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Abstract001

Pre-trained language models (PLMs) have sig-002
nificantly revolutionized various natural lan-003
guage processing tasks, showcasing extraor-004
dinary capabilities in text comprehension and005
processing. Despite their widespread success,006
the elucidation of PLMs’ interest towards the007
input texts remains unclear, i.e., which part008
of the inputs gains models’ attention. Exist-009
ing methods either rely on various stringent010
assumptions or ignore the intricate dependency011
relations inherent in natural language, causing012
inaccurate estimation results. In response to013
this limitation, this paper introduces a novel014
perturbation-based method for estimating the015
PLMs’ interest, comprising two crucial designs,016
i.e., the co-perturbation strategy and an adap-017
tive optimization algorithm. Specifically, the018
strategy aims to inject noises across all input019
words, thereby confronting the inherent combi-020
natorial explosion challenge. Furthermore, the021
proposed adaptive algorithm focuses on the es-022
timation of interest degree for disentangling the023
output changes caused by the co-perturbation024
setting. Through extensive experimentation on025
various PLMs and datasets, we verify the effec-026
tiveness of the proposed method.027

1 Introduction028

As a burgeoning direction, pre-trained language029

models (PLMs) (Devlin et al., 2019; Liu et al.,030

2019; Black et al., 2021; Touvron et al., 2023) have031

emerged as the cornerstone of natural language pro-032

cessing (NLP) research as they could provide the033

vast amounts of knowledge encoded in their pa-034

rameters, showing stunning performance in various035

downstream tasks (Singh et al., 2020; Han et al.,036

2021). Despite their success, it remains unclear:037

whether these models truly focus on the content038

they are expected to? This question underscores039

the necessity of investigating PLMs’ interest to-040

wards the input texts, i.e., examining the models’041

attention degree to each word of inputs. Addition-042
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Figure 1: Illustration of the motivation. The underlined
words represent the parts expected to garner the model’s
focus. These words are manually highlighted in this
figure to facilitate a clear and direct comparison with
the areas of the estimated PLM interest in this sentence
(the circled parts).

ally, this exploration could also provide insights for 043

us to understand the underlying reason for incorrect 044

model predictions (see Figure 1 for an illustration), 045

which could be instrumental in enhancing model 046

performance for downstream applications (see Sec- 047

tion 5.4). Therefore, this paper attempts to make a 048

preliminary exploration of quantifying PLMs’ in- 049

terest towards the input texts. 050

Although extensive works have delved into sev- 051

eral related aspects, including the analysis of the 052

self-attention mechanism through visualization 053

methods (Hoover et al., 2020; Jaunet et al., 2022; 054

Yeh et al., 2023), function-based methods (Barkan 055

et al., 2021; Hao et al., 2021) or probing-based 056

methods (Sorodoc et al., 2020; Mohebbi et al., 057

2021; Niu et al., 2022) debates over their validity 058

persist (Zhao et al., 2024). Additionally, while sev- 059

eral input attribution methods (Lundberg and Lee, 060

2017; Prabhakaran et al., 2019; Ali et al., 2022; 061

Feng et al., 2024)) in explainable machine learning 062

appear capable of estimating the contribution of 063

input features to model predictions, they will en- 064

counter various problems when applied to language 065

models (see Section 2.1). Consequently, current lit- 066

erature lacks a straightforward method to evaluate 067
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how PLMs distribute their attention across input068

