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ABSTRACT

Synthetic data has gained attention for training large language models, but poor-
quality data can harm performance (see, e.g., Shumailov et al. (2023); Seddik et al.
(2024)). A potential solution is data pruning, which retains only high-quality data
based on a score function (human or machine feedback). Previous work Feng
et al. (2024) analyzed models trained on synthetic data as sample size increases.
Using random matrix theory, we generalize this analysis and derive the perfor-
mance of a binary classifier trained on a mix of real and pruned synthetic data in
a high dimensional setting. Our findings identify conditions where synthetic data
could improve performance, focusing on the quality of the generative model and
verification strategy. We also show a smooth phase transition in synthetic label
noise, contrasting with prior works on sharp transition in infinite sample limits.
Our extensive experimental setup validates our theoretical results.

1 INTRODUCTION

The landscape of large language models (LLMs) is evolving rapidly, with a growing trend towards
training models on a combination of real and synthetic data. This synthetic data is often generated
by previously trained models (Allal et al., 2024; Ben Allal et al., 2024; Abdin et al., 2024). However,
the quality of these generators can significantly impact the performance of newly trained models,
potentially leading to model collapse (Shumailov et al., 2023), a phenomenon in which the model
drastically degrades in performance.

Model collapse has been extensively studied, both empirically (Guo et al., 2023) and theoretically
(Seddik et al., 2024), highlighting the potential risks associated with training on synthetic data. To
mitigate these risks, researchers have proposed various strategies, including the verification of AI-
synthesized data (Feng et al., 2024). This approach aligns with the widely adopted Reinforcement
Learning from Human Feedback (RLHF) technique (Kaufmann et al., 2023). Feng et al. (2024)
provided theoretical support for this strategy by analyzing synthetic data as Gaussian mixtures with
noisy labels, using linear binary classifiers and scalar parameters to control verifier quality. Their
findings reveal a sharp performance transition: under infinite synthetic sample size conditions, model
accuracy shifts from zero accuracy (due to errors in synthetic data and verification) to optimal
performance as these errors decrease.

While current theoretical studies primarily focus on label noise in synthetic data (Dohmatob et al.,
2024a; Gerstgrasser et al., 2024; Feng et al., 2024), they often overlook potential distribution shifts
in the feature space between real and synthetic data. This gap is particularly relevant in practical
scenarios where generative models are trained on finite real data sets, potentially leading to imperfect
learning of the underlying distribution.

Our paper addresses this gap by proposing a statistical model that accounts for both distribution
shifts in the feature space and label noise. In our model, we induce distribution shifts in the feature
space by supposing that the statistics of synthetic data are empirical estimates of the underlying real
data statistics. In a finite sample size regime, these estimates may be biased, resulting in distribution
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shifts between real and synthetic data. Leveraging random matrix theory, we derive the theoretical
performance of a binary classifier trained on a mixture of real and pruned (i.e., verified) synthetic
data in a high-dimensional setting. Our analysis provides conditions under which synthetic data
improves performance, emphasizing the critical roles of the generative model’s quality and the ef-
ficacy of the synthetic data verification strategy. Lastly, we show that the sharp phase transition
phenomenon identified in (Feng et al., 2024) in the infinite sample size limit is a particular case of a
general result, where smooth phase transitions can take place.

Summary of contributions. Our contributions are four fold:

• We introduce a statistical model for studying synthetic data that accounts for label and
feature noise, extending beyond previous models that only consider label noise.

• By leveraging random matrix theory, we characterize the performance of a binary classifier
trained on a mixture of real and synthetic data in a high-dimensional setting.

• When training only on synthetic data, we find a smooth phase transition in classifier perfor-
mance, generalizing the work of Feng et al. (2024) on sharp transitions in infinite sample
size limit.

• We validate our results with extensive experiments (toy example and realistic LLM setups).

2 RELATED WORK

The use of synthesized data for model training has gained significant traction in recent years, partic-
ularly with the widespread adoption of large language models (LLMs) that rely on large amounts of
data in their training stages. Several studies have explored the impact of synthesized data on model
performance, revealing both its advantages and limitations. A primary concern is the phenomenon of
model collapse Shumailov et al. (2023), where the iterative use of generated data for model training
results in a degradation of model quality. This issue has been explored theoretically and empirically
across multiple studies (e.g. LeBrun et al. (2021); Alemohammad et al. (2023); Bohacek & Farid
(2023); Bertrand et al. (2023); Jain et al. (2024); Seddik et al. (2024); Dohmatob et al. (2024a;b;c)).

Seddik et al. (2024) investigated model collapse in recursive training settings, where new models are
trained on data generated by previous models. They demonstrate that recursive training on purely
synthetic data inevitably leads to performance degradation. However, they show that mixing real
and synthetic data can attenuate model collapse, though the proportion of real data must remain
high to maintain model performance. Their findings support the idea that synthesized data alone
cannot sustain model quality across iterations without a significant quantity of real data.
Gerstgrasser et al. (2024) argue that model collapse can be avoided entirely if data is accumulated
rather than replaced across iterations. Their empirical studies on language models, diffusion models,
and variational autoencoders indicate that accumulating both real and synthetic data helps maintain
model performance over time, breaking the recursive degradation loop that leads to collapse. Ad-
ditionally, Jain et al. (2024) introduced a weighted empirical risk minimization (ERM) approach to
better integrate synthetic data to the training pipeline, leading to a significant reduce in the test risk.

The most relevant work to our study is Feng et al. (2024) where the authors examined the effects
of synthesized data on model performance in a non-recursive setting, using the concept of rein-
forcement through feedback to select high quality synthetic data. Their theoretical results, based
on Gaussian mixture models, showed that adding feedback significantly improves the robustness of
models trained on synthesized data. However, their setup assumes that only labels, not features, are
noisy. Additionally, their focus is primarily on scenarios where only the number of data points, n,
grows to infinity. Other (practical) scenarios where for instance the feature dimension, p, grows at a
fixed ratio with n are not covered.

Our work extends the Gaussian mixture model setup to include both noisy features and labels, which
is a more realistic scenario when training on synthesized data. Additionally, we consider a high-
dimensional regime where both p and n grow to infinity with a fixed ratio, a setup often used in
Random Matrix Theory (RMT). This allows us to study the interaction between feature dimension,
pruner error, and data size in a more comprehensive manner. Our approach also accounts for the
presence of mixed data—original and synthetic—providing a more realistic framework for studying
the effect of synthetic data in practical applications.
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3 THEORETICAL SETUP

Real data. We suppose that real data consists of n p-dimensional i.i.d. vectors x1, . . . ,xn ∈ Rp

sampled from a Gaussian mixture of two distinct isotropic clusters C1 and C2 of means ±µ with
µ ∈ Rp. Essentially, for a ∈ {1, 2}, each data vector xi ∈ Ca has a corresponding label yi = (−1)a

and is sampled as:
xi = yiµ+ zi, zi ∼ N (0, Ip). (1)

Generative model. To generate synthetic data, we consider the generative model corresponding
to maximum likelihood which consists of estimating the underlying first and second-order statistics
of the real data with their empirical estimates. In particular, we suppose that we are given a subset
n̂ ≤ n of the real dataset (xi, yi)

n
i=1 on which we can estimate the statistics. This setup allows us

to model a situation where new real data samples might be available to train next-generation models
and the parameter n̂ offers control over the generative model quality. The statistics for generating
synthetic data are therefore computed using the following estimates

µ̂ =
1

n̂

n̂∑
i=1

yixi, Ĉ =
1

n̂

n̂∑
i=1

(yixi − µ̂) (yixi − µ̂)
⊤
. (2)

Synthetic data. We consider that synthetic data is generated as m i.i.d. vectors x̃1, . . . , x̃m ∈ Rp

with corresponding (noisy) labels ỹ1, . . . , ỹm = ±1 such that x̃i ∈ C̃a with true label ȳi = (−1)a

for a ∈ {1, 2} is sampled as (C̃1 and C̃2 denote the synthetic clusters)

x̃i = ȳiµ̂+ Ĉ
1
2 z̃i, z̃i ∼ N (0, Ip), (3)

and the labels ỹi are generated such that P{ỹi = ȳi} = 1 − ε where ε ≥ 0 controls label noise.
Essentially, the quality of synthetic data depends on the sample size n̂ and the label noise rate ε.
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Figure 1: Illustration of the Marchenko-Pastur
law: The histogram of eigenvalues of the empir-
ical covariance matrix Ĉ (as per equation (2)) us-
ing different values of n̂. The histograms corre-
spond to p = 500 and n̂ = 5 × 103 (in blue) and
n̂ = 5 × 104 (in red). The line plots depict the
limiting Marchenko-Pastur law. As n̂ grows, the
distribution of eigenvalues shrinks towards 1.

In the asymptotic regime where n̂ → ∞ with
p
n̂ → 0, we can generate synthetic samples that
follow asymptotically the exact same distribu-
tion as of the real ones, and therefore only la-
bel noise is relevant to the quality of the syn-
thetic data. However, in the regime when both
n̂, p → ∞ with p

n̂ → η̂ > 0, while the es-
timation of µ with µ̂ remains consistent, the
estimation of the covariance is not. In fact, in
this regime ∥Ĉ − Ip∥ ̸→ 0 and the eigenval-
ues of Ĉ spread in the vicinity of 1 which is
described in the limit by the Marchenko-Pastur
law (Marchenko & Pastur, 1967) as depicted in
Fig. 1. Eventually, such inconsistency in esti-
mating the second moment in high dimensions
yields a distribution shift between synthetic and
real data, which might cause a drop in perfor-
mance when training a new model on synthetic
data generated with µ̂ and Ĉ. In the remainder,
we describe precisely how the performance of
a simple classifier is affected in this regime.

Objective. Our goal throughout the paper is
to study the effect of synthetic data when train-
ing on a mixture of the n real and m synthetic
data described above, i.e., with the following
objective function:

L(w) :=
1

n+m

n∑
i=1

ℓ(xi, yi;w)︸ ︷︷ ︸
real data

+
1

n+m

m∑
i=1

qiℓ(x̃i, ỹi;w)︸ ︷︷ ︸
synthetic data

, (4)
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where ℓ is some convex loss function and the qi’s are data pruning parameters (qi ∈ {0, 1}), indicat-
ing whether to select or drop the ith synthetic sample (x̃i, ỹi). In particular, the qi’s are Bernoulli
random variables conditionally on ỹi ̸= ȳi or ỹi = ȳi (we recall that ȳi’s denote the true labels of
the synthetic samples) with conditional probabilities

ρ := P{qi = 1 | ỹi ̸= ȳi}, ϕ := P{qi = 1 | ỹi = ȳi}, (5)

which control the pruner accuracy (as discussed in (Feng et al., 2024)). As we mentioned previously,
we suppose training on n ≥ n̂ real data, modeling a situation where new real samples are available
with n̂ controlling the generative model quality in generating faithful synthetic features1.

L2-loss. In the remainder of the paper we take ℓ to be the regularized squared loss as it allows us
to obtain a closed-form solution for the optimization problem in equation 4, hence, a more tractable
analysis. Specifically, we take ℓ(x, y;w) = (w⊤x− y)2 + γ∥w∥2 where γ ≥ 0 is a regularisation
parameter, which yields the following closed-form solution

w =
1

N
QXy, Q =

(
1

N
XX⊤ + γIp

)−1

. (6)

where N = n +m, the matrix X = (x1, . . . ,xn, q1x̃1, . . . , qmx̃m) ∈ Rp×N is the concatenation
of both real and (pruned) synthetic features, and the vector y = (y1, . . . , yn, ỹ1, . . . , ỹm) ∈ RN is
the concatenation of real and (noisy) synthetic labels.

4 MAIN RESULTS

In this section, we present and discuss the main results obtained through the analysis of the classifier
model defined in equation 6. We start by specifying the supposed growth rate assumptions.
Assumption 4.1 (Growth Rate). We consider a high-dimensional regime where p, n, n̂,m → ∞
and we recall N = n+m such that:

1) p
N → η ∈ [0,∞), 2) p

n̂ → η̂ ∈ [0,∞), 3) n
N → π ∈ [0, 1], 4) ∥µ∥ = O(1).

