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Abstract

Pre-trained language models (PLMs) have sig-
nificantly revolutionized various natural lan-
guage processing tasks, showcasing extraor-
dinary capabilities in text comprehension and
processing. Despite their widespread success,
the elucidation of PLMs’ interest towards the
input texts remains unclear, i.e., which part
of the inputs gains models’ attention. Exist-
ing methods either rely on various stringent
assumptions or ignore the intricate dependency
relations inherent in natural language, causing
inaccurate estimation results. In response to
this limitation, this paper introduces a novel
perturbation-based method for estimating the
PLMs’ interest, comprising two crucial designs,
i.e., the co-perturbation strategy and an adap-
tive optimization algorithm. Specifically, the
strategy aims to inject noises across all input
words, thereby confronting the inherent combi-
natorial explosion challenge. Furthermore, the
proposed adaptive algorithm focuses on the es-
timation of interest degree for disentangling the
output changes caused by the co-perturbation
setting. Through extensive experimentation on
various PLMs and datasets, we verify the effec-
tiveness of the proposed method.

1 Introduction

As a burgeoning direction, pre-trained language
models (PLMs) (Devlin et al., 2019; Liu et al.,
2019; Black et al., 2021; Touvron et al., 2023) have
emerged as the cornerstone of natural language pro-
cessing (NLP) research as they could provide the
vast amounts of knowledge encoded in their pa-
rameters, showing stunning performance in various
downstream tasks (Singh et al., 2020; Han et al.,
2021). Despite their success, it remains unclear:
whether these models truly focus on the content
they are expected to? This question underscores
the necessity of investigating PLMs’ interest to-
wards the input texts, i.e., examining the models’
attention degree to each word of inputs. Addition-
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Figure 1: Illustration of the motivation. The underlined
words represent the parts expected to garner the model’s
focus. These words are manually highlighted in this
figure to facilitate a clear and direct comparison with
the areas of the estimated PLM interest in this sentence
(the circled parts).

ally, this exploration could also provide insights for
us to understand the underlying reason for incorrect
model predictions (see Figure 1 for an illustration),
which could be instrumental in enhancing model
performance for downstream applications (see Sec-
tion 5.4). Therefore, this paper attempts to make a
preliminary exploration of quantifying PLMs’ in-
terest towards the input texts.

Although extensive works have delved into sev-
eral related aspects, including the analysis of the
self-attention mechanism through visualization
methods (Hoover et al., 2020; Jaunet et al., 2022;
Yeh et al., 2023), function-based methods (Barkan
et al., 2021; Hao et al., 2021) or probing-based
methods (Sorodoc et al., 2020; Mohebbi et al.,
2021; Niu et al., 2022) debates over their validity
persist (Zhao et al., 2024). Additionally, while sev-
eral input attribution methods (Lundberg and Lee,
2017; Prabhakaran et al., 2019; Ali et al., 2022;
Feng et al., 2024)) in explainable machine learning
appear capable of estimating the contribution of
input features to model predictions, they will en-
counter various problems when applied to language
models (see Section 2.1). Consequently, current lit-
erature lacks a straightforward method to evaluate



how PLMs distribute their attention across input
texts. To bridge this gap, this paper harnesses the
perturbation theory, given its proven efficacy in the
realm of machine learning (Ivanovs et al., 2021;
Louis et al., 2022). In general, this theory entails
introducing noises into input features and monitor-
ing the consequent impact on outputs (Guan et al.,
2019; Louis et al., 2022).

Guided by the principle of perturbation theory,
it is imperative to perturb the words in input texts
one by one and then assess the resultant changes
in the model’s predictions. To elaborate, under the
same perturbation, the magnitude of change in the
outputs reflects the model’s interest toward that spe-
cific word, i.e., a larger change indicates the greater
interest and vice versa. However, the intricate de-
pendency relations (Manning et al., 2008) inherent
in natural language reveals that quantifying model
interest by perturbing each word in isolation may
not yield reliable results. For instance, as depicted
in Figure 1, the model interest in words such as
New and York are strongly interrelated, indicating
their interest estimation should not be conducted
separately. This observation illustrates the neces-
sity of manually identifying potential combinations
(e.g., selecting the collection “New York’) and per-
turbing them together, inevitably leading to the
well-known challenge of combinatorial explosion
(Khakzar et al., 2019; Ivanovs et al., 2021) and ren-
dering automated model interest estimation. Hence,
this situation highlights a conflict: the inaccuracy
of assessing interest via word-by-word versus the
combinatorial complexity through combination-by-
combination. To address this problem, we propose
an intuitive co-perturbation strategy that introduces
noises to all input words simultaneously, e.g., per-
turbing all words of the sentence in Figure 1 at
once. Unfortunately, this strategy brings a compli-
cation in gauging the model’s interest towards each
individual word, as final changes are the collective
results of perturbations applied to each word.

