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ABSTRACT

Aligning large generative models with human feedback is a critical challenge. In
speech synthesis, this is particularly pronounced due to the lack of a large-scale
human preference dataset, which hinders the development of models that truly
align with human perception. To address this, we introduce SpeechJudge, a com-
prehensive suite comprising a dataset, a benchmark, and a reward model centered
on naturalness—one of the most fundamental subjective metrics for speech syn-
thesis. First, we present SpeechJudge-Data, a large-scale human feedback corpus
of 99K speech pairs. The dataset is constructed using a diverse set of advanced
zero-shot text-to-speech (TTS) models across diverse speech styles and multiple
languages, with human annotations for both intelligibility and naturalness pref-
erence. From this, we establish SpeechJudge-Eval, a challenging benchmark for
speech naturalness judgment. Our evaluation reveals that existing metrics and Au-
dioLLMs struggle with this task; the best-performing model, Gemini-2.5-Flash,
achieves less than 70% agreement with human judgment, highlighting a signifi-
cant gap for improvement. To bridge this gap, we develop SpeechJudge-GRM,
a generative reward model (GRM) based on Qwen2.5-Omni-7B. It is trained on
SpeechJudge-Data via a two-stage post-training process: Supervised Fine-Tuning
(SFT) with Chain-of-Thought rationales followed by Reinforcement Learning
(RL) with GRPO on challenging cases. On the SpeechJudge-Eval benchmark,
the proposed SpeechJudge-GRM demonstrates superior performance, achieving
77.2% accuracy (and 79.4% after inference-time scaling @ 10) compared to a clas-
sic Bradley-Terry reward model (72.7%). Furthermore, SpeechJudge-GRM can be
also employed as a reward function during the post-training of speech generation
models to facilitate their alignment with human preferences.

1 INTRODUCTION

The collection and integration of human feedback corpora for model alignment has become a critical
stage in the development of modern large-scale generative models, proving indispensable in domains
such as text (Stiennon et al., [2020; (Ouyang et al., 2022; |Bai et al., 2022), image (Xu et al., 2023}
Kirstain et al.} |2023)), and video generation (Xu et al., 2024; |Liu et al., 2025b)).

In the field of speech synthesis, naturalness has long been a cornerstone subjective metric for qual-
ity assessment (Ju et al., 2024;|Anastassiou et al.,[2024; Du et al., 2024a; |Xu et al.|, |2025; | KimiTeam
et all 2025)), representing one of the most general-purpose indicators of performance (Taylor,
2009; Tan, 2023). Prior research has explored automated speech assessment through MOS pre-
dictors (Saeki et al. [2022; [Huang et al., 2024) and constructed the human feedback corpora for
specific attributes like the low-level acoustic quality (Wang et al., 2025b). However, a large-scale
human feedback corpus centered on the holistic quality of naturalness—and a corresponding reward
model trained to capture these preferences—remains a notably underexplored area. To fill this void,
this paper focuses on the dimension of speech naturalness and present a three-part contribution:

1. A Large-scale Human Feedback Dataset: SpeechJudge-Data. We recruit human annotators to
provide feedback on synthesized speeches, with a focus on assessing two fundamental speech as-
pects: intelligibility and naturalness. For data synthesis, we employ a diverse set of advanced, open-
source zero-shot TTS models with varying architectures (such as CosyVoice2 (Du et al.l 2024b),
Ints (Zhang et al., [2025b), F5-TTS (Chen et al., [2025b), and MaskGCT (Wang et al., 2025d))) to
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produce the compared speech pairs. We prepare speech references in both regular and expressive
styles, construct multilingual target texts, and cover both monolingual and cross-lingual synthesis
scenarios to ensure data diversity (Section [3.1). We instruct human annotators to perform two tasks
based on a speech pair (Figure[I): (a) pointwise annotation of text accuracy to assess intelligibility,
and (b) pairwise preference annotation to judge relative speech naturalness. This extensive effort,
involving 69 labelers over two months, results in 99K annotated pairs, with each pair receiving an
average of 2.49 annotations from different labelers. We believe the SpeechJudge-Data can serve as
a valuable corpus for alignment research in speech synthesis (e.g., DPO alignment (Rafailov et al.,
2023)) or reward modeling (Stiennon et al.,|2020; Ouyang et al., 2022; Bai et al.,2022) in Section@).