Role of the assumptions. The above assumptions are central to understanding the nuances be-
tween real and synthetic data (as constructed above) in a high-dimensional regime. Essentially,

• Assumptions 1), 2), and 3) define the scaling of data dimension p and the different sam-
ple sizes (n real data, m synthetic data, and n̂ real samples used to train the generative
model). In particular, we suppose that all these dimensions scale linearly relative to each
other, which corresponds to the classical RMT regime. This setting is more general than
the infinite sample size regime in the sense that the former can be recovered by taking
η, η̂ → 0. Specifically, the parameter η̂ controls the generative model quality, where lower
values indicate better generative model quality. Plus, the parameter π corresponds to the
proportion of the real samples in the data mixture. For instance, π = 0 models a setting
where the training is done only on synthetic samples, and 0 < π < 1 highlights the fact that
the number n of real and m of synthetic samples are of the same order, therefore, making
our results scalable to any possible proportion π.

• The fourth condition about the magnitude of the mean vector µ reflects the fact that the
classification problem should neither be trivial (∥µ∥ ≫ 1) nor impossible (∥µ∥ → 0) as
the dimension of data grows large. For instance, assuming ∥µ∥ of order O(

√
p) would not

be relevant as p → ∞ since the classification problem becomes trivial in this regime. We
refer the reader to (Couillet & Benaych-Georges, 2016) for a more general formulation and
justifications of this assumption under an extended k-class Gaussian mixture model.

Having stated the main assumptions, we are now in place to present our main technical findings
on the performance of the classifier model trained on a mixture of real and synthetic data. As a
corollary, we also cover the case where the model is trained solely on synthetic data and showcase a
generalization of the result obtained by Feng et al. (2024).

1Technically, our results hold irrespective of the statistical dependencies between the data used to train the
generative model in equation 2 or the classifier in equation 6.

4



Published as a conference paper at ICLR 2025

10−2 10−1 100 101

p
n

0

1

2
δ∗ r

m = 2n

m = 5n

m = 10n

10−2 10−1 100 101

p
n

0.0

0.2

0.4

0.6

δ∗ s

10−2 10−1 100 101

p
n

0

2

4

δ∗ g

Figure 2: Behavior of (δ∗r , δ
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g) in terms of the ratio p

n . For small ratio p
n , the values of δ∗r , δ

∗
s , δ

∗
g

are close to 0. (δ∗r , δ
∗
s , δ

∗
g) are computed by iterating the system 7 starting from random values.

4.1 PARTIALLY SYNTHETIC: MIXTURE OF REAL AND SYNTHETIC DATA

We start by analyzing the general case of training on a mix of real and synthetic data. As we
described in the previous section, the statistics of synthetic data are empirical estimates of the ones
of real data. Under Assumption 4.1, the estimation of µ with µ̂ remains consistent, while the
estimation of the underlying real data covariance (i.e., Ip in our setting) with Ĉ is inconsistent as we
previously discussed. As a result, studying the theoretical performance of the classifier in equation 6
demands deploying tools from random matrix theory that refines the estimation of scalar quantities
depending on large random matrices. In our case, the scalar quantity of interest corresponds to the
model’s accuracy which depends on the random matrices Ĉ and XX⊤ as per equation 6.

In our analysis of the classifier’s theoretical performance, we found that the effect of high-dimension
(and that of distribution shift between real and synthetic samples) is described by three scalar quan-
tities (δ∗r , δ

∗
s , δ

∗
g) which are defined as the unique solution of the following fixed point system which

is derived from Lemma D.1 in the Appendix.

δg =
α(1− π)

1 + δs
· η̂

γ + π
1+δr

+ α(1−π)
(1+δs)(1+δg)

, δr =
η

η̂
· 1 + δs
α(1− π)

δg, δs =
αδr

1 + δg
. (7)

where α = ϕ(1 − ε) + ρε. These quantities will be used subsequently in our results. Intuitively,
δ∗r captures the contribution of real data, δ∗s corresponds to the contribution of synthetic data, and
δ∗g corresponds to the influence of the generative model. In an infinite sample size regime where
n,m, n̂ → ∞ while the dimension p is kept fixed, (δ∗r , δ

∗
s , δ

∗
g) = (0, 0, 0) as per Fig. 2, while under

Assumption 4.1 these quantities are non zero yielding a counterintuitive behavior in high-dimension.
For convenience, we further define a set of scalar quantities that will prove useful in the next result.

α = E[qi] = ϕ(1− ε) + ρε, λ = E[qiỹi] = ϕ(1− ε)− ρε,

a =
π

1 + δ∗r
+

α(1− π)

1 + δ∗s
, b = γ +

π

1 + δ∗r
+

α(1− π)

(1 + δ∗s )(1 + δ∗g)
, c =

π

1 + δ∗r
+

λ(1− π)

1 + δ∗s
,

a1 =
πη

(1 + δ∗r )
2h2b2

, b1 =
α(1− π)η

(1 + δ∗s )
2(1 + δg)2h2b2

, b2 =
α(1− π)η

(1 + δ∗s )
2(1 + δ∗g)

4h2b2
,

h1 = 1− a1 − b2, h2 = 1−
(

α(1− π)

(1 + δ∗s )(1 + δ∗g)

)2
η̂

b2
.

The first set of parameters (α, λ, a, b, c) pop out from the expectation of the classifier’s decision
function while the remaining quantities are related to second-order statistics. Essentially, the main
relevant quantities to our analysis are η̂ and ε which characterize the quality of synthetic data, with
ϕ and ρ characterizing the verification process. In an idealized scenario, we would have η̂ = ε = 0
which reflects the fact that there is no distribution shift nor label noise, while ϕ = 1 − ρ = 1
corresponds to a perfect (oracle) verification process. Our main goal is to study how these param-
eters influence the classifier’s performance hence providing the conditions that make synthetic data
relevant for performance boost. The main result brought by this paper is therefore stated as follows.
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Figure 3: Scatter plots correspond to empirical test accuracy while lines correspond to the theoretical
counterpart as per Theorem 4.2. The parameters used in this experiments are: n = n̂ = 1000,
∥µ∥ = 0.7 and γ = 1, (ρ, ϕ) = (0, 1) for Oracle supervision and (ρ, ϕ) = (1, 0.5) for the Weak
supervision. The parameter ε is variable depending on the proportion of synthetic data by taking it
equal to the misclassification error corresponding to training a classifier on synthetic data only. As
theoretically anticipated, a boost of performance is observed with synthetic data supervision while
distribution shift affects negatively the performance.

Theorem 4.2 (Theoretical performance). Let w be the Ridge classifier as defined in equation 6 and
suppose that Assumption 4.1 holds. The decision function w⊤x, on some (real) test sample x ∈ Ca,
with corresponding label y = (−1)a and independent of X, satisfies

w⊤x
D−→ N

(
y · µ, ν −m2

)
,

where µ = c∥µ∥2

b+a∥µ∥2 and

ν =
c∥µ∥2

h1(b+ a∥µ∥2)2
(
c(1 + b1 − b2)∥µ∥2 +

c

h2
− 2

(
a1 +

λb1
α

)
(b+ a∥µ∥2)

)
+

a1 + b1
h1

.

Moreover, the asymptotic test accuracy of the classifier is given by Φ
(
(ν −m2)−

1
2m
)

where

Φ(x) = 1√
2π

∫ x

−∞ e−
t2

2 dt.

Theorem 4.2 states that the decision function of the classifier in equation 6 is asymptotically equiv-
alent to the thresholding of two monovariate Gaussian random variables with respective means µ
and −µ and standard deviation ν, where the statistics µ and ν are expressed in terms of the scalar
quantities defined above. Here, µ represents the signal strength while ν highlights the classifier’s
uncertainty or dispersion. To provide some insights into the implications of this theorem, we start
by examining it in a low-dimensional regime where p is kept fixed while n,m, n̂ → ∞. In this case,
we have η, η̂ → 0 and δ∗r , δ

∗
s , δ

∗
g → 0 which yields

a = π + α(1− π), b = γ = π + α(1− π), c = π + λ(1− π),

and a1 = b1 = b2 = 0 with h1 = h2 = 1. As such, the accuracy of the classifier increases with λ,
i.e., when the synthetic labels are verified (large ϕ

ρ ) or less noisy (small ε). This is in line with the
findings of Feng et al. (2024) while extended by our result to training on a mix of real and synthetic
data. However, when the dimension scales linearly with the different sample sizes, the values of
δ∗r , δ

∗
s , δ

∗
g ̸→ 0 yielding a lower signal strength µ and higher variance ν2. This highlights the fact

that in high-dimension, even if the synthetic labels are not noisy or equivalently well verified, there
is a performance drop due to the feature distribution shift between real and synthetic data.

Fig. 3 depicts the empirical test accuracy and the theoretical prediction as per Theorem 4.2 when
varying the proportion of synthetic data. As theoretically anticipated, adding synthetic data does
not boost the classifier’s performance unless it is verified accurately (oracle supervision versus weak
supervision). Moreover, our results show the effect of the distribution shift which heavily affects
performance in the case of weak supervision (Fig. 3 right).
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4.2 FULLY SYNTHETIC: TRAINING ON SYNTHETIC DATA

In this section, we study the fully synthetic setting which corresponds to training solely on synthetic
data (i.e. n = 0 in equation 6). For simplicity, we consider only label noise and ignore feature
noise in the synthetic data. Essentially, this allows us to exhibit the smooth phase transition of
the classifier’s accuracy in terms of label noise, which extends the result of Feng et al. (2024).
Specifically, we obtain the following corollary of theorem 4.2.
Corollary 4.3 (Performance when training only on synthetic data). Let ws be the Ridge classifier
described in equation 6 trained only on synthetic data with only label noise (i.e., Ĉ = Ip). Under
Assumption 4.1, the decision function w⊤

s x on a test sample x ∈ Ca with corresponding label
y = (−1)a and independent of X, satisfies

w⊤
s x

D−→ N
(
y · µs, νs − µ2

s

)
,

where

µs =
ϕ(1− ε)− ρε

α∥µ∥2 + α+ γ(1 + δs)
∥µ∥2,

νs =
λ2∥µ∥2

h(α∥µ∥2 + α+ γ(1 + δs))

( ∥µ∥2 + 1

α∥µ∥2 + α+ γ(1 + δs)
− 2(1− h)

α

)
+

1− h

h
,

with

ηs = lim
p→∞

p

m
, h = 1− αηs

(α+ γ(1 + δ))2
, δs =

ηsα− α− γ +
√
(α+ γ − ηsα)2 + 4ηsαγ

2γ
.
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Figure 4: Phase transition in terms of label noise
as predicted by Corollary 4.3. The critical value
for ε is predicted at ε∗ = (1 + ρ

ϕ )
−1. We fix p =

100 and vary m. The remaining parameters are
∥µ∥ = 1, ρ = 0.3 and ϕ = 0.8, i.e. ε∗ = 0.73.

Corollary 4.3 provides an explicit formulation
of Theorem 4.2 with synthetic data only and
ignoring distribution shift (yielding an explicit
expression of δs). This setting provides a
clearer interpretation of the effect of label noise
since the classifier’s performance is directly re-
lated to the quantity λ = ϕ(1 − ε) − ρε. The
breaking point of the classifier’s performance
occurs at λ = 0, which corresponds to the ac-
curacy of random guessing, yielding to the crit-
ical value of label noise ε∗ = (1 + ρ

ϕ )
−1. This

critical value is equivalent to the one obtained
by Feng et al. (2024), however, we extend their
result to the high-dimensional setting which ex-
hibits a smoother phase transition as depicted
in Fig. 4. Essentially, the sharp phase transition
of Feng et al. (2024) is covered by our result
by taking ηs → 0. In this sense, the predicted
smooth transition better mirrors real-world sce-
narios where finite sample sizes introduce grad-
ual changes in performance rather than abrupt
shifts. This makes our theoretical findings more
applicable and reliable for practical scenarios.

5 EXPERIMENTS

In this section, we present our experiments conducted on different real-world tasks and datasets in
order to illustrate our theoretical findings presented in the previous section.

5.1 EXPERIMENTAL SETTINGS

Amazon Reviews. We use the Amazon Reviews datasets (Blitzer et al. (2007)) which include
several binary classification tasks corresponding to positive versus negative reviews of books,
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Figure 5: Illustration of two different generation schemes for the MNIST data. Top figure: Generat-
ing MNIST-like data samples by only estimating the mean of each class µ̂a for a ∈ [10] and without
estimating the covariance matrix, i.e samples here are generated through the distribution N (µ̂a, Ip).
Bottom figure: Generating samples by estimating both the mean and covariance of each class, as of
our considered generative model defined in equation 2.

electronics and kitchen. We apply the standard scaler from sklearn (Pedregosa et al.,
2011) and estimate ∥µ∥ with the normalized data. The synthetic data is generated following the
described generative scheme (see equation 2). We use the Ridge classifier in equation 6 for this data.