To address this dilemma, we further propose an
adaptive estimation algorithm that synergizes the
maximum likelihood estimation (MLE) and the
maximum entropy principle (MEP) to construct the
optimization target. Specifically, the MLE compo-
nent takes the perturbed and the original predictions
as inputs, aiming to constrain the co-perturbation
on input texts, thus ensuring the model’s outputs re-
main unchanged. Conversely, the MEP advocates
for the maximal introduction of noise across all
words by maximizing conditional entropy, pushing

the model’s tolerance of co-perturbation on input
texts to its limits. Through the collaborative effect
of these two goals, the proposed algorithm could
adaptively estimate the model’s interest towards
each individual word. Finally, regions capturing
heightened model interest will undergo less pertur-
bation, while areas with less attention experience
more significant noise induction.

To verify the effectiveness of our method, we
conduct extensive experiments on various PLMs
and a wide range of datasets. The experimental re-
sults show that the proposed algorithm effectively
estimates the model’s interest towards input texts.
Additionally, based on the assessed PLMs’ inter-
est, we further explore the potential for improving
model classification performance and adjusting the
generated texts of PLMs. To summarize, the con-
tributions of this paper are listed as follows:

* We introduce a novel perturbation-based method
to investigate the direct quantification of PLMs’
interest towards the input texts. To the best of
our knowledge, this is a pioneering work in this
research topic.

e To achieve this goal, we present a co-
perturbation strategy and propose an adaptive
estimation algorithm, aiding in the understand-
ing of PLMs’ errors.

* Building upon the proposed adaptive estimation
algorithm, we conduct extensive experiments
across various PLMs and benchmarks. The ex-
perimental results verify its effectiveness.

2 Related Work
2.1 Input Attribution Methods

In the domain of explainable machine learning, in-
put attribution methods could provide insights into
the importance or contribution of each input unit to
the overall output of a complex machine learning
model (Ratul et al., 2021; Deng et al., 2023). Layer-
wise Relevance Propagation (LRP) (Ali et al., 2022)
is such one method, which propagates the relevance
or contribution of the final prediction back through
the layers, assigning a relevance score to each neu-
ron or unit in the network. However, LRP assumes
a direct linear relationship between input features
(e.g., words or phrases in NLP) and output deci-
sions, posing challenges in its adaptation to NLP
due to the complex and context-dependent nature
of natural language (Belinkov and Glass, 2019).



Shapley Additive exPlanations (SHAP) (Lundberg
and Lee, 2017) is another popular algorithm and
builds upon the concept of Shapley Value from co-
operative game theory. Unfortunately, it requires
consideration of the probabilities associated with
various combinations of words in a specific order,
leading to the issue of combinatorial explosion
(Ivanovs et al., 2021; Khakzar et al., 2019), es-
pecially when dealing with high-dimensional data
and complex models. Another notable method is
LIME (Ribeiro et al., 2016) (Local Interpretable
Model-agnostic Explanations), which fits a local
simple linear model around the prediction to eluci-
date the relationship between input features and the
output. Although LIME has linear time complexity,
it is limited in explaining the network structure of
certain classes of models (Chen and Meng, 2020),
rendering it ineffective in explaining predictions
made by complex networks, particularly LLMs.
Feng et al. (2024) propose the token distribution
dynamic (TDD) that projects input tokens of hid-
den layers into the embedding space to estimate
their significance. However, the input saliency of
TDD is also calculated in a linear manner.

2.2 Exploration on Attention Mechanism

Some work also attempts to explore aspects related
to the quantification of model interest. Specifi-
cally, visualization-based methods, exemplified by
Park et al. (2019), aim to provide visual analytics
tools to comprehend the inner mechanisms of the
self-attention module. Yeh et al. (2023) provide
insights into attention behavior across different lay-
ers and positions within transformer models, while
Hoover et al. (2020) focus on the analysis of the
intricate structures encoded by the models. Jaunet
et al. (2022) contribute to a tool tailored for the
visual examination of vision and language reason-
ing. For probing based methods, Li et al. (2021)
delve into the layer-wise detection of linguistic
anomalies in BERT. Sorodoc et al. (2020) introduce
probing techniques examining referential informa-
tion, while Mohebbi et al. (2021) explore BERT to-
ken representations in sentence probing. Function-
based methods, including Grad-SAM (Barkan et al.,
2021), interpret transformers through the lens of
gradient self-attention maps. Hao et al. (2021) fo-
cus on interpreting information interactions within
transformers, proposing self-attention attribution.
Additionally, Geva et al. (2021) shed light on the
role of feed-forward layers in transformers, fram-
ing them as key-value memories.

In summary, while significant advancements
have been made, these studies often rely on various
stringent assumptions, causing the lack of effec-
tive theoretical frameworks tailored specifically for
language models to directly quantify their interest
towards input texts.

3 Preliminaries

3.1 Notations

An NLP dataset, denoted as D, comprises a col-
lection of sentences, i.e., D = {s;|1 < i < |D|},
where |D| represents the number of sentences in
this dataset. For each sentence, it is composed of
a sequence of words, denoted as s; = {w;j|1 <
Jj < |si|} with |s;| indicating the length of the
sentence. Additionally, a PLM (indicated as M)
can be treated as a complex non-linear function ¢
(Guan et al., 2019), and we further use ¢y, to de-
note the function fitted by k-zh layer in M. In this
context, the bold symbol s; and w;; € R? are used
to represent the d-dimensional representations of
sentence s; and the word w;;, respectively, where
RY refers to the feature space.