2. An Evaluation Benchmark for Speech Naturalness Judgment: SpeechJudge-Eval. We de-
sign a dedicated evaluation benchmark for the task of speech naturalness judgment. The task is
structured as follows: given a target text and two corresponding speech samples, a model needs
to judge which one is more natural. To construct the evaluation set, we select a subset from the
SpeechJudge-Data where human annotators demonstrated high inter-annotator agreement, ensuring
a high-quality ground truth. We assess the naturalness judgment capabilities of a wide range of
metrics and models, including Word Error Rate (WER) (Radford et al., [2023; |Gao et al., [2023),
Fréchet Audio Distance (FAD) (Kilgour et al.l 2019), MOS predictors (Saeki et al.| [2022; [Reddy
et al., 2022} |Tjandra et al.| 2025)), Deepfake Detectors (Jung et al.l [2022; Wang et al., 2025a)), and
AudioLLMs (Xu et al., [2025; [KimiTeam et al.l 2025} [Xiaomi, 2025} |Comanici et al.| [2025; [Hurst
et al., 2024). Our evaluations reveal that even the most capable model—specifically, Gemini-2.5-
Flash (Comanici et al.l [2025) in our experiments—achieved less than 70% agreement with human
preferences. This finding highlights a significant performance gap and underscores the substantial
room for research and improvement in automated speech naturalness judgment.

3. A Generative Reward Model for Speech Naturalness: SpeechJudge-GRM. To develop a
reward model that more effectively captures human preferences, we develop SpeechJudge-GRM, a
generative reward model (GRM) (Zhang et al.,|2025a; |Liu et al.,2025c¢]) trained on the SpeechJudge-
Data. Specifically, we base our model on Qwen2.5-Omni-7B (Xu et al., 2025) and design a two-
stage post-training process. During the first stage, we perform SFT as the “cold start” to improve
the model’s instruction-following and rationale-based reasoning capabilities. To achieve this, we
leverage Gemini-2.5-Flash (Comanici et al. 2025) to generate Chain-of-Thought (CoT) data for
speech naturalness judgment task. In the second stage, we focus on more challenging cases of
SpeechJudge-Data, which we define as instances where Gemini-2.5-Flash fails to make the correct
judgment. Treating the human-annotated labels as the verifiable reward (DeepSeek-Al et al.| 2025}
Liu et al.} 2025c), we apply the GRPO-based RL stage (Shao et al.,|2024). Our experiments demon-
strate that when trained on the same data, SpeechJudge-GRM significantly outperformed the classic
Bradley-Terry reward model (BTRM) (Bradley & Terry, [1952; Rafailov et all [2023), achieving
a higher accuracy in predicting human preferences (77.2% for SpeechJudge-GRM vs. 72.7% for
SpeechJudge-BTRM, Table [3). Besides, SpeechJudge-GRM also supports inference-time scaling
and offers explainability through its CoT outputs. Furthermore, SpeechJudge-GRM can also be em-
ployed as an objective naturalness metric for sample selection (Figure[5) or as a reward function in
RL algorithms to enhance the quality of existing speech generation models (Figure [6).

We will release all resources from this study to facilitate future research in human-aligned speech
synthesis. Audio samples are available at https://speechjudge.github.io/.

2 RELATED WORK

Human Alignment for Speech Generation Aligning generative models with human feedback
has proven crucial, a process also known as RLHF in LLMs (Ouyang et al.| 2022} Bai et al., [2022).
In the vision domain, many similar human preference datasets exist, such as Pick-a-Pic (Kirstain
et al., 2023), ImageReward (Xu et al., [2023)), and VideoReward (Liu et al.l [2025b). The speech
synthesis field, pioneering efforts to construct human corpora involved MOS datasets (Saeki et al.,
2022; Huang et al.,[2024)). However, these datasets often did not use advanced TTS models for data
generation, provided only the pointwise labels rather than the direct pairwise human preference,
and were limited in scale. More recently, efforts have focused on building human feedback cor-
pora centered on specific speech attributes, such as low-level acoustic quality (Wang et al., 2025b),
intelligibility (Zhang et al., 2025b), or the instruction-following capabilities of spoken dialogue sys-
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Speech Pair (with Target Text) User Interface of the Human Annotation System

