
DiMa: Understanding the Hardness of
Online Matching Problems via Diffusion Models

Boyu Zhang * 1 2 3 Aocheng Shen * 1 Bing Liu 1 Qiankun ZhangB 1 2 3 Bin Yuan 1 3 4 5 Jing Wang 6

Shenghao Liu 1 Xianjun Deng 1

Abstract
We explore the potential of AI-enhanced combina-
torial optimization theory, taking online bipartite
matching (OBM) as a case study. In the theoret-
ical study of OBM, the hardness corresponds to
a performance upper bound of a specific online
algorithm or any possible online algorithms. Typi-
cally, these upper bounds derive from challenging
instances meticulously designed by theoretical
computer scientists. Zhang et al. (ICML 2024)
recently provide an example demonstrating how
reinforcement learning techniques enhance the
hardness result of a specific OBM model. Their
attempt is inspiring but preliminary. It is un-
clear whether their methods can be applied to
other OBM problems with similar breakthroughs.
This paper takes a further step by introducing
DiMa, a unified and novel framework that aims
at understanding the hardness of OBM problems
based on denoising diffusion probabilistic models
(DDPMs). DiMa models the process of gener-
ating hard instances as denoising steps, and op-
timizes them by a novel reinforcement learning
algorithm, named shortcut policy gradient (SPG).
We first examine DiMa on the classic OBM prob-
lem by reproducing its known hardest input in-
stance in literature. Further, we apply DiMa to
two well-known variants of OBM, for which the
exact hardness remains an open problem, and we
successfully improve their theoretical state-of-the-
art upper bounds.

*Equal contribution 1School of Cyber Science and Engineering,
Huazhong University of Science and Technology, Wuhan, China
2Key Laboratory of Cyberspace Security, Ministry of Education,
Zhengzhou, China 3Hubei Key Laboratory of Distributed System
Security, Wuhan, China 4Songshan Laboratory, Zhengzhou, China
5Visiting researcher with the Lion Rock Labs of Cyberspace Secu-
rity, CTlHE, Hong Kong, China 6School of Software Engineering,
Huazhong University of Science and Technology, Wuhan, China.
Correspondence to: Qiankun Zhang <qiankun@hust.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Online bipartite matching (OBM, Karp et al. (1990)) is one
of the most fundamental and central problems in online
optimization, due to its broad applications in economics,
operations research, and computer science. It captures varies
practical domains such as Internet advertising(Mehta et al.,
2007; Huang et al., 2020; 2023), resource allocation(Braun
et al., 2024; Zhang et al., 2024b; Ekbatani et al., 2023),
and transportation(Haliem et al., 2020; Dutta & Sholley,
2018; Asghari et al., 2016). Generally, OBM studies how
to match one side of items arriving one by one to the other
side of buyers, who are known upfront. The optimization
objective is to maximize the number of matches found by
an online algorithm, which can only make immediate and
irrevocable decisions sequentially. In the theoretical study of
OBM, a standard metric for measuring the performance of
an online algorithm is called competitive ratio (CR), which
is defined as the ratio between the matching size found by
the algorithm and the optimal offline matching on any input
bipartite graph instances. CRs range from 0 to 1 due to
the uncertainty of the online nature, and the closer they are
to 1, the better they are. Extensive works study OBM and
related problems by improving CRs either theoretically or
empirically. We refer readers to see (Devanur & Mehta,
2022; Mehta et al., 2013) for surveys.

Our work lies at AI-enhanced combinatorial optimization
theory. A recent work by Zhang et al. (2024a) gives the
first successful attempt. They focus on the upper bound
(also known as the hardness result) of the CR, which is a
theoretical bound of either an online algorithm or a problem.
In online optimization theory, the upper bound of an algo-
rithm corresponds to the construction of a family of hard
instances for that algorithm, whereas the upper bound of
a problem corresponds to instances proved to be hard for
all algorithms. An improved upper bound often emerges
from a smarter construction of hard instances, which can
be highly non-trivial and heavily rely on the expertise of
a theoretical computer scientist. Zhang et al. (2024a) im-
proves the best-known upper bound of an open-ended OBM
problem, by collaborating with the reinforcement learning
(RL) approach.

1

DiMa: Understanding the Hardness of Online Matching Problems via Diffusion Models

Inputs Data
Preparation

DDPM Training
Process

DDPM

Pre-training Process

Sampling

Fine-tuning Process

SPG Alogrithm

Outputs

Trajectories
� epochs

... ...

Data Preparation
Forward Process

...

Reverse Process(train DDPM)

DDPM Training Process

�� ��−� ��−2� �0...

Shortcut Policy Gradient

 ��

Sampling

epochs

Figure 1. Overview of DiMa framework.

Their attempt, while interesting and successful in improving
the theoretical state-of-the-art (SOTA), is yet preliminary.
First, they model the action of the Markov decision pro-
cess (MDP) as determining an online vertex at each time
step, resulting in an action space of exponential size. It
leads to poor generalizability to generate large-scale input
instances and destroys the complete information of the graph
structure. Furthermore, even though their approach is fun-
damentally end-to-end, the training process still requires
expert insights to identify learned patterns in instances, and
continually modify the model’s action space. As a conse-
quence, it remains unclear whether their techniques can be
applied to a broader range of other OBM problems with im-
proved bounds on the harness results. Finally, their model
is essentially training from scratch and thus does not effec-
tively utilize the distribution of hard instances known in the
literature. This paper delves into exploring the potential
of AI-enhanced OBM theory by introducing a unified and
novel framework, named Diffusion for Matching (DiMa),
that generates hard instances for OBM problems based on a
denoising diffusion probabilistic model (DDPM) (Ho et al.,
2020).

DDPMs are known to be powerful in novel image genera-
tions while preserving underlying distributions of known
samples. However, applying them to generate hard instances
for OBM can be non-trivial. Merely sampling new input
instances from a learned distribution of known hard-case
instances may not be enough to generate worse ones, and

therefore, obtain an improved upper bound. To address
it, our DiMa follows a pre-train-then-fine-tune paradigm.
During pre-training, DiMa trains an image-based DDPM
to generate instances of a distribution that approximates
the known hard instance distribution. In fine-tuning, DiMa
models the denoising step as MDP and formulates it as
policy optimization. To make the optimization robust and
efficient, we propose a novel shortcut policy gradient (SPG)
algorithm tailored for DiMa. DiMa finally produces harder
instances for a bunch of OBM problems. Figure 1 presents
an overview of DiMa.

Our contributions are concluded as follows:

• We propose DiMa, the first DDPM-based framework
that generates novel hard instances for OBM problems.

• We examine DiMa on the classic (fractional) OBM
model, whose hardest instance is known to be a upper-
triangular distribution. Our DiMa succeeds in converg-
ing at such distribution.

• We apply DiMa to two open-ended OBM problems,
whose worst-case instances remain unknown, includ-
ing online matching with random arrivals (Goel &
Mehta, 2008) and online matching with stochastic re-
wards (Mehta & Panigrahi, 2012). We improve their
SOTA theoretical upper bounds of CRs to 0.723 and
0.594, respectively, based on the instances generated
by DiMa.

2

DiMa: Understanding the Hardness of Online Matching Problems via Diffusion Models

2. Related Works
This section discusses only previous works most relevant to
us. The rest is referred to Appendix A.

ML for OBM. Little is known other than Zhang et al.
(2024a) in the category of AI-enhanced combinatorial opti-
mization theory, which may be inspired by the recent suc-
cess in ML methods for mathematical problems (Trinh et al.,
2024; Romera-Paredes et al., 2024; Wang & Deng, 2020;
Wu et al., 2020; Huang et al., 2024; Lin et al., 2024). How-
ever, there are a series of works (Kong et al., 2018; Du et al.,
2021; Zuzic et al., 2020) reveals that ML models can be
trained to approximate the behavior of the known theoretical
optimal online algorithm. Du et al. (2021) and (Zuzic et al.,
2020) also report that an adversarially trained model can
reproduce the known worst instances in the online knap-
sack problem and the AdWords problem, respectively. It
is unclear whether their methods can be used to explore
completely new instances that do not appear in the litera-
ture. There are other works aiming at learning empirically
efficient algorithms for various OBM problems (Alomrani
et al., 2021; Li et al., 2023; Hayderi et al., 2024; Xie et al.,
2023).

Optimizing DDPMs by RL. On the technical aspect, our
method benefits from several recent works on optimizing dif-
fusion models to align with downstream objectives. DPOK
(Fan et al., 2024) and DDPO (Black et al., 2023) align text-
to-image DDPMs with black-box reward signals; AlignProp
(Prabhudesai et al., 2023) and DRaFT (Clark et al., 2023)
optimize DDPMs with direct backpropagation for differen-
tiable rewards; GDPO (Liu et al., 2024) aligns graph DPMs
for arbitrary objectives. Our DiMa is inspired by their ideas
of fine-tuning DDPMs using the RL approach, but novel in
implementation details. Applying such an idea in the task
of exploring novel hardness results of online algorithms
can be highly non-trivial. Moreover, our SPG outperforms
remarkably existing techniques in achieving a remarkably
better performance-efficiency trade-off.

3. Preliminaries
We introduce the necessary backgrounds to understand
DiMa in this section, including OBM, DDPMs, and RL.

3.1. Online Bipartite Matching

Model. An input instance I of a classic OBM model in-
volves a bipartite graph G = (L ∪ R,E), with one side of
offline vertices L (buyers) known before the algorithm and
another side of online vertices R (items) arriving over time.
When a vertex r ∈ R arrives, the adjacent edges of r are
released, and the algorithm is asked to make an immediate
and irrevocable decision to match r to one of its unmatched

neighbors in L. The objective is to maximize the matching
size found by the algorithm.