3.2 The Degree of Model Interest towards
Input Texts

For the model interest, it refers to the degree of
attention a PLM allocates to each part of the input
texts. The greater a PLM’s interest towards certain
words, the more importance these words hold for
the model, thereby intensifying the impact of alter-
ations when perturbing these words. Following the
perturbation theory, the model’s interest towards
the input texts can be characterized by the extent
to which the model outputs undergo changes after
the introduction of noises to their inputs:

plwij|si, M) o< |o(si) — (sild(wip))|I* (1)

where p(w;j|s;, M) (or p;;) indicates the model’s
(M) interest towards the word wj;; in sentence s;.
¢ refers the non-linear function fitted by M. ¢(s;)
is the prediction with regard to its input sentence
si, and ¢(s;]6(w;;)) indicates the prediction after
perturbing the word w;; in s;. The Frobenius norm
|lo(s:) — ¢(si|8(w;j))||* measures the distance be-
tween original and perturbed predictions.

The definition in Eq. 1 precisely delineates the
task objective undertaken in this paper by connect-
ing the magnitude of output changes and the model
interest towards input texts. This design behind the
equation is straightforward, as depicted in Figure 2.
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Figure 2: An illustration of the noise injection and model interest estimation. p(w;;|s;, M) (abbreviated as p;;)
refers to the model interest towards the word w; ;. The perturbation of w;;, denoted as 6(w;; ), is implemented by
introducing noise €;; into its feature representation w;; (refer to Eq. 3). When the model M exhibits different levels
of interest towards these two words (w;1 and w;2), injecting the identical noise (€;1 = €;2) to these two words will
result in different impacts on the model outputs (||o(s;) — @ (s:|6(wi1))[|> > ||¢(s:) — p(si]d(wi2))[]?)-

4 Estimation of Model Interest
4.1 Co-Perturbation Strategy

Owing to the inherent contextual dependencies in
natural language (Manning et al., 2008), perturbing
words one by one may yield unreliable interest es-
timations. This is particularly prominent when the
model’s interest towards certain words is strongly
interconnected (e.g., the words “New” and “York”
in the sentence shown in Figure 1). Although man-
ual identification of potential combinations dur-
ing perturbation is feasible, this will lead to the
well-known challenge of combinatorial explosion
(Khakzar et al., 2019; Ivanovs et al., 2021) and
also make automated model interest estimation im-
practicable. In response to this issue, we propose a
straightforward co-perturbation strategy that injects
noise into all words of the texts simultaneously:

5(51) = {5(’[011), ceey 5(wij), ceey 5(wz|sz|)}
7@1\sz|}

= {w;1 + €1, s Wi+ €y oy Wi, | + ei\si|}
2

= {wil, ceey Wigy e

where J(s;) denotes the injections of noise into
all words in sentence s; with 6 (w;;) being the per-
turbation of the jth word in s;. w;; denotes the
perturbed word feature with a certain noise vector
€;j, defined as:
(5(w,-j) : ’QEZ‘J‘ = wj; + €5, S.I. €5 ~ N(O, Zij)
3)
where the noise €;; follows a Gaussian distribution,
ie., €~ N(0,%;;). X;; denotes the covariance
matrix. The noise for each word representation in
the sentence s; is initialized under different covari-
ance matrices and the same mean vector. With this
strategy, the estimation process is not only simpli-
fied but also the accuracy of interest estimation is

enhanced by considering the collective effect of
perturbations across the entire input'.

4.2 Adaptive Estimation

While the co-perturbation strategy is conceptu-
ally straightforward, its implementation requires
sophisticated estimation. This necessity arises
from the challenge of disentangling the overall
changes in prediction into those from each indi-
vidual word. Specifically, it involves determining
how to separate the model interest in each word
l|o(s:) — (546 (wi;))||? from the final combined
changes [|o(si) — @(sild(sq))|[*.

To navigate this complexity effectively, we de-
velop an adaptive estimation algorithm designed
to complement the co-perturbation strategy. As
shown in Eq. 2, each word has a corresponding
noise, and these noises serve as the parameters to
be estimated. The desired optimization goal can
be articulated as follows: through algorithmic es-
timation, words of higher model interest should
exhibit a lower tolerance to the estimated noise,
whereas less important words should display a
higher noise tolerance. Taking the sentence s; as an
example, the parameters we need to optimize are
€ = €], €jmrs eJSi‘]T, and the corresponding
optimization objective can be designed as’:

T (€)= Ellle(s:) — o(si0(s0))]?]
MLE
— A H(p(si]0(si))|¢(s4))
MEP @)
|si]

- d-
= E[lls: — &l + 5 > Inpy
j=1

'Figure 6 in the appendix provides a visual illustration.
“Please refer to Section A for the detailed derivation.



where J is the loss to be optimized. In represents
the napierian logarithm and E is the mathematical
expectation. H indicates the conditional entropy
with p being the probability. The first term embod-
ies the maximum likelihood estimation (MLE) of
the distribution of w; . This implies that this term
is dedicated to learning a distribution that generates
all potentially reasonable input noises correspond-
ing to the predictions. The second term encourages
a high conditional entropy, aligning with the maxi-
mum entropy principle (MEP). The principle states
that in all possible probabilistic distributions, the
one with the highest entropy is the best one. The A
balances the MLE loss and MEP loss.

