore selecting the same prices.

Now, fix a deterministic algorithm α. There exists k⋆ ∈ {0,1, . . . , T} such that, for all s ∈ Ek⋆ , the
algorithm posts exactly k⋆ prices in [0, 1

4
]. A direct verification shows that, for any s ∈ Ek⋆ , the

instantaneous regret paid for the time steps where Pt ∈ [0, 14] is Ω(1). Therefore, the regret paid
by the algorithm for playing k⋆ times in [0, 1

4
] is Ω(k⋆). Moreover, let T be the set of time steps

t ∈ [T ] where the algorithm posts prices Pt ∈ ( 14 ,1]. Leveraging the fact that the algorithm posts the
same prices for every s ∈ Ek⋆ , it can be proved that there exists an s ∈ Ek⋆ such that the average
distance 1

∣T ∣ ∑t∈T ∣Pt − b+s
2
∣ of the points Pt played at rounds t ∈ T from the maximizer b+s

2
of the

FGFT is at least Ω(2−k⋆). Putting everything together, the worst-case regret of the algorithm is lower
bounded by Ω(k⋆ + (T − k⋆)2−k⋆), which is Ω(lnT ) regardless of the specific value of k⋆.

A “double” binary search algorithm suffices to obtain a matching O(lnT ) regret rate. The idea of the
algorithm is very simple. First, spend Θ(lnT ) rounds performing a binary search for the valuation
of the seller. Then, do the same for the valuation of the buyer. Finally, commit to the average of
these two estimates for the remaining time steps. For completeness, we report the pseudocode of this
algorithm in Appendix C (Algorithm 3). For a full proof of the following theorem, see Appendix C.
Theorem 5. In the deterministic case, the (deterministic) regret suffered by Algorithm 3 is O(lnT ).

Proof sketch. The idea is first to invest a budget of order lnT to locate the seller’s valuation with
error O(1/T ). Second, we proceed similarly to locate the buyer’s valuation with error O(1/T ).
Finally, this yields a O(1/T )-precise estimate of the optimal price (s + b)/2, and we commit to this
estimate for the remaining time steps. The regret incurred by the two first phases is of order lnT
while the regret of the last phase is of order T ⋅ 1

T
, and thus bounded.

5 The full-feedback model

We conclude this paper by quantifying the cost of partial information by analyzing the full feedback
model, where, after posting the price Pt, the learner has access to both St and Bt. We show that the
cost is two-fold: slower rates (both in the deterministic —Θ(lnT ) vs Θ(1)— and stochastic case
—Θ(T 2/3) vs Θ(

√
T )) and the need for additional assumptions (independence of buyer and seller

valuations in the stochastic case).

For the full-feedback setting, we show that following the best empirical price leads to an algorithm
(Algorithm 2) whose regret guarantees are optimal. We remark that Algorithm 2 needs full feedback
to run, given that it needs to compute the FGFT function for counterfactual prices. For the full proof
of the next theorem, see Appendix D.

Algorithm 2: Follow the Best Empirical Price
Initialization: Select P1 ∶= 1/2;
for time t = 1,2, . . . do

Post price Pt, and receive feedback (St,Bt);
Select Pt+1 ∈ argmaxp∈[0,1]

1
t ∑

t
s=1 FGFT(p,St,Bt)

Theorem 6. In the stochastic full-feedback case, the regret suffered by Algorithm 2 is O(
√
T ). In

the deterministic setting, the (deterministic) regret of Algorithm 2 is upper bounded by 1/2.
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Proof sketch. The deterministic case is immediate: by posting 1/2, the regret in the first round is at
most 1/2, and the algorithm pays no regret in the subsequent rounds. For the stochastic case, due
to Lemma 1, note that 1

t ∑
t
i=1 FGFT(p,St,Bt) = ∫

1
0

1
t ∑

t
i=1 I{Si ≤ p − u}I{p + u ≤ Bi}du =∶ Ĝt(p).