Competitive ratio. The performance of an online algo-
rithm, denoted as ALG, is generally compared to an of-
fline optimum, denoted as OPT. An offline benchmark for
the above OBM instance I is a standard (offline) bipartite
matching problem on I, where L, R, and E are all given
before a matching algorithm proceeds. CR is defined as
infI

ALG(I)
OPT(I) ∈ [0, 1), meaning the infimum of ratio between

ALG and OPT among all possible input instances.
Hardness. The hardness, which corresponds to a theo-
retical upper bound of CR, is either of an algorithm or a
problem in online optimization theory. The algorithm hard-
ness is typically derived from a family of hard instances,
where the algorithm performs the worst. And the problem
hardness is proved by constructing instances where any al-
gorithms perform very badly. To achieve an improved upper
bound of CR, a key ingredient is a better construction of
input instances, which are harder for a specific algorithm or
all possible algorithms.
A warm-up example. Consider the OBM model defined
above. A simple Greedy algorithm matches any r ∈ R to
the largest indexed unmatched neighbor. It’s not difficult to
verify that Greedy is at least 0.5-competitive. The hardness
of Greedy is also known as 0.5, which can be proved by a
simple z-graph instance as follows. Suppose L = {ℓ1, ℓ2}
and R = {r1, r2}. r1 arrives first and it is connected to both
ℓ1andℓ2. r2 arrives later and it has only one neighbor ℓ2.
Note that Greedy will match r1 to ℓ2 such that r2 has no
available neighbor, and thus ALG = 1. But the offline OPT
can be 2 by matching r1 to ℓ1 and r2 to ℓ2. The hardness
of the OBM problem is known to be 1 − 1

e ≈ 0.632 by
constructing an upper-triangular graph (Karp et al., 1990),
which will be presented soon.

3.2. Denoising Diffusion Probabilistic Models

We adopt the standard DDPM for the instance generation.
Formally, given an initialized instance sampled from a
certain distribution I0 ∼ q(I), the DDPM defines a for-
ward diffusion process which forms a Markov chain by
adding Gaussian noise to I0 over T steps, creating a se-
quence of instances I1, . . . , IT whose joint distributions
are q(I1:T |I0) =

∏T
t=1 q(It|It−1). As t increases, I0

loses its features, and IT approaches an Gaussian dis-
tribution as T tends to infinity. Reversing the diffusion
process, which is also a Markov chain, allows to gener-
ate samples from q(It−1|It) starting from Gaussian noise
IT ∼ N (0, I). The DDPM trains a model pθ defined
by pθ(I0) =

∫
pθ(I0:T) dI1:T to approximate q, where

pθ(I0:T) = p(IT)
∏T

t=1 pθ(It−1|It). Training a DDPM is
performed by optimizing a standard variational bound on
negative log-likelihood Eq[− log pθ(I0)]. The objective can

3

DiMa: Understanding the Hardness of Online Matching Problems via Diffusion Models

be further written as:

Eq

[
− log pθ(I0|I1)

+

T∑
t=2

DKL [q(It−1|It, I0)∥pθ(It−1|It)]

]
, (1)

where DKL[·||·] represents the KL divergence between two
distributions.

3.3. Denoising Diffusion Implicit Model

Denoising diffusion implicit model (DDIM) (Song et al.,
2020) achieves high-quality samples with significantly fewer
steps compared to DDPMs. In DDPM, the reverse de-
noising process is explicitly probabilistic, meaning each
timestep is conditioned on the noise added during the for-
ward process. In contrast, DDIM uses an implicit sam-
pling process, where the reverse process is parameterized
such that no explicit noise prediction is needed at each
step. Instead of iteratively denoising through probabilistic
distributions, DDIM achieves faster sampling by skipping
multiple steps in the reverse diffusion process while main-
taining reasonable sample quality. Formally, DDIM samples
a subsequence of length S, denoted as [τ1, . . . , τS], from
the original sequence [1, . . . , T]. It defines q(Iτi |I0) =
N (Iτi ;

√
ατiI0, (1 − ατi)I), where α is a noise schedule

parameter. By doing so, the reverse process becomes:

Iτi−1
=
√
ατi−1

(
Iτi −

√
1− ατiϵθ(Iτi , τi)√

ατi

)
+
√
1− ατi−1

− σ2
τi · ϵθ(Iτi , τi) + στiϵ , (2)

where σt = η ·
√
(1− αt−1)/(1− αt) ·

√
(1− αt)/αt−1

and ϵ ∼ N (0, I). Our SPG borrows DDIM’s insight by skip-
ping a few steps when computing the gradient in fine-tuning,
achieving a remarkable performance-efficiency trade-off.

3.4. Markov Decision Process and Reinforcement
Learning

An RL problem is typically formulated as a Markov Deci-
sion Process (MDP) (Feinberg & Shwartz, 2002) defined
by (S, A, p0, P , R), where S represents the state space, A
represents the action space, P represents the transition func-
tion for state changes, R: S ×A → R represents the reward
function, and p0 represents the initial state distribution. At
each time step t, an agent perceives a state st from the state
space S , executes an action at from the action space A, and
gains a reward R(st, at). Subsequently, it moves to a new
state st+1, which is drawn from the transition probability
distribution P (st+1|st, at). The agent’s behavior is guided
by a policy π that dictates the action a to take given the state
s. During its interactions with the MDP, the agent gener-
ates a trajectory τ , which is a sequence comprising states,

actions, and rewards: (s0, a0, r0, ..., sT , aT , rT). The RL
model is trained to optimize the policy π so as to maximize
the agent’s expected total reward gathered from trajectories
generated by π, denoted as JRL(π) and defined by:

JRL(π) = Eτ∼p(τ |π)

[
T∑

t=0

rt

]
. (3)

4. Diffusion for Matching
This section details DiMa setup, including pre-training a
DDPM and fine-tuning by RL. It also presents our shortcut
policy gradient algorithm building on the classic policy
gradient method REINFORCE (Mohamed et al., 2020).

4.1. Diffusion Model Pre-training

In our task of generating novel bipartite graph instances
G = (L ∪R,E), we without loss of generalization assume
|L| = |R| = N , and represent G as an adjacency matrix
instance I ∈ {0, 1}N×N to indicate the edges between on-
line and offline vertices. Recall that in DDPM, we train a
pθ to approximate a known distribution q. In our context,
we define q as the known hard instances distribution for the
OBM problem in the literature. For example, we may set q
as the z-graph instance as defined in the warm-up example
of Section 3.1, involving some additional randomness. We
preview that the construction of q can be non-trivial, which
we will discuss in our experiments. Given an initialized sam-
ple I0 ∼ q(I0), the forward process adds a small amount of
Gaussian noise to the I0 in T steps, producing a sequence
of samples I1:T with the distribution of:

q(It | It−1) = N (
√
1− βtIt−1, βtI) , (4)

where βt’s ∈ (0, 1) are the noise schedule parameters. Run-
ning the reverse process to recover the instances requires a
model pθ to approximate q as:

pθ(It−1 | It) = N (It−1;µθ(It, t),Σθ(It, t)) , (5)

where αt = 1 − βt, ᾱt =
∏t

i=1 αi and µθ(It, t) =
1√
αt

(
It − βt√

1−ᾱt
ϵθ(It, t)

)
. At this time, we predict the

Gaussian noise added at each step through the model. The
loss L is defined as the difference between the reverse and
forward noises: L = ∥ϵ− ϵθ (It, t)∥2. To ensure the differ-
entiability during model training and instance sampling, all
It’s are viewed as real-number matrices. We convert them
to 0-1-valued ones after the pre-training process.

4.2. DiMa Fine-tuning via RL

The pre-trained DDPM defines a sample distribution pθ(I0),
through its reverse denoising process pθ(I0:T). Given a
competitive ratio calculator CR(·), the objective of the fine-
tuning process is to minimize the expected CR over pθ(I0):

4

DiMa: Understanding the Hardness of Online Matching Problems via Diffusion Models

JCR(θ) = EI0∼pθ(I0) [CR(I0)]. However, directly optimiz-
ing JCR(θ) is challenging. Following DDPO (Fan et al.,
2024), we formulate the reverse denoising process as a T -
step MDP as:

st ≜ (IT−t, T − t), π(at | st) ≜ pθ(IT−t−1 | IT−t),

at ≜ IT−t−1, P (st+1|st, at) ≜ (δIT−t−1
, δT−t−1),

(st, at) ≜ r(I0) if t = T, R(st, at) ≜ 0 if t < T ,

where the initial state s0 is defined as the initial noisy in-
stance IT , δ denotes the Dirac delta distribution and the
policy aligns with the reverse transition probability distribu-
tion. As a consequence, the instance generation trajectory
(IT , IT−1, ..., I0) can be formulated as a state-action tra-
jectory τ in the MDP, followed by p(τ | πθ) = pθ(I0:T).
Now carefully define a reward function r(·) on instances or
state-action pairs. Following Eqn. (3), the objective function
JRL(π) is equivalent to the following JRL(θ):

JRL(θ) = Epθ(I0:T)[r(I0)] ∝ −JCR(θ) . (6)

Next, we introduce how to optimize JCR(θ) using our SPG,
which efficiently produces novel instances compared to ex-
isting approaches including DDPO.

4.3. Shortcut Policy Gradient Algorithm

DDPO optimizes JCR(θ) by estimating the policy gradient
∇θJRL(θ) with REINFORCE as follows:

∇θJRL = E

[
T∑

t=0

∇θ log pθ(It−1 | It) r(I0)

]
. (7)

However, in our task, it suffers a poor convergence in ex-
periments and thus fails to generate harder instances. See
Figure 4 for an empirical observation. A possible reason can
be the tremendous number of trajectories in MDP. Inspired
by DDIM (Song et al., 2020), a natural idea is to skip a
few steps of the denoising process to reduce the trajectory
space. To achieve this goal, we slightly modify Eqn. (7) by
defining a shortcut policy gradient S(θ):

S(θ) = E

[
T∑

t=0

r(I0)(
M∑

m=1

∇θ log pθ(It−mk | It−(m−1)k)

]
,

(8)

where k is a hyper-parameter that determines the skipping
step size, and M = t/k1. Intuitively, in Eqn. (7) it is overly
detail-oriented to focus on how It becomes I0 through a
very long trajectory. The novel harder instances may often
lie at the neighbor of the pre-trained pθ through our experi-
mental observations. It suffices to skip some steps of the re-
verse process by sampling a subsequence [It, It−k, . . . , I0]

1We choose k that divides t.

within [It, It−1, . . . , I0] with the step size of k. This leads
to a much better convergence in our task than DDPO.

Further, computing the gradient ∇θ log pθ(It0−k|It0) can
be highly costly for a large k, due to the chain rule of the
derivative. It may cause a GPU memory overflow for large
instances. To reduce the computational overhead, we instead
estimate the gradient in Eqn. (8) by Eqn. (2) in DDIM. Our
experiments will demonstrate that even a very large k, for
example k = t, produces high-quality instances, while
highly reducing the overhead in the fine-tuning process.
Algoithm 1 presents details of our SPG.