texts. To bridge this gap, this paper harnesses the069

perturbation theory, given its proven efficacy in the070

realm of machine learning (Ivanovs et al., 2021;071

Louis et al., 2022). In general, this theory entails072

introducing noises into input features and monitor-073

ing the consequent impact on outputs (Guan et al.,074

2019; Louis et al., 2022).075

Guided by the principle of perturbation theory,076

it is imperative to perturb the words in input texts077

one by one and then assess the resultant changes078

in the model’s predictions. To elaborate, under the079

same perturbation, the magnitude of change in the080

outputs reflects the model’s interest toward that spe-081

cific word, i.e., a larger change indicates the greater082

interest and vice versa. However, the intricate de-083

pendency relations (Manning et al., 2008) inherent084

in natural language reveals that quantifying model085

interest by perturbing each word in isolation may086

not yield reliable results. For instance, as depicted087

in Figure 1, the model interest in words such as088

New and York are strongly interrelated, indicating089

their interest estimation should not be conducted090

separately. This observation illustrates the neces-091

sity of manually identifying potential combinations092

(e.g., selecting the collection “New York”) and per-093

turbing them together, inevitably leading to the094

well-known challenge of combinatorial explosion095

(Khakzar et al., 2019; Ivanovs et al., 2021) and ren-096

dering automated model interest estimation. Hence,097

this situation highlights a conflict: the inaccuracy098

of assessing interest via word-by-word versus the099

combinatorial complexity through combination-by-100

combination. To address this problem, we propose101

an intuitive co-perturbation strategy that introduces102

noises to all input words simultaneously, e.g., per-103

turbing all words of the sentence in Figure 1 at104

once. Unfortunately, this strategy brings a compli-105

cation in gauging the model’s interest towards each106

individual word, as final changes are the collective107

results of perturbations applied to each word.108

To address this dilemma, we further propose an109

adaptive estimation algorithm that synergizes the110

maximum likelihood estimation (MLE) and the111

maximum entropy principle (MEP) to construct the112

optimization target. Specifically, the MLE compo-113

nent takes the perturbed and the original predictions114

as inputs, aiming to constrain the co-perturbation115

on input texts, thus ensuring the model’s outputs re-116

main unchanged. Conversely, the MEP advocates117

for the maximal introduction of noise across all118

words by maximizing conditional entropy, pushing119

the model’s tolerance of co-perturbation on input 120

texts to its limits. Through the collaborative effect 121

of these two goals, the proposed algorithm could 122

adaptively estimate the model’s interest towards 123

each individual word. Finally, regions capturing 124

heightened model interest will undergo less pertur- 125

bation, while areas with less attention experience 126

more significant noise induction. 127

To verify the effectiveness of our method, we 128

conduct extensive experiments on various PLMs 129

and a wide range of datasets. The experimental re- 130

sults show that the proposed algorithm effectively 131

estimates the model’s interest towards input texts. 132

Additionally, based on the assessed PLMs’ inter- 133

est, we further explore the potential for improving 134

model classification performance and adjusting the 135

generated texts of PLMs. To summarize, the con- 136

tributions of this paper are listed as follows: 137

• We introduce a novel perturbation-based method 138

to investigate the direct quantification of PLMs’ 139

interest towards the input texts. To the best of 140

our knowledge, this is a pioneering work in this 141

research topic. 142

• To achieve this goal, we present a co- 143

perturbation strategy and propose an adaptive 144

estimation algorithm, aiding in the understand- 145

ing of PLMs’ errors. 146

• Building upon the proposed adaptive estimation 147

algorithm, we conduct extensive experiments 148

across various PLMs and benchmarks. The ex- 149

perimental results verify its effectiveness. 150

2 Related Work 151

2.1 Input Attribution Methods 152

In the domain of explainable machine learning, in- 153

put attribution methods could provide insights into 154

the importance or contribution of each input unit to 155

the overall output of a complex machine learning 156

model (Ratul et al., 2021; Deng et al., 2023). Layer- 157

wise Relevance Propagation (LRP) (Ali et al., 2022) 158

is such one method, which propagates the relevance 159

or contribution of the final prediction back through 160

the layers, assigning a relevance score to each neu- 161

ron or unit in the network. However, LRP assumes 162

a direct linear relationship between input features 163

(e.g., words or phrases in NLP) and output deci- 164

sions, posing challenges in its adaptation to NLP 165

due to the complex and context-dependent nature 166

of natural language (Belinkov and Glass, 2019). 167
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Shapley Additive exPlanations (SHAP) (Lundberg168