MNIST. We also conducted experiments on the MNIST (LeCun & Cortes (2010)) dataset to illus-
trate our theoretical insights, by training a simple neural network with one-hidden layer and ReLU
activation function. Concerning the synthetic data, we used different values of n̂ to generate new
samples in order to highlight the importance of the generation quality, and introduced a label noise ε
to highlight the importance of the pruning. Figure 5 shows some examples of MNIST-like synthetic
data that has been generated and used in our experiments.

LLM Safety Alignment. We also investigated the impact of synthetic text data for the task of
alignment of LLMs with direct preference optimization on safety datasets, using the same approach
as in (Alami et al., 2024). We finetune the Falcon 2-11B Instruct model (Malartic et al., 2024)
on n = 5000 human data from Anthropic’s HH-RLHF dataset2, which correspond to real data,
while synthetic data are extracted from the PKU safe RLHF dataset3 which are generated using
Alpaca3-70B4. We increase the amount of synthetic data by injecting gradually five batches of
7000 samples per batch, to study the performance of the fine-tuned model as we add more synthetic
data. In this experiment, we focus only on label noise by randomly perturbing the synthetic dataset.
Each entry from the synthetic dataset includes a prompt x(j), a safe response y

(j)
sw (safety-accepted

response), and a less safe response y
(j)
sl (safety-rejected response). We, therefore, perturbed this

dataset by swapping safe and less safe responses with a probability ε (label noise), and selecting the
prompts according to a verifier of parameters ρ and ϕ described earlier in this paper.

For the evaluation, we use the ALERT dataset5 (Tedeschi et al. (2024)) to test the safety of responses
of the finetuned model after being judged by LLama-Guard-3-8B (Dubey et al., 2024). As in
(Alami et al., 2024), we compute the safety score as the percentage of safe answers labeled by
Llama-Guard-3-8B. We report the results in figure 8 for strong supervision (ρ, ϕ) = (0.2, 0.9)
and weak supervision (ρ, ϕ) = (0.5, 0.5) for both ε = 0.1 and ε = 0.5.

LLM Q&A Safety Generation. This experiment aims to evaluate the impact of synthetically
generated prompts (i.e. feature noise). To construct the generative model for this experiment, we
fine-tune an LLM (M) with supervised fine-tuning (SFT) on pairs of question-answer (Q&A) sen-
tences extracted from a safety dataset. Initially, we fine-tune M on 12k human annotated Q&A as
safe or unsafe (Ji et al., 2024), yielding a fine-tuned model on human data denoted as Mh. Then,
Mh is considered as the generative model to generate a large dataset of synthetic Q&A prompts

2https://huggingface.co/datasets/yimingzhang/hh-rlhf-safety
3https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF
4https://huggingface.co/PKU-Alignment/alpaca-70b-reproduced-llama-3
5https://github.com/Babelscape/ALERT/blob/master/data/alert.jsonl
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Figure 6: Results of the Amazon Reviews setting: Test Accuracy with the proportion of synthetic
data evaluated on Amazon Review Blitzer et al. (2007) dataset. The number of real data sample used
is n = 800, the dimension is p = 400, γ = 10−1 and ε = 0.2 (fixed). The pruning parameters are
(ρ, ϕ) = (0, 1) for Oracle supervision and (ρ, ϕ) = (1, 1) for No supervision.
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Figure 7: Results of the MNIST setting: Training an NN with one hidden layer and ReLU activa-
tion function on a mixture of real (n = 500) and varying the proportion of synthetic Gaussian data.

(around 120k samples) that were further annotated as safe/unsafe using Mistral-Nemo6 and
Qwen2-7B-Instruct (Yang et al., 2024), which incorporate a further label noise. To verify the
data, we use Llama-Guard-3.1 (Dubey et al., 2024). We conducted this experiment using two
LLMs (M) of different sizes (to vary the generative model quality) which are the Llama-3.1-8B
and Gemma-2-2B-it (Team et al., 2024) instruct models.

5.2 EFFECT OF LABEL NOISE

Figures 6, 7 (left plot) 8 reflect the effect of label noise. Essentially, as theoretically anticipated,
the trained models do not benefit from synthetic data unless it is accurately verified. Specifically,
in the case of weak supervision, model performance drops significantly, and the improvement from
using synthetic data is only visible with very high synthetic sample sizes. On the contrary, with
strong supervision, we observe a monotonous performance boost as the proportion of synthetic data
increases.

5.3 EFFECT OF FEATURE NOISE

In this section, we discuss the experiments related to feature noise. In Fig. 7 (right), we depict
the performance of a one-hidden layer MLP trained on a mix of real and synthetic MNIST data
following our theoretical framework. As we can observe from the figure, the performance boost
from synthetic data heavily depends on the generative model quality as predicted by our theoretical
results. We further observe the same trend using LLMs as depicted in Fig. 9, where we observe
that the synthetic data generated by Llama3.1-8B-Instruct yields a better performance boost
compared to Gemma-2-2B-it as we increase the amount of synthetic samples, which means

6https://mistral.ai/news/mistral-nemo/
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Figure 8: Results of LLM Safety Alignment: Strong supervision corresponds to (ρ, ϕ) = (0.2, 0.9)
and weak supervision to(ρ, ϕ) = (0.5, 0.5).
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Figure 9: Results of LLM Q&A Safety Generation: Evaluation of two LLMs trained as pre-
sented in section 5.1 is depicted for both (left) M= Llama3.1-8B-Instruct and (right) M=
Gemma-2-2B-it. The test accuracy is computed over the testing dataset extracted from Ji et al.
(2024), with 2.8k Q&A samples. The results shown are the average over 3 runs.

that Llama3.1-8B-Instruct generates better synthetic samples (less distribution shift) than
Gemma-2-2B-it.

6 CONCLUSION AND LIMITATIONS

In this work, we conducted a comprehensive theoretical and empirical analysis of models trained
on a mixture of real and synthetic data with verification. By leveraging random matrix theory, we
identified critical factors such as distribution shifts and label noise that significantly impact model
performance. Our findings demonstrate that synthetic data can enhance model accuracy under spe-
cific conditions, particularly when the generative model is of high quality and the verification process
is accurate. Additionally, we extended previous research by showing that performance transitions
are smooth rather than sharp when synthetic data is incorporated in high-dimensional settings.

Despite these advancements, our current setting is limited to label verification of synthetic data.
Incorporating feature verification represents a promising extension for future research, which could
provide further insights into the reliability and effectiveness of synthetic data in model training.
Another possible extension of our work is to study distributions beyond the Gaussian model and
analyze how higher-order statistics can be incorporated into our current framework.

In conclusion, this work provides a foundational understanding of the conditions under which syn-
thetic data can be beneficial for model training in high-dimensional settings. By integrating both
theoretical insights and empirical validations, this study provides new insights into the effective
utilization of synthetic data, paving the way for more resilient and performant AI models.

10



Published as a conference paper at ICLR 2025

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Ben-
haim, Misha Bilenko, Johan Bjorck, Sébastien Bubeck, Qin Cai, Martin Cai, Caio César Teodoro
Mendes, Weizhu Chen, Vishrav Chaudhary, Dong Chen, Dongdong Chen, Yen-Chun Chen, Yi-
Ling Chen, Parul Chopra, Xiyang Dai, Allie Del Giorno, Gustavo de Rosa, Matthew Dixon,
Ronen Eldan, Victor Fragoso, Dan Iter, Mei Gao, Min Gao, Jianfeng Gao, Amit Garg, Abhishek
Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao, Russell J. Hewett, Jamie Huynh,
Mojan Javaheripi, Xin Jin, Piero Kauffmann, Nikos Karampatziakis, Dongwoo Kim, Mahoud
Khademi, Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars
Liden, Ce Liu, Mengchen Liu, Weishung Liu, Eric Lin, Zeqi Lin, Chong Luo, Piyush Madan,
Matt Mazzola, Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel
Perez-Becker, Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Corby Rosset, Sam-
budha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shi-
tal Shah, Ning Shang, Hiteshi Sharma, Swadheen Shukla, Xia Song, Masahiro Tanaka, Andrea
Tupini, Xin Wang, Lijuan Wang, Chunyu Wang, Yu Wang, Rachel Ward, Guanhua Wang, Philipp
Witte, Haiping Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Sonali Yadav,
Fan Yang, Jianwei Yang, Ziyi Yang, Yifan Yang, Donghan Yu, Lu Yuan, Chengruidong Zhang,
Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and Xiren
Zhou. Phi-3 technical report: A highly capable language model locally on your phone, 2024.
URL https://arxiv.org/abs/2404.14219.

Reda Alami, Ali Khalifa Almansoori, Ahmed Alzubaidi, Mohamed El Amine Seddik, Mugariya
Farooq, and Hakim Hacid. Alignment with preference optimization is all you need for llm safety.
arXiv preprint arXiv:2409.07772, 2024.

Sina Alemohammad, Josue Casco-Rodriguez, Lorenzo Luzi, Ahmed Imtiaz Humayun, Hossein
Babaei, Daniel LeJeune, Ali Siahkoohi, and Richard G. Baraniuk. Self-consuming generative
models go mad. arXiv preprint arxiv:2307.01850, 2023.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Leandro von Werra, and Thomas Wolf. Smollm
- blazingly fast and remarkably powerful, 2024.

Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, Thomas Wolf, and Leandro von Werra.
Cosmopedia, 2024. URL https://huggingface.co/datasets/HuggingFaceTB/
cosmopedia.

Quentin Bertrand, Avishek Joey Bose, Alexandre Duplessis, Marco Jiralerspong, and Gauthier
Gidel. On the stability of iterative retraining of generative models on their own data. arXiv
preprint arXiv:2310.00429, 2023.

John Blitzer, Mark Dredze, and Fernando Pereira. Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classification. In Proceedings of the 45th annual
meeting of the association of computational linguistics, pp. 440–447, 2007.

Matyas Bohacek and Hany Farid. Nepotistically trained generative-ai models collapse, 2023.

Romain Couillet and Florent Benaych-Georges. Kernel spectral clustering of large dimensional data.
2016.

Elvis Dohmatob, Yunzhen Feng, and Julia Kempe. Model collapse demystified: The case of regres-
sion. arXiv preprint arXiv:2402.07712, 2024a.

Elvis Dohmatob, Yunzhen Feng, Arjun Subramonian, and Julia Kempe. Strong model collapse.
arXiv preprint arXiv:2410.04840, 2024b.

Elvis Dohmatob, Yunzhen Feng, Pu Yang, Francois Charton, and Julia Kempe. A tale of tails: Model
collapse as a change of scaling laws. arXiv preprint arXiv:2402.07043, 2024c.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

11

https://arxiv.org/abs/2404.14219
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia


Published as a conference paper at ICLR 2025

Yunzhen Feng, Elvis Dohmatob, Pu Yang, Francois Charton, and Julia Kempe. Beyond model col-
lapse: Scaling up with synthesized data requires reinforcement. arXiv preprint arXiv:2406.07515,
2024.

Matthias Gerstgrasser, Rylan Schaeffer, Apratim Dey, Rafael Rafailov, Henry Sleight, John Hughes,
Tomasz Korbak, Rajashree Agrawal, Dhruv Pai, Andrey Gromov, et al. Is model collapse in-
evitable? breaking the curse of recursion by accumulating real and synthetic data. arXiv preprint
arXiv:2404.01413, 2024.

Yanzhu Guo, Guokan Shang, Michalis Vazirgiannis, and Chloé Clavel. The curious decline of lin-
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A USEFUL LEMMAS

Notation: For a ∈ {1, 2}, we denote by Ia = {i | xi ∈ Ca}, i.e, the set of indices of vectors
belonging to class Ca. Furthermore, we denote Σ = µµ⊤ + Ip = E

[
xx⊤] for x ∈ Ca, and

Σβ = µβµ
⊤
β +C

Here we will list the most useful lemmas and results used in our analysis.