Algorithm 1 Shortcut Policy Gradient Algorithm
Require: DDPM pθ, diffusion steps T , reward r(·), epoch

numbers E, trajectory samples N , step size k, overall
steps M , learning rate η

Ensure: Updated DDPM pθ
1: for e = 1, . . . , E do
2: for n = 1, . . . , N do
3: // Sample trajectories and get rewards
4: I(n)0:T ∼ pθ, rn ← r(I(n)0)
5: // Calculate the gradient by Eqn. (2)

6: Gn =
T∑

t=0

M∑
m=1
∇θ log pθ(I(n)t−mk | I

(n)
t−(m−1)k)

7: end for
8: // Estimate the shortcut policy gradient

9: S(θ)← 1
N

N∑
n=1

rn · Gn
10: // Update model parameter
11: θ ← θ + η · S(θ)
12: end for

5. Experiments
In this section, we first show how to apply DiMa to the
classic (fractional) OBM and reproduce the known best
1−1/e upper bound by generating the known hardest upper-
triangular graph instance (Section 5.1). Further, we study
two important variants of OBM, named OBM with random
arrivals (Section 5.2) and OBM with stochastic rewards
(Section 5.3). Both problems are still open-ended, meaning
that their best upper bounds remain unknown. We improve
their state-of-the-art by obtaining harder instances by DiMa.
Our code is provided in the Supplementary Material.

5.1. (Fractional) Online Bipartite Matching

Model. The input instance I = (L ∪ R,E) of the frac-
tional OBM is identical to the (integral) OBM introduced in
3.1, but the algorithm is allowed to match the online vertex
rj with a fraction of xij to an ℓi, under constraints:∑

ℓi∈L

xij ≤ 1,∀rj ∈ R; and
∑
rj∈R

xij ≤ 1,∀ℓi ∈ L .

5

DiMa: Understanding the Hardness of Online Matching Problems via Diffusion Models

Existing theoretical results. Water-filling (Kalyanasun-
daram & Pruhs, 2000), a simple deterministic greedy al-
gorithm, is known to be optimal for the fractional OBM,
achieving 1 − 1/e-competitive. See Appendix B.1 for
the detail of Water-filling. We fine-tune our model us-
ing SPG against the Water-filling. The hardness result of
Water-filling, and also of the fractional OBM problem, is
a classic upper-triangular graph instance as shown in Fig-
ure 2(a).

... ...

... ...

(a) Upper-triangular graph

... ...

... ...

(b) Thick-z graph

Figure 2. (a)The known hardest instance of Water-filling for frac-
tional OBM. (b)A known hard instance of OBM problems, which
serves to construct q.

Experiment setup. We set up DiMa on the fractional
OBM as follows:

• Choice of q in DDPM. In this problem, q is initialized
by a thick-z distribution constructed as follows. We
construct a set of the thick-z distribution that comprises
200 graphs by adding randomness to the thick-z graph
instance as presented in Figure 2, which is known to
be difficult (but not the worst) for OBM problems. In-
stances are obtained by independently flipping each
edge in thick-z with a probability of γ = 0.25. γ serves
as a hyper-parameter to enhance the diversity of the q
distribution. We highlight that determining an appro-
priate γ is crucial in our task. Neither a large nor tiny
γ produces novel harder instances. See Appendix B.2
for detailed discussion.

• DDPM structure. The denoising model is structured
with diffusion transformer (DiT) (Peebles & Xie, 2023).
DiT is based on the vision transformer (ViT), retaining
most of its configurations. In our experiment, we adopt
a DiT model with 3 DiT blocks, setting the patch size
as 4 and the embedding size as 32.

• Output format. Recall that we allow instances I to
be real-valued during DDPM pre-training due to the
differentiability. We adopt a standard rounding policy
to obtain a 0-1-valued adjacent matrix Î as the initial
state of fine-tuning:

Îij =

{
1, if Iij ≥ 0.5

0, if Iij < 0.5
(9)

• Reward function. In the fine-tuning process using
SPG, the reward function r(I) is defined as the λ(1−
CR(I)), where CR(I) = ALG(I)

OPT(I) and λ = 5 is a hyper-
parameter that controls the magnitude of the reward.
ALG can be computed by running Water-filling on
each instance I. OPT can be computed by solving a
linear program on I directly.

• Other hyper-parameters. The size of the problem
instance I is set to |L| = |R| = 20, 40. In the pre-
training process, the total number of time steps is set
to T = 100, the training batch size is set to 4, and the
training epoch is set to 1000. In the fine-tuning process,
the total number of training epochs is set to E = 100
with N = 100 trajectories sampled per epoch and the
step size k is set to k = 100.

Experimental results. We show the effectiveness of our
DiMa on the fractional OBM through the following experi-
ments. More experiments are presented in Appendix B.2.

Experiment #1: DDPM learns the thick-z distribution after
pre-training. The upper half of Figure 3 presents how the
instance is sampled in the reverse denoising process through
the pre-trained model.

As the time step t changes from 100 to 0, the instance
gets progressively closer to the thick-z graph depicted in
Figure 2(b). We remark that the pre-trained instance distri-
bution should be similar (but not identical) to the known
hardness of the thick-z graph. Otherwise, it fails to explore
novel harder instances. Recall that we control such simi-
larity when constructing q and using a randomness hyper-
parameter γ. Figure 11 in Appendix B.2 presents an ablation
on γ.

Experiment #2: DiMa converges at the hardest upper-
triangular distribution after fine-tuning by SPG. During the
fine-tuning process, instances sampled from the pre-trained
model are first rounded to an adjacent matrix {0, 1}|L|×|R|

according to Eqn.(9). The lower half of Figure 3 presents
the learned instances of different epochs. DiMa gradually
produces instances approaching the upper-triangular distri-
bution shown in Figure 2(a), and finally converges at the
upper-triangular graph after 100 epochs.

Experiment #3: the effectiveness of SGP. We compare our
SGP to DDPO (Black et al., 2023) in Figure 4. We experi-
ment on two instance sizes N of 20 and 40. While our SPG

6

DiMa: Understanding the Hardness of Online Matching Problems via Diffusion Models

t=100 t=0

Pre-training Process

e=0 e=40 e=60 e=80 e=100

 Fine-tuning Process

t=80 t=60 t=40 t=20

e=20

Figure 3. Instances generated from a single trajectory at t = 100, 80, 60, 40, 20, 0 during the pre-training process, and hard instances
generated by DiMa at different epochs during the fine-tuning process.

obtains an increasing average reward, DDPO suffers a poor
convergence and fails to produce any novel instances. Fur-
ther evaluations on the effectiveness of SPG are presented
in Appendix B.2 Figure 9 and Figure 10. We remark on
our SGP that we believe SGP is powerful in various don-
wnstreaming tasks other than the instance generation in this
paper. Nevertheless, further exploring the power of SGP
may be of independent interest to the scope of this paper,
and thus we leave it as an interesting future direction.

0 20 40 60 80 100
Epoch

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Re
wa

rd

SGP-20
SGP-40
DDPO-20
DDPO-40

Figure 4. The average reward change of SGP and DDPO during
the fine-tuning process with instance sizes of 20 and 40 when
sampling.

5.2. Online Matching with Random Arrivals

Model. In the classic OBM, the algorithm assumes to
know nothing about future online vertices in R. In online
matching with random arrivals (OMRA) (Goel & Mehta,
2008), the algorithm assumes to know the complete graph
I, but the arrival order of R. R assumes to arrive in a
random order. Since the input instances are randomized, the
objective is to maximize the expected matching size. Note

that the OMRA is easier than OBM because algorithms can
get a complete input instance at the beginning.

Existing theoretical results. A classic Ranking algorithm
(Karp et al., 1990) is known to be efficient (but not opti-
mal). Intuitively, Ranking assigns a random permutation
to all offline vertices in L, and greedily picks one of the
unmatched neighbor ranks the highest in the permutation
on the arrival of each online vertex. See Appendix C.1 for
details of Ranking. The best-known upper bound of Rank-
ing is 0.727 (Karande et al., 2011), which is derived from a
hard instance as in Figure 5(a).

Our results2. Figure 5(b) showcases an instance sampled
after the pre-training process. We improve the SOTA upper
bound of 0.727 to 0.723 by generating new and harder in-
stances (Figure 6) than those given by Karande et al. (2011).

(a) Existing hard instance. (b) Instance after pre-training.

Figure 5. (a) The known existing hard instance of Ranking for the
OMRA problem. (b) Instance sampled by DiMa after pre-training.

Theorem 5.1. There exists a family of instances on which

2Experiment setups and detailed experimental results are in-
cluded in Appendix C.

7

DiMa: Understanding the Hardness of Online Matching Problems via Diffusion Models

Ranking does no better than 0.723 in OMRA.

Proof sketch. The proof (in Appendix F.1) is completed by a
careful calculation of the theoretical CR of Ranking running
on the new instance in Figure 6.

...
...

...

...
...

...

Figure 6. Hard instance produced by DiMa that corresponds to a
0.723 upper bound.

5.3. Online Matching with Stochastic Rewards

Online matching with stochastic rewards (Mehta & Pani-
grahi, 2012) (OMSR) is a strict generalization of classic
OBM. Given the instance I, there is a real-number success
probability pij ∈ [0, 1] on each edge (ℓi, rj) ∈ E. When the
algorithm decides to match rj to ℓi, this match is determined
to be successful with the probability of pij . If so, ℓi can not
be matched to later coming online vertices. Otherwise, ℓi is
still available. Since the matching process involves random-
ness, the objective is to maximize the expected number of
successful matchings. Note that the OBM is a special case
of the OMSR by setting all pij as {0, 1}.

Existing theoretical results. The Balance algorithm
(Mehta & Panigrahi, 2012) is known to achieve a SOTA CR
(but not optimal) for OMSR. Intuitively, Balance matches
each online vertex to an unsuccessful neighbor with the least
number of failure attempts. See Appendix D.1 for details
of Balance. Mehta & Panigrahi (2012) first construct hard
instances that derive a 0.621 upper bound, which is recently
improved to 0.597 by an adversarial RL approach (Zhang
et al., 2024a). Their instance is presented in Figure 7(a).
Our results3. Figure 7(b) showcases an instance sampled
after the pre-training process. We improve the SOTA upper
bound of 0.597 to 0.594 by generating new and harder in-
stances (Figure 8) than those given by Zhang et al. (2024a).

Theorem 5.2. There exists a family of instances on which
there is no algorithm that does better than 0.594 in OMSR.

Proof sketch. The proof (in Appendix F.2) comprises two
key ingredients: to prove that Balance is optimal to OMSR

3Experiment setups and detailed experimental results are in-
cluded in Appendix D.