It is noteworthy that the right part focuses on
maximizing the conditional entropy, thereby striv-
ing to introduce as much noise as possible to each
word. While the left part seeks to minimize the
difference between perturbed results and original
predictions. As a result, when the j** word can
endure substantial changes without affecting the
predictions, the p;; will be small. In contrast, for
an important word, the interest degree will be large.

Algorithm 1 sketches the process of the proposed
adaptive estimation method. It begins with the ini-
tialization of an noise matrix €; (€;; ~ N(0, i)
for each sentence s; in the dataset D. Then, the
adaptive optimization iterates until the algorithm
converges. In each iteration, the random noise ma-
trix is utilized to compute the perturbed word fea-
tures based on Eq.3. Then, the loss is calculated
according to Eq. 4, and compute the gradient to
optimize €;. Finally, the estimated noise matrix is
used to compute the interest vector p;.

5 Experiments

5.1 Experimental Setup

PLMs and Datasets: To evaluate the proposed
adaptive perturbation algorithm, we employ a di-
verse set of well-established PLMs, including
BERT (Devlin et al., 2019) (in versions of 110M
and 340M), GPT-2 (Radford et al., 2019) (124M,
355M, 774M and 1.5B) and OPT (Zhang et al.,
2022) (125M, 350M and 1.3B). Different models
with varying parameter sizes are considered, result-
ing in a total of nine models in this paper.

A diverse array of datasets is also leveraged, en-
compassing various NLP tasks, including Senti-
ment Analysis (SST2 (Socher et al., 2013)), Nat-
ural Language Inference (QNLI (Rajpurkar et al.,
2016)) and Paraphrasing/Sentence Similarity (QQP

Algorithm 1: Adaptive Estimation
Input: The dataset D, the PLM M and \.
Output: The set of model interest {p; }.
t Fine-tune M on the training set of D
2 for s; € Ddo
Generate the random noise matrix ¢;
while Not Converge do
Perturb s; according to Eq.2
Compute loss according to Eq.4
Estimate gradients and optimize €;

N S R W

8 Compute interest vector p; based on ¢;

(Iyer et al., 2017)). They collectively offer a thor-

ough assessment of the proposed method?.
Research Questions: To outline the experi-

ments, we raise three primary research questions:

* RQ1: Does the proposed adaptive algorithm ef-
fectively assess model interest and how does the
parameter A affect the estimation results?

* RQ2: In addition to assessing the model-level
interest, how do the intermediate layers put their
focus on the input texts? What variations in
interest are observed across different layers?

* RQ3: What are the potential practical applica-
tions of analyzing model interest, particularly
for large language models?

5.2 RQI1: Analysis of Adaptive Estimation

To evaluate the effectiveness of the proposed
method, we compare it with six strong baselines,
i.e., five quite popular input attribution models* (in-
cluding LIME (Ribeiro et al., 2016), SHAP-value
(Lundberg and Lee, 2017), RISE (Petsiuk et al.,
2018), LRP (Ali et al., 2022) and TDD (Feng et al.,
2024)) and the word-by-word perturbation method.
Notably, the interest estimation is performed at the
token-level due to the underlying mechanism of
model processing. For words composed of multi-
ple tokens, we select the interest of the tail/head
tokens as their interest.

Figure 3a presents the experimental results of
all compared models evaluated on various sizes of
GPT-2, where the parts marked by bounding boxes
highlight the content expected to gain model inter-
est. Generally, the proposed method consistently

3See Table 2 in appendix for data and fine-tuning details.
4Section B provides detailed information on these models.



(a) Comparison among different sizes of GPT-2 models, where the heatmaps from top to bottom are produced by LRP, SHAP,
LIME, RISE, TDD, individual-perturbation and the adaptive model, respectively. For clarity and direct illustration, the parts
expected to gain model interest are marked with bounding boxes.
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(b) Model interest of all compared models on the OPT (1.3B), where “Idv.” indicates the individual perturbation.

Figure 3: Comparison of the model interest estimated by all compared models.

provides more accurate assessments of model in-
terest across different sizes of GPT-2 compared to
all baseline models. Specifically, the model inter-
est estimated by LRP and TDD tends to be sim-
ilar values, indicating its inability to distinguish
between important and non-important words, thus
demonstrating its ineffectiveness for language mod-
els. While SHAP estimates varying levels of inter-
est for different words, it focuses more on function
words (e.g., “In”, “It”’, “and” etc. ). LIME and
individual perturbation could identify a few mean-
ingful words, but they still miss many significant
words (e.g., “1827”). Consequently, these baseline
models either erroneously prioritize more frequent
words due to their failure to capture contextual
dependencies or miss the decisive words. In con-
trast, our method accurately estimates model inter-
est by refining its assessment based on the impact
of all words on the model outputs. Additionally,
the RISE produces completely different results, fo-
cusing more on the parts in the middle or on both
sides of the input texts, and these focal points will
also change with the model size.