A.1 GENERAL LEMMAS

Lemma A.1 (Inverse identity). For invertible matrices A and B, we have that:

A−1 −B−1 = A−1(B−A)B−1

Lemma A.2 (Woodbury). For A ∈ Rp×p, U,V ∈ Rp×k, such that both A and A + UV⊤ are
invertible, we have:(

A+UV⊤)−1
= A−1 −A−1U

(
Ik +V⊤A−1U

)−1
V⊤A−1

A particular case of this lemma A.2, in the case of k = 1, is called Sherman-Morisson’s identity.
Lemma A.3 (Sherman-Morisson). For A ∈ Rp×p invertible and u,v ∈ Rp, A+uv⊤ is invertible
if and only if : 1 + v⊤Au ̸= 0, and:

(A+ uv⊤)−1 = A−1 − A−1uv⊤A−1

1 + v⊤A−1u

Besides,

(A+ uv⊤)−1u =
A−1u

1 + v⊤A−1u
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A.2 DETERMINISTIC EQUIVALENTS

Let us state here the deterministic equivalent of the resolvent matrix Q defined in the general model’s
equation (6) for any general covariance matrix C and mean µβ = βµ+ µ⊥ that define the statistic
of the synthetic data, as in equation 13.
Lemma A.4 (Deterministic equivalent of Q). Under the 4.1 assumptions listed above in the main
paper, a deterministic equivalent for Q ≡ Q(γ), denoted Q̄, is given by:

Q̄ =

(
π(µµ⊤ + Ip)

1 + δ
+

α(1− π)(µβµ
⊤
β +C)

1 + δS
+ γIp

)−1

where:
π =

n

n+m
, α = ϕ(1− ε) + ρε, δ =

1

N
Tr(Q̄), δS =

α

N
Tr(CQ̄)

Proof. We want to find Q̄ such that for all bounded a, b ∈ Rp:

a⊤(E[Q]− Q̄)b → 0

Let Q̄ = (S+ γIp)
−1. We want to determine an S that satisfies the above property. We have that:

E[Q]− Q̄ = E[Q(S− 1

N
VV⊤)Q̄] (lemmaA.1)

=
1

N

N∑
i=1

E[Q(S− viv
⊤
i )Q̄]

=
1

N

n∑
i=1

E[Q(S− xix
⊤
i )Q̄] +

1

N

m∑
i=1

E[Q(S− qix̃ix̃
⊤
i )Q̄]

=
1

N

n∑
i=1

E[QS− 1

1 + δR
Q−xi

xix
⊤
i ]Q̄+

1

N

m∑
i=1

E[QS− qi
1 + δS

Q−x̃i
x̃ix̃

⊤
i ]Q̄

= πE[QS− 1

1 + δR
Q−xi

xix
⊤
i ]Q̄+ (1− π)E[QS− qi

1 + δS
Q−x̃i

x̃ix̃
⊤
i ]Q̄

= πE[Q−xi(S− xix
⊤
i

1 + δR
)Q̄] + (1− π)E[Q−x̃i(S− qix̃ix̃

⊤
i

1 + δS
)Q̄] +O(N−1)

Thus, it suffices to have:

S =
π(µµ⊤ + Ip)

1 + δR
+

α(1− π)(µβµ
⊤
β +C)

1 + δS
to get the desired property.

Lemma A.5 (Deterministic equivalent of QAQ). Let A ∈ Rp×p be any deterministic symmetric
semi-definite matrix. We have that:

QAQ ↔ Q̄AQ̄+
π

N(1 + δ)2
Tr(ΣQ̄AQ̄)E[QΣQ] +

α(1− π)

N(1 + δS)2
Tr(ΣβQ̄AQ̄)E[QΣβQ]

Thus, we get that for A = Σ, and for A = Σβ:

QΣQ ↔ Q̄ΣQ̄+
π

N(1 + δ)2
Tr((ΣQ̄)2)E[QΣQ] +

α(1− π)

N(1 + δS)2
Tr(ΣβQ̄ΣQ̄)E[QΣβQ]

QΣβQ ↔ Q̄ΣβQ̄+
π

N(1 + δ)2
Tr(ΣQ̄ΣβQ̄)E[QΣQ] +

α(1− π)

N(1 + δS)2
Tr((ΣβQ̄)2)E[QΣβQ]

And by denoting:

a1 =
π

N(1 + δ)2
Tr((ΣQ̄)2), b1 =

α(1− π)

N(1 + δS)2
Tr(ΣβQ̄ΣQ̄),

a2 =
π

N(1 + δ)2
Tr(ΣβQ̄ΣQ̄), b2 =

α(1− π)

N(1 + δS)2
Tr((ΣβQ̄)2)

h = (1− b2)(1− a1)− a2b1
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We get that:

QΣQ ↔ 1− b2
h

Q̄ΣQ̄+
b1
h
Q̄ΣβQ̄,

QΣβQ ↔ a2
h
Q̄ΣQ̄+

1− a1
h

Q̄ΣβQ̄.

Proof. Recall that:

Q̄(γ) =

(
πΣ

1 + δ
+

α(1− π)Σβ

1 + δS
+ γIp

)−1

Let us denote by : S = πΣ
1+δ +

α(1−π)Σβ

1+δS
, so that: Q̄ = (S+ γIp)

−1.
We have that:

E[QAQ] = E[Q̄AQ] + E[(Q− Q̄)AQ]

= Q̄E[AQ] + E[(Q− Q̄)AQ]

= Q̄
(
E[AQ̄] + E[A(Q− Q̄)]

)
+ E[(Q− Q̄)AQ]

= Q̄AQ̄+ E[(Q− Q̄)AQ]

= Q̄AQ̄+ E[Q
(
S− 1

N
VV⊤

)
AQ]

= Q̄AQ̄+ E[QSQ̄AQ]− 1

N

N∑
i=1

E[Qviv
⊤
i Q̄AQ]

= Q̄AQ̄+ E[QSQ̄AQ]− πE[Qxix
⊤
i Q̄AQ]− (1− π)E[Qqix̃ix̃

⊤
i Q̄AQ]

And we have that:

E[Qxix
⊤
i Q̄AQ] =

1

1 + δ
E[Q−xi

xix
⊤
i Q̄AQ]

=
1

1 + δ
E
[
Q−xixix

⊤
i Q̄A

(
Q−xi −

Q−xi
xix

⊤
i Q−xi

N(1 + δ)

)]
=

1

1 + δ
E[Q−xixix

⊤
i Q̄AQ−xi ]−

1

N(1 + δ)2
E[Q−xixix

⊤
i Q̄AQ−xixix

⊤
i Q−xi ]

=
1

1 + δ
E[QΣQ̄AQ]− 1

N(1 + δ)2
Tr(ΣQ̄AQ̄)E[Q−xi

xix
⊤
i Q−xi

]

=
1

1 + δ
E[QΣQ̄AQ]− 1

N(1 + δ)2
Tr(ΣQ̄AQ̄)E[QΣQ]

And:

E[qiQx̃ix̃
⊤
i Q̄AQ] =

1

1 + δS
E[qiQ−x̃i x̃ix̃

⊤
i Q̄AQ]

=
1

1 + δS
E
[
qiQ−x̃i

x̃ix̃
⊤
i Q̄A

(
Q−x̃i

− qiQ−x̃i
x̃ix̃

⊤
i Q−x̃i

N(1 + δS)

)]
=

1

1 + δS
E[qiQ−x̃i x̃ix̃

⊤
i Q̄AQ−x̃i ]−

1

N(1 + δS)2
E[qiQ−x̃i x̃ix̃

⊤
i Q̄AQ−x̃i x̃ix̃

⊤
i Q−x̃i ]

=
α

1 + δS
E[QΣβQ̄AQ]− α

N(1 + δS)2
Tr(ΣβQ̄AQ̄)E[Q−x̃i x̃ix̃

⊤
i Q−xi ]

=
α

1 + δS
E[QΣβQ̄AQ]− α

N(1 + δS)2
Tr(ΣβQ̄AQ̄)E[QΣβQ]

Which concludes the proof by summing all these separate terms.

Corollary A.6 (Trace identities). Using the above lemma A.5, we get that:

1

N
Tr(ΣE[QΣQ]) =

(1 + δ)2

πh
(a1(1− b2) + a2b1) ,

1

N
Tr(ΣβE[QΣQ]) =

(1 + δS)
2

α(1− π)h
b1
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And in the case of isotropic covariance matrix: C = σ2Ip:

1

N
Tr(ΣE[QΣQ]) =

η

hθ2
(1− b2 + σ2b1),

1

N
Tr(ΣβE[QΣQ]) =

σ2

N
Tr(ΣE[QΣQ])

A.3 RESOLVENT IDENTITIES

Let Q be the resolvent matrix defined in equation (6). Denote by Q−vi
the resolvent matrix obtained

from the dataset V by removing the ith sample vi, i.e:

Q−vi =

(
Q−1 − 1

N
viv

⊤
i

)−1

Then, using lemma A.3, we have that:

Q = Q−vi
− Q−vi

1
N viv

⊤
i Q−i

1 + 1
N v⊤

i Q−vi
vi

,

and,

Qxi =
Q−xixi

1 + δ
, Qx̃i =

Q−x̃i x̃i

1 + δS
, (8)

where:

δ =
1

N
Tr(ΣQ̄) =

1

N
Tr(Q̄), δS = (ϕ(1− ε) + ρε)

1

N
Tr(ΣβQ̄) =

α

N
Tr(CQ̄) (9)

Let us recall the expression of Q̄ defined in lemma A.4:

Q̄ =

(
π(µµ⊤ + Ip)

1 + δ
+

α(1− π)(µβµ
⊤
β +C)

1 + δS
+ γIp

)−1

=
(
A+UU⊤)−1

where:

A =
α(1− π)

1 + δS
C+

(
γ +

π

1 + δ

)
Ip, U =

√ π

1 + δ
µ,

√
α(1− π)

1 + δS
µβ

 (10)

Since C is symmetric and real valued, then it is diagonalizable, and can be written as:

C = PDP⊤

where: P−1 = P⊤ is the matrix containing the eigenvectors of C in its columns, and D =
Diag((di)

p
i=1) the diagonal matrix of the eigenvalues of C. Hence, A can be written as:

A = P∆P⊤, ∆ = Diag

(
γ +

π

1 + δ
+

α(1− π)

1 + δS
di

)p

i=1

(11)

And using Woodbury’s identity in lemma A.2, we get that:

Q̄ = A−1 −A−1U
(
I2 +U⊤A−1U

)−1
U⊤A−1

where: A−1 = P∆−1P⊤ and ∆−1 = Diag

(
1

γ+ π
1+δ+

α(1−π)
1+δS

di

)p

i=1

.

Let M =
(
I2 +U⊤A−1U

)−1
, and denote by Mi,j its coordinate in the ith row and jth column. We

have that:

Q̄ = A−1 −A−1UMU⊤A−1

= A−1 −A−1
(
ζ1µµ

⊤ + ζ2µβµ
⊤
β + ζ3(µµ

⊤
β + µβµ

⊤)
)
A−1

16
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where:

ζ1 =
πM1,1

1 + δ
, ζ2 =

α(1− π)M2,2

1 + δS
, ζ3 =

√
απ(1− π)

(1 + δ)(1 + δS)
M1,2

Thus,
Q̄ = A−1 −A−1

(
ζ1µµ

⊤ + ζ2µβµ
⊤
β + ζ3(µµ

⊤
β + µβµ

⊤)
)
A−1 (12)

We can further show that:

M1,1 =
1

det(M−1)

(
1 +

α(1− π)

1 + δS
µ⊤

β A
−1µβ

)
M1,2 =

1

det(M−1)

(
−
√

απ(1− π)

(1 + δ)(1 + δS)
µ⊤A−1µβ

)

M2,1 =
1

det(M−1)

(
−
√

απ(1− π)

(1 + δ)(1 + δS)
µ⊤A−1µβ

)

M2,2 =
1

det(M−1)

(
1 +

π

1 + δ
µ⊤A−1µ

)
det(M−1) =

(
1 +

π

1 + δ
µ⊤A−1µ

)(
1 +

α(1− π)

1 + δS
µ⊤

β A
−1µβ

)
− απ(1− π)

(1 + δ)(1 + δS)
(µ⊤A−1µβ)

2

Lemma A.7 (Delta). The parameters δ and δS defined in equation 9, are given by the following
identities:

δ =
1

N

p∑
i=1

1

γ + π
1+δ + α(1−π)

1+δS
di
, δS =

α

N

p∑
i=1

di

γ + π
1+δ + α(1−π)

1+δS
di

where: (di)
p
i=1 are the eigenvalues of the covariance matrix C.