Now, by the two-dimensional DKW inequality, it can be proved that the empirical estimates Ĝt(p)
are uniformly ε-close (in p) to E[FGFT(p,St+1,Bt+1)] with probability 1 − O(e−Ω(ε2t)). These
probability estimates, together with the fact that the algorithm selects Pt+1 by maximizing p ↦
Ĝt(p), translates to a O (1/

√
t + 1)-control over the expectation max0≤p≤1E[FGFT(p,St+1,Bt+1)−

FGFT(Pt+1, St+1,Bt+1)]. The conclusion follows by summing over time steps.

We now show that the guarantees provided by Algorithm 2 are worst-case optimal, even if sellers’
and buyers’ valuations are required to be independent of each other.

Theorem 7. There exists a constant c > 0 such that the following holds. For every algorithm for the
fair bilateral trade problem with full feedback and for every time horizon T ∈ N, there exists an i.i.d.
sequence (St,Bt)t∈[T ] of pairs of sellers’ and buyers’ valuations such that, for each t ∈ [T ], St is
independent of Bt, and the algorithm suffers regret at least c

√
T on that sequence.

Since the proof of this result follows along the same lines as the proof of Theorem 3 (whose full
details can be found in Appendix A), we present only a proof sketch.

Proof sketch. The hard instances are the same as those in the proof of Theorem 3 for the Ω(T 2/3)
lower bound in the stochastic i.i.d. case with independent sellers’ and buyers’ valuations. We refer
to the proof sketch of Theorem 3 for the relevant notation and observations. We recall that in
those instances to avoid suffering Ω(∣ε∣T ) regret we need to distinguish the sign of ε. Now, given
that full-feedback is available, the information we retrieve after each interaction is equivalent to
observing a Bernoulli r.v. of parameter 1+ε

2
, regardless of the price we posted. Again, information-

theoretic arguments imply that we need Ω( 1
ε2
) rounds before being able to distinguish the sign of

ε. During these rounds, the best we can do is to play (essentially) at random in the candidate set of
optimal prices {1/2,5/8}, suffering an expected instantaneous regret of Ω(∣ε∣). Overall, we suffer
Ω (min{∣ε∣ ⋅ 1

ε2
, ∣ε∣T}) cumulative regret, which leads to the claimed Ω(

√
T ) regret rate once we

tune ∣ε∣ = Θ(
√

1
T
).

Remark 3. In the same spirit of Remark 1, Theorem 7 together with Yao’s Minimax Theorem
immediately imply that any full-feedback algorithm to solve the adversarial fair bilateral trade
problem has to suffer regret of at least Ω(

√
T ). A nearly matching (up to logarithmic factors) upper

bound for this problem can be deduced using the algorithm Hedge for [0,1]-Armed Experts (see
[10, Appendix A]). We leave to future research the understanding of whether the adversarial case is
logarithmically harder than the stochastic case or whether a different algorithm can achieve better
regret rates.

6 Limitations and conclusions

Our analysis is based on different assumptions on the generation of the sellers’ and buyers’ valuations
(stochastic, stochastic and independent, deterministic, adversarial). Our results characterize (up to
constant or log factors) the regret rates in each case. Hence, there are no specific a priori assumptions
that we need to make to prove our results.

Our results can be extended in different directions. For example, by linking the unknown valuations
of sellers and buyers to contextual information visible to the platform. In practice, platforms
simultaneously deal with multiple sellers and buyers, in which case the platform may have to post a
set of prices and consequently operate in a multidimensional decision space. Finally, our result for
the stochastic setting with independence between sellers and buyers is only tight up to logarithmic
factors, so an improved analysis of the upper or lower bound is needed.
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A Proof of Theorem 3

Fix any ε ∈ [0,1/4] and let

µ±ε ∶=
1 ± ε
2

δ0 +
1 ∓ ε
2

δ1/4

where δa is the Dirac measure centered at a point a ∈ R. Noting that, for all p ∈ [0,1],

p ≤ 1 − p ⇐⇒ p ≤ 1

2

p − 1

4
≤ 1 − p ⇐⇒ p ≤ 5

8
and letting S± be a random variable with distribution µ± and B = 1, we have

f±(p) ∶= E[min{(p − S±)+, (B − p)+}] = E[min{(p − S±)+,1 − p}]