and Lee, 2017) is another popular algorithm and169

builds upon the concept of Shapley Value from co-170

operative game theory. Unfortunately, it requires171

consideration of the probabilities associated with172

various combinations of words in a specific order,173

leading to the issue of combinatorial explosion174

(Ivanovs et al., 2021; Khakzar et al., 2019), es-175

pecially when dealing with high-dimensional data176

and complex models. Another notable method is177

LIME (Ribeiro et al., 2016) (Local Interpretable178

Model-agnostic Explanations), which fits a local179

simple linear model around the prediction to eluci-180

date the relationship between input features and the181

output. Although LIME has linear time complexity,182

it is limited in explaining the network structure of183

certain classes of models (Chen and Meng, 2020),184

rendering it ineffective in explaining predictions185

made by complex networks, particularly LLMs.186

Feng et al. (2024) propose the token distribution187

dynamic (TDD) that projects input tokens of hid-188

den layers into the embedding space to estimate189

their significance. However, the input saliency of190

TDD is also calculated in a linear manner.191

2.2 Exploration on Attention Mechanism192

Some work also attempts to explore aspects related193

to the quantification of model interest. Specifi-194

cally, visualization-based methods, exemplified by195

Park et al. (2019), aim to provide visual analytics196

tools to comprehend the inner mechanisms of the197

self-attention module. Yeh et al. (2023) provide198

insights into attention behavior across different lay-199

ers and positions within transformer models, while200

Hoover et al. (2020) focus on the analysis of the201

intricate structures encoded by the models. Jaunet202

et al. (2022) contribute to a tool tailored for the203

visual examination of vision and language reason-204

ing. For probing based methods, Li et al. (2021)205

delve into the layer-wise detection of linguistic206

anomalies in BERT. Sorodoc et al. (2020) introduce207

probing techniques examining referential informa-208

tion, while Mohebbi et al. (2021) explore BERT to-209

ken representations in sentence probing. Function-210

based methods, including Grad-SAM (Barkan et al.,211

2021), interpret transformers through the lens of212

gradient self-attention maps. Hao et al. (2021) fo-213

cus on interpreting information interactions within214

transformers, proposing self-attention attribution.215

Additionally, Geva et al. (2021) shed light on the216

role of feed-forward layers in transformers, fram-217

ing them as key-value memories.218

In summary, while significant advancements 219

have been made, these studies often rely on various 220

stringent assumptions, causing the lack of effec- 221

tive theoretical frameworks tailored specifically for 222

language models to directly quantify their interest 223

towards input texts. 224

3 Preliminaries 225

3.1 Notations 226

An NLP dataset, denoted as D, comprises a col- 227

lection of sentences, i.e., D = {si|1 ≤ i ≤ |D|}, 228

where |D| represents the number of sentences in 229

this dataset. For each sentence, it is composed of 230

a sequence of words, denoted as si = {wij |1 ≤ 231

j ≤ |si|} with |si| indicating the length of the 232

sentence. Additionally, a PLM (indicated as M) 233

can be treated as a complex non-linear function φ 234

(Guan et al., 2019), and we further use φk to de- 235

note the function fitted by k-th layer in M. In this 236

context, the bold symbol si and wij ∈ Rd are used 237

to represent the d-dimensional representations of 238

sentence si and the word wij , respectively, where 239

Rd refers to the feature space. 240

3.2 The Degree of Model Interest towards 241

Input Texts 242

For the model interest, it refers to the degree of 243

attention a PLM allocates to each part of the input 244

texts. The greater a PLM’s interest towards certain 245

words, the more importance these words hold for 246

the model, thereby intensifying the impact of alter- 247

ations when perturbing these words. Following the 248

perturbation theory, the model’s interest towards 249

the input texts can be characterized by the extent 250

to which the model outputs undergo changes after 251

the introduction of noises to their inputs: 252

ρ(wij |si,M) ∝ ||φ(si)− φ(si|δ(wij))||2 (1) 253

where ρ(wij |si,M) (or ρij) indicates the model’s 254

(M) interest towards the word wij in sentence si. 255

φ refers the non-linear function fitted by M. φ(si) 256

is the prediction with regard to its input sentence 257

si, and φ(si|δ(wij)) indicates the prediction after 258

perturbing the word wij in si. The Frobenius norm 259

||φ(si)−φ(si|δ(wij))||2 measures the distance be- 260

tween original and perturbed predictions. 261

The definition in Eq. 1 precisely delineates the 262

task objective undertaken in this paper by connect- 263

ing the magnitude of output changes and the model 264

interest towards input texts. This design behind the 265

equation is straightforward, as depicted in Figure 2. 266
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Figure 2: An illustration of the noise injection and model interest estimation. ρ(wij |si,M) (abbreviated as ρij)
refers to the model interest towards the word wij . The perturbation of wij , denoted as δ(wij), is implemented by
introducing noise ϵij into its feature representation wij (refer to Eq. 3). When the model M exhibits different levels
of interest towards these two words (wi1 and wi2), injecting the identical noise (ϵi1 = ϵi2) to these two words will
result in different impacts on the model outputs (||φ(si)− φ(si|δ(wi1))||2 > ||φ(si)− φ(si|δ(wi2))||2).

4 Estimation of Model Interest267

4.1 Co-Perturbation Strategy268

Owing to the inherent contextual dependencies in269

natural language (Manning et al., 2008), perturbing270

words one by one may yield unreliable interest es-271

timations. This is particularly prominent when the272

model’s interest towards certain words is strongly273

interconnected (e.g., the words “New” and “York”274

in the sentence shown in Figure 1). Although man-275

ual identification of potential combinations dur-276

ing perturbation is feasible, this will lead to the277

well-known challenge of combinatorial explosion278

(Khakzar et al., 2019; Ivanovs et al., 2021) and279

also make automated model interest estimation im-280

practicable. In response to this issue, we propose a281

straightforward co-perturbation strategy that injects282

noise into all words of the texts simultaneously:283

δ(si) = {δ(wi1), ..., δ(wij), ..., δ(wi|si|)}
= {w̃i1, ..., w̃ij , ..., w̃i|si|}
= {wi1 + ϵi1, ...,wij + ϵij , ...,wi|si| + ϵi|si|}

(2)284

where δ(si) denotes the injections of noise into285

all words in sentence si with δ(wij) being the per-286

turbation of the jth word in si. w̃ij denotes the287

perturbed word feature with a certain noise vector288

ϵij , defined as:289

δ(wij) : w̃ij = wij + ϵij , s.t. ϵij ∼ N (0,Σij)
(3)290

where the noise ϵij follows a Gaussian distribution,291

i.e., ϵij ∼ N (0,Σij). Σij denotes the covariance292

matrix. The noise for each word representation in293

the sentence si is initialized under different covari-294

ance matrices and the same mean vector. With this295

strategy, the estimation process is not only simpli-296

fied but also the accuracy of interest estimation is297

enhanced by considering the collective effect of 298

perturbations across the entire input1. 299

4.2 Adaptive Estimation 300

While the co-perturbation strategy is conceptu- 301

ally straightforward, its implementation requires 302

sophisticated estimation. This necessity arises 303

from the challenge of disentangling the overall 304

changes in prediction into those from each indi- 305

vidual word. Specifically, it involves determining 306

how to separate the model interest in each word 307

||φ(si)− φ(si|δ(wij))||2 from the final combined 308

changes ||φ(si)− φ(si|δ(si))||2. 309

To navigate this complexity effectively, we de- 310

velop an adaptive estimation algorithm designed 311

to complement the co-perturbation strategy. As 312

shown in Eq. 2, each word has a corresponding 313

noise, and these noises serve as the parameters to 314

be estimated. The desired optimization goal can 315

be articulated as follows: through algorithmic es- 316

timation, words of higher model interest should 317

exhibit a lower tolerance to the estimated noise, 318

whereas less important words should display a 319

higher noise tolerance. Taking the sentence si as an 320

example, the parameters we need to optimize are 321

ϵi = [ϵ⊤i1, ..., ϵ
⊤
ij ..., ϵ

⊤
i|si|]

⊤, and the corresponding 322

optimization objective can be designed as2: 323

J (ϵi) = E[||φ(si)− φ(si|δ(si))||2]︸ ︷︷ ︸
MLE

− λH(φ(si|δ(si))|φ(si))︸ ︷︷ ︸
MEP

= E[||si − s̃i||2] +
d · λ
2

|si|∑
j=1

ln ρij

(4) 324

1Figure 6 in the appendix provides a visual illustration.
2Please refer to Section A for the detailed derivation.
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where J is the loss to be optimized. ln represents325