Proof. Let: M =
(
I2 +U⊤A−1U

)−1
, and denote by Mi,j its coordinate in the ith row and jth

column. We have that using the expression of Q̄ in equation 12:

Q̄ = A−1 −A−1
(
ζ1µµ

⊤ + ζ2µβµ
⊤
β + ζ3(µµ

⊤
β + µβµ

⊤)
)
A−1

Then:

δ =
1

N
Tr(Q̄)

=
1

N
Tr(A−1)− 1

N
Tr(A−1

(
ζ1µµ

⊤ + ζ2µβµ
⊤
β + ζ3(µµ

⊤
β + µβµ

⊤)
)
A−1)

We have that, when N → ∞:

1

N
Tr(A−1µµ⊤A−1) =

1

N
µ⊤(A−1)2µ = O(N−1)

since ∥µ∥ = O(N−1) by assumption 4.1. The same applies for µβ . Thus:

δ =
1

N
Tr(A−1)− 1

N
ζ1µ

⊤(A−1)2µ− 1

N
ζ2µ

⊤
β (A

−1)2µβ − 2

N
ζ3µ

⊤(A−1)2µβ

=
1

N
Tr(A−1) +O(N−1)

=
1

N
Tr(∆−1) +O(N−1)

=
1

N

p∑
i=1

1

γ + π
1+δ + α(1−π)

1+δS
di

+O(N−1)

17



Published as a conference paper at ICLR 2025

Hence we have the desired result for δ in the regime N ≫ 1 which we considered in our assumption
4.1.
Similarly for δS , we have that:
1

α
δS =

1

n
Tr(CQ̄)

=
1

N
Tr(CA−1)− 1

N
ζ1µ

⊤A−1CA−1µ− 1

N
ζ2µ

⊤
β A

−1CA−1µβ − 2

N
ζ3µ

⊤A−1CA−1µβ

=
1

N
Tr(CA−1) +O(N−1)

=
1

N
Tr(D∆−1) +O(N−1)

=
1

N

p∑
i=1

di

γ + π
1+δ + α(1−π)

1+δS
di

+O(N−1)

Which concludes our proof.

Now let us compute the trace identities that will be useful in the next sections.
Lemma A.8 (Trace identities). We have the following trace identities:

1

N
Tr((ΣQ̄)2) =

1

N

p∑
i=1

1(
γ + π

1+δ + α(1−π)
1+δS

di

)2 , 1

N
Tr((ΣβQ̄)2) =

1

N

p∑
i=1

(
di

γ + π
1+δ + α(1−π)

1+δS
di

)2

,

1

N
Tr(ΣQ̄ΣβQ̄) =

1

N

p∑
i=1

di(
γ + π

1+δ + α(1−π)
1+δS

di

)2
Proof. We have that:

1

N
Tr((ΣQ̄)2) =

1

N
Tr
(
(µµ⊤ + Ip)Q̄(µµ⊤ + Ip)Q̄

)
=

1

N
Tr(Q̄2) +O(N−1)

=
1

N
Tr((A−1)2) +O(N−1)

=
1

N
Tr((P∆−1P⊤)2) +O(N−1)

=
1

N
Tr((∆−1)2) +O(N−1)

=
1

N

p∑
i=1

1(
γ + π

1+δ + α(1−π)
1+δS

di

)2 +O(N−1)

Thus we demonstrated the first identity. For the second one, we have that:
1

N
Tr((ΣβQ̄)2) =

1

N
Tr
(
(µβµ

⊤
β +C)Q̄(µβµ

⊤
β +C)Q̄

)
=

1

N
Tr((CQ̄)2) +O(N−1)

=
1

N
Tr((CA−1)2) +O(N−1)

=
1

N
Tr((D∆−1)2) +O(N−1)

=
1

N

p∑
i=1

(
di

γ + π
1+δ + α(1−π)

1+δS
di

)2

++O(N−1)

And the same spirit of the proof applies to the last identity.
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B RANDOM MATRIX ANALYSIS OF THE GENERAL MODEL

In the generalized model, we consider that the synthetic data follow the following distribution:

x̃i ∼ N (µβ ,C), µβ = βµ+ µ⊥ (13)

where β ∈ R defines the alignment of the synthetic mean with the mean of real data, and µ⊥ is a
vector orthogonal to µ.
Now we will analyze here the performance of the classifier given by equation (6), and prove a
generalized theorem B.1 in the paper.

wq =
1

N
Q(γ)

(
Xy + X̃D(q)ỹ

)
, Q(γ) =

(
1

N
VV⊤ + γIp

)−1

.

The performance of (6) are fully determined by the first two order moments: E[w⊤
q x] and

E[(w⊤
q x)

2].

B.1 TEST EXPECTATION:

We have that:

wq =
1

N

n∑
i=1

Qyixi +
1

N

m∑
i=1

Qqiỹix̃i

Let x ∼ N ((−1)aµ, Ip) be a test sample independent of all the training samples (vi)
N
i=1. Then:

E[w⊤
q x] =

1

N

n∑
i=1

E[yix⊤
i Qx] +

1

N

m∑
i=1

E[qiỹix̃⊤
i Qx]

First sum: We have that, using the same lemma A.3:

1

N

n∑
i=1

E[yix⊤
i Qx] =

1

N

n∑
i=1

1

1 + δ
E[yix⊤

i Q−xi
x]

=
1

N

n∑
i=1

1

1 + δ
E[xi]

⊤E[Q−xi
]E[x]

=
1

N

n∑
i=1

(−1)a

1 + δ
µ⊤Q̄µ

=
(−1)aπ

1 + δ
µ⊤Q̄µ

Thus,
1

N

n∑
i=1

E[yix⊤
i Qx] =

(−1)aπ

1 + δ
µ⊤Q̄µ (14)

Second sum: Using the same lemma A.3:

1

N

m∑
i=1

E[qiỹix̃⊤
i Qx] =

1

N

m∑
i=1

1

1 + δS
E[qiỹix̃⊤

i Q−x̃ix]

=
1

N(1 + δS)

m∑
i=1

E[qiỹi]E[x̃i]
⊤E[Q−x̃i ]E[x]

=
(−1)a

N(1 + δS)

m∑
i=1

λµ⊤
β Q̄µ

=
(−1)aλ(1− π)

1 + δS
µ⊤

β Q̄µ
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where (here yi means the true label of x̃i):

E[qiỹi] = yiP[qi = 1 | ỹi = yi]− yiP[qi = 1 | ỹi ̸= yi]

= yi(ϕ(1− ε)− ρε) = λyi

Therefore,

E[w⊤
q x] = (−1)a

(
π

1 + δ
µ⊤ +

λ(1− π)

1 + δS
µ⊤

β

)
Q̄µ (15)

B.2 TEST VARIANCE:

To determine the variance of w⊤
q x, it only remains to compute its second order. We have that:

E[(w⊤
q x)

2] =
1

N2
E


 n∑

i=1

yix
⊤
i Qx+

m∑
j=1

qj ỹjx̃
⊤
j Qx

2


=
1

N2
E

( n∑
i=1

yix
⊤
i Qx

)2
+

1

N2
E


 m∑

j=1

qj ỹjx̃
⊤
j Qx

2
+

2

N2
E

( n∑
i=1

yix
⊤
i Qx

) m∑
j=1

qj ỹjx̃
⊤
j Qx


Let us compute each sum on its own, and then group the results at the end.

First sum: We have that:

1

N2
E

( n∑
i=1

yix
⊤
i Qx

)2
 =

1

N2

n∑
i=1

n∑
k=1

E[yiyjx⊤
i Qxx⊤

k Qx]

=
1

N2

n∑
i̸=k

E[yiykx⊤
i Qxx⊤

k Qx] +
1

N2

n∑
i=1

E[x⊤
i Qxx⊤

i Qx]

- For i ̸= k, we have that:

E[yiykx⊤
i Qxx⊤

k Qx] = E[yiykx⊤
i Qxx⊤Qxk]

= E[yiykx⊤
i QΣQxk]

=
1

(1 + δ)2
E[yiykx⊤

i Q−xi
ΣQ−xk

xk]

=
1

(1 + δ)2
E

[
yiykx

⊤
i

(
Q−xi,k

−
1
NQ−xi,k

xkx
⊤
k Q−xi,k

1 + δ

)
Σ

(
Q−xi,k

−
1
NQ−xi,k

xix
⊤
i Q−xi,k

1 + δ

)
xk

]

=
1

(1 + δ)2
(A1 −A2 −A3 +A4)

And we have that:

A1 = E[yiykx⊤
i Q−xi,k

ΣQ−xi,k
xk]

= µ⊤E[QΣQ]µ

= µ⊤
(
1− b2

h
Q̄ΣQ̄+

b1
h
Q̄ΣβQ̄

)
µ

And:

A2 =
1

N(1 + δ)
E[yiykx⊤

i Q−xi,k
xkx

⊤
k Q−xi,k

ΣQ−xi,k
xk]

=
Tr(ΣE[QΣQ])

N(1 + δ)
µ⊤Q̄µ
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Since, by concentration laws:
1

N
x⊤
k Q−xi,k

ΣQ−xi,k
xk =

1

N
E[x⊤

k Q−xi,k
ΣQ−xi,k

xk]

=
1

N
E[Tr(xkx

⊤
k Q−xi,k

ΣQ−xi,k
)]

=
1

N
Tr(E[xkx

⊤
k Q−xi,k

ΣQ−xi,k
])

=
1

N
Tr(ΣE[Q−xi,k

ΣQ−xi,k
])

=
1

N
Tr(ΣE[QΣQ])

And we can easily verify that:
A3 = A2, A4 = O(N−1)

Thus,
1

N2

n∑
i̸=k

E[yiykx⊤
i Qxx⊤

k Qx] =
n2 − n

N2

(
µ⊤E[QΣQ]µ− 2Tr(ΣE[QΣQ])

N(1 + δ)
µ⊤Q̄µ

)

=
π2

(1 + δ)2

(
µ⊤E[QΣQ]µ− 2Tr(ΣE[QΣQ])

N(1 + δ)
µ⊤Q̄µ

)
- And then, for i ∈ {1, ..., n}:

E[x⊤
i Qxx⊤

i Qx] = E[x⊤
i QΣQxi]

=
1

(1 + δ)2
E[x⊤

i Q−xi
ΣQ−xi

xi]

=
1

(1 + δ)2
Tr(E[xix

⊤
i Q−xi

ΣQ−xi
])

=
1

(1 + δ)2
Tr(ΣE[QΣQ])

Thus:
1

N2

n∑
i=1

E[x⊤
i Qxx⊤

i Qx] =
π

N(1 + δ)2
Tr(ΣE[QΣQ])

Hence, the first sum gives us:

1

N2
E

( n∑
i=1

yix
⊤
i Qx

)2
 =

π2

(1 + δ)2

(
µ⊤E[QΣQ]µ− 2Tr(ΣE[QΣQ])

N(1 + δ)
µ⊤Q̄µ

)
+

π

N(1 + δ)2
Tr(ΣE[QΣQ])

(16)

Second sum: We have that:

1

N2
E

( m∑
i=1

qiỹix̃
⊤
i Qx

)2
 =

1

N2

m∑
i,j=1

E[qiqj ỹiỹjx̃⊤
i Qxx̃⊤

j Qx]

=
1

N2

∑
i ̸=j

E[qiqj ỹiỹjx̃⊤
i Qxx̃⊤

j Qx] +
1

N2

m∑
i=1

E[qix̃⊤
i xx̃

⊤
i Qx]

- For i ̸= j ∈ {1, ...,m}, we have that:

E[qiqj ỹiỹjx̃⊤
i Qxx̃⊤

j Qx] = E[qiqj ỹiỹjx̃⊤
i QΣQxj ]

=
1

(1 + δS)2
E[qiqj ỹiỹjx̃⊤

i Q−x̃i
ΣQ−x̃j

xj ]

=
1

(1 + δS)2
E

[
qiqj ỹiỹjx̃

⊤
i

(
Q−x̃i,j

−
1
NQ−x̃i,jqjx̃jx̃

⊤
j Q−x̃i,j

1 + δS

)
Σ

(
Q−x̃i,j

−
1
NQ−x̃i,jqix̃ix̃

⊤
i Q−x̃i,j

1 + δS

)
x̃j

]