In summary, all comparison models fail to

achieve satisfactory results when applied to analyz-
ing the PLMs’ interest towards input texts, which
verifies the effectiveness of the proposed method
and further illustrates the necessity of an input anal-
ysis method tailored for PLMs. It is worth noting
that as the model parameter size increases, the pro-
posed adaptive evaluation method can effectively
capture the relatively more important parts of the
input text, allowing a better assessment, whereas
the other methods do not exhibit this effect.
Figure 3b compares our method with baseline
models on another different PLM, i.e., OPT (1.3B).
It can be seen that even on a different model, our
method consistently excels in accurately assessing
models’ interest in input texts. However, these
baselines still exhibits unsatisfactory results, ig-
noring the significant words in inputs (e.g., “year”
or “1827). These findings further underscore the
effectiveness and adaptability of our method in
assessing model interest. It suggests that the pro-
posed model can autonomously adjust its criteria
based on the word features and structures of differ-
ent models, thereby offering a more accurate reflec-
tion of the model’s interest towards input texts.



Datasets 124M 355M 774M 1.5B
QNLI 0.0327 0.0522 0.0784 0.1242
SST-2 0.1250 0.2501 0.3125 0.3750
QQpP 0.0220 0.0311 0.0410 0.0468

Table 1: Improvement of accuracy (#Correct/#Total) for
various sizes of GPT-2 models on three datasets.

5.2.1 Effects of \

As shown in Eq. 4, the parameter A is used to bal-
ance the MEP loss, with a larger value indicating a
preference for smaller optimization in this part of
the loss. To examine its impact on model interest
evaluation, we selected two representative words,
“year” and “did”, from the example (see Figure 1).
The expectation is that “year” should attract more
model interest, whereas “did” should receive less.

Figure 4a demonstrates that variations in A sig-
nificantly influence the estimated interest in the
selected words. Specifically, with a lower ), the in-
terest in “did” erroneously surpasses that in “year”,
which contrasts starkly with the anticipated results
Conversely, as A increases, particularly at A = 0.6,
the interest in “year” appropriately exceeds that
in “did”. However, further increases in A lead to
incorrect interest assessments again, indicating the
critical influence of this parameter.

In addition, we also calculate the impact of the
estimated word interest on the model output, mea-
sured by the MLE loss (see Eq. 4). Figure 4b illus-
trates the model prediction changes with varying .
It can be seen that both excessively high and low
A values significantly impact model output. When
this parameter is an optimal value (A = 0.6), there
will be minimal losses. This outcome suggests that
appropriate A tuning is also essential for accurate
model interest evaluation and simultaneously main-
taining minimal impact on model outputs. The
possible reason is that larger A values may result in
suboptimal MEP loss optimization, introducing in-
appropriate noise and thus skewing interest evalua-
tion and significantly affecting outputs. Conversely,
smaller values might lead to an overemphasis on
MEP optimization at the expense of other critical
factors.

5.3 RQ2: Layer-wise Interest Toward Input
Texts

By further adapting Eq. 4 to E[||¢x(si) —

wi(sil0(50))[[2]=AH (0k(si]0(s:)) | o (s:)), iten-
ables the estimation of layer-wise interest towards
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Figure 4: Analysis of GPT-2’s (1.5B) interest (estimated
by the proposed algorithm) towards two representative
words in the sentence (see Figure 3) and the loss in
perturbed predictions of various .

the input texts, thereby allowing the investigation
of the model’s internal dynamics of p. Figure 5
showcases the layer-wise interest in GPT-2 (1.5B),
focusing on the initial and final 4 layers for brevity,
as the complete model comprises 48 layers.
Specifically, Figure 5 reveals that the model’s
first layer predominantly selects crucial combina-
tions in the input text, such as “in what year” or
“eliminate slavery”. Concurrently, it also discards
less relevant information, like “free blacks”. How-
ever, the lower layers still maintain focus on ad-
ditional potential words, such as “in the state”,
to ensure the maximal degree of information re-
tention. As the information is processed through
the model’s layers, increasingly relevant data are
emphasized by higher layers, and the key words
receive heightened interest, exemplified by “year”
and “1872”. This pattern suggests that the model ef-
fectively processes and understands the input infor-
mation. In summary, our proposed method offers
a novel avenue for examining the interest patterns
of internal layers in PLMs, thereby enriching our
comprehension of their decision-making processes.

5.4 RQ3: Practical Applications

5.4.1 Boost Model Classification Performance

The adaptive estimation described in Section 4.2
allows us to calculate the model interest towards
each word in the input texts, thereby revealing the
model’s comprehension of these texts. However, a
crucial consideration arises: if the model exhibits
incorrect interest towards the input texts and pro-
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Figure 5: Layer-wise interest of GPT-2 (1.5B) towards the sentence (see Figure 3).

duces unexpected results, is it possible to rectify the
predictions based on the estimated interest without
modifying the model parameters? In other words,
we hope to improve the model classification per-
formance to some extent by leveraging the model
interest. One potential solution involves suppress-
ing the effects of the content that currently captures
the model’s attention, as these parts may not align
with the desired focus, potentially interfering with
its predictions. This operation could expose the
content that the model should prioritize, increas-
ing the probability that the model focuses on the
crucial parts.