=min{p,1 − p} 1 ± ε
2
+min{(p − 1

4
)
+
,1 − p} 1 ∓ ε

2

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1±ε
2
p p ∈ [0,1/4)

1±ε
2
p + (p − 1

4
) 1∓ε

2
p ∈ [1/4,1/2)

(1 − p) 1±ε
2
+ (p − 1

4
) 1∓ε

2
p ∈ [1/2,5/8)

(1 − p) 1±ε
2
+ (1 − p) 1∓ε

2
p ∈ [5/8,1]

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1±ε
2
p p ∈ [0,1/4)

1±ε
8
+ (p − 1

4
) p ∈ [1/4,1/2)

( 1±ε
8
+ 1

4
) ± ε ( 1

2
− p) p ∈ [1/2,5/8)

( 1±ε
8
+ 1

4
∓ ε

8
) + ( 5

8
− p) p ∈ [5/8,1]

Note that:

argmax f+ = 1

2
and f+ (1

2
) = 1 + ε

8
+ 1

4
= 3 + ε

8

argmax f− = 5

8
and f− (5

8
) = 1 − ε

8
+ 1

4
+ ε

8
= 3

8

Consider the three regions Isub = [0,1/4), I+ = [1/4,9/16), I− = (9/16,1]. At a high level: Isub is
an informative, but Θ(1)-suboptimal region; in contrast, regions I+ and I− are both uninformative,
but, when the underlying distribution of the sellers’ valuations is µ+ε (resp, µ−ε) I+ (resp, I−) contains
the maximizer p⋆+ = 1

2
(resp, p⋆− = 5

8
) while all points is I− (resp., I+) are Θ(ε)-suboptimal. More

precisely:

• Since B = 1, the feedback I{p ≤ B} is immaterial.

• The feedback I{S±t ≤ p} observed by posting a price p ∈ Isub at a time t ∈ N is a Bernoulli
random variable with parameter 1±ε

2
. Moreover, for all p ∈ Isub

max f+ − f+ (p) = f+ (1
2
) − f+ (p) = 3 + ε

8
− 1 + ε

2
p ≥ 1

4

max f− − f− (p) = f− (5
8
) − f− (p) = 3

8
− 1 − ε

2
p ≥ 1

4

At a high level, posting a price p ∈ Isub reveals information about the underlying distribution
of the sellers’ valuations but at the cost of an instantaneous regret of at least 1/4.

• The feedback I{S±t ≤ p} observed by posting a price p ∈ I+ at a time t ∈ N when the
underlying sellers’ distribution is µ±ε is a constant random variable always equal to 1.
Moreover, argmax f+ = 1

2
∈ I+, but, for all p ∈ I+,

max f− − f− (p) = {
3
8
− ( 1−ε

8
+ (p − 1

4
)) ≥ ε

8
≥ ε

16
if p ∈ [1/4,1/2)

3
8
− (( 1−ε

8
+ 1

4
) − ε ( 1

2
− p)) ≥ ε

16
if p ∈ [1/2,9/16)

At a high level, posting a price p ∈ I+ reveals no information about the underlying distribution
of the sellers’ valuations, the region I+ contains the optimal price when the underlying
distribution of the sellers’ valuations is µ+ε, but posting in I+ has an instantaneous regret of
at least ε/16 when the underlying distribution of the sellers’ valuations is µ−ε.
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• The feedback I{S±t ≤ p} observed by posting a price p ∈ I− at a time t ∈ N when the
underlying sellers’ distribution is µ±ε is a constant random variable always equal to 1.
Moreover, argmax f− = 5

8
∈ I−, but, for all p ∈ I−,

max f+ − f+ (p) = {
1+ε
8
+ 1

4
− (( 1+ε

8
+ 1

4
) + ε ( 1

2
− p)) ≥ ε

16
if p ∈ [9/16,5/8)

1+ε
8
+ 1

4
− (( 1+ε

8
+ 1

4
− ε

8
) + ( 5

8
− p)) ≥ ε

8
≥ ε

16
if p ∈ [5/8,1]

At a high level, posting a price p ∈ I− reveals no information about the underlying distribution
of the sellers’ valuations, the region I− contains the optimal price when the underlying
distribution of the sellers’ valuations is µ−ε, but posting in I− has an instantaneous regret of
at least ε/16 when the underlying distribution of the sellers’ valuations is µ+ε.