(a) Existing hard instance. (b) Instance after pre-training.

Figure 7. (a) The known existing hard instance of the OMSR prob-
lem. (b) Instance sampled by DiMa after pre-training.

on the given instances in Figure 8, and to carefully compute
the theoretical CR of Balance running on the instances.

... ...

Figure 8. Hard instance produced by DiMa that corresponds to a
0.594 upper bound.

Remark. The smallest upper bound in Zhang et al.
(2024a) is achieved when N = 7. They report an upper
bound of 0.599 when N = 10, while we present a better
0.594 upper bound at N = 10. Thus the actual numerical
improvement in the upper bound is from 0.599 to 0.594,
indicating a further effectiveness of our DiMa. Besides, our
DiMa can proceed with instances of much larger size than
Zhang et al. (2024a), e.g., N = 48 in the OMRA problem.
However, for ease of proof, we only present an N = 10
instance here.

6. Conclusion
This paper introduces DiMa, to enhance the theoretical un-
derstanding of OBM problems assisted by ML techniques.
To the best of our knowledge, this is the first unified frame-
work that generates hard instances used for proving an im-
proved theoretical upper bound of the competitive ratio. We
apply DiMa to three fundamental OBM problems in litera-
ture. Extensive experiments show that DiMa can not only
reproduce the known hardest instances, but also generate
novel instances that induce better bounds for those open-
ended OBM problems. As an independent technical con-
tribution, we propose a shortcut gradient policy algorithm
for optimizing the DDPMs using RL. SPG greatly reduces

8

DiMa: Understanding the Hardness of Online Matching Problems via Diffusion Models

the overhead of the gradient calculation, while maintaining
the quality of the generated instance. We believe DiMa
has great potential in being applied to a broader range of
online optimization problems, or even offline combinato-
rial optimizations, such as approximation algorithms, which
we leave as a future direction. Another interesting future
work is to explore the ability of other AI artifacts, such as
large language models, in optimization theory. We hope that
DiMa may inspire more interesting attempts in the area of
AI for theoretical computer science in the future.

Acknowledgements
Qiankun Zhang is supported by the National Natural Science
Foundation of China (Grant 62302183), Open Foundation of
Key Laboratory of Cyberspace Security, Ministry of Educa-
tion of China (Grant KLCS20240401), Ant Group Research
Fund (Grant 20242452) and CCF-DiDi GAIA Collaborative
Research Funds (Grant CCF-DiDi GAIA 202412). Jing
Wang is supported by the National Natural Science Foun-
dation of China (Grant 62202197), and the Major Research
Project of Hubei Province (Grant 2023BAA027). Bin Yuan
is supported by the National Natural Science Foundation
of China (Grant 62372191), the Open Topics from The
Lion Rock Labs of Cyberspace Security (Grant LRL24013),
and Songshan Laboratory (Grant 241110210200). Xianjun
Deng is supported by the National Key R&D Program of
China (Grant 2022YFE0138600), and the National Natural
Science Foundation of China (Grant U24B20153).

Impact Statement
This paper advances the field of ML by introducing a novel
framework, DiMa, that trains a diffusion model to enhance
the theoretical understanding of the famous online matching
problems. DiMa demonstrates the great potential of ML in
theoretical computer science and may inspire future work
in other fields of TCS, such as approximation algorithms or
algorithmic game theory.

References
Alomrani, M. A., Moravej, R., and Khalil, E. B. Deep

policies for online bipartite matching: A reinforcement
learning approach. Trans. Mach. Learn. Res., 2022, 2021.

Asgariandehkordi, H., Goudarzi, S., Basarab, A., and Rivaz,
H. Deep ultrasound denoising using diffusion proba-
bilistic models. In 2023 IEEE International Ultrasonics
Symposium (IUS), pp. 1–4. IEEE, 2023.

Asghari, M., Deng, D., Shahabi, C., Demiryurek, U., and
Li, Y. Price-aware real-time ride-sharing at scale: an
auction-based approach. Proceedings of the 24th ACM

SIGSPATIAL International Conference on Advances in
Geographic Information Systems, 2016.

Black, K., Janner, M., Du, Y., Kostrikov, I., and Levine, S.
Training diffusion models with reinforcement learning.
ArXiv, abs/2305.13301, 2023.

Braun, A., Kesselheim, T., Pollner, T., and Saberi, A. Ap-
proximating optimum online for capacitated resource al-
location. ArXiv, abs/2406.07757, 2024.

Chen, Z., Huang, Z., and Sun, E. Stochastic online corre-
lated selection. In 2024 IEEE 65th Annual Symposium
on Foundations of Computer Science (FOCS), pp. 2275–
2294. IEEE, 2024.

Clark, K., Vicol, P., Swersky, K., and Fleet, D. J. Directly
fine-tuning diffusion models on differentiable rewards.
ArXiv, abs/2309.17400, 2023.

Devanur, N. and Mehta, A. Online matching in advertise-
ment auctions, 2022.

Du, B., Huang, Z., and Wu, C. Adversarial deep learning for
online resource allocation. ACM Transactions on Model-
ing and Performance Evaluation of Computing Systems,
6:1 – 25, 2021.

Dutta, C. and Sholley, C. Online matching in a ride-sharing
platform. ArXiv, abs/1806.10327, 2018.

Ekbatani, F., Feng, Y., and Niazadeh, R. Online resource
allocation with buyback: Optimal algorithms via primal-
dual. Proceedings of the 24th ACM Conference on Eco-
nomics and Computation, 2023.

Fahrbach, M., Huang, Z., Tao, R., and Zadimoghaddam, M.
Edge-weighted online bipartite matching. Journal of the
ACM, 69(6):1–35, 2022.

Fan, Y., Watkins, O., Du, Y., Liu, H., Ryu, M., Boutilier, C.,
Abbeel, P., Ghavamzadeh, M., Lee, K., and Lee, K. Rein-
forcement learning for fine-tuning text-to-image diffusion
models. Advances in Neural Information Processing Sys-
tems, 36, 2024.

Feinberg, E. A. and Shwartz, A. In Handbook of Markov
decision processes : methods and applications, 2002.

Goel, G. and Mehta, A. Online budgeted matching in ran-
dom input models with applications to adwords. In Pro-
ceedings of the Nineteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA ’08, pp. 982–991,
USA, 2008. Society for Industrial and Applied Mathe-
matics.

Goyal, V. and Udwani, R. Online matching with stochas-
tic rewards: Optimal competitive ratio via path-based
formulation. Operations Research, 71(2):563–580, 2023.

9

DiMa: Understanding the Hardness of Online Matching Problems via Diffusion Models

Guha, S. and Acton, S. T. Sddpm: Speckle denois-
ing diffusion probabilistic models. arXiv preprint
arXiv:2311.10868, 2023.

Haliem, M., Mani, G., Aggarwal, V., and Bhargava, B. K.
A distributed model-free ride-sharing approach for joint
matching, pricing, and dispatching using deep reinforce-
ment learning. IEEE Transactions on Intelligent Trans-
portation Systems, 22:7931–7942, 2020.

Hayderi, A., Saberi, A., Vitercik, E., and Wikum, A. Magno-
lia: Matching algorithms via gnns for online value-to-go
approximation. ArXiv, abs/2406.05959, 2024.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in neural information process-
ing systems, 33:6840–6851, 2020.

Ho, J., Chan, W., Saharia, C., Whang, J., Gao, R., Gritsenko,
A., Kingma, D. P., Poole, B., Norouzi, M., Fleet, D. J.,
et al. Imagen video: High definition video generation
with diffusion models. arXiv preprint arXiv:2210.02303,
2022a.

Ho, J., Saharia, C., Chan, W., Fleet, D. J., Norouzi, M.,
and Salimans, T. Cascaded diffusion models for high
fidelity image generation. Journal of Machine Learning
Research, 23(47):1–33, 2022b.

Huang, Y., Lin, X., Liu, Z., Cao, Q., Xin, H., Wang, H.,
Li, Z., Song, L., and Liang, X. Mustard: Mastering uni-
form synthesis of theorem and proof data. arXiv preprint
arXiv:2402.08957, 2024.

Huang, Z. and Zhang, Q. Online primal dual meets online
matching with stochastic rewards: Configuration lp to the
rescue. SIAM Journal on Computing, 53(5):1217–1256,
2024.

Huang, Z., Zhang, Q., and Zhang, Y. Adwords in a
panorama. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pp. 1416–
1426. IEEE, 2020.

Huang, Z., Jiang, H., Shen, A., Song, J., Wu, Z., and Zhang,
Q. Online matching with stochastic rewards: Advanced
analyses using configuration linear programs. In Garg,
J., Klimm, M., and Kong, Y. (eds.), Web and Internet
Economics - 19th International Conference, WINE 2023,
Shanghai, China, December 4-8, 2023, Proceedings, vol-
ume 14413 of Lecture Notes in Computer Science, pp.
384–401. Springer, 2023.

Jackson, M. T., Matthews, M. T., Lu, C., Ellis, B., White-
son, S., and Foerster, J. Policy-guided diffusion. arXiv
preprint arXiv:2404.06356, 2024.

Janner, M., Du, Y., Tenenbaum, J. B., and Levine, S. Plan-
ning with diffusion for flexible behavior synthesis. arXiv
preprint arXiv:2205.09991, 2022.

Jin, B. and Williamson, D. P. Improved analysis of ranking
for online vertex-weighted bipartite matching in the ran-
dom order model. In International Conference on Web
and Internet Economics, pp. 207–225. Springer, 2021.

Kalyanasundaram, B. and Pruhs, K. An optimal determinis-
tic algorithm for online b-matching. Theor. Comput. Sci.,
233(1-2):319–325, 2000.

Karande, C., Mehta, A., and Tripathi, P. Online bipartite
matching with unknown distributions. Proceedings of the
forty-third annual ACM symposium on Theory of comput-
ing, 2011.

Karp, R. M., Vazirani, U. V., and Vazirani, V. V. An optimal
algorithm for on-line bipartite matching. In Proceedings
of the twenty-second annual ACM symposium on Theory
of computing, pp. 352–358, 1990.

Kong, W., Liaw, C., Mehta, A., and Sivakumar, D. A
new dog learns old tricks: Rl finds classic optimization
algorithms. In International Conference on Learning
Representations, 2018.

Kurtz, T. G. Solutions of ordinary differential equations as
limits of pure jump markov processes. Journal of applied
Probability, 7(1):49–58, 1970.