Speech A Speech B
Trolaa a8 sz de 901z . 1 e L7, 118, 19, 20,121 22 123 s 2 Trodadala s ez e o o dm iz 113 1 s Lie. 7,118, 11e 20 |21 |22 |23 |24 25
@ In that moment, {5###E0TE the stars whispering, the moon smiling. | looked up at the @ In that moment, {5{#EUTE the stars whispering, the moon smiling. | looked up at the
sky, my heart filled with endless fantasies, R EF#Z/R, exploring the boundless sky, my heart filled with endless fantasies, BBREF#ZLIZ, exploring the boundless
universe. Maybe in that distant place, &5 & JLi#9 miracles, waiting for me to universe. Maybe in that distant place, &35 & i) miracles, waiting for me to
discover. S—FER#HR— story, B—ERY#IIFE longing, longing for my discover. §—H2R#R—1 story, §— L RK#IFH longing, longing for my
arrival arrival
D> 00:00.00 /00:25.60 > 00:00.00/00:26.00
(a) Intelligibility Annotation (pointwise)
a.* Is any reading error? (insertion,
bomission, or mispronunclation) Speech A O Has Error O No Error SpeechB O Has Error O No Error
b.* Which speech sounds more natural? A 42 A+l Tie B +1 B +2
(b) Naturalness Annotation (pairwise)

Figure 1: SpeechJudge-Data consists of speech pairs (with corresponding text) synthesized by mul-
tiple zero-shot TTS models. For each pair, human annotators need to perform (a) a pointwise anno-
tation of text accuracy to assess intelligibility, and (b) a pairwise preference annotation to judge the
relative speech naturalness.

tems (J1 et al., 2025} |Ge et al.| |2025). Despite this progress, a large-scale human feedback corpus
built specifically around naturalness—one of the most general-purpose and fundamental metrics for
speech synthesis (Taylor, 2009; Tanl 2023)—has remained a critical missing piece.

AudioLLM as a Judge Using LLMs as automated quality evaluators is a prominent topic in the
textual LLM field, popularized by the “LLM-as-a-judge” paradigm (Zheng et al., 2023)). This ap-
proach has recently been extended to the speech domain. A concurrent work, AudioJudge (Manakul
et al., 2025)), evaluates the capabilities and limitations of using AudioLLMs for speech quality as-
sessment and paralinguistic understanding by prompt engineering. Furthermore, many studies have
focused on fine-tuning AudioLLMs to elicit their understanding capabilities for specific tasks. Ex-
amples include discriminating the human-likeness of audio (Wang et al. |2025c), understanding
low-level acoustic qualities (Chen et al.,|2025a; [Wang et al., |2025b)), and enhancing the assessment
of instruction-following in spoken dialogue systems (Ji et al., |2025; |Ge et al., [2025). However, how
to improve the ability of AudioLLMs to understand and judge speech naturalness, and how to use
the quality assessment capabilities of AudioLLMs as a reward to improve the post-training of speech
generation models themselves, remain significantly underexplored.

3 SPEECHJUDGE-DATA

Our work is grounded in SpeechJudge-Data, a large-scale human feedback corpus for assessing the
intelligibility and naturalness of synthesized speech. Formally, we aim to construct a dataset D =
{(t, a1, az2)}, where each triplet comprises a pair of synthesized speech samples (aj,as) and the
corresponding target text t. We instruct annotators to provide pointwise intelligibility and pairwise
naturalness preference annotations based on D (Figure[I).

3.1 DATASET CONSTRUCTION

We employ a diverse set of recent advanced zero-shot TTS models to prepare the dataset D. For-
mally, for each sample (¢, a1, as), we denote the synthesized speech a; as being produced by the
model My, i.e., a; ~ Mygs(aref,t), Where a,q¢ is the reference speech.