the napierian logarithm and E is the mathematical326

expectation. H indicates the conditional entropy327

with p being the probability. The first term embod-328

ies the maximum likelihood estimation (MLE) of329

the distribution of w̃i.. This implies that this term330

is dedicated to learning a distribution that generates331

all potentially reasonable input noises correspond-332

ing to the predictions. The second term encourages333

a high conditional entropy, aligning with the maxi-334

mum entropy principle (MEP). The principle states335

that in all possible probabilistic distributions, the336

one with the highest entropy is the best one. The λ337

balances the MLE loss and MEP loss.338

It is noteworthy that the right part focuses on339

maximizing the conditional entropy, thereby striv-340

ing to introduce as much noise as possible to each341

word. While the left part seeks to minimize the342

difference between perturbed results and original343

predictions. As a result, when the jth word can344

endure substantial changes without affecting the345

predictions, the ρij will be small. In contrast, for346

an important word, the interest degree will be large.347

Algorithm 1 sketches the process of the proposed348

adaptive estimation method. It begins with the ini-349

tialization of an noise matrix ϵi (ϵij ∼ N (0,Σij))350

for each sentence si in the dataset D. Then, the351

adaptive optimization iterates until the algorithm352

converges. In each iteration, the random noise ma-353

trix is utilized to compute the perturbed word fea-354

tures based on Eq.3. Then, the loss is calculated355

according to Eq. 4, and compute the gradient to356

optimize ϵi. Finally, the estimated noise matrix is357

used to compute the interest vector ρi.358

5 Experiments359

5.1 Experimental Setup360

PLMs and Datasets: To evaluate the proposed361

adaptive perturbation algorithm, we employ a di-362

verse set of well-established PLMs, including363

BERT (Devlin et al., 2019) (in versions of 110M364

and 340M), GPT-2 (Radford et al., 2019) (124M,365

355M, 774M and 1.5B) and OPT (Zhang et al.,366

2022) (125M, 350M and 1.3B). Different models367

with varying parameter sizes are considered, result-368

ing in a total of nine models in this paper.369

A diverse array of datasets is also leveraged, en-370

compassing various NLP tasks, including Senti-371

ment Analysis (SST2 (Socher et al., 2013)), Nat-372

ural Language Inference (QNLI (Rajpurkar et al.,373

2016)) and Paraphrasing/Sentence Similarity (QQP374

Algorithm 1: Adaptive Estimation
Input: The dataset D, the PLM M and λ.
Output: The set of model interest {ρi}.

1 Fine-tune M on the training set of D
2 for si ∈ D do
3 Generate the random noise matrix ϵi
4 while Not Converge do
5 Perturb si according to Eq.2
6 Compute loss according to Eq.4
7 Estimate gradients and optimize ϵi

8 Compute interest vector ρi based on ϵi

(Iyer et al., 2017)). They collectively offer a thor- 375

ough assessment of the proposed method3. 376

Research Questions: To outline the experi- 377

ments, we raise three primary research questions: 378

• RQ1: Does the proposed adaptive algorithm ef- 379

fectively assess model interest and how does the 380

parameter λ affect the estimation results? 381

• RQ2: In addition to assessing the model-level 382

interest, how do the intermediate layers put their 383

focus on the input texts? What variations in 384

interest are observed across different layers? 385

• RQ3: What are the potential practical applica- 386

tions of analyzing model interest, particularly 387

for large language models? 388

5.2 RQ1: Analysis of Adaptive Estimation 389

To evaluate the effectiveness of the proposed 390

method, we compare it with six strong baselines, 391

i.e., five quite popular input attribution models4 (in- 392

cluding LIME (Ribeiro et al., 2016), SHAP-value 393

(Lundberg and Lee, 2017), RISE (Petsiuk et al., 394

2018), LRP (Ali et al., 2022) and TDD (Feng et al., 395

2024)) and the word-by-word perturbation method. 396

Notably, the interest estimation is performed at the 397

token-level due to the underlying mechanism of 398

model processing. For words composed of multi- 399

ple tokens, we select the interest of the tail/head 400

tokens as their interest. 401

Figure 3a presents the experimental results of 402

all compared models evaluated on various sizes of 403

GPT-2, where the parts marked by bounding boxes 404

highlight the content expected to gain model inter- 405

est. Generally, the proposed method consistently 406

3See Table 2 in appendix for data and fine-tuning details.
4Section B provides detailed information on these models.
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(a) Comparison among different sizes of GPT-2 models, where the heatmaps from top to bottom are produced by LRP, SHAP,
LIME, RISE, TDD, individual-perturbation and the adaptive model, respectively. For clarity and direct illustration, the parts
expected to gain model interest are marked with bounding boxes.

 
 
 
 
 
 
 
 
 

1: In 2: what 3: year 4: did 5: the 6: state 7: of 8: New 9: York 10: eliminate 11: slavery 12: ? 13: It 14: was 15: not 16: until 17: 1827 18: that 19: slavery
20: was 21: completely 22: abolished 23: in 24: the 25: state 26: , 27: and 28: free 29: blacks 30: struggled 31: afterward 32: with 33: discrimination 34: .	

(b) Model interest of all compared models on the OPT (1.3B), where “Idv.” indicates the individual perturbation.

Figure 3: Comparison of the model interest estimated by all compared models.

provides more accurate assessments of model in-407

terest across different sizes of GPT-2 compared to408

all baseline models. Specifically, the model inter-409

est estimated by LRP and TDD tends to be sim-410

ilar values, indicating its inability to distinguish411

between important and non-important words, thus412

demonstrating its ineffectiveness for language mod-413

els. While SHAP estimates varying levels of inter-414

est for different words, it focuses more on function415

words (e.g., “In”, “It”, “and” etc. ). LIME and416

individual perturbation could identify a few mean-417

ingful words, but they still miss many significant418

words (e.g., “1827”). Consequently, these baseline419

models either erroneously prioritize more frequent420

words due to their failure to capture contextual421

dependencies or miss the decisive words. In con-422

trast, our method accurately estimates model inter-423

est by refining its assessment based on the impact424

of all words on the model outputs. Additionally,425

the RISE produces completely different results, fo-426

cusing more on the parts in the middle or on both427

sides of the input texts, and these focal points will428

also change with the model size.429

In summary, all comparison models fail to430

achieve satisfactory results when applied to analyz- 431

ing the PLMs’ interest towards input texts, which 432

verifies the effectiveness of the proposed method 433

and further illustrates the necessity of an input anal- 434

ysis method tailored for PLMs. It is worth noting 435

that as the model parameter size increases, the pro- 436

posed adaptive evaluation method can effectively 437

capture the relatively more important parts of the 438

input text, allowing a better assessment, whereas 439

the other methods do not exhibit this effect. 440

Figure 3b compares our method with baseline 441

models on another different PLM, i.e., OPT (1.3B). 442

It can be seen that even on a different model, our 443

method consistently excels in accurately assessing 444

models’ interest in input texts. However, these 445

baselines still exhibits unsatisfactory results, ig- 446

noring the significant words in inputs (e.g., “year” 447

or “1827”). These findings further underscore the 448

effectiveness and adaptability of our method in 449

assessing model interest. It suggests that the pro- 450

posed model can autonomously adjust its criteria 451

based on the word features and structures of differ- 452

ent models, thereby offering a more accurate reflec- 453

tion of the model’s interest towards input texts. 454
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Datasets 124M 355M 774M 1.5B

QNLI 0.0327 0.0522 0.0784 0.1242
SST-2 0.1250 0.2501 0.3125 0.3750
QQP 0.0220 0.0311 0.0410 0.0468

Table 1: Improvement of accuracy (#Correct/#Total) for
various sizes of GPT-2 models on three datasets.