Li, P., Yang, J., and Ren, S. Learning for edge-weighted on-
line bipartite matching with robustness guarantees. ArXiv,
abs/2306.00172, 2023.

Lin, X., Cao, Q., Huang, Y., Yang, Z., Liu, Z., Li, Z., and
Liang, X. Atg: Benchmarking automated theorem gen-
eration for generative language models. arXiv preprint
arXiv:2405.06677, 2024.

Liu, Y., Du, C., Pang, T., Li, C., Lin, M., and Chen, W.
Graph diffusion policy optimization. arXiv preprint
arXiv:2402.16302, 2024.

Mahdian, M. and Yan, Q. Online bipartite matching with
random arrivals: an approach based on strongly factor-
revealing lps. In Proceedings of the forty-third annual
ACM symposium on Theory of computing, pp. 597–606,
2011.

Mehta, A. and Panigrahi, D. Online matching with stochas-
tic rewards. 2012 IEEE 53rd Annual Symposium on Foun-
dations of Computer Science, pp. 728–737, 2012.

Mehta, A., Saberi, A., Vazirani, U., and Vazirani, V. Ad-
words and generalized online matching. Journal of the
ACM (JACM), 54(5):22–es, 2007.

10

DiMa: Understanding the Hardness of Online Matching Problems via Diffusion Models

Mehta, A. et al. Online matching and ad allocation. Foun-
dations and Trends® in Theoretical Computer Science, 8
(4):265–368, 2013.

Mohamed, S., Rosca, M., Figurnov, M., and Mnih, A.
Monte carlo gradient estimation in machine learning.
Journal of Machine Learning Research, 21(132):1–62,
2020.

Peebles, W. and Xie, S. Scalable diffusion models with
transformers. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 4195–4205,
2023.

Prabhudesai, M., Goyal, A., Pathak, D., and Fragkiadaki,
K. Aligning text-to-image diffusion models with reward
backpropagation. ArXiv, abs/2310.03739, 2023.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M.
Hierarchical text-conditional image generation with clip
latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Romera-Paredes, B., Barekatain, M., Novikov, A., Balog,
M., Kumar, M. P., Dupont, E., Ruiz, F. J., Ellenberg, J. S.,
Wang, P., Fawzi, O., et al. Mathematical discoveries from
program search with large language models. Nature, 625
(7995):468–475, 2024.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton,
E. L., Ghasemipour, K., Gontijo Lopes, R., Karagol Ayan,
B., Salimans, T., et al. Photorealistic text-to-image dif-
fusion models with deep language understanding. Ad-
vances in neural information processing systems, 35:
36479–36494, 2022.

Sanokowski, S., Hochreiter, S., and Lehner, S. A diffusion
model framework for unsupervised neural combinatorial
optimization. arXiv preprint arXiv:2406.01661, 2024.

Singer, U., Polyak, A., Hayes, T., Yin, X., An, J., Zhang, S.,
Hu, Q., Yang, H., Ashual, O., Gafni, O., et al. Make-a-
video: Text-to-video generation without text-video data.
arXiv preprint arXiv:2209.14792, 2022.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In International conference on
machine learning, pp. 2256–2265. PMLR, 2015.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models. arXiv preprint arXiv:2010.02502, 2020.

Sun, Z. and Yang, Y. Difusco: Graph-based diffusion solvers
for combinatorial optimization. Advances in Neural In-
formation Processing Systems, 36:3706–3731, 2023.

Trinh, T. H., Wu, Y., Le, Q. V., He, H., and Luong, T. Solv-
ing olympiad geometry without human demonstrations.
Nature, 625(7995):476–482, 2024.

Udwani, R. When stochastic rewards reduce to deterministic
rewards in online bipartite matching. In 2024 Symposium
on Simplicity in Algorithms (SOSA), pp. 321–330. SIAM,
2024.

Wang, M. and Deng, J. Learning to prove theorems by
learning to generate theorems. Advances in Neural Infor-
mation Processing Systems, 33:18146–18157, 2020.

Wu, Y., Jiang, A. Q., Ba, J., and Grosse, R. Int: An inequal-
ity benchmark for evaluating generalization in theorem
proving. arXiv preprint arXiv:2007.02924, 2020.

Xiang, T., Yurt, M., Syed, A. B., Setsompop, K., and Chaud-
hari, A. Ddm2: Self-supervised diffusion mri denois-
ing with generative diffusion models. arXiv preprint
arXiv:2302.03018, 2023.

Xie, Y., Niu, G., Pun, M.-O., and Han, Z. Online bipartite
matching for hap access in space-air-ground integrated
networks using graph neural network-enhanced reinforce-
ment learning. 2023 IEEE International Conference on
Communications Workshops (ICC Workshops), pp. 782–
787, 2023.

Xu, D., Jiang, Y., Wang, P., Fan, Z., Wang, Y., and Wang,
Z. Neurallift-360: Lifting an in-the-wild 2d photo to
a 3d object with 360deg views. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4479–4489, 2023.

Zhang, Q., Shen, A., Zhang, B., Jiang, H., and Du, B. Online
matching with stochastic rewards: Provable better bound
via adversarial reinforcement learning. In Forty-first In-
ternational Conference on Machine Learning, 2024a.

Zhang, X., Qin, H., and Chou, M. C. Online re-
source allocation with non-stationary customers. ArXiv,
abs/2401.16945, 2024b.

Zhou, L., Du, Y., and Wu, J. 3d shape generation and
completion through point-voxel diffusion. In Proceedings
of the IEEE/CVF international conference on computer
vision, pp. 5826–5835, 2021.

Zuzic, G., Wang, D., Mehta, A., and Sivakumar, D. Learning
robust algorithms for online allocation problems using
adversarial training. ArXiv, abs/2010.08418, 2020.

11

DiMa: Understanding the Hardness of Online Matching Problems via Diffusion Models

A. Other Related Works
OBM theory. OBM problem receives remarkable attention in theoretical computer science since Karp et al. (1990). We
refer readers who are interested in but not familiar with theoretical studies of OBM to a survey (Mehta et al., 2013), which
records the most significant open problems about OBM, including the upper bounds we study. There are extensive theory
works about OBM, but we only discuss those most relevant to our work. For the classic OBM, Karp et al. (1990) provides
an optimal 1− 1/e-competitive algorithm named Ranking, as well as the hardest instance of the upper-triangular graph.
Karande et al. (2011) breaks the 1− 1/e barrier by introducing the random arrival model, and gives a hardness result of
0.727 against Ranking. To the best of our knowledge, there has been no follow-up work improving this bound since Karande
et al. (2011). Other works related to OMRA include (Jin & Williamson, 2021; Fahrbach et al., 2022; Chen et al., 2024;
Mahdian & Yan, 2011). For the stochastic rewards problem, Mehta et al. (2013) first introduces it with a 0.621 upper bound.
There is no other work improving this bound until a recent work by Zhang et al. (2024a), who use an RL-assisted approach
to find a family of harder instances. Our DiMa not only outperforms them in obtaining harder instances and thus improving
the upper bound, but also in efficiency, instance size, and generalizability to a set of OBM problems. Other works related to
OMSR include (Huang & Zhang, 2024; Goyal & Udwani, 2023; Huang et al., 2023; Udwani, 2024).

DDPMs. DDPMs have emerged as a powerful class of generative models in recent years. The foundational work on
DDPMs was pioneered by Sohl-Dickstein et al. (2015), and later simplified by Ho et al. (2020). DDPMs generate samples
by adding noise in a forward pass and removing it via a trained network in reverse. Since its inception, the diffusion model
has made significant inroads in a variety of downstream tasks, driving remarkable advancements in the field. For example,
Ho et al. (2022b) designed hierarchical architectures that are instrumental in stabilizing the training process of diffusion
models for image generation and mitigating memory cost issues. Ramesh et al. (2022) integrated the diffusion model into
text-to-image generation tasks, with their DALL-E2 model demonstrating outstanding performance in this domain. Apart
from image generation (Saharia et al., 2022), they have also made contributions in the fields of video generation (Ho et al.,
2022a; Singer et al., 2022), robot guidance (Janner et al., 2022; Jackson et al., 2024) and image-to-3D conversion (Zhou
et al., 2021; Xu et al., 2023). Moreover, DDPM has also been widely applied in the medical field (Guha & Acton, 2023;
Asgariandehkordi et al., 2023; Xiang et al., 2023).

Recent studies (Sun & Yang, 2023; Sanokowski et al., 2024) have explored the applications of the diffusion model to
combinatorial optimization problems by treating the solution space as a probability distribution and leveraging the iterative
denoising process to generate high-quality solutions. These works primarily focus on empirical demonstrations, showcasing
the effectiveness of diffusion models in specific problem domains. However, their approaches lack theoretical backgrounds
and guarantees, making it difficult to directly benchmark against our method, which provides both theoretical proof and
comprehensive evaluations.

B. Fractional Online Bipartite Matching
B.1. Water-filling Algorithm

Water-filling algorithm. When an online vertex rj arrives, Water-filling allocates an infinitesimal dx portion of rj to
a neighbor with the largest remaining capacity, until no neighbor is available or rj is exhausted. Recall that xij denotes
the portion that matches ℓi to rj in the fractional matching, and let yi =

∑
j:(ℓi,rj)∈E xi,j be the allocated capacity of ℓi.

Algorithm 2 is a formal definition of Water-filling.

Algorithm 2 Water-filling
1: Initialize all xijs to be zero;
2: for each online vertex rj that arrives do
3: while

∑
i:(i,j)∈E xij < 1 and yi < 1 for some i s.t. (i, j) ∈ E do

4: Allocate a dx portion of rj to an neighbor in argmaxi:(i,j)∈E{1− yi}, breaking ties arbitrarily, i.e., increase xij

by dx.
5: end while
6: end for

12

DiMa: Understanding the Hardness of Online Matching Problems via Diffusion Models

B.2. Ablation Study

The impact of skipping step size k in SPG. We compare the effects for different step sizes k when using SGP during the
fine-tuning process. In the fractional OBM problem, we use SGP with different step sizes k during the fine-tuning process.

0 20 40 60 80 100
Epoch

1.2

1.3

1.4

1.5

1.6

1.7

Re
wa

rd

T=100,k=100
T=100,k=50
T=100,k=20
T=100,k=1
T=500,k=500
DDPO

Figure 9. The average rewards of sampling instances using SGP during the fine-tuning process when T = 100, k = 1, 20, 50, 100 and
T = 500, k = 500 and the average rewards of sampling instances using DDPO when T = 100.