Model Selection For M;;;, we select the following six models of three architectures to en-
rich the distribution of the synthetic data (Figure @: (1) AR-based: ARS (Wang et al., |2025d),
CosyVoice2 (Du et al. 2024b), CosyVoice2-INTP (Zhang et al.|, |2025b), and Ints-INTP (Zhang
et al., 2025b). The latter two are released by Zhang et al.|(2025b) as intelligibility-enhanced models.
(2) FM-based: F5-TTS. (3) MGM-based: MaskGCT (Wang et al.,2025d).

Prompt Construction To build diverse prompts (a,.f, t) for TTS, for a;. > we adopt both regular
and expressive speech samples. The regular samples are randomly selected from the Emilia-Large
dataset (He et al.l [2025). The expressive samples are sourced from corpora rich in paralinguistics,
including the emotional corpora: ParaSpeechCaps (Deb et al.| 2024)), the accented corpora: L2-
Arctic (Zhao et al., 2018) and KeSpeech (Tang et al., [2021)), the whisper samples from an in-house



Under review as a conference paper at ICLR 2026

= ARS q;'g mm Emilia-Large s en2en
CosyVoice2 0/3& Genshin Impact 5% en2mixed
CosyVoice2-INTP In-house Whisper en2zh
15.1% 15.5% F5TTS 10.6% Kespeach Zhzen
6.5% .
Ints-INTP L2-Arctic 18.8% zh2mixed
o mm MaskGCT B ParaSpeechCaps mm zh2zh
14.5%  1g.4% 25.8%
(a) TTS Models. (b) Speech References. (c) Language settings.

Figure 2: Distribution of SpeechJudge-Data.

corpus, and the character voices from video games Genshin Impact (simon3000} 2023)). We display
the detailed distribution of speech references in Figure [2b]

The target text ¢ paired with each a,..y is constructed as follows: For regular a,.; samples, we
randomly sample transcriptions from the Emilia-Large dataset 2025). These are then
refined using DeepSeek-V3 (DeepSeek-Al et al.|[2024) to correct typos and normalize punctuations.
For expressive a,..y samples, we instruct DeepSeek-V 3 to generate several scripts in different writing
styles, tailored to the topic of a,.; (see Appendix @ for more details). The languages of the target
texts included Chinese (zh), English (en), and Chinese-English code-switching (mixed). For the
combinations (aref,t), we include both monolingual settings (en2en and zh2zh) and cross-lingual
settings (zh2en, en2zh, zh2mixed, and en2mixed), where zh2en denotes Chinese a,..y with English ¢,
and similarly for others. The distribution of the language settings of (a,ey, t) is shown in Figure

Speech Pair Construction To ensure the diversity of the (a1, as) pairs being compared, we fol-
low [Zhang et al| (2025b) and adopt both intra-model (i.e.,a; and as being generated by the same
model) and inter-model pairs (i.e., a; and as being generated by the different models). The distri-
bution of the speech pair is shown in Figure 7]

3.2 HUMAN ANNOTATION

Given a sample (¢, aj, as), human annotators are instructed to perform both pointwise intelligibil-
ity and pairwise naturalness annotations (Figure[T). For intelligibility, annotators perform a binary
classification to determine whether the speech (a; and as) accurately reads the text ¢ without any
content insertion, omission, or mispronunciation. For naturalness, they perform a five-scale Com-
parative Mean Opinion Score (CMOS) annotation to determine which of the two audio clips (a;
or ap) sounds more natural and human-like. We recruit human annotators and provide them with
training. The detailed annotation guidelines are provided in Appendix [C}

Statistics We recruit 69 annotators and conduct annotations over two months. The resulting con-
structed dataset D, which we denote as SpeechJudge-Data (raw), contains 99K (¢, a1, as) samples,
with each sample receiving an average of 2.49 annotations from different labelers. The market value
of this annotation scale is estimated at over S00K RMB (about 70K USD). Based on the raw dataset,
we also construct several subsets for analysis and reward model training. We provide detailed de-
scriptions of each subset and its applications in the following sections and in Appendix[B.2]