We will now show that these two “+” and “−” instances are no easier than two corresponding instances
of a related partial monitoring game (for the reader unfamiliar with partial monitoring, see, e.g, [27,
Chapter 27]). Consider the following partial monitoring game, where, again ε ∈ [0,1/4], the learner’s
action set is {1,2,3}, the environment’s outcome set is {1,2}, the reward (ρ) and feedback (φ)
matrices are, respectively,

ρ ∶=
⎡⎢⎢⎢⎢⎣

0 0
1/16 0
0 1/16

⎤⎥⎥⎥⎥⎦
and φ ∶=

⎡⎢⎢⎢⎢⎣

1 0
0 0
0 0

⎤⎥⎥⎥⎥⎦
and where the environment is constrained to draw outcomes i.i.d. from one of two distributions: the
first of which has a probability 1

2
+ ε

2
of drawing outcome 1, while the second has a smaller probability

of 1
2
− ε

2
of drawing outcome 1. More precisely, let (A+1 ,A−1 ,A+2 ,A−2 , . . . ) be an independent sequence

of {1,2}-valued random variables such that (A+t )t∈N is an i.i.d. sequence satisfying P[A+t = 1] = 1
2
+ ε

2

for all t ∈ N, and (A−t )t∈N is an i.i.d. sequence satisfying P[A−t = 1] = 1
2
− ε

2
for all t ∈ N. In the “+”

(resp, a “−”) scenario, at any time t, the environment plays outcome A+t (resp., A−t ). Therefore, in the
“+” scenario, the learner’s optimal action is action 2, and, for all t ∈ N, the instantaneous expected
regrets paid by the learner for playing action 1 (resp., 3) is E[ρ(2,A+t )]−E[ρ(1,A+t )] = 1

32
+ ε

32
≤ 1

4

(resp., E[ρ(2,A+t )] − E[ρ(3,A+t )] = ( 1
32
+ ε

32
) − ( 1

32
− ε

32
) = ε

16
). Similarly, in the “−” scenario,

the learner’s optimal action is action 3, and, for all t ∈ N, the instantaneous expected regrets paid
by the learner for playing action 1 (resp., 2) is E[ρ(3,A−t )] − E[ρ(1,A−t )] = 1

32
+ ε

32
≤ 1

4
(resp.,

E[ρ(3,A−t )]−E[ρ(2,A−t )] = ( 1
32
+ ε

32
)− ( 1

32
− ε

32
) = ε

16
). Finally, playing actions 2 or 3 reveals no

feedback, while the feedback φ(1,A±t ) that the learner observes after playing action 1 at time t ∈ N
in scenario “±” is a Bernoulli random variable with parameter 1

2
± ε

2
.

Note now that every algorithm for the fair bilateral trade problem can be turned into an algorithm for
this partial monitoring game by simply mapping the price Pt that the algorithm would post at any
time t ∈ N into the action

Jt =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if Pt ∈ Isub
2 if Pt ∈ I+
3 if Pt ∈ I−

then feeding back to the algorithm the pair (φ(It,A±t ),1). By construction, this is the same feedback
(more precisely, it is a Bernoulli random variable drawn i.i.d. from the same distribution) that the
algorithm would observe by playing Pt in the original fair bilateral trade problem, and the expected
regret of the partial monitoring game is less than or equal to that of the original fair bilateral trade
problem. Therefore, by lower bounding the regret of the partial monitoring game, we a fortiori lower
bound the regret of the fair bilateral trade problem. To conclude the proof, we simply remark that
for any algorithm for this partial monitoring game there exists a choice of ε ∈ [0,1/4] such that the
regret of the algorithm is at least T 2/3/112 (see, e.g., [16, Theorem 5.1], up to turning losses into
rewards and rescaling them by multiplying by 1/16).

B Proof of Theorem 4

Given that we are in a deterministic setting, without loss of generality we (can) restrict our analysis
to deterministic algorithms. Let b = 1. We begin by proving the following property by induction on
k = 0,1,2, . . . .