As shown in Figure 9, we can find that:

• When k = 1,M = 100, the average reward of the model during the fine-tuning process shows an extremely slow
growth trend and has certain fluctuations which is similar to DDPO.

• The average reward of the model shows a distinct upward trend during the fine-tuning process with the increasing of
the step size k. Moreover, the rate of increase in the average reward accelerates as the value of k increases. When
k = 100 and M = 1, the model can converge to the upper-triangular distribution within 100 epochs.

• Furthermore, as k increases, the overhead of calculating gradients decreases accordingly. Therefore, in our experimental
setup, we choose k = T = 100. However, as T increases, when T = 500, if we choose k = 500, The effectiveness
of SPG gets worse due to the poor quality of generation. Thus, it is necessary to select an appropriate k for different
values of T to achieve a performance-efficiency trade-off.

The impact of number of sample trajectories N . We compare the impacts for the number N of sampling trajectories
when using SGP during the fine-tuning process. In the fine-tuning process, we adopt SGP and fine-tune it with different
numbers of sampling trajectories at each epoch.

As shown in Figure 10, when the hyper-parameter N of SGP is set to 100, the average reward steadily rises during the
fine-tuning process and gradually converges. Additionally, the fine-tuning process gradually becomes more unstable with
the decrease of N . Therefore, we typically set N to 100 to obtain stable training results.

The impact of q. We compare the influence of the initial data distribution q on SGP. During the pre-training process, we
select different hyper-parameter γ for the initial data distribution and perform pre-training and fine-tuning respectively.

As shown in Figure 11, we could find that:

• When r is relatively large (γ > 0.50), the effect of fine-tuning gets worse because of the excessive diversity of the
initial data distribution. The initial data distribution deviates excessively from the distribution of the already-known
hard instances.

• When r is relatively small (γ < 0.10), the initial data distribution is more similar to thick-z which leads to higher effects
at the beginning of the fine-tuning process. However, we can only get a lower average reward during the fine-tuning
process since it does not learn more new situations.

13

DiMa: Understanding the Hardness of Online Matching Problems via Diffusion Models

0 20 40 60 80 100
Epoch

1.30

1.35

1.40

1.45

1.50

1.55

1.60

Re
wa

rd

SGP-N=100
SGP-N=75
SGP-N=50
SGP-N=25

Figure 10. The average rewards of sampling instances using SGP during fine-tuning process with different numbers of sampling trajectories
N = 25, 50, 75, 100.

0 20 40 60 80 100
Epoch

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Re
wa

rd

 = 0.05
 = 0.10
 = 0.15
 = 0.20

 = 0.25
 = 0.30
 = 0.35
 = 0.40

 = 0.45
 = 0.50
 = 0.55

Figure 11. The average rewards of sampling instances using SGP during the fine-tuning process with different initial data distributions
represented by hyper-parameter γ = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55.

14

DiMa: Understanding the Hardness of Online Matching Problems via Diffusion Models

• Our DiMa easily converges to the worst upper-triangular instances within 100 epochs when γ ∈ [0.2, 0.35]. Therefore,
we need to select an appropriate initial data distribution q with hyper-parameter r to find new harder instances.

As demonstrated by previous experimental results, leveraging structural information from known hard instances can
accelerate convergence and improve sample efficiency. Such an idea also aligns with conventional hand-crafted constructions
in OBM, where new harder instances are typically built on the existing ones with some slight modifications. What’s more, we
emphasize that DiMa can converge to upper triangulars starting with diverse distributions (not restricted to the thick-z), even
with random samples. We visualize some of the initialization distributions that successfully converge to upper triangulars,
including randomly sampled ones, which are shown in Figure 12.

0.935
random

0.919 0.848 0.846 0.751 0.648
upper-triangular

0.883
random

0.851 0.767 0.707 0.690 0.648
upper-triangular

0.940
random

0.921 0.913 0.812 0.755 0.648
upper-triangular

Figure 12. The instances with their competitive ratios generated during the fine-tuning process for three randomly initial distributions in
the experiments of OBM.

We conduct additional experiments starting with 50 random samples, nearly one-third of which enable DiMa to find the
worst instances within 100 epochs. Finally, we emphasize that, unlike Zhang et al. (2024a), which appears to heavily depend
on intermediate observations for iterative adjustments during the training process to discover novel instances, our method
largely reduces reliance on expert insights because existing hard instances are easily obtained in the literature. Although
DiMa can benefit from known hard instances, it is essentially end-to-end.

The effectiveness of SPG. We propose SPG as an independent contribution addressing a common challenge in the
ML-for-OM literature. Traditional methods struggle with large-scale graphs. For example, in Zhang et al. (2024a), their RL
approach for OMSR seems limited to small graphs (fewer than 10 offline vertices). As shown in Table 1, DiMa efficiently
works on remarkably larger instances (of size larger than 50) on a 24GB GPU within an hour, and the traditional way to
compute the gradient needs more than 24 GB.

Table 1. The memory size and running time using SGP during the fine-tuning process when the size of the instance is set to |L| = |R| =
12, 20, 40, 80.

Method Graph size Memory size Running time

SPG 12x12 0.62GB 20s/epoch
SPG 20x20 1.14GB 25s/epoch
SPG 40x40 5.05GB 35s/epoch
SPG 80x80 22.59GB 45s/epoch

Traditional Computation 20x20 >24GB –

15

DiMa: Understanding the Hardness of Online Matching Problems via Diffusion Models

C. Online Matching with Random Arrivals
C.1. Ranking Algorithm

Ranking algorithm. Before the first online vertex arrives, Ranking randomly permutes 1, 2, · · · , |L|, which determines
the ranks of the offline vertices. When an online vertex rj arrives, Ranking matches rj to an available neighbor with the
highest rank.

Algorithm 3 Ranking
1: Randomly permute the sequence (1, 2, · · · , |L|) as ρ, and let ρi be ℓi’s rank;
2: Initialize all xijs to be zero;
3: for each online vertex rj that arrives do
4: if there exists an available neighbor of rj then
5: Match rj to argmini:(i,j)∈E{ranki}, i.e., set xij = 1.
6: end if
7: end for

C.2. Experiment Setup

Here we present the experimental settings in completing the relevant experiments of the OMRA problem. We set up DiMa
as follows:

• Choice of q in DDPM. In this problem, q is initialized by an existing distribution of the hard instance as follows. We
construct a set of the existing distribution that comprises 200 graphs by adding randomness to the hard instance as
presented in Figure 5(a), which is known to be difficult for OMRA problems. Instances are abtained by independently
flipping each edge in the hard instance with a probability of r = 0.1. r serves as a hyper-parameter to enhance the
diversity of the q distribution.

• DDPM structure. The denoising model is structured with DiT. In our experiment, we adopt a DiT model with 3 DiT
blocks, setting the patch size as 4 and the embedding size as 32.

• Output format. Recall that we allow instances I’s to be real-valued during DDPM pre-training due to the differentia-
bility. We adopt a standard rounding policy by using Equation (9) to obtain a 0-1-valued adjacent matrix Î as the initial
state of fine-tuning.

• Reward function. In the fine-tuning process using SPG, the reward function r(I) is defined as the λ(1 − CR(I)),
where CR(I) = ALG(I)

OPT(I) and λ = 5 is a hyper-parameter that controls the magnitude of the reward. the details of
computing the CR are in Appendix E.

• Hyper-parameters. The size of the problem instance I is set to |L| = |R| = 48. In the pre-training process, the total
number of time steps is set to T = 100, the training batch size is set to 4, and the training epoch is set to 1000. In the
fine-tuning process, the total number of training epochs is set to E = 100 with N = 90 sampled per epoch and the step
size k is set to k = 100.

C.3. Experimental Result

The upper half of Figure 13 presents how the instance is sampled in the reverse denoising process through the pre-trained
model. As the time step t changes from 100 to 0, the instance gets progressively closer to the hard instance depicted in
Figure 5(a). During the fine-tuning process, instances sampled from the pre-trained model are first rounded to an adjacent
matrix {0, 1}|L|×|R| according to Eqn. (9). The lower half of Figure 13 presents the learned instances of different epochs.
DiMa gradually produces instances approaching the distribution shown in Figure 6, and finally converges at the graph after
100 epochs.

D. Online Matching with Stochastic Rewards
In this paper, we focus on a special case of OMSR under the assumption of equal probability, where if there is an edge
connecting ℓi and rj , pij = p, and p is a constant. We also restrict the instance with |L| offline vertices and |L| online vertex

16

DiMa: Understanding the Hardness of Online Matching Problems via Diffusion Models

Pre-training Process

t=90 t=80 t=60

t=40 t=30 t=10

 Fine-tuning Process

e=10 e=20 e=40

e=60 e=70 e=9

t=70

t=20

e=30

e=80 0

t=50

t=0

e=50

e=100

Figure 13. Instances of one trajectory generated at t = 90, 80, 70, 60, 50, 40, 30, 20, 10, 0 during the pre-training process and hard
instances generated at e = 90, 80, 70, 60, 50, 40, 30, 20, 10, 0 during the fine-tuning process in the experiments of OMRA.

17

DiMa: Understanding the Hardness of Online Matching Problems via Diffusion Models

sets to simplify the ratio computation. Each online vertex set has 1/p identical offline vertices, sharing the same neighbors.
Therefore, |R| = |L|/p.

We compare the algorithm against the offline non-stochastic optimum (Mehta & Panigrahi, 2012; Huang et al., 2023; Zhang
et al., 2024a). This optimum is the optimal value of a budget allocation problem in the same instance I. In this problem,
each edge is associated with a deterministic weight p. When the algorithm decides to match rj with ℓi, ℓi makes a profit p.
However, the profit of each offline vertex is capped by 1. The goal of this problem is to maximize the total profit among all
offline vertices.

D.1. Balance Algorithm

Balance algorithm. When an online vertex rj arrives, Balance matches rj to an available neighbor with the fewest
previous failure attempts.

Algorithm 4 Balance
1: Let cnti denote the counter that how many attempts that Balance has made to match ℓi;
2: Initialize all xijs and cntis to be zero;
3: for each online vertex rj that arrives do
4: if there exists an available neighbor of rj then
5: Match rj a neighbor in argmini:(i,j)∈E{cnti}, breaking ties arbitrarily, i.e., set xij = 1.
6: end if
7: end for

D.2. Experiment setup.