Building on this insight, we conduct experiments
on the misclassified portions of PLMs within the
datasets. Table 1 shows the results of various sizes
of GPT-2 models across three datasets, where the
intersection of “error” cases among these models
for a specific dataset is taken as the benchmark to
ensure a fair comparison®. Generally, the input
modification strategy consistently brings perfor-
mance improvement across all tested models and
datasets, validating the effectiveness of this strategy
and the precision of our model interest assessments.
Notably, models with larger parameter counts ex-
hibit more substantial performance gains. This may
be attributed to such models being more suscepti-
ble to data biases, and their performance can be
significantly boosted by excising these distracting
elements.

5.4.2 Adjust Text Generation: A Case Study

To further verify the applicability of the proposed
method, this section will briefly discuss its appli-
cation in text generation® using the Llama3-8B-
Instruct (Touvron et al., 2023). Taking the prompt
“The impact of climate change has become more ev-
ident in recent years.” as an example, the original
response generated by the model is “The average
global temperature has risen by about 1°C since
the late 1800 ...”. After analyzing the model in-
terest, we found that the model places relatively

5See Table 3 for additional results of the nine models
across three datasets, including the performance of the original

models and those enhanced by p.
®See Appendix C for detailed information.

high attention on the temporal adverbial phrase
(i.e., “in recent years”), as evidenced by the gen-
erated response. However, if we want to elicit
more content about the “impact” from the model
and reduce the influence of the temporal adverbial
phrase to some extent for producing texts that are
more aligned with this focus without modifying the
original prompt, the proposed interest estimation
provides a feasible method. The estimated model
interest shows the distribution of the model’s under-
standing of the input text and offers insights into
how to influence the final outputs. By suppressing
the words “in recent years”, the model produces
“Climate change is also exacerbating existing social
and economic inequalities, disproportionately af-
fecting vulnerable populations such as low-income
communities, ...”. It can be observed that output
text adjusted by model interest is more coherent in
the desired context. This case study highlights the
practical benefits of incorporating model interest
into the text generation of LLMs, which is particu-
larly valuable in applications requiring high-quality
text generation, such as automated content creation,
chatbots, and narrative generation (van Stegeren
and Theune, 2019; Prabhumoye et al., 2020).

6 Conclusion

This paper probed a fundamental question regard-
ing the interest of Pre-trained Language Models
(PLMs) in the contents of input texts and intro-
duced a novel perturbation-based method. This
method was grounded in the design of translat-
ing model interest into quantifiable shifts in pre-
dictions after injecting controlled noise into input
words. It encompassed a co-perturbation strategy
and an adaptive estimation algorithm, aiming to
address the challenges of combinatorial explosion
and the intricacies involved in accurately assessing
the model’s interest towards each individual word.
Extensive experiments across diverse PLMs and
datasets confirmed the effectiveness of our method.
Moreover, we explored the potential applications
of enhancing model classification performance and
adjusting the text generation of LLMs based on the
identified model interest.



7 Limitations

Although this paper has devised an effective
method to assess the PLMs’ interest towards the
input texts, it still lacks a method to correct the
model’s interest. This correction could enable
PLMs to more accurately capture the relationship
between inputs and outputs, thereby enhancing ro-
bustness to unexpected inputs. As a potential di-
rection for future research, a feasible method could
involve incorporating causal intervention theory
(Pearl, 2009) into the proposed method.

In the future, we will focus on developing refined
methods for rectifying the model’s interest. Addi-
tionally, we further intend to explore the potential
of influencing model generations by adjusting the
degree of the model interest in the input prompts,
while maintaining the integrity of the input distribu-
tion. For example, improving the decoding strategy
for text generation, i.e., incorporating interest pat-
terns into the beam search algorithm. This would
involve ranking beams not only by their likelihood
but also by how well they align with the interest
scores.

8 Ethical Considerations

The significance of the proposed method lies in ex-
plaining the behavior and output results of LLMs
by quantifying their interest towards input texts.
This exploration will help identify and mitigate po-
tential risks associated with using LLMs, thereby
supporting ethical considerations. Furthermore, all
datasets used in this study are well-established and
widely utilized. They have undergone meticulous
manual inspection to remove any malicious or of-
fensive content, ensuring the ethical integrity of the
research.

Despite the contributions of this paper, there are
still potential risks associated with LLMs, such
as the generation of harmful or offensive content.
To mitigate this issue, it is crucial to control the
generation results. The method presented in this
paper offers a feasible solution by aligning LLMs’
outputs with their interest towards the input texts.
This is an area we are actively exploring and will
be introduced in our future work.
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A Proof of Adaptive Estimation

A.1 Multivariate Gaussian Distribution

Supposing a random vector € R? is Gaussian-
distributed © ~ Ny(u, X), its probability density
function (PDF) could be defined as’:

1
S/ (2m)e det

p(x)
)

where d is the dimension of the vector; det indicates
the determinant. exp refers to the natural exponen-
tial function. @ and 3 denote the d-dimensional
mean vector and the d X d covariance matrix, re-
spectively. For calculating the Shannon Entropy
of a multivariate Gaussian distribution, it could be
expressed as:

HWNy(p, %)) = g In (27e) + % IndetX (6)

A.2 Conditional Entropy

Following transformation in Guan et al. (2019), the
conditional entropy H (d(s;)|(s;)) in Eq. 4 can be
re-written as:

. (7

j=1

In p(p(sild(wij))e(si))
where the conditional distribution
p(p(sild(wij))|p(si)) represents the proba-

bility of perturbed word features given the original
sentence representation and is equivalent to
p(w;j|s;) under the specified model and dataset.
Additionally, this conditional distribution of
perturbed word feature p(wy;;|s;) is characterized
by the noise distribution p(w;;|s;) = p(€;;). For
the noise distribution, it could be re-written as
€;j ~ N(0,0,;I), where I denotes the identity
matrix and o;;, representing the noise magnitude,

7https ://en.wikipedia.org/wiki/Multivariate_
normal_distribution

exp(— 5 (@) = (@)

M 110-125M 340-355M 774M 1.3-1.5B

LR le™® 5e~6 3e6 le 6
D SST-2 QNLI QQP
#Epoch 5 8 10
#Steps 1000 1500 5000
#Train 67,349 104,743 363,846
#Valid 872 5,463 40,430

Table 2: Fine-tuning and data details. LR refers to the
learning rate. Across all models, several parameters
share uniform settings, including “Learning Rate Sched-
ule = Linear”, “Optimizer = AdamW”, “batch size =
327, “Seed = 42” and “Evaluation Strategy = Steps”.

could be further defined as 1/ pi;- Hence, the
conditional entropy in Eq. 7 could be reformulated:

|si]

= H[N(0,%;;)]

j=1

H(6(si)lp(si))

|si]

= Z{f In (27e)

|51

—Z{ In (27e)

|S¢\

1
5 In (det ZU)}
3
1 1
In 4 det I
+3in(o) deT)
|54

d d
B In (27e) — Z B In p;;

=1

7j=1

where pl signifies the noise level, which can be fur-
ther explalned by the information transformation
theory i 1n the interpretable machine learning (i.e., a
large - pi indicates that a substantial portion of in-
put information is disregarded.). This implies that
the more a word captivates the model’s interest, the
less susceptible it is to noise, thereby ensuring the
transmission of more pertinent information to sub-
sequent layers. Consequently, based on the result
of Eq. 8, Eq. 4 could be reformulated as:

J(€) = Elllp(si) — p(silo(s:))|I)
— MH (p(si|0(s:)) | (5:))
=E[|lp(s:) — o(sil0(s:))||*]

constant

|s3] |sil
- M- Z lnpzj+zfln (2me)}

‘Sz

= Blll¢(s:) — e(s:ld(s:)]?

(9)
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Sp = {W11, Wiz, Wiz, Wiy, Wes}

no perturbation : {Wqq1, Wq,, Wy3, Wyg, Wis} > @(Sq)

co-perturbation:

eg W11 = Wi + €11, .., Wi5 = Wy5 + €5

individual word : {Wy1, W13, W13, W14, W1s} = @(51]6(W12))
{W11, Wiz, Wi, Wiy, Wis} - @(5116(s1))

/

original text

(“In what year did the state of New York eliminate slavery?”,
“It was not until 1827 that slavery was completely abolished in
the state, and free blacks struggled afterward with discrimination.”)
selective erase based on estimated model interest

(“In what year did the state of New York eliminate slavery?”,
“It was not until 1827 that slavery was completely abolished in
the state -and-free-blacks-st i veithedivertnitation)

g
ruggtea-afterwara

erased parts )

Figure 6: The co-perturbation strategy introduces noises Figure 7: An illustrative example of the content
into all words simultaneously. The model’s interest is erasure. During the process, the erased contents

discerned via the adaptive algorithm.

depend on the estimated model interest.

Datasets

QNLI

SST-2

QQr

Settings

‘ no p

with p (T)

‘ no p

with p (T)

‘ no p

with p (1)

BERT-110M
BERT-340M

0.8960
0.9010

+1.086 (0.0201)
+1.474 (0.0320)

0.9151
0.9241

+2.903 (0.0667)
+6.121 (0.0110)

0.8886
0.8983

+1.173 (0.0258)
+1.364 (0.0301)

GPT2-124M
GPT2-355M
GPT2-774M
GPT2-1.5B

0.8832
0.9002
0.9108
0.9145

+1.003 (0.0327)
+1.525 (0.0522)
+2.159 (0.0784)
+3.493 (0.1242)

0.9025
0.9381
0.9415
0.9541

+1.003 (0.1250)
+2.612 (0.2501)
+3.397 (0.3125)
+4.076 (0.3750)

0.8911
0.8986
0.8937
0.9023

+.9530 (0.0220)
+1.364 (0.0311)
+1.772 (0.0410)
+2.037 (0.0468)

OPT-125M
OPT-350M
OPT-1.3B

0.8878
0.9029
0.9165

+1.396 (0.0496)
+1.233 (0.0435)
+3.097 (0.1056)

0.9059
0.9243
0.9564

+2.251 (0.1110)
+5.158 (0.2778)
+8.680 (0.4430)

0.8980
0.9016
0.9100

+1.106 (0.0246)
+1.347 (0.0301)
+1.936 (0.0427)

Table 3: Accuracy (#Correct/#Total) of several PLMs on three datasets, where no p and with p denote the results of
before and after the interest rectification, respectively. The performance improvement in the first column of “with
p” is the ratio of improvement over the entire validation set and should be scaled by e~3. The improvement in
parentheses refers to the results on the common “error” parts.