14



Property. There is a segment Ek of length 1
4
2−k satisfying Ek ⊂ [0, 14] such that, for each s, s′ ∈ Ek,

the algorithm receives the same feedback from the environments defined by (s, b) and (s′, b)—and
thus selects the same query prices—as long as it has allocated at most k prices in the segment [0, 1

4
].

For k = 0 the property is true by setting E0 ∶= [0, 14 ], since as long as the algorithm posts no
prices in [0, 1

4
], it receives for each price Pt ∈ ( 14 ,1] the feedback I{s ≤ Pt} = I{ 14 ≤ Pt} = 1 and

I{Pt ≤ b} = I{Pt ≤ 1} = 1.

Assume that the property is true for some k ∈ {0,1,2, . . .}. We set [c, d] ∶= Ek for the segment of the
property. For any s ∈ Ek, the algorithm has a behavior that does not depend on s until it posts a price
Pt ∈ [0, 14 ] for the (k + 1)-th time, since before that it has received feedback that does not depend on
s. If the algorithm never posts a price Pt ∈ [0, 14 ] for the (k + 1)-th time, then the property remains
true (e.g., by setting Ek+1 ∶= [ c+d2 , d]). If the algorithm posts this price Pt for the (k + 1)-th time, we
set Ek+1 ∶= [ c+d2 , d] if Pt < c+d

2
and we set Ek+1 ∶= [c, c+d2 ] if Pt ≥ c+d

2
. Note that this price Pt is the

same for any s ∈ Ek+1, since it depends only on the feedback from times 1 to t − 1. At this time t, for
any s ∈ Ek+1, the feedback is the same. Indeed, regardless of which s ∈ Ek+1 we might choose, this
feedback is (I{s ≤ Pt}, I{Pt ≤ b}) = (0,1) if Pt < c+d

2
, while it is (I{s ≤ Pt}, I{Pt ≤ b}) = (1,1)

if Pt ≥ c+d
2

. The feedback then remains the same for all the next times until a time t′ > t when the
algorithm posts a price Pt′ ∈ [0, 14 ] for the (k + 2)-th time. Hence the property is true at step k + 1.
Note that our construction shows that we can even consider nested segments E0 ⊇ E1 ⊇ E2 ⊇ ⋯.

There is a value k⋆ of k ∈ {0, . . . , T} such that the property is true, and for any s ∈ Ek⋆ , the algorithm
posts exactly k⋆ times a price in [0, 1

4
] from times 1 to T . This is because if we write t0 = 0 and for

k ≥ 1, tk for the time at which the algorithm posts for the k-th time a price in [0, 1
4
] (for any s ∈ Ek),

then we have t0 ≤ t1 ≤ ⋯. Hence, we let k⋆ be the largest k such that tk ≤ T .

For any s ∈ Ek⋆ the instantaneous regret for the time steps where Pt ∈ [0, 14 ] is lower bounded as

b − s
2
− (Pt − s)+ ≥

3

8
− 1

4
= 1

8
.

Then let T be the set of time steps in {1, . . . , T} when Pt ∈ ( 14 ,1]. Note that (Pt)t∈T does not
depend on which s ∈ Ek⋆ we might have chosen. The FGFT function reaches its maximum value b−s

2

at b+s
2
∈ [ 1

2
, 5
8
], and decreases with slope one in the segments [ 1

4
, b+s

2
] and [ b+s

2
,1]. Hence, the FGFT

function at any p ∈ ( 1
4
,1] is equal to b−s

2
− ∣p − b+s

2
∣.

Hence the cumulative regret for the steps in T is lower bounded by

∑
t∈T
∣Pt −

b + s
2
∣ ≥ ∣∑

t∈T
(Pt −

b + s
2
)∣ = ∣T ∣ ∣( 1

∣T ∣ ∑t∈T
Pt −

b

2
) − s

2
∣ .