Here we present the experimental settings in completing the relevant experiments of the OMSR problem. We set up DiMa
as follows:

• Choice of q in DDPM. In this problem, q is initialized by an existing distribution of the hard instance as follows. We
construct a set of the existing distribution that comprises 200 graphs by adding randomness to the hard instance as
presented in Figure 7(a), which is known to be difficult for OMSR problems. Instances are obtained by independently
flipping each edge in the hard instance with a probability of r = 0.1. r serves as a hyper-parameter to enhance the
diversity of the q distribution.

• DDPM structure. The denoising model is structured with DiT. In our experiment, we adopt a DiT model with 1 DiT
block, setting the patch size as 2 and the embedding size as 32.

• Output format. Recall that we allow instances I’s to be real-valued during DDPM pre-training due to the differentia-
bility. We adopt a standard rounding policy by using Equation (9) to obtain a 0-1-valued adjacent matrix Î as the initial
state of fine-tuning.

• Reward function. In the fine-tuning process using SPG, the reward function r(I) is defined as the λ(1 − CR(I)),
where CR(I) = ALG(I)

OPT(I) and λ = 5 is a hyper-parameter that controls the magnitude of the reward. the details of
computing the CR are in Appendix E.

• Hyper-parameters. The size of the problem instance I is set to |L| = |R| = 10. In the pre-training process, the total
number of time steps is set to T = 100, the training batch size is set to 4, and the training epoch is set to 1000. In the
fine-tuning process, the total number of training epochs is set to E = 100 with N = 100 sampled per epoch and the
step size k is set to k = 100.

D.3. Experimental results.

The upper half of Figure 14 presents how the instance is sampled in the reverse denoising process through the pre-trained
model. As the time step t changes from 100 to 0, the instance gets progressively closer to the hard instance depicted in
Figure 7(a). During the fine-tuning process, instances sampled from the pre-trained model are first rounded to an adjacent
matrix {0, 1}|L|×|R| according to Eqn. (9). The lower half of Figure 14 presents the learned instances of different epochs.

18

DiMa: Understanding the Hardness of Online Matching Problems via Diffusion Models

DiMa gradually produces instances approaching the distribution shown in Figure 8, and finally converges at the graph after
100 epochs.

Pre-training Process

Fine-tuning Process

t=90 t=80 t=70 t=60 t=50

t=40 t=30 t=20 t=10 t=0

e=10 e=20 e=30 e=40 e=50

e=60 e=70 e=80 e=90 e=100

Figure 14. Instances of one trajectory generated at t = 90, 80, 70, 60, 50, 40, 30, 20, 10, 0 during the pre-training process and hard
instances generated at e = 90, 80, 70, 60, 50, 40, 30, 20, 10, 0 during the fine-tuning process in the experiments of OMSR.

E. Competitive Ratio Calculation
This section provides a CR calculator to compute the CR of each instance learned by DiMa. Specifically, given an instance
I, the calculator returns an estimated value of ALG(I)

OPT(I) .

E.1. Calculation on OPT(I)

Fractional OBM. The Fractional OBM can be formulated as a linear program to maximize
∑

(ℓi,rj)∈E xij , subject to the
constraints in Eqn. (5.1). Therefore, we use a simplex method to solve the LP and return the value OPT(I).

19

DiMa: Understanding the Hardness of Online Matching Problems via Diffusion Models

OMRA. In this case, OPT(I) equals the cardinality of a maximum matching. We use a dinic algorithm to compute the
value of OPT(I).

OMSR. Recall that we restrict generated instances with |L| offline vertices and |L| online vertex sets. To avoid massive
samples of outcome that an edge succeeds or not, we restrict that there are edges connecting ℓi and Vi, ∀i ≤ |L|. Therefore,
OPT(I) = |L|.

E.2. Calculation on ALG(I)

Fractional OBM. We discretize the Water-filling process into a step-by-step simulation by defining α as a small fixed value,
i.e., dx, then each time we allocate α to a neighbor with the largest remaining capacity. We set α = 10−3/min{|L|, |R|}
for experiments.

OMRA. We sample T random permutations and simulate the Ranking algorithm on I with the ranks. The value of
ALG(I) is estimated by averaging the ratios among T samples. We set T ≈ 2 · 104 (min{|L|, |R|})2 for experiments, and
this bound is derived by Chebyshev’s inequality.

OMSR. The procedure executed by the Balance algorithm on I can be formed as a Markov decision process (MDP)
with deterministic actions but stochastic transitions. To compute the value of ALG(I), we adopt a dynamic programming
approach. Specifically, the MDP consists of |R| timesteps. We start with calculating the ratios of different states of offline
vertices at the |R|-th timestep, using these results to determine the ratios at the (|R| − 1)-th timestep. This process is
iteratively applied until the ratio at the first timestep is obtained and returns the ratio as the value of ALG(I).

F. Omitted Proofs
F.1. Proof of Theorem 5.1

Characterization on the hard instance. The instance in Figure 6 has n offline vertices and n online vertices, i.e.,
|L| = |R| = n. The vertices in L are divided into 3 disjoint subsets L1, L2, and L3. Similarly, the vertices in R are also
divided into 3 disjoint subsets R1, R2, and R3. The sizes of L1, L3, R1, R3 are αn, α < 1, and therefore the sizes of L2

and R2 are (1− 2α)n. Each offline vertex, ℓi is connected to the online vertex with the same index ri. In addition, vertices
in R1 have edges adjacent to vertices in L2 and L3, and vertices in R2 have edges adjacent to vertices in L3. Note that the
online vertices are shuffled according to a uniform random permutation because of the random arrival model. LetH denote
the family of these hard instances in Figure 6.

We first compute the value of OPT(H). There is a perfect matching inH, which matches ℓi with ri, for i ∈ [n]. Therefore,
OPT(H) = n. For any v ∈ L ∪R, let v∗ denote the adjacent vertex of v in the perfect matching.

Without loss of generality, we assume that one online vertex arrives per union time. At time t, an online vertex comes, and
let Li(t), i = 1, 2, 3 denote the set of unmatched vertices in Li. Similarly, let Ri(t), i = 1, 2, 3 denote the set of unmatched
vertices in Ri. The vertices in Ri(t) have either yet to arrive or were left unmatched upon arrival. By Lemma F.1, we have
E[|R1|] = E[|L3|], E[|R2|] = E[|L2|], and E[|R3|] = E[|L1|] for any t.
Lemma F.1 (c.f. Lemma 2 of Karande et al. (2011)). For a given graph G = (L ∪R,E) and for a fixed rank vector ρ, and
the online order vector π, the output of Ranking with ρ and π on G is the same as the output of Ranking with rank vector π
and order vector ρ on G′ = (R ∪ L,E).

Note that any vertex v in R1 can be matched at least by v∗ ∈ L1, but vertices in R2 and R3 are not surely matched. Therefore
the ratio of Ranking onH is

E [ALG(H)]
OPT(H)

= 1− E
[
|R2(n)|+ |R3(n)|

n

]
= 1− E

[
|L2(n)|+ |R3(n)|

n

]
. (10)

In Lemma F.2, we present the expected decrement of |R3(t)| in terms of the expected value of |L3(t)|.
Lemma F.2. When n→∞, for any t, we have,

E[|R3(t+ 1)| − |R3(t)|] = −
E[|L3(t)|]
n− t

. (11)

20

DiMa: Understanding the Hardness of Online Matching Problems via Diffusion Models

Proof. At time t, one of the vertices in R3(t) gets matched (suppose it is v) if and only if v∗ arrives and v has been matched
yet. At this time, the vertex in R3 arrives with probability α. In addition, by Chebyshev’s inequality, before t, α · t vertices in
R3 have arrived, and there are |L3(t)| vertices in L3 have not been matched. Therefore, the probability that v gets matched
at t is |L3(t)|

α(n−t) . Therefore, the decrement is α · |L3(t)|
α(n−t) =

|L3(t)|
n−t .

Next, we show the expected decrement of |L3(t)| and |L2(t)| in Lemma F.3 and F.4. Before the next two lemmas, we
introduce some notations here borrowed from Karande et al. (2011). Let K(t) denote the set of vertices, v such that v ∈ L2(t)
and v∗ have not arrived yet. Let sizeL3(t) = n − min {ρ(v)|v ∈ L3(t)}, sizeL2(t) = n − min {ρ(v)|v ∈ L2(t)}, and
last(t) = max {ρ(v)|v ∈ L2, v gets matched to a vertex in R1}. Note that, the rank of v is higher, value of ρ(v) is lower.
Lemma F.3. When n→∞, for any t, we have,

E[|L3(t+ 1)| − |L3(t)|] =−
E|L3(t)|
n− t

−
(
(1− 2α)

(
1− |K(t)|

(1− 2α)(n− t)

)
+

|K(t)|
(1− 2α)(n− t)

· |sizeL3(t)|
n− |last(t)|

)
− α ·Pr(sizeL2(t) < sizeL3(t)) ·

|sizeL3(t)|
n

. (12)

Proof. There are three cases that a vertex in L3 can get matched at time t, depending on which set the t-th online vertex
belongs to. Let the t-th online vertex be v.

If v ∈ R3, this happens with probability α. In this case, v gets matched if and only if v∗ is still available, and this happens
with L3(t)

α(n−t) . Therefore, in this case, the probability that vertex in L3 gets matched is L3(t)
n−t .

If v ∈ R2, this happens with probability 1 − 2α. In this case, v gets matched if and only if (i) v∗ is matched; (ii)
v∗ is still available and there exists a vertex in L3(t), whose rank is higher than v∗’s. By the definition of K(t), case
(i) happens with probability 1 − K(t)

(1−2α)(n−t) , because there are (1 − 2α)(n − t) vertices in R2 that have not arrived.

Next, compute the probability of case (ii). The probability that v∗ is still available is K(t)
(1−2α)(n−t) . Note that, v∗ is still

unmatched, therefore, its rank is lower than last(t). And when there exists a vertex in L3(t), whose rank is higher than
v∗’s, it happens with probability sizeL3(t)

n−last(t) . Thus, when v ∈ R2, the probability that vertex in L3 gets matched overall is

(1− 2α)
(
1− K(t)

(1−2α)(n−t)

)
+ K(t)

(1−2α)(n−t) ·
sizeL3(t)
n−last(t) .

If v ∈ R1, this happens with probability α. In this case, v gets matched if and only if the highest rank in L3(t) is higher
than that in L2(t) and (i) v∗ is matched; (ii) v∗ is still available and there exists a vertex in L3(t), whose rank is higher than
v∗’s. However, v∗ can not be matched before the arrival of v. Therefore, case (i) can not happen. The probability that v∗ is
still available and there exists a vertex in L3(t), whose rank is higher than v∗’s is sizeL3(t).