5.2.1 Effects of λ455

As shown in Eq. 4, the parameter λ is used to bal-456

ance the MEP loss, with a larger value indicating a457

preference for smaller optimization in this part of458

the loss. To examine its impact on model interest459

evaluation, we selected two representative words,460

“year” and “did”, from the example (see Figure 1).461

The expectation is that “year” should attract more462

model interest, whereas “did” should receive less.463

Figure 4a demonstrates that variations in λ sig-464

nificantly influence the estimated interest in the465

selected words. Specifically, with a lower λ, the in-466

terest in “did” erroneously surpasses that in “year”,467

which contrasts starkly with the anticipated results468

Conversely, as λ increases, particularly at λ = 0.6,469

the interest in “year” appropriately exceeds that470

in “did”. However, further increases in λ lead to471

incorrect interest assessments again, indicating the472

critical influence of this parameter.473

In addition, we also calculate the impact of the474

estimated word interest on the model output, mea-475

sured by the MLE loss (see Eq. 4). Figure 4b illus-476

trates the model prediction changes with varying λ.477

It can be seen that both excessively high and low478

λ values significantly impact model output. When479

this parameter is an optimal value (λ = 0.6), there480

will be minimal losses. This outcome suggests that481

appropriate λ tuning is also essential for accurate482

model interest evaluation and simultaneously main-483

taining minimal impact on model outputs. The484

possible reason is that larger λ values may result in485

suboptimal MEP loss optimization, introducing in-486

appropriate noise and thus skewing interest evalua-487

tion and significantly affecting outputs. Conversely,488

smaller values might lead to an overemphasis on489

MEP optimization at the expense of other critical490

factors.491

5.3 RQ2: Layer-wise Interest Toward Input492

Texts493

By further adapting Eq. 4 to E[||φk(si) −494

φk(si|δ(si))||2]−λH(φk(si|δ(si)) | φk(si)), it en-495

ables the estimation of layer-wise interest towards496
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(a) Model interest in “year” and “did” with varying λ.
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(b) Loss of perturbed predictions under different λ.

Figure 4: Analysis of GPT-2’s (1.5B) interest (estimated
by the proposed algorithm) towards two representative
words in the sentence (see Figure 3) and the loss in
perturbed predictions of various λ.

the input texts, thereby allowing the investigation 497

of the model’s internal dynamics of ρ. Figure 5 498

showcases the layer-wise interest in GPT-2 (1.5B), 499

focusing on the initial and final 4 layers for brevity, 500

as the complete model comprises 48 layers. 501

Specifically, Figure 5 reveals that the model’s 502

first layer predominantly selects crucial combina- 503

tions in the input text, such as “in what year” or 504

“eliminate slavery”. Concurrently, it also discards 505

less relevant information, like “free blacks”. How- 506

ever, the lower layers still maintain focus on ad- 507

ditional potential words, such as “in the state”, 508

to ensure the maximal degree of information re- 509

tention. As the information is processed through 510

the model’s layers, increasingly relevant data are 511

emphasized by higher layers, and the key words 512

receive heightened interest, exemplified by “year” 513

and “1872”. This pattern suggests that the model ef- 514

fectively processes and understands the input infor- 515

mation. In summary, our proposed method offers 516

a novel avenue for examining the interest patterns 517

of internal layers in PLMs, thereby enriching our 518

comprehension of their decision-making processes. 519

5.4 RQ3: Practical Applications 520

5.4.1 Boost Model Classification Performance 521

The adaptive estimation described in Section 4.2 522

allows us to calculate the model interest towards 523

each word in the input texts, thereby revealing the 524

model’s comprehension of these texts. However, a 525

crucial consideration arises: if the model exhibits 526

incorrect interest towards the input texts and pro- 527

7



Figure 5: Layer-wise interest of GPT-2 (1.5B) towards the sentence (see Figure 3).

duces unexpected results, is it possible to rectify the528

predictions based on the estimated interest without529

modifying the model parameters? In other words,530

we hope to improve the model classification per-531

formance to some extent by leveraging the model532

interest. One potential solution involves suppress-533

ing the effects of the content that currently captures534

the model’s attention, as these parts may not align535

with the desired focus, potentially interfering with536

its predictions. This operation could expose the537

content that the model should prioritize, increas-538

ing the probability that the model focuses on the539

crucial parts.540

Building on this insight, we conduct experiments541

on the misclassified portions of PLMs within the542

datasets. Table 1 shows the results of various sizes543

of GPT-2 models across three datasets, where the544

intersection of “error” cases among these models545

for a specific dataset is taken as the benchmark to546

ensure a fair comparison5. Generally, the input547

modification strategy consistently brings perfor-548

mance improvement across all tested models and549

datasets, validating the effectiveness of this strategy550

and the precision of our model interest assessments.551

Notably, models with larger parameter counts ex-552

hibit more substantial performance gains. This may553

be attributed to such models being more suscepti-554

ble to data biases, and their performance can be555

significantly boosted by excising these distracting556

elements.557

5.4.2 Adjust Text Generation: A Case Study558

To further verify the applicability of the proposed559

method, this section will briefly discuss its appli-560

cation in text generation6 using the Llama3-8B-561

Instruct (Touvron et al., 2023). Taking the prompt562

“The impact of climate change has become more ev-563

ident in recent years.” as an example, the original564

response generated by the model is “The average565

global temperature has risen by about 1 ◦C since566

the late 1800 ...”. After analyzing the model in-567

terest, we found that the model places relatively568

5See Table 3 for additional results of the nine models
across three datasets, including the performance of the original
models and those enhanced by ρ.