Human Agreement Analysis We analyze the human annotations for naturalness in this section;
discussions regarding intelligibility are provided in Appendix [C.2} For naturalness annotations, we
evaluate the inter-annotator agreement across our constructed dataset. To simplify the analysis,
given the sample (¢, a1, as), we transform the five-scale naturalness scale (CMOS) into a ternary
classification system: either a; is better, as is better, or their quality is a Tie. Based on this simplified
classification, we categorize the annotation results into four distinct levels of agreemenlﬂ (1) Full
Agreement (FA): A consensus is reached among all annotators, with all ratings pointing to the
same outcome (e.g., “2A”, “3A”, “2B”, “3B”). We use “2A” to indicate that two annotators both
rated a; as better, while “3B” denotes three annotators all rating as as better. (2) Weak Agreement
(WA): This level captures cases where two annotators agree on a specific polarity, while the third
annotator marks a Tie (e.g., “2A+1T”, “2B+1T”). We also include the “2T+1A” and “2T+1B” cases

'Note: Each sample of SpeechJudge-Data is independently annotated by a minimum of two and a maximum
of three annotators (Appendix [C).
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in this level. (3) Weak Disagreement (WD): This occurs when two annotators’ ratings share the
same polarity, but the third’s rating is the opposite (e.g., “2A+B”, “2B+A”). (4) Full Disagreement
(FD): This represents a complete lack of consensus, where all three annotators provide different
classifications, denoted as “1A+1B+1T".

Regular
Expressive

All

0% 20% 40% 60% 80%  100%
Figure 3: Distribution of SpeechJudge-Data on different levels of human agreement.

In Figure 3] we demonstrate the distribution of these human agreement levels for the SpeechJudge-
Data and its two subsets, regular and expressive (which are defined by their speech references).
The figure shows that about 70% of the entire dataset falls into the Full Agreement (51.5%) or
Weak Agreement (17.2%) levels. Furthermore, we observe that the expressive subset has a lower
agreement level than the regular subset, which suggests that human evaluation of expressive speech
generation is inherently a more challenging problem. Besides this sample-level agreement analysis,
we also analyze the reliability of individual annotators, and we will discuss this in the Appendix[C.1]

4 SPEECHJUDGE-EVAL

To evaluate speech naturalness, existing studies typically organize their own listening tests, which
often have inconsistent settings across different papers (Ju et al., [2024; |Anastassiou et al.| 2024;
Du et al. [2024a; [Xu et al., 2025; KimiTeam et al., 2025). Alternatively, previous researchers use
proxy MOS predictors, such as UTMOS (Saeki et all [2022), as an objective metric. However,
it remains an underexplored problem whether these metrics can accurately judge the naturalness
of more advanced speech generation models (Wang et al., |2025d; Du et al.l [2024b; |Chen et al.,
2025b; [Zhang et al.l [2025b) and align with human preferences. Motivated by this, we construct a
benchmark, SpeechJudge-Eval, specifically for the speech naturalness judgment task.

4.1 TASK DESCRIPTION

Task Formulation We formulate the naturalness judgment task as a pairwise comparison, specif-
ically a win-or-lose binary classification task: Given a target text ¢ and a corresponding audio pair
(a1,as2), a model needs to determine which audio has better naturalness. This results in a binary
choice: either a; is better or as is better. We use the human answer as the ground truth, and use
Accuracy to measure the judgment performance of a model M on the evaluation set D:

|D|
Accuracy = - S Ilym = ) (1)
d=0

where | D] is the total number of samples in the evaluation set, y and yy; represent the answers of
the model M and human for the sample d, respectively. I is the indicator function.