Since the prices P1, . . . , PT chosen by the algorithm are the same for any s ∈ Ek⋆ , then 1
∣T ∣ ∑t∈T Pt− b

2

does not depend on s and thus we can move s in the segment of length 1
4
2−k

∗
, and find a value of s

for which ∣( 1
∣T ∣ ∑t∈T Pt − b

2
) − s

2
∣ ≥ 1

16
2−k

∗
. Hence, for this s the cumulative regret of the steps in T

is lower bounded by

∣T ∣ ⋅ 1
16

2−k
∗
.

In the end, the total cumulative regret is lower bounded by

k∗

8
+ 1

16
(T − k∗)2−k

∗
.

If k∗ ≥ T
2

, we can lower bound the total cumulative regret by T
16

. Else, we can lower bound the total
cumulative regret by

k∗

8
+ 1

32
T2−k

∗
.

If 2k
∗ ≤ T

log2(T )
then the total cumulative regret is lower bounded by log2(T )

32
. Else, we have

2k
∗
≥ T

log2(T )
≥
√
T ,
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where in the last inequality we used T ≥ 17, and hence k∗ ≥ log2(
√
T ) = log2(T )

2
. In the end, the

lower bound is

min{ T
16

,
log2(T )

32
} = log2(T )

32
.

C Pseudocode of Double Binary Search Pricing and proof of Theorem 5

The pseudocode of Double Binary Search Pricing is given in Algorithm 3. In the algorithm and in
the proof, we use the following notation: for a segment of the form E ∶= [c, d] with c < d, we define
left(E) ∶= c, mid(E) ∶= c+d

2
and right(E) ∶= d.

Algorithm 3: Double Binary Search Pricing - Deterministic setting
Input: horizon T ∈ N;
Initialization: Set ES ∶= EB ∶= [0,1]. If 2⌈log2(T )⌉+1 ≤ T set N ∶= ⌈log2(T )⌉, else set N ∶= 0;
for time t = 1,2, . . . ,N do

Post price Pt ∶=mid(ES);
if s ≤ Pt then

Set ES ∶= [left(ES),mid(ES)];
else

Set ES ∶= [mid(ES), right(ES)];
for time t = N + 1,N + 2, . . . ,2N do

Post price Pt ∶=mid(EB);
if Pt ≤ b then

Set EB ∶= [mid(EB), right(EB)];
else

Set EB ∶= [left(EB),mid(EB)];
for time t = 2N + 1, . . . , T do

Post price Pt ∶= mid(ES)+mid(EB)
2

;

We now present the full proof of Theorem 5.

Proof. If T < 2⌈log2(T )⌉ + 1, the result is true because FGFT takes values in [0,1] and so the
instantaneous regret at any time is bounded by 1. Consider then the case 2⌈log2(T )⌉ + 1 ≤ T .

The cumulative regret from time steps 1 to 2N is bounded by 2N = 2⌈log2(T )⌉ because FGFT ∈ [0,1].
It is easy to see that the property that s ∈ ES is maintained from time steps 1 to N . At time N (after
which ES is left unchanged), the length of ES is smaller than or equal to 2−N ≤ 1

T
. Similar properties

hold for b and EB . Hence, at time steps 2N + 1, . . . , T , we have that

∣mid(ES) +mid(EB)
2

− s + b
2
∣ ≤ 1

2
(∣s −mid(ES)∣ + ∣b −mid(EB)∣) ≤

1

T
. (6)

Therefore, the individual regret at each one of these time steps is bounded by

b − s
2
−min{(mid(ES) +mid(EB)

2
− s)

+
,(b − mid(ES) +mid(EB)

2
)
+
} . (7)

If b − s ≤ 2
T

this quantity is smaller than or equal to 1
T

. If b − s > 2
T

, then from (6), we have

mid(ES) +mid(EB)
2

− s ≥ b − s
2
− ∣mid(ES) +mid(EB)

2
− s + b

2
∣ ≥ b − s

2
− 1

T
.

Similarly

b − mid(ES) +mid(EB)
2

≥ b − s
2
− ∣mid(ES) +mid(EB)

2
− s + b

2
∣ ≥ b − s

2
− 1

T
.