6See Appendix C for detailed information.

high attention on the temporal adverbial phrase 569

(i.e., “in recent years”), as evidenced by the gen- 570

erated response. However, if we want to elicit 571

more content about the “impact” from the model 572

and reduce the influence of the temporal adverbial 573

phrase to some extent for producing texts that are 574

more aligned with this focus without modifying the 575

original prompt, the proposed interest estimation 576

provides a feasible method. The estimated model 577

interest shows the distribution of the model’s under- 578

standing of the input text and offers insights into 579

how to influence the final outputs. By suppressing 580

the words “in recent years”, the model produces 581

“Climate change is also exacerbating existing social 582

and economic inequalities, disproportionately af- 583

fecting vulnerable populations such as low-income 584

communities, ...”. It can be observed that output 585

text adjusted by model interest is more coherent in 586

the desired context. This case study highlights the 587

practical benefits of incorporating model interest 588

into the text generation of LLMs, which is particu- 589

larly valuable in applications requiring high-quality 590

text generation, such as automated content creation, 591

chatbots, and narrative generation (van Stegeren 592

and Theune, 2019; Prabhumoye et al., 2020). 593

6 Conclusion 594

This paper probed a fundamental question regard- 595

ing the interest of Pre-trained Language Models 596

(PLMs) in the contents of input texts and intro- 597

duced a novel perturbation-based method. This 598

method was grounded in the design of translat- 599

ing model interest into quantifiable shifts in pre- 600

dictions after injecting controlled noise into input 601

words. It encompassed a co-perturbation strategy 602

and an adaptive estimation algorithm, aiming to 603

address the challenges of combinatorial explosion 604

and the intricacies involved in accurately assessing 605

the model’s interest towards each individual word. 606

Extensive experiments across diverse PLMs and 607

datasets confirmed the effectiveness of our method. 608

Moreover, we explored the potential applications 609

of enhancing model classification performance and 610

adjusting the text generation of LLMs based on the 611

identified model interest. 612
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7 Limitations613

Although this paper has devised an effective614

method to assess the PLMs’ interest towards the615

input texts, it still lacks a method to correct the616

model’s interest. This correction could enable617

PLMs to more accurately capture the relationship618

between inputs and outputs, thereby enhancing ro-619

bustness to unexpected inputs. As a potential di-620

rection for future research, a feasible method could621

involve incorporating causal intervention theory622

(Pearl, 2009) into the proposed method.623

In the future, we will focus on developing refined624

methods for rectifying the model’s interest. Addi-625

tionally, we further intend to explore the potential626

of influencing model generations by adjusting the627

degree of the model interest in the input prompts,628

while maintaining the integrity of the input distribu-629

tion. For example, improving the decoding strategy630

for text generation, i.e., incorporating interest pat-631

terns into the beam search algorithm. This would632

involve ranking beams not only by their likelihood633

but also by how well they align with the interest634

scores.635

8 Ethical Considerations636

The significance of the proposed method lies in ex-637

plaining the behavior and output results of LLMs638

by quantifying their interest towards input texts.639

This exploration will help identify and mitigate po-640

tential risks associated with using LLMs, thereby641

supporting ethical considerations. Furthermore, all642

datasets used in this study are well-established and643

widely utilized. They have undergone meticulous644

manual inspection to remove any malicious or of-645

fensive content, ensuring the ethical integrity of the646

research.647

Despite the contributions of this paper, there are648

still potential risks associated with LLMs, such649

as the generation of harmful or offensive content.650

To mitigate this issue, it is crucial to control the651

generation results. The method presented in this652

paper offers a feasible solution by aligning LLMs’653

outputs with their interest towards the input texts.654

This is an area we are actively exploring and will655

be introduced in our future work.656
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A Proof of Adaptive Estimation849

A.1 Multivariate Gaussian Distribution850

Supposing a random vector x ∈ Rd is Gaussian-851

distributed x ∼ Nd(µ,Σ), its probability density852

function (PDF) could be defined as7:853

p(x) =
1

2
√
(2π)d det Σ

exp(−1

2
(x−µ)⊤Σ−1(x−µ))

(5)854

where d is the dimension of the vector; det indicates855

the determinant. exp refers to the natural exponen-856

tial function. µ and Σ denote the d-dimensional857

mean vector and the d × d covariance matrix, re-858

spectively. For calculating the Shannon Entropy859

of a multivariate Gaussian distribution, it could be860

expressed as:861

H(Nd(µ,Σ)) =
d

2
ln (2πe) +

1

2
ln det Σ (6)862

A.2 Conditional Entropy863

Following transformation in Guan et al. (2019), the864

conditional entropy H(δ(si)|φ(si)) in Eq. 4 can be865

re-written as:866

H(δ(si)|φ(si)) = H(φ(δ(si))|φ(si))

=

|si|∑
j=1

H(φ(δ(wij))|φ(si))

=

|si|∑
j=1

p(φ(si))p(φ(δ(wij))|φ(si))·

ln p(φ(δ(wij))|φ(si))

=

|si|∑
j=1

p(φ(si|δ(wij))|φ(si))

ln p(φ(si|δ(wij))|φ(si))

(7)867

where the conditional distribution868

p(φ(si|δ(wij))|φ(si)) represents the proba-869

bility of perturbed word features given the original870

sentence representation and is equivalent to871

p(w̃ij |si) under the specified model and dataset.872

Additionally, this conditional distribution of873

perturbed word feature p(w̃ij |si) is characterized874

by the noise distribution p(wij |si) = p(ϵij). For875

the noise distribution, it could be re-written as876

ϵij ∼ N (0, σijI), where I denotes the identity877

matrix and σij , representing the noise magnitude,878

7https://en.wikipedia.org/wiki/Multivariate_
normal_distribution

M 110-125M 340-355M 774M 1.3-1.5B

LR 1e−5 5e−6 3e−6 1e−6

D SST-2 QNLI QQP

#Epoch 5 8 10
#Steps 1000 1500 5000
#Train 67,349 104,743 363,846
#Valid 872 5,463 40,430