=
1

(1 + δS)2
(A1 −A2 −A3 +A4)
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And, we have that:

A1 = E[qiqj ỹiỹjx̃⊤
i Q−x̃i,jΣQ−x̃i,j x̃j ]

= λ2E[yix̃⊤
i Q−x̃i,jΣQ−x̃i,jyjx̃j ]

= λ2µ⊤
β E[QΣQ]µβ

And:

A2 =
1

N(1 + δS)
E[qiqj ỹiỹjx̃⊤

i Q−x̃i,j
x̃jx̃

⊤
j Q−x̃i,j

ΣQ−x̃i,j
x̃j ]

=
1

N(1 + δS)
Tr(ΣβE[QΣQ])E[qiqj ỹiỹjx̃⊤

i Q−x̃i,j x̃j ]

=
λ2

N(1 + δS)
Tr(ΣβE[QΣQ])µ⊤

β Q̄µβ

And, we can easily observe that:

A3 = A2, A4 = O(N−1)

Thus:

1

N2

∑
i̸=j

E[qiqj ỹiỹjx̃⊤
i Qxx̃⊤

j Qx] =
λ2(1− π)2

(1 + δS)2

(
µ⊤

β E[QΣQ]µβ − 2

N(1 + δS)
Tr(ΣβE[QΣQ])µ⊤

β Q̄µβ

)

- And for i ∈ {1, ...,m}:

E[qix̃⊤
i Qxx̃⊤

i Qx] =
1

(1 + δS)2
E[qix̃⊤

i Q−x̃i
ΣQ−x̃i

x̃i]

=
α

(1 + δS)2
E[x̃⊤

i Q−x̃i
ΣQ−x̃i

x̃i]

=
α

(1 + δS)2
Tr(E[x̃ix̃

⊤
i ]E[Q−x̃iΣQ−x̃i ])

=
α

(1 + δS)2
Tr(ΣβE[QΣQ])

Hence, by grouping the terms, the second sum gives us:

1

N2
E

( m∑
i=1

qiỹix̃
⊤
i Qx

)2
 (17)

=
λ2(1− π)2

(1 + δS)2

(
µ⊤

β E[QΣQ]µβ − 2

N(1 + δS)
Tr(ΣβE[QΣQ])µ⊤

β Q̄µβ

)
+

α(1− π)

N(1 + δS)2
Tr(ΣβE[QΣQ])

(18)

Third sum: Let us now compute the remaining term in the sum that is given by:

2

N2

n∑
i=1

m∑
j=1

E[yix⊤
i Qxqj ỹjx̃

⊤
j Qx]

Let i ∈ {1, ..., n} and j ∈ {1, ...,m}, we have that:

E[yiqj ỹjx⊤
i Qxx⊤Qx̃j ] = E[yiqj ỹjx⊤

i QΣQx̃j ]

=
1

(1 + δ)(1 + δS)
E[yiqj ỹjx⊤

i Q−xi
ΣQ−x̃j

x̃j ]

=
1

(1 + δ)(1 + δS)
E

[
yiqj ỹjx

⊤
i

(
Q−ij −

Q−ijqjx̃jx̃
⊤
j Q−ij

N(1 + δS)

)
Σ

(
Q−ij −

Q−ijxix
⊤
i Q−ij

N(1 + δ)

)
x̃j

]

=
1

(1 + δ)(1 + δS)
(A1 −A2 −A3 +A4)
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We have that:

A1 = E[yiqj ỹjx⊤
i Q−ijΣQ−ijx̃j ] = λE[yix⊤

i Q−ijΣQ−ij ỹjxj ]

= λµ⊤E[QΣQ]µβ

And:

A2 =
1

N(1 + δ)
E[yiqj ỹjx⊤

i Q−ijΣQ−ijxix
⊤
i Q−ijx̃j ]

=
λ

N(1 + δ)
E[yix⊤

i Q−ijΣQ−ijxix
⊤
i Q−ijyjx̃j ]

=
λ

N(1 + δ)
Tr(ΣE[QΣQ])µ⊤Q̄µβ

And also:

A3 =
1

N(1 + δS)
E[yiqj ỹjx⊤

i Q−ijx̃jx̃
⊤
j Q−ijΣQ−ijx̃j ]

=
λ

N(1 + δS)
Tr(ΣβE[QΣQ])µ⊤Q̄µβ

Hence:

2

N2

n∑
i=1

m∑
j=1

E[yix⊤
i Qxqj ỹjx̃

⊤
j Qx] (19)

=
2λπ(1− π)

(1 + δ)(1 + δS)

(
µ⊤E[QΣQ]µβ − 1

N
Tr

((
Σ

1 + δ
+

Σβ

1 + δS

)
E[QΣQ]

)
µ⊤Q̄µβ

)
(20)

Grouping all the sums: Denote by : T1 = 1
N Tr(ΣE[QΣQ]), then: T2 = 1

N Tr(ΣβE[QΣQ]).
Now let us group the terms in T in the three sums, and those that do not depend on T . We get that:

E[(w⊤x)2] =
π2

(1 + δ)2
µ⊤E[QΣQ]µ+

λ2(1− π)2

(1 + δS)2
µ⊤

β E[QΣQ]µβ +
2λπ(1− π)

(1 + δ)(1 + δS)
µ⊤E[QΣQ]µβ

+ T1

(
π

(1 + δ)2
− 2π2

(1 + δ)3
µ⊤Q̄µ− 2λπ(1− π)

(1 + δ)2(1 + δS)
µ⊤Q̄µβ

)
+ T2

(
α(1− π)

(1 + δS)2
− 2λ2(1− π)2

(1 + δS)3
µ⊤

β Q̄µβ − 2λπ(1− π)

(1 + δ)(1 + δS)2
µ⊤Q̄µβ

)
=

π2

(1 + δ)2
µ⊤E[QΣQ]µ+

λ2(1− π)2

(1 + δS)2
µ⊤

β E[QΣQ]µβ +
2λπ(1− π)

(1 + δ)(1 + δS)
µ⊤E[QΣQ]µβ

+
πT1

(1 + δ)2

(
1− 2π

1 + δ
µ⊤Q̄µ− 2λ(1− π)

1 + δS
µ⊤Q̄µβ

)
+

(1− π)T2

(1 + δS)2

(
α− 2λ2(1− π)

1 + δS
µ⊤

β Q̄µβ − 2λπ

1 + δ
µ⊤Q̄µβ

)

This leads to the following theorem:

Theorem B.1 (Gaussianity of the General model). Let wq be the Mixed classifier as defined in
equation 6 and suppose that Assumption 4.1 holds. The decision function w⊤

q x, on some test sample
x ∈ Ca independent of X, satisfies:

w⊤
q x

D−→ N
(
(−1)amq, νq −m2

q

)
,
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where:

mq =

(
π

1 + δ
µ⊤ +

λ(1− π)

1 + δS
µ⊤

β

)
Q̄µ,

νq =
π2

(1 + δ)2
µ⊤E[QΣQ]µ+

λ2(1− π)2

(1 + δS)2
µ⊤

β E[QΣQ]µβ +
2λπ(1− π)

(1 + δ)(1 + δS)
µ⊤E[QΣQ]µβ

+
πT1

(1 + δ)2

(
1− 2π

1 + δ
µ⊤Q̄µ− 2λ(1− π)

1 + δS
µ⊤Q̄µβ

)
+

(1− π)T2

(1 + δS)2

(
α− 2λ2(1− π)

1 + δS
µ⊤

β Q̄µβ − 2λπ

1 + δ
µ⊤Q̄µβ

)
.

where:

T1 =
1

N
Tr(ΣE[QΣQ]), T2 =

1

N
Tr(ΣβE[QΣQ]), λ = ϕ(1− ε)− ρε
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C PARTICULAR CASE: ISOTROPIC COVARIANCE MATRIX

Here, we consider a simple covariance matrix of the form C = σ2Ip for some σ > 0. So

δS = ασ2δ (21)

C.1 RESOLVENT IDENTITIES IN THE CASE OF C = σ2Ip

We have that by lemma A.4:

Q̄ =

(
π

1 + δ
(µµ⊤ + Ip) +

α(1− π)

1 + ασ2δ
(µβµ

⊤
β + σ2Ip) + γIp

)−1

=

(
π

1 + δ
µµ⊤ +

α(1− π)

1 + ασ2δ
µβµ

⊤
β + θIp

)−1

,

where:

θ = γ +
π

1 + δ
+

ασ2(1− π)

1 + ασ2δ
(22)

Define by:

R1 =

(
α(1− π)

1 + ασ2δ
µβµ

⊤
β + θIp

)−1

, R2 =

(
π

1 + δ
µµ⊤ + θIp

)−1

, (23)

such that:

Q̄ =

(
π

1 + δ
µµ⊤ +R−1

1

)−1

=

(
α(1− π)

1 + ασ2δ
µβµ

⊤
β +R−1

2

)−1

Thus, using lemma A.3:

Q̄µ =
R1µ

1 + π
1+δµ

⊤R1µ
, Q̄µβ =

R2µβ

1 + α(1−π)
1+ασ2δµ

⊤
β R2µβ

(24)

And:

Q̄ = R1 −
πR1µµ

⊤R1

1 + δ + πµ⊤R1µ
= R2 −

α(1− π)R2µβµ
⊤
β R2

1 + ασ2δ + α(1− π)µ⊤
β R2µβ

(25)

Lemma C.1 (Delta). The parameter δ as defined in equation 9, is given by the following identity:

δ =
η

θ
=

η

γ + π
1+δ + ασ2(1−π)

1+ασ2δ

Which gives us a third order equation:

ασ2γδ3 +
(
γ + ασ2(1 + γ − η)

)
δ2 +

(
γ + π − η + ασ2(1− π − η)

)
δ − η = 0

Lemma C.2 (Resolvent identities). Using the first identity in Sherman-Morisson’s lemma A.3, we
have that the expressions of R1 and R2 are given by:

R1 =
1

θ
Ip −

α(1− π)µβµ
⊤
β

θ2(1 + ασ2δ) + θα(1− π)∥µβ∥2
, R2 =

1

θ
Ip −

πµµ⊤

θ2(1 + δ) + θπ∥µ∥2

And we also have the following identities:

R1µβ =
µβ

θ + α(1−π)
1+δS

∥µβ∥2
, R2µ =

µ

θ + π
1+δ∥µ∥2

µ⊤R1µ =
∥µ∥2
θ

(
1− α(1− π)β2∥µ∥2

θ(1 + δS) + α(1− π)∥µβ∥2
)

=
∥µ∥2
θ

θ(1 + δS) + α(1− π)(1− β2)∥µ⊥∥2
θ(1 + δS) + α(1− π)∥µβ∥2

µ⊤R2µβ =
β(1 + δ)∥µ∥2

θ(1 + δ) + π∥µ∥2
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µ⊤
β R2µβ =

1

θ

(
∥µβ∥2 −

πβ2∥µ∥4
θ(1 + δ) + π∥µ∥2

)
µ⊤R2

1µ =
∥µ∥2
θ2

(
1− 2α(1− π)β2∥µ∥2

θ(1 + δS) + α(1− π)∥µβ∥2
+

α2(1− π)2β2∥µ∥2∥µβ∥2
(θ(1 + δS) + α(1− π)∥µβ∥2)2

)
=

∥µ∥2
θ2

+
α(1− π)β2∥µ∥4

θ2(θ(1 + δS) + α(1− π)∥µβ∥2)

(
α(1− π)∥µβ∥2

θ(1 + δS) + α(1− π)∥µβ∥2
− 2

)

µ⊤
β R2R1µ =

β∥µ∥2
θ2

(1− α(1− π)∥µβ∥2
θ(1 + δS) + α(1− π)∥µβ∥2

− π∥µ∥2
θ(1 + δ) + π∥µ∥2

+
απ(1− π)β2∥µ∥4

(θ(1 + δ) + π∥µ∥2)(θ(1 + δS) + α(1− π)∥µβ∥2)
)

µ⊤
β R

2
2µβ =

∥µβ∥2
θ2

+
πβ2∥µ∥4

θ2(θ(1 + δ) + π∥µ∥2)

(
π∥µ∥2

θ(1 + δ) + π∥µ∥2 − 2

)
=

∥µβ∥2
θ2

− πβ2∥µ∥4
(
π∥µ∥2 + 2θ(1 + δ)

)
θ2(θ(1 + δ) + π∥µ∥2)2

Lemma C.3 (Trace identities). Let i ∈ {1, ..., n}, and j ∈ {1, ...,m}, such that: Σ = E[xix
⊤
i ] =

µµ⊤ + Ip and Σβ = E[x̃jx̃
⊤
j ] = µβµ

⊤
β + σ2Ip.