Lemma F.4. When n→∞, for any t, we have,

E[|L2(t+ 1)| − |L2(t)|] = −
|K(t)|
n− t

· |sizeL3(t)|
n− |last(t)|

− α · n− |last(t)|
n

(13)

Proof. There are two cases that a vertex in L2 can get matched at time t, depending on the t-th online vertex belongs to
which set. Let the t-th online vertex be v.

If v ∈ R2, this happens with probability 1− 2α. In this case, v gets matched if and only if v∗ is still available and v can not
matched with a vertex in L3(t). v∗ is still available happens with K(t)

(n−2α)(n−t) . In addition, the event v can not matched
with a vertex in L3(t) happens if and only if the rank of v∗ is higher than all vertices’ rank in L3(t). Therefore, in this case,
the probability that vertex in L2 gets matched is (n− 2α) · K(t)

(n−2α)(n−t) ·
sizeL3(t)
n−last(t) .

If v ∈ R3, this happens with probability α. In this case, a vertex in L2 gets matched if and only if the highest rank in L2 is
higher than the rank of v∗. This happens with probability n−last(t)

n .

Lemma F.5 describes the expected behavior of K.
Lemma F.5 (c.f. Lemma 17 of Karande et al. (2011)). When n→∞, for any t, we have,

E[|K(t+ 1)| − |K(t)|] = −|K(t)|
n− t

− α · |K(t)|
|L2(t)|

· n− |last(t)|
n

. (14)

21

DiMa: Understanding the Hardness of Online Matching Problems via Diffusion Models

Therefore, by Lemma F.2-F.5 and E[|R1|] = E[|L3|], E[|R2|] = E[|L2|], E[|R3|] = E[|L1|], we apply Kurtz’s theo-
rem (Kurtz, 1970), and when α = 0.28, we derive E[ALG(H)]

OPT(H) ≈ 0.723.

F.2. Proof of Theorem 5.2

Characterization on the hard instance. The instance in Figure 8 has 10 offline vertices and 10 online vertex sets, i.e.,
|L| = 10. Each online vertex set comprises 1/p vertices, sharing the same neighbors. Let Vi denote the i-th online vertex
set. The vertices in the first online vertex set V1 are adjacent to all offline vertices. The vertices in V2 are adjacent to all
offline vertices except ℓ1. The vertices in V3 are adjacent to all offline vertices except ℓ1 and ℓ2. The vertices in the rest
online vertex set have edges only with the corresponding offline vertex, i.e., vertices in Vj , j ≥ 4 are only adjacent to ℓj . All
the probabilities on the edges equal p, and p→ 0. The order of offline vertex sets is permuted, and let G denote the family
of these hard instances.

To prove Theorem 5.2, it comprises two parts. The first is to show when Balance runs on G, the expected ratio is less than
0.594 (Lemma F.11). The second is to prove that no algorithm is better than Balance on G (Lemma F.12).

We first compute the expected number of successful matches, i.e., E[ALG(G)]. By the definition of ALG(G), the expected
value equals the sum of probability that each offline vertex ℓi, i ∈ [|L|] succeeds after the execution of Balance on G. Then,
we have

E[ALG(G)] =
|L|∑
i=1

Pr(ℓi succeeds). (15)

Because the vertices ℓi, where i ≥ 4, are symmetric, the probabilities of their success are equal. Therefore, it suffices to
compute the probabilities of ℓi, i ≤ 4.

Next, we show how Balance matches on G. Suppose that when an online vertex set Vi comes, there are n offline vertices
available. Lemma F.6 shows the expected number of matches during the arrival of Vi.

Lemma F.6. Let the random variable Xi, 1 ≤ i ≤ n denote the number of successful matches belonging to Vi. We have
Xi ∼ min {Poisson(1), n}, that is,

Pr(Xi = k) =

{
e−1

k! k < n,

1−
∑n−1

i=0
e−1

i! k = n.
(16)

Proof. Balance is an opportunistic algorithm that never leaves an online vertex unmatched if there is an available neighbor.
Therefore, when k < n, the probability that k matches succeed is that

Pr(Xi = k) =

(
|Vi|
k

)
pk(1− p)|Vi|−k (17)

=
|Vi|k

k!
pk(1− p)|Vi|−k (18)

=
1

k!

(
(1/p)k · pk

)
(1− p)1/p−k (|Vi| = 1/p) (19)

=
(
[1/p]k · pk

)
(1− p)−k · 1

k!
(1− p)1/p (20)

=
e−1

k!
. (p→ 0) (21)

Since there are n vertices available, when k = n, it holds

Pr(Xi = n) = 1−
n−1∑
i=1

Pr(Xi = i) (22)

= 1−
n−1∑
i=0

e−1

i!
. (23)

22

DiMa: Understanding the Hardness of Online Matching Problems via Diffusion Models

Let p(n)k denote the value of Pr(Xi = k), when there are n offline vertices available. Therefore, the probability that ℓ1
succeeds can be computed by Lemma F.7.

Lemma F.7. Let the random variable Xi, 1 ≤ i ≤ n denote the number of successful matches belonging to V1. The
probability that ℓ1 succeeds is

Pr(ℓ1 succeeds) =
1

|L|
E[Xi] =

1

|L|

 |L|∑
k=0

p
(|L|)
k · k

. (24)

Proof. During the arrivals of the vertices in V1, the probability that each offline vertex succeeds is equal, because they are
symmetric. In addition, note that Xi denotes the number of successful offline vertices. Therefore,

E[Xi] = |L| ·Pr(ℓ1 succeeds), (25)

which finishes the proof.

With Eqn. (16), we can compute Eqn. (24) directly. However, the probability that ℓi, i ≥ 2 succeeds should be carefully
computed by summing the probabilities in all cases of how the online vertices in V1, · · · , Vi are matched.

Let f(i, k) denote the probability that there are k offline vertices that succeed, before the arrival of the (i+ 1)-th online
vertex set. Therefore, by definition, f(1, k) = p

(|L|)
k . Lemma F.8 tells us how to recursively compute the value of f(i, k),

when i = 2, 3.

Lemma F.8. When i = 2, 3, let t = |L| − i+ 1 denote the number of neighbors of Vi, and we have

f(i, k) =

k∑
j=0

f(i− 1, j) · t+ 1− j

t+ 1
· p(t−j)

k−j +

k+1∑
j=0

f(i− 1, j) · j

t+ 1
· p(t−j+1)

k−j+1 . (26)

Proof. Suppose that there are j vertices that succeed before the arrival of Vi. Then, there are two cases on the j vertices
when Vi arrives.

In the first case, all the j vertices are the neighbors of Vi. This happens with probability
(
t
j

)
/
(
t+1
j

)
= t!j!(t+1−j)!

j!(t−j)!(t+1)! =
t+1−j
t+1 .

In this case, t− j vertices remain. If there are k vertices that succeed after the arrival of Vi, vertices in Vi should match
successfully with k − j offline vertices, and the probability is p(t−j)

k−j . Hence, the probability overall is

f(i− 1, j) · t+ 1− j

t+ 1
· p(t−j)

k−j . (27)

Sum the probability on different j, which forms the first term on the right hand side in Eqn. (26).

If there is one among k vertex which is not Vi’s neighbor, this happens with probability
(

t
j−1

)
/
(
t+1
j

)
=

t!j!(t+1−j)!
(j−1)!(t−j+1)!(t+1)! = j

t+1 . In this case, t − j + 1 vertices remain. If there are k vertices that succeed after the ar-

rival of Vi, vertices in Vi should match successfully with k − j + 1 offline vertices, and the probability is p(t−j+1)
k−j+1 . Hence,

the probability overall is

f(i− 1, j) · j

t+ 1
· p(t−j+1)

k−j+1 . (28)

Sum the probability on different j, which forms the second term on the right hand side in Eqn. (26).

Lemma F.9. The probability that ℓi, i = 2, 3 succeeds is

Pr(ℓi succeeds) =
1

ti

(
ti∑

k=0

f(i, k) · k

)
, (29)

where ti = |L| − i+ 1 is the number of Vi’s neighbors.

23

DiMa: Understanding the Hardness of Online Matching Problems via Diffusion Models

By the definition of f , this proof is similar to the proof of Lemma F.7.

Finally, we show the probability that ℓ4 is successful as in Lemma F.10.

Lemma F.10. The probability that ℓ4 succeeds is

Pr(ℓ4 succeeds) = Pr(ℓ3 succeeds) + (1−Pr(ℓ3 succeeds))
(
1− 1

e

)
. (30)

Proof. After the arrival of V3, G is divided into 7 identical components. Each component is an online vertex set connected
to one offline vertex. Consider the reduced graph with ℓ4 and V4. Therefore, ℓ4 succeeds if and only if it succeeds with
the first 3 online vertex sets or it matches successfully with V4. The probability of the first case is Pr(ℓ3 succeeds), while
the latter is (1−Pr(ℓ3 succeeds))(1− 1/e). It holds because vertices in V4 match with ℓ4 successfully with probability
p
(1)
1 = 1− 1/e.

Lemma F.11. When Balance runs on G, the expected ratio of ALG(G) to OPT(G) is less than 0.594, that is,

E [ALG(G)]
OPT(G)

< 0.594. (31)

Proof. First, we compute the offline optimum. In G, each offline vertex ℓi, i ∈ [|L|] is connected with the online vertex set
Vi. Therefore, OPT(G) = |L|, as the optimal assignment is to match vertices in Vi to ℓi.

To compute the expected performance of Balance on G, by Eqn. (15), it suffices to sum the probability of each offline vertex
up. The expected value of ALG(G) is Pr(ℓ1 succeeds) +Pr(ℓ2 succeeds) +Pr(ℓ3 succeeds) + 7 ·Pr(ℓ4 succeeds).

By Lemma F.7, F.9, and F.10, we can compute the probabilities using a dynamic programming method. Therefore, it can
derive E[ALG(G)]

OPT(G) = (−6103798e3−84712761+1413664e2+34811393e+7257600e4)e−4

9072000 ≈ 0.59358969 < 0.594.

The last, we need show no algorithm is better than Balance on G. Actually, G has the consistency property and the exclusivity
property (Zhang et al., 2024a), and hence, Lemma F.12 holds.

Lemma F.12 (c.f. Lemma 3.5 of Zhang et al. (2024a)). Balance is optimal on G.

Together with Lemma F.11 and Lemma F.12, it holds that no algorithm does better than 0.594 in OMSR on G.

24