Table 2: Fine-tuning and data details. LR refers to the
learning rate. Across all models, several parameters
share uniform settings, including “Learning Rate Sched-
ule = Linear”, “Optimizer = AdamW”, “batch size =
32”, “Seed = 42” and “Evaluation Strategy = Steps”.

could be further defined as 1/ρij . Hence, the 879

conditional entropy in Eq. 7 could be reformulated: 880

H(δ(si)|φ(si)) =
|si|∑
j=1

H[Nd(0,Σij)]

=

|si|∑
j=1

{d
2

ln (2πe) +
1

2
ln (det Σij)}

=

|si|∑
j=1

{d
2

ln (2πe) +
1

2
ln (

1

ρij
)d det I}

=

|si|∑
j=1

d

2
ln (2πe)−

|si|∑
j=1

d

2
ln ρij

(8) 881

where 1
ρij

signifies the noise level, which can be fur- 882

ther explained by the information transformation 883

theory in the interpretable machine learning (i.e., a 884

large 1
ρij

indicates that a substantial portion of in- 885

put information is disregarded.). This implies that 886

the more a word captivates the model’s interest, the 887

less susceptible it is to noise, thereby ensuring the 888

transmission of more pertinent information to sub- 889

sequent layers. Consequently, based on the result 890

of Eq. 8, Eq. 4 could be reformulated as: 891

J (ϵi) = E[||φ(si)− φ(si|δ(si))||2]
− λH(φ(si|δ(si))|φ(si))

= E[||φ(si)− φ(si|δ(si))||2]

− λ{−
|si|∑
j=1

d

2
ln ρij +

constant︷ ︸︸ ︷
|si|∑
j=1

d

2
ln (2πe)}

= E[||φ(si)− φ(si|δ(si))||2] +
d · λ
2

|si|∑
j=1

ln ρij

(9) 892
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(sentence) sentence 
feature

!" = {!%, !', … , !|*+|}
degree of focus

-" = {.%, .', … , .|*+|}/ 0 = 12 +4 15 cos
9:0
; + sin

9:0
;

>

5?% the PLM @

{A%,A', … ,A|*+|}

-% = {.%%, .%', .%B, .%C, .%D}

{A%%, A%', A%B, A%C, AED} @ -%

@ -%|F(.%' ){A%%, A%'I ,A%B, A%C, A%D}

@ -%|F(-% ){A%%I ,A%'I ,A%BI ,A%CI ,A%DI }

no perturbation :

individual word :

co-perturbation:

e.g. A%%I = A%% + J%%, … ,A%DI = A%D + J%D

Figure 6: The co-perturbation strategy introduces noises
into all words simultaneously. The model’s interest is
discerned via the adaptive algorithm.

(“In what year did the state of New York eliminate slavery?”, 
“It was not until 1827 that slavery was completely abolished in
the state, and free blacks struggled afterward with discrimination.”)

Input text

(“In what year did the state of New York eliminate slavery?”, 
“It was not until 1827 that slavery was completely abolished in
the state , and free blacks struggled afterward with discrimination.”)

erased parts

selective erase

(“In what year did the state of New York eliminate slavery?”, 
“It was not until 1827 that slavery was completely abolished in 

the state, and free blacks struggled afterward with discrimination.”)

original text

(“In what year did the state of New York eliminate slavery?”, 
“It was not until 1827 that slavery was completely abolished in
the state , and free blacks struggled afterward with discrimination.”)

erased parts

selective erase based on estimated model interest

!" = {%"", %"', %"(, %"), %"*}
{,"", ,"', ,"(, ,"), ,-*} . !"

. !"|0(%"' ){,"", ,"'3 ,,"(, ,"), ,"*}

. !"|0(!" ){,""3 ,,"'3 ,,"(3 ,,")3 ,,"*3 }

no perturbation :

individual word :

co-perturbation:

e.g. ,""3 = ,"" + 5"", … ,,"*3 = ,"* + 5"*

Figure 7: An illustrative example of the content
erasure. During the process, the erased contents
depend on the estimated model interest.

Datasets QNLI SST-2 QQP

Settings no ρ with ρ (↑) no ρ with ρ (↑) no ρ with ρ (↑)

BERT-110M 0.8960 +1.086 (0.0201) 0.9151 +2.903 (0.0667) 0.8886 +1.173 (0.0258)
BERT-340M 0.9010 +1.474 (0.0320) 0.9241 +6.121 (0.0110) 0.8983 +1.364 (0.0301)

GPT2-124M 0.8832 +1.003 (0.0327) 0.9025 +1.003 (0.1250) 0.8911 +.9530 (0.0220)
GPT2-355M 0.9002 +1.525 (0.0522) 0.9381 +2.612 (0.2501) 0.8986 +1.364 (0.0311)
GPT2-774M 0.9108 +2.159 (0.0784) 0.9415 +3.397 (0.3125) 0.8937 +1.772 (0.0410)
GPT2-1.5B 0.9145 +3.493 (0.1242) 0.9541 +4.076 (0.3750) 0.9023 +2.037 (0.0468)

OPT-125M 0.8878 +1.396 (0.0496) 0.9059 +2.251 (0.1110) 0.8980 +1.106 (0.0246)
OPT-350M 0.9029 +1.233 (0.0435) 0.9243 +5.158 (0.2778) 0.9016 +1.347 (0.0301)
OPT-1.3B 0.9165 +3.097 (0.1056) 0.9564 +8.680 (0.4430) 0.9100 +1.936 (0.0427)

Table 3: Accuracy (#Correct/#Total) of several PLMs on three datasets, where no ρ and with ρ denote the results of
before and after the interest rectification, respectively. The performance improvement in the first column of “with
ρ” is the ratio of improvement over the entire validation set and should be scaled by e−3. The improvement in
parentheses refers to the results on the common “error” parts.