We can prove that:

1

N
Tr((ΣQ̄)2) =

η

θ2
,

1

N
Tr((ΣβQ̄)2) =

ησ4

θ2
,

1

N
Tr(ΣβQ̄ΣQ̄) =

ησ2

θ2

The performance of wq in (6) is fully determined by the first two order moments: E[w⊤
q x] and

E[(w⊤
q x)

2].

C.2 TEST EXPECTATION

We have that using the calculus in the past section:

E[w⊤
q x] = (−1)a

(
π

1 + δ
µ⊤ +

λ(1− π)

1 + ασ2δ
µ⊤

β

)
Q̄µ (26)

And finally we use lemma C.2 and the following identities to obtain the result:

µ⊤Q̄µ =
µ⊤R1µ

1 + π
1+δµ

⊤R1µ
, µ⊤

β Q̄µ =
µ⊤

β R2µ

1 + α(1−π)
1+δS

µ⊤
β R2µβ

C.3 TEST VARIANCE

To determine the variance of w⊤
q x, it only remains to compute its second order. We have that:

E[(w⊤
q x)

2] =
1

N2
E


 n∑

i=1

yix
⊤
i Qx+

m∑
j=1

qj ỹjx̃
⊤
j Qx

2


=
1

N2
E

( n∑
i=1

yix
⊤
i Qx

)2
+

1

N2
E


 m∑

j=1

qj ỹjx̃
⊤
j Qx

2
+

2

N2
E

( n∑
i=1

yix
⊤
i Qx

) m∑
j=1

qj ỹjx̃
⊤
j Qx


And using the same computations in the past section, we get:

First sum: The first sum gives us:

1

N2
E

( n∑
i=1

yix
⊤
i Qx

)2
 =

π2

(1 + δ)2

(
µ⊤E[QΣQ]µ− 2Tr(ΣE[QΣQ])

N(1 + δ)
µ⊤Q̄µ

)
+

π

N(1 + δ)2
Tr(ΣE[QΣQ])
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Second sum: the second sum gives us:

1

N2
E

( m∑
i=1

qiỹix̃
⊤
i Qx

)2


=
λ2(1− π)2

(1 + δS)2

(
µ⊤

β E[QΣQ]µβ − 2

N(1 + δS)
Tr(ΣβE[QΣQ])µ⊤

β Q̄µβ

)
+

α(1− π)

N(1 + δS)2
Tr(ΣβE[QΣQ])

Third sum: The third sum is given by:

2

N2

n∑
i=1

m∑
j=1

E[yix⊤
i Qxqj ỹjx̃

⊤
j Qx]

=
2λπ(1− π)

(1 + δ)(1 + δS)

(
µ⊤E[QΣQ]µβ − 1

N
Tr

((
Σ

1 + δ
+

Σβ

1 + δS

)
E[QΣQ]

)
µ⊤Q̄µβ

)

Grouping all the sums: Denote by : T = 1
N Tr(ΣE[QΣQ]), then: 1

N Tr(ΣβE[QΣQ]) = σ2T .
Now let us group the terms in T in the three sums, and those that do not depend on T . We get that:

E[(w⊤x)2] =
π2

(1 + δ)2
µ⊤E[QΣQ]µ+

λ2(1− π)2

(1 + δS)2
µ⊤

β E[QΣQ]µβ +
2λπ(1− π)

(1 + δ)(1 + δS)
µ⊤E[QΣQ]µβ

+ T

(
π

(1 + δ)2
− 2π2

(1 + δ)3
µ⊤Q̄µ− 2λπ(1− π)

(1 + δ)2(1 + δS)
µ⊤Q̄µβ

)
+ σ2T

(
α(1− π)

(1 + δS)2
− 2λ2(1− π)2

(1 + δS)3
µ⊤

β Q̄µβ − 2λπ(1− π)

(1 + δ)(1 + δS)2
µ⊤Q̄µβ

)
=

π2

(1 + δ)2
µ⊤E[QΣQ]µ+

λ2(1− π)2

(1 + δS)2
µ⊤

β E[QΣQ]µβ +
2λπ(1− π)

(1 + δ)(1 + δS)
µ⊤E[QΣQ]µβ

+
πT

(1 + δ)2

(
1− 2π

1 + δ
µ⊤Q̄µ− 2λ(1− π)

1 + δS
µ⊤Q̄µβ

)
+

(1− π)σ2T

(1 + δS)2

(
α− 2λ2(1− π)

1 + δS
µ⊤

β Q̄µβ − 2λπ

1 + δ
µ⊤Q̄µβ

)
And we can compute this since we have that:

µ⊤E[QΣQ]µ =
1

h

(
(1− b2)

(
(µ⊤Q̄µ)2 + µ⊤Q̄2µ

)
+ b1

(
(µ⊤Q̄µβ)

2 + σ2µ⊤Q̄2µ
))

,

µ⊤
β E[QΣQ]µβ =

1

h

(
(1− b2)

[
(µ⊤

β Q̄µ)2 + µ⊤
β Q̄

2µβ

]
+ b1

[
(µ⊤

β Q̄µβ)
2 + σ2µ⊤

β Q̄
2µβ

])
µ⊤E[QΣQ]µβ =

1

h

(
(1− b2)

[
µ⊤Q̄µ.µ⊤Q̄µβ + µ⊤Q̄2µβ

]
+ b1

[
µ⊤Q̄µβ .µ

⊤
β Q̄µβ + σ2µ⊤Q̄2µβ

])
µβQ̄µβ =

µ⊤
β R2µβ

1 + α(1−π)
1+δS

µβR2µβ

, µ⊤Q̄2µ =
µ⊤R2

1µ(
1 + π

1+δµ
⊤R1µ

)2 , µ⊤
β Q̄

2µβ =
µ⊤

β R
2
2µβ(

1 + α(1−π)
1+δS

µ⊤
β R2µβ

)2 ,
µ⊤Q̄2µβ =

µ⊤
β R2R1µ(

1 + π
1+δµ

⊤R1µ
)(

1 + α(1−π)
1+δS

µ⊤
β R2µβ

)
Theorem C.4 (Gaussianity of the 6 model for C = σ2Ip). Let wq be the Mixed classifier as defined
in equation 6 and suppose that Assumption 4.1 holds. The decision function w⊤

q x, on some test
sample x ∈ Ca independent of X, satisfies:

w⊤
q x

D−→ N
(
(−1)amq, νq −m2

q

)
,
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where:

mq =

(
π

1 + δ
µ⊤ +

λ(1− π)

1 + δS
µ⊤

β

)
Q̄µ,

νq =
π2

(1 + δ)2
µ⊤E[QΣQ]µ+

λ2(1− π)2

(1 + δS)2
µ⊤

β E[QΣQ]µβ +
2λπ(1− π)

(1 + δ)(1 + δS)
µ⊤E[QΣQ]µβ

+
πT

(1 + δ)2

(
1− 2π

1 + δ
µ⊤Q̄µ− 2λ(1− π)

1 + δS
µ⊤Q̄µβ

)
+

(1− π)σ2T

(1 + δS)2

(
α− 2λ2(1− π)

1 + δS
µ⊤

β Q̄µβ − 2λπ

1 + δ
µ⊤Q̄µβ

)
.

With:

λ = ϕ(1− ε)− ρε, δS = ασ2δ
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D RANDOM MATRIX ANALYSIS OF DISTRIBUTION SHIFT

We will now quantify the performance of the classifier obtained through mixing some real data
and synthetic data sampled according to the schema described in 2. Hence, the matrix Q̄, defined
in lemma A.4, is no longer deterministic as we take the covariance matrix Ĉ = 1

n̂

∑n̂
i=1(xi −

yiµ̂)(xi − yiµ̂)
⊤. For simplicity, and without loss of generality, we consider n̂ Gaussian vectors

(zi)
n̂
i=1 ∼ N (0, Ip) that are independent of (xi)

n̂
i=1, and write:

µ̂ = µβ = µ+
1

n̂

n̂∑
i=1

zi, Ĉ =
1

n̂

n̂∑
i=1

ziz
⊤
i

Note that we can ignore the error of estimation of µ̂ because we have that:

E

[
1

n̂

n̂∑
i=1

zi

]
= 0, E

( 1

n̂

n̂∑
i=1

zi

) 1

n̂

n̂∑
j=1

zj

⊤
 =

1

n̂
Ip

Hence, when we have a sufficiently large n̂, we will assume that: µ̂ = µ (the estimation error is on
O(n̂−1)).

D.1 DETERMINISTIC EQUIVALENTS:

The resolvent matrix to be considered in this setting is the one defined in lemma A.4 but with Ĉ:

Q̄(γ) =

((
π

1 + δ
+

α(1− π)

1 + δS

)
µµ⊤ +

α(1− π)

1 + δS
Ĉ+

(
γ +

π

1 + δ

)
Ip

)−1

=

((
π

1 + δ
+

α(1− π)

1 + δS

)
µµ⊤ +

α(1− π)

(1 + δS)n̂

n̂∑
i=1

ziz
⊤
i +

(
γ +

π

1 + δ

)
Ip

)−1

where:

δ =
1

N
Tr(Q̄), δS =

α

N
Tr(ĈQ̄)

Let us denote by Q̄−i the resolvent matrix gotten by removing its dependence on the vector zi. In
other words:

Q̄−i =

(
Q̄− α(1− π)

n̂(1 + δS)
ziz

⊤
i

)−1

, Q̄ =

(
Q̄−i +

α(1− π)

n̂(1 + δS)
ziz

⊤
i

)−1

By Sherman-Morisson’s lemma A.3, we have that:

Q̄ = Q̄−i −
α(1−π)
n̂(1+δS)Q̄−iziz

⊤
i Q̄−i

1 + α(1−π)
n̂(1+δS)z

⊤
i Q̄−izi

And:

Q̄zi =
Q̄−izi

1 + α(1−π)
n̂(1+δS)z

⊤
i Q̄−izi

=
Q̄−izi
1 + δ̄

where:

δ̄ =
α(1− π)

1 + δS

1

n̂
Tr(Q̄) (27)

Since the covariance estimate in equation 2 is stochastic, the matrix Q̄ is no longer determinis-
tic when replacing C with Ĉ. Hence, we will give a further deterministic equivalent to Q̄ in the
following lemma.
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Lemma D.1 (Second Deterministic equivalent). A deterministic equivalent of Q̄ is given by:

¯̄Q =

((
π

1 + δ
+

α(1− π)

1 + δS

)
µµ⊤ +

(
γ +

π

1 + δ
+

α(1− π)

(1 + δS)(1 + δ̄)

)
Ip

)−1

where δ̄ can be found as a fixed point using the following identity:

δ̄ =
α(1− π)

(1 + δS)

1

n̂
Tr( ¯̄Q) =

α(1− π)

(1 + δS)

p
n̂

γ + π
1+δ + α(1−π)

(1+δS)(1+δ̄)

, δ =
1

N
Tr( ¯̄Q) =

n̂

N

(1 + δS)

α(1− π)
δ̄

δS =
α

N
Tr(E[ĈQ̄]) =

αδ

1 + δ̄

Now we will prove the deterministic equivalent given by lemma D.1.