A.3 MLE Loss

In Eq. 4, the first term E[||o(s;) — ¢ (s:]6(s:))||?]
can be interpreted as the Maximum Likelihood
Estimation (MLE) of the noise. To substan-
tiate this interpretation, we may postulate that

p(6(s:)le(si) ~ N(p(si),Bs = o21) follows
a Gaussian distribution. As such, we can obtain:

argmaxy iy oils;|} = In Hp(cp(cS(wij))]go(si))
J

A argmax iy s,y I P(0(0(s:))|(si))

-----

(p(sild(si)) — o(s:)) T2

(p(sild(s:)) — p(si))}
[lo(s:) — p(sild ()1
202d

— @(sild(s0))l*
(10)

1

2

=AM i1 pilsi}

= argmin{pil,.u,pﬂsi\} ‘ |90(Sl)
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From Egq. 10, it can be drawn that the minimization
of [|¢(s:) — ©(54|6(s4))||? could be treated as the
MLE of the model interest {p;1, .., pj|s,| }-

B Baselines

In this paper, we adopt four input attribution meth-
ods to verify the effectiveness of the proposed
method:

* LRP (Layer-wise Relevance Propagation) is an
input attribution method that helps interpret neu-
ral network predictions. It traces the contribu-
tions of each neuron back through the layers to
the input features, assigning relevance scores
that indicate the importance of each feature for
the final prediction.

* SHAP (SHapley Additive exPlanations) is based
on the Shapley values from cooperative game
theory. It assigns an importance value to each
feature by considering the contribution of each
feature to the model’s predictions across all pos-
sible combinations of features.
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Figure 8: Performance improvement across various erasure ratios according to the model interest.
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BOS The impact of climatechange has become more evident in  recent years

(a) Model interest towards the prompt “The impact of climate change is becoming more evident in recent years.” based on
Llama3-8B-Instruct, where the white bars denote the original results and the yellow ones indicate the adjusted results.
4

Rising temperatures, changing precipitation patterns, and increased frequency and severity of extreme weatre affecting ecosystems, human health,
and the economy. Climate change is also exacerbating existing social and econoties, disproportionately affecting vulnerable populations such
as low-income ¢ ities, indig s peoples, and smaveloping states. To mitigate the effects of climate change, it is essential to reduce
greenhouse gas emissions andto a low-carbon economy. This can be achieved through a combination of measures, including: 1. Transitioning to
regy sources, such as solar and wind power, to reduce dependence on fossil fuels. 2. Improving energy efficiency in bunsportation, and industry. 3.

Electrifying transportation and promoting the use of electric vehicles.4. ...

Rising temperatures, changing precipitation patterns, and increased frequency and severity of extreme weather events are just a few examples of
the many ways in which climate change is affecting our planet. The average global temperature has risen by about 1 °C since the late 1800s, and
is_projected to continue to rise by another 2-5°C by the end of this century if greenh gas_emissi conti to _increase. This rise in
temperature is causing a range of problems, including more frequent and severe heatwaves, droughts, and storms.

(b) Generated texts of Llama3-8B-Instruct based on the original (top) and adjusted (bottom) model interest. The “generate()”
is invoked with “max_length=150, num_beam_groups=1, do_sample=False, num_beams=3".

Figure 9: The estimated model interest and the generated texts of Llama3-8B-Instruct model.

* LIME (Local Interpretable Model-agnostic Ex-  improvement, with results presented in Figure 8. It
planations) creates a local surrogate model, typ-  can be seen that the model is sensitive to the propor-
ically a simple linear model, that approximates  tion of erased text, and as the proportion of erasure
the behavior of the complex model around the  increases, the model performance also improves in
instance being explained. a reasonable range. When the proportion reaches a

certain level (about 0.2 in the GPT-2 124M model),

* RISE (Randomized Input Sampling for Explana-  the performance improvement achieves its peak,
tion) is particularly designed for image classifi-  put further erasure leads to diminishing returns and
cation and generates binary masks and applies  eventually a dramatic decline in performance (close
them to the inputs, recording the model’s pre- o 0). One possible reason is that excessive erasure
dictions for each masked input. By aggregating  could compromise the semantic coherence of the
these results, RISE creates an importance map  original texts, inadvertently resulting in misleading
that shows which parts of the input are most  outputs. A moderate erasure, conversely, strikes a
influential in the model’s decision. more effective balance between maintaining seman-

tic integrity and emphasizing crucial information.
For the application of adjusting text genera-

tion, we provide the details of the case in Sec-
tion 5.4.2. Figure 9a illustrates the estimated
model’s interest towards the prompt based on the
original outputs, where “BOS” denotes the spe-
cial token (e.g., “(Ibegin_of _textl)”” for Llama3-8B-

In addition to the performance improvement shown  Instruct). After adjusting the interest, the model

in Table 1, we also investigate the impact of the pro- ~ generates more coherent content aligned with the

portion of erased contents on model performance ~ desired context (see Figure 9b).

* TDD (Token Distribution Dynamics) projects
input tokens into the embedding space and then
estimates their significance based on distribution
dynamics over the vocabulary.

C RQ3: Applications
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