A.3 MLE Loss893

In Eq. 4, the first term E[||φ(si)− φ(si|δ(si))||2]894

can be interpreted as the Maximum Likelihood895

Estimation (MLE) of the noise. To substan-896

tiate this interpretation, we may postulate that897

φ(δ(si))|φ(si) ∼ N (φ(si),Σs = σ2
sI) follows898

a Gaussian distribution. As such, we can obtain:899

argmax{ρi1,...,ρi|si|} = ln
∏
j

p(φ(δ(wij))|φ(si))

≈ argmax{ρi1,...,ρi|si|} ln p(φ(δ(si))|φ(si))

= argmax{ρi1,...,ρi|si|}{− ln (
√
(2π)d|Σ|

− 1

2
(φ(si|δ(si))− φ(si))

⊤Σ−1
s

(φ(si|δ(si))− φ(si))}

= argmin{ρi1,...,ρi|si|}
||φ(si)− φ(si|δ(si))||2

2σ2d
s

= argmin{ρi1,...,ρi|si|}||φ(si)− φ(si|δ(si))||2
(10)900

From Eq. 10, it can be drawn that the minimization 901

of ||φ(si)− φ(si|δ(si))||2 could be treated as the 902

MLE of the model interest {ρi1, ..., ρi|si|}. 903

B Baselines 904

In this paper, we adopt four input attribution meth- 905

ods to verify the effectiveness of the proposed 906

method: 907

• LRP (Layer-wise Relevance Propagation) is an 908

input attribution method that helps interpret neu- 909

ral network predictions. It traces the contribu- 910

tions of each neuron back through the layers to 911

the input features, assigning relevance scores 912

that indicate the importance of each feature for 913

the final prediction. 914

• SHAP (SHapley Additive exPlanations) is based 915

on the Shapley values from cooperative game 916

theory. It assigns an importance value to each 917

feature by considering the contribution of each 918

feature to the model’s predictions across all pos- 919

sible combinations of features. 920
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Figure 8: Performance improvement across various erasure ratios according to the model interest.

BOS The impact of climatechange has become more evident in recent years .

0.2
0.4
0.6
0.8
1

ρ

(a) Model interest towards the prompt “The impact of climate change is becoming more evident in recent years.” based on
Llama3-8B-Instruct, where the white bars denote the original results and the yellow ones indicate the adjusted results.

Rising temperatures, changing precipitation patterns, and increased frequency and severity of extreme weatre affecting ecosystems, human health,
and the economy. Climate change is also exacerbating existing social and econoties, disproportionately affecting vulnerable populations such
as low-income communities, indigenous peoples, and smaveloping states. To mitigate the effects of climate change, it is essential to reduce
greenhouse gas emissions andto a low-carbon economy. This can be achieved through a combination of measures, including: 1. Transitioning to
regy sources, such as solar and wind power, to reduce dependence on fossil fuels. 2. Improving energy efficiency in bunsportation, and industry. 3.
Electrifying transportation and promoting the use of electric vehicles.4.…

Rising temperatures, changing precipitation patterns, and increased frequency and severity of extreme weather events are just a few examples of
the many ways in which climate change is affecting our planet. The average global temperature has risen by about 1°C since the late 1800s, and
is projected to continue to rise by another 2-5°C by the end of this century if greenhouse gas emissions continue to increase. This rise in
temperature is causing a range of problems, including more frequent and severe heatwaves, droughts, and storms.

(b) Generated texts of Llama3-8B-Instruct based on the original (top) and adjusted (bottom) model interest. The “generate()”
is invoked with “max_length=150, num_beam_groups=1, do_sample=False, num_beams=3”.

Figure 9: The estimated model interest and the generated texts of Llama3-8B-Instruct model.

• LIME (Local Interpretable Model-agnostic Ex-921

planations) creates a local surrogate model, typ-922

ically a simple linear model, that approximates923

the behavior of the complex model around the924

instance being explained.925

• RISE (Randomized Input Sampling for Explana-926

tion) is particularly designed for image classifi-927

cation and generates binary masks and applies928

them to the inputs, recording the model’s pre-929

dictions for each masked input. By aggregating930

these results, RISE creates an importance map931

that shows which parts of the input are most932

influential in the model’s decision.933

• TDD (Token Distribution Dynamics) projects934

input tokens into the embedding space and then935

estimates their significance based on distribution936

dynamics over the vocabulary.937

C RQ3: Applications938

In addition to the performance improvement shown939

in Table 1, we also investigate the impact of the pro-940

portion of erased contents on model performance941

improvement, with results presented in Figure 8. It 942

can be seen that the model is sensitive to the propor- 943

tion of erased text, and as the proportion of erasure 944

increases, the model performance also improves in 945

a reasonable range. When the proportion reaches a 946

certain level (about 0.2 in the GPT-2 124M model), 947

the performance improvement achieves its peak, 948

but further erasure leads to diminishing returns and 949

eventually a dramatic decline in performance (close 950

to 0). One possible reason is that excessive erasure 951

could compromise the semantic coherence of the 952

original texts, inadvertently resulting in misleading 953

outputs. A moderate erasure, conversely, strikes a 954

more effective balance between maintaining seman- 955

tic integrity and emphasizing crucial information. 956

For the application of adjusting text genera- 957

tion, we provide the details of the case in Sec- 958

tion 5.4.2. Figure 9a illustrates the estimated 959

model’s interest towards the prompt based on the 960

original outputs, where “BOS” denotes the spe- 961

cial token (e.g., “⟨|begin_of_text|⟩” for Llama3-8B- 962

Instruct). After adjusting the interest, the model 963

generates more coherent content aligned with the 964

desired context (see Figure 9b). 965
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