PROOF OF LEMMA D.1:

Let us denote Q̄ =
(

α(1−π)
1+δS

1
n̂

∑n̂
i=1 ziz

⊤
i +A

)−1

. Let also ¯̄Q be the deterministic equivalent of

Q̄. It can be written as: ¯̄Q = (S+A)
−1. We want to find some S such that for all a, b ∈ Rp:

a⊤E[Q̄]b → a⊤ ¯̄Qb

We have that:

E[Q̄]− ¯̄Q = E

[
Q̄(S− α(1− π)

1 + δS

1

n̂

n̂∑
i=1

ziz
⊤
i ) ¯̄Q

]

=
1

n̂

n̂∑
i=1

E[Q̄(S− α(1− π)

1 + δS
ziz

⊤
i ) ¯̄Q]

=
1

n̂

n̂∑
i=1

E
[
Q̄S− α(1− π)

1 + δS

1

1 + δ̄
Q̄−iziz

⊤
i

]
¯̄Q

=
1

n̂

n̂∑
i=1

E
[
Q̄−i

(
S− α(1− π)

1 + δS

1

1 + δ̄
ziz

⊤
i

)]
¯̄Q+O(n̂−1)

Hence, it suffices to have S = E[α(1−π)
1+δS

1
1+δ̄

ziz
⊤
i ] = α(1−π)

1+δS
1

1+δ̄
Ip, and thus:

D.2 DETERMINISTIC EQUIVALENT OF Q̄AQ̄:

Let A ∈ Rp×p be some deterministic matrix. We have that:
E[Q̄AQ̄] = ¯̄QA ¯̄Q+ E[(Q̄− ¯̄Q)AQ̄]

= ¯̄QA ¯̄Q+ E[Q̄( ¯̄Q−1 − Q̄−1) ¯̄QAQ̄]

= ¯̄QA ¯̄Q+
α(1− π)

(1 + δS)
E[Q̄

(
1

1 + δ̄
− 1

n̂

n̂∑
i=1

ziz
⊤
i

)
¯̄QAQ̄]

= ¯̄QA ¯̄Q+
α(1− π)

(1 + δS)

(
1

1 + δ̄
E[Q̄ ¯̄QAQ̄]− 1

n̂

n̂∑
i=1

E[Q̄ziz
⊤
i
¯̄QAQ̄]

)
And we have that for i ∈ {1, ..., n̂}:

E[Q̄ziz
⊤
i
¯̄QAQ̄] =

1

1 + δ̄
E[Q̄−iziz

⊤
i
¯̄QAQ̄]

=
1

1 + δ̄
E
[
Q̄−iziz

⊤
i
¯̄QA

(
Q̄−i −

α(1− π)

n̂(1 + δS)(1 + δ̄)
Q̄−iziz

⊤
i Q̄−i

)]
=

1

1 + δ̄
E[Q̄−iziz

⊤
i
¯̄QAQ̄−i]−

α(1− π)

n̂(1 + δS)(1 + δ̄)2
E[Q̄−iziz

⊤
i
¯̄QAQ̄−iziz

⊤
i Q̄−i]

=
1

1 + δ̄
E[Q̄ ¯̄QAQ̄]− α(1− π)

n̂(1 + δS)(1 + δ̄)2
Tr( ¯̄QA ¯̄Q)E[Q̄2]
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Hence by replacing this term in he previous sum, we get the following result.

Lemma D.2 (Deterministic equivalent of Q̄AQ̄). Let A ∈ Rp×p be any deterministic symmetric
semi-definite matrix. We have that:

Q̄AQ̄ ↔ ¯̄QA ¯̄Q+

(
α(1− π)

(1 + δS)(1 + δ̄)

)2
1

n̂
Tr( ¯̄QA ¯̄Q)E[Q̄2]

In particular, we have that:

Q̄2 ↔ 1

h̄
¯̄Q2, Q̄µµ⊤Q̄ ↔ ¯̄Qµµ⊤ ¯̄Q

where:

h̄ = 1−
(

α(1− π)

(1 + δS)(1 + δ̄)

)2
1

n̂
Tr( ¯̄Q2)

D.3 USEFUL RESULTS:

Here we will list all the results with ¯̄Q that will be useful in this analysis. Let us denote by a, b the
following quantities:

a =

(
π

1 + δ
+

α(1− π)

1 + δS

)
, b = γ +

π

1 + δ
+

α(1− π)

(1 + δS)(1 + δ̄)

such that:
¯̄Q =

(
aµµ⊤ + bIp

)−1
(28)

By Sherman-Morisson’s lemma A.3, we have that:

¯̄Q =
1

b

(
Ip −

aµµ⊤

b+ a∥µ∥2
)
, ¯̄Qµ =

µ

b+ a∥µ∥2 (29)

We also have that the constants a1, a2, b1 and b2 from lemma A.5 become by taking their expecta-
tions on z:

Lemma D.3 (New values of constants).

a1 =
π

N(1 + δ)2
1

h̄
Tr( ¯̄Q2), b1 =

α(1− π)

N(1 + δS)2
1

h̄(1 + δ̄)2
Tr( ¯̄Q2)

a2 =
π

N(1 + δ)2
1

h̄(1 + δ̄)2
Tr( ¯̄Q2), b2 =

α(1− π)

N(1 + δS)2
1

h̄(1 + δ̄)4
Tr( ¯̄Q2)

where:
1

N
Tr( ¯̄Q2) =

η

b2
(30)

D.4 TEST EXPECTATION:

It only suffices to apply the expectation on zi to mq obtained with the general model in theorem
B.1. Hence:

E[w⊤
q x] = (−1)a

(
π

1 + δ
+

λ(1− π)

1 + δS

)
E[µ⊤Q̄µ]

= (−1)a
(

π

1 + δ
+

λ(1− π)

1 + δS

)
µ⊤ ¯̄Qµ

= (−1)a
(

π

1 + δ
+

λ(1− π)

1 + δS

) ∥µ∥2
b+ a∥µ∥2
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D.5 TEST VARIANCE:

Using theorem B.1, we need to apply the expectation on z to the following second order moment:

νq =

(
π

1 + δ
+

λ(1− π)

1 + δS

)2

µ⊤E[QΣQ]µ+
πT1

(1 + δ)2

(
1− 2π

1 + δ
µ⊤Q̄µ− 2λ(1− π)

1 + δS
µ⊤Q̄µ

)
+

(1− π)T2

(1 + δS)2

(
α− 2λ2(1− π)

1 + δS
µ⊤Q̄µ− 2λπ

1 + δ
µ⊤Q̄µ

)

where:

T1 =
1

N
Tr(ΣE[QΣQ]), T2 =

1

N
Tr(ΣβE[QΣQ])

and these two quantities are obtained using corollary A.6 and lemma D.3, which after simplification
are given by:

T1 =
(1 + δ)2

πh
a1, T2 =

(1 + δS)
2

α(1− π)h
b1 (31)

Now we should define the new deterministic equivalent of Q̄ΣQ̄ to obtain an expression of
Ez[E[QΣQ]] and to finish this calculus !
Let :

h̄ = 1−
(

α(1− π)

(1 + δS)(1 + δ̄)

)2
1

n̂
Tr( ¯̄Q2) (32)

Then, using lemma D.2 we have that the following identities stand for any linear form:

E[Q̄ΣQ̄] = ¯̄Qµµ⊤ ¯̄Q+
1

h̄
¯̄Q2, Ē[Q̄ΣβQ̄] = ¯̄Qµµ⊤ ¯̄Q+

1

(1 + δ̄)2
1

h̄
¯̄Q2

Thus:

Ez[E[QΣQ]] =
1− b2

h
E[Q̄ΣQ̄] +

b1
h
E[Q̄ΣβQ̄]

=
1

h

(
(1− b2)

(
¯̄Qµµ⊤ ¯̄Q+

1

h̄
¯̄Q2

)
+ b1

(
¯̄Qµµ⊤ ¯̄Q+

1

h̄(1 + δ̄)2
¯̄Q2

))
=

1

h

(
(1 + b1 − b2)

¯̄Qµµ⊤ ¯̄Q+
1

h̄

(
1− b2 +

b1
(1 + δ̄)2

)
¯̄Q2

)
=

1

h

(
(1 + b1 − b2)

¯̄Qµµ⊤ ¯̄Q+
1

h̄
¯̄Q2

)

because:

b1
(1 + δ̄)2

= b2
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Finally, we get the second order moment:

E[(w⊤
q x)

2] =

(
π

1 + δ
+

λ(1− π)

1 + δS

)2
1

h
µ⊤
(
(1 + b1 − b2)

¯̄Qµµ⊤ ¯̄Q+
1

h̄
¯̄Q2

)
µ

+
πT1

(1 + δ)2

(
1− 2π

1 + δ
µ⊤ ¯̄Qµ− 2λ(1− π)

1 + δS
µ⊤ ¯̄Qµ

)
+

(1− π)T2

(1 + δS)2

(
α− 2λ2(1− π)

1 + δS
µ⊤ ¯̄Qµ− 2λπ

1 + δ
µ⊤ ¯̄Qµ

)
=

1

h

(
π

1 + δ
+

λ(1− π)

1 + δS

)2(
(1 + b1 − b2)(µ

⊤ ¯̄Qµ)2 +
1

h̄
µ⊤ ¯̄Q2µ

)
+

πT1

(1 + δ)2

(
1− 2π

1 + δ
µ⊤ ¯̄Qµ− 2λ(1− π)

1 + δS
µ⊤ ¯̄Qµ

)
+

(1− π)T2

(1 + δS)2

(
α− 2λ2(1− π)

1 + δS
µ⊤ ¯̄Qµ− 2λπ

1 + δ
µ⊤ ¯̄Qµ

)
=

1

h
c2
(
(1 + b1 − b2)(µ

⊤ ¯̄Qµ)2 +
1

h̄
µ⊤ ¯̄Q2µ

)
+

a1
h

(
1− 2cµ⊤ ¯̄Qµ

)
+

b1
αh

(
α− 2λcµ⊤ ¯̄Qµ

)
Note that:

µ⊤ ¯̄Qµ =
∥µ∥2

b+ a∥µ∥2 , µ⊤ ¯̄Q2µ =
∥µ∥2

(b+ a∥µ∥2)2
, c =

(
π

1 + δ
+

λ(1− π)

1 + δS

)
Therefore:

E[(w⊤
q x)

2] =
c∥µ∥2

h(b+ a∥µ∥2)2
(
c(1 + b1 − b2)∥µ∥2 +

c

h̄
− 2

(
a1 +

λb1
α

)
(b+ a∥µ∥2)

)
+
a1 + b1

h

which concludes the proof of the main theorem 4.2 of this paper.
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E DETAILS ABOUT EXPERIMENTS WITH SAFETY LLM ALIGNMENT WITH
IPO

E.1 HYPERPARAMETERS

Parameter Value
use flash attention 2 true

LoRA Arguments
lora r 128
lora alpha 128
lora dropout 0.05
preprocessing num workers 12

Trainer Arguments
bf16 true
beta 0.01
eval steps 100
gradient accumulation steps 4
gradient checkpointing true
learning rate 5.0e-6
log level info
logging steps 10
lr scheduler type cosine
max length 1024
max prompt length 512
num train epochs 1
optim paged adamw 32bit
per device train batch size 4
per device eval batch size 8
seed 42
warmup ratio 0.1
Label smoothing 0.001

Table 1: Implementation Details for the safety LLM alignment with IPO
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F DETAILS ABOUT EXPERIMENTS WITH LLM QA CLASSIFICATION

F.1 PROMPTING LLMS

As part of this experiment, we had to generate a synthetic QA Dataset. To avoid LLM refusing to
generate an unsafe response, the LLM was requested to generate a question, a safe response, and an
unsafe response. Figure 10 shows the system prompt used to request from an LLM to generate QA.
<Topic> is a placeholder referring to a particular risk topic, selected from the list of topics seen in
Figure 11, the section written in red. As discussed in the paper, the generated QA will be annotated
by LLM, using the prompt presented in Figure 11.

Figure 10: Prompt for QA generation

Figure 11: Prompt for LLM annotations

F.2 HYPER-PARAMETERS
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Parameter Value
LoRA Parameters

lora r 64
lora alpha 64
lora dropout 0.05

Training Parameters Parameters
bf16 true
gradient accumulation steps 4
learning rate 1.5× 10−6 < lr < 2× 10−5

lr scheduler type cosine
packing False
max seq length 2048
num train epochs 1
optim adamw torch
per device train batch size 2
warmup ratio 0.1
seed 42

Table 2: Fine-tuning for Llama3.1-8B-Instruct

Parameter Value
LoRA Parameters

lora r 64
lora alpha 64
lora dropout 0.05

Training Parameters Parameters
bf16 true
gradient accumulation steps 4
learning rate 1× 10−6 < lr < 2× 10−5

lr scheduler type cosine
packing False
max seq length 2048
num train epochs 1
optim adamw torch
per device train batch size 2
warmup ratio 0.1
seed 42

Table 3: Fine-tuning for Gemma-2-2B-it
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