Hence, the quantity in 7 is smaller than or equal to 1
T

, and consequently, the cumulative regret from
steps 2N + 1 to T is smaller than or equal to T−2N

T
≤ 1. Putting everything together, the cumulative

regret from steps 1 to T is smaller than or equal to 1 + 2⌈log2(T )⌉.
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D Proof of Theorem 6

For notational convenience, let (S,B) be another pair of seller/buyer valuations, independent of the
whole sequence (St,Bt)t∈N, and sharing the same distribution of any element in this i.i.d. sequence.
The proof shares ideas with the proof of [9, Theorem 1]. For each p ∈ [0,1], notice that, as a
consequence of Equation (1) in Lemma 1, we have

E[FGFT(p,S,B)] = ∫
1

0
P[{S ≤ p − u} ∩ {p + u ≤ B}]du =∶ G(p) ,

and, for each t ∈ N, also

1

t

t

∑
i=1

FGFT(p,St,Bt) = ∫
1

0

1

t

t

∑
i=1

I{Si ≤ p − u}I{p + u ≤ Bi}du =∶ Ĝt(p)

We have, for any p ∈ [0,1] and any t ∈ N,

∣G(p) − Ĝt(p)∣ = ∣∫
1

0
P[{S ≤ p − u} ∩ {−B ≤ −p − u}]du − ∫

1

0

1

t

t

∑
i=1

I{Si ≤ p − u}I{−Bi ≤ −p − u}du∣

≤ sup
x,y∈R

∣P[{S ≤ x} ∩ {−B ≤ y}] − 1

t

t

∑
i=1

I{Si ≤ x,−Bi ≤ y}∣ .

Hence, we can apply the two-dimensional DKW inequality, see [9, Theorem 15, Appendix J], from
which it follows that there are positive constants m0 ≤ 1200, c1 ≤ 13448 and c2 ≥ 1/576 such that for
all ε > 0, if t ≥m0/ε2,

P[∣G(p) − Ĝt(p)∣ ≥ ε] ≤ P [ sup
x,y∈R

∣P[{S ≤ x} ∩ {−B ≤ y}] − 1

t

t

∑
i=1

I{Si ≤ x,−Bi ≤ y}∣ ≥ ε] ≤ c1e−c2tε
2

.

Hence, for each t ∈ N, by Fubini’s theorem, we have that

E
⎡⎢⎢⎢⎣
sup

p∈[0,1]
∣G(p) − Ĝt(p)∣

⎤⎥⎥⎥⎦
= ∫

∞

0
P
⎡⎢⎢⎢⎣
sup

p∈[0,1]
∣G(p) − Ĝt(p)∣ ≥ ε

⎤⎥⎥⎥⎦
dε ≤

√
m0

t
+ ∫

∞
√

m0
t

c1 exp(−c2tε2)dε

≤
√

m0

t
+ c1

2
∫
∞

−∞
exp(−c2tε2)dε =

√
m0

t
+ c1

2

√
2π√
2c2t

= (√m0 +
c1
√
π

2
√
c2
) 1√

t
.

Then, for any t ∈ N, we have, using the law of total expectation conditioned on (Si,Bi)i=1,...,t,

E[FGFT(p⋆, St+1,Bt+1)] −E[FGFT(Pt+1, St+1,Bt+1)] = G(p⋆) −E[G(Pt+1)]
= G(p⋆) −E[Ĝt(p⋆)] +E[Ĝt(p⋆) − Ĝt(Pt+1)] +E[Ĝt(Pt+1) −G(Pt+1)]

≤ G(p⋆) −E[Ĝt(p⋆)] +E[Ĝt(Pt+1) −G(Pt+1)] ≤ 2E
⎡⎢⎢⎢⎣
sup

p∈[0,1]
∣Ĝ(p) −G(p)∣

⎤⎥⎥⎥⎦
≤ 2(√m0 +

c1
√
π

2
√
c2
) 1√

t
.

Hence, for any T ≥ 2,

RT ≤ 1 + 2(
√
m0 +

c1
√
π

2
√
c2
)

T

∑
t=2

1√
t − 1

≤ 1 + 4(√m0 +
c1
√
π

2
√
c2
)
√
T − 1 .
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
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faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We do not use any assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce any assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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