Evaluation Data We sample a subset of the SpeechJudge-Data to create the evaluation set for
SpeechJudge-Eval. Specifically, we first select a subset that contains only preference data (i.e., we
filter out samples with the “Tie” annotation), and then choose only those with full-agreement-level
(FA) samples to ensure a high-quality ground truth. We perform sampling from both the regular and
expressive subsets of SpeechJudge-Data and proportionally cover the three target text languages (zh,
en, and mixed) within each subset. The final SpeechJudge-Eval dataset consists of 1,000 samples.
The construction details of SpeechJudge-Eval and its distribution can be found in Appendix [B.2]

4.2 BENCHMARK FOR DIFFERENT MODELS

We test the naturalness judgment capability of various models based on SpeechJudge-Eval. We
consider four different categories of models, whose evaluation protocols are shown in Table[T}

5
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Table 1: Protocols of different mod-  Table 2: Accuracy of speech naturalness judgment across

els for naturalness judgment. different models on SpeechJudge-Eval.
Type Protocol Model Regular Expressive Total
Lo WER |, Naturalness 1 Objective Metrics
Oh‘;iigge SIM 1, Naturalness 1 WER 59.3 57.0 57.9
FAD |, Naturalness T SIM 47.5 42.5 44.5
MOS FAD 50.3 47.5 48.6
Predictors MOS 1, Naturalness 1 -
redic MOS Predictor
Deepfake o DNSMOS 61.0 55.8 57.9
Detectors | oke - Naturalness UTMOS 54.0 535 537
: Content Enjoyment (CE) 69.3 55.2 60.8
AudioLLMs S , Natural
udioLLMs  Score 1, Naturalness 1 Content Usefulness (CU) 61.3 547 573
Prompts of AudioLLMs Production Complexity (PC) 39.3 48.7 44.9
« We are comparing the naturalness of Production Quality (PQ) 61.3 54.3 57.1
two models’ outputs. The models need Deepfake Detectors
to speak the target text accurately and AASIST 40.5 50.8 46.7
naturally. : : :
e Target text: {¢}, Output A: {a1 }, Out- ADV 353 40.3 38.3
put B: {a2}. Analyze the two out- AudioLLMs (Open-source)
puts above, and score them with num- Phi-4-Multimodal 54.8 38.5 57.0
ber f;‘im Lo 1?- I:“’:fi T Qwen2.5-Omni-7B 62.0 59.7 60.6
o €ase evaluate the naturalness o o .
both audio outputs based on the K1m1-Aud10—7B-Ipstruct 65.5 68.0 67.0
following criteria: Prosody and Gemma—3r}—l§4B—1t 49.0 41.7 48.2
Intonation, Pacing and Rhythm, Voxtral-Mini-3B-2507 60.0 533 56.0
Articulation and Clarity, and MiDashengL.M 58.8 63.5 61.6
Overall Naturalness. MiMo-Audio-7B-Instruct 61.3 49.3 54.1
o After conducting a detailed anal- B
ysis of each criterion, using the o AudioLLMs (Closed-source)
following output template to high- Gemini-2.5-Flash 73.5 66.2 69.1
light your conclusion: Output A: Gemini-2.5-Pro 73.0 62.2 66.5
X, Output B: X. GPT-40 mini Audio 56.3 46.7 50.5
GPT-40 Audio 71.5 64.7 67.4

* We instruct AudioLLM:s using two modes
of prompt: plain and CoT. The text in blue
is only employed during the CoT mode.

“ We use the protocols of Table E]to establish judgment rules for dif-
ferent models. The results of AudioLLMs here are obtained using the
plain prompt of Table|[T]

1. Objective metrics, such as WER (Radford et al.| 2023 |Gao et al.| [2023), SIM (Chen et al.,
2022), and FAD (Kilgour et al.l 2019) in audio generation tasks. We assume that a better value
of these metrics (e.g., lower for WER and FAD; higher for SIM) indicates better naturalness.

2. MOS Predictors, including DNSMOS (Reddy et al., 2022), UTMOS (Saeki et al.| [2022), and
predictors from audiobox-aesthetics (CE, CU, PC, and PQ) (Tjandra et al., [2025). We assume
that a higher MOS score corresponds to better naturalness.

3. Deepfake detectors, which are typically pre-trained on a binary classification task to predict
whether an audio is fake or not (Jung et al., 2022; /Wang et al.,|2025a)). We assume that an audio
with a lower fake probability should have better naturalness.

4. AudioLLMs, which are employed to test their speech naturalness understanding capabilities in
a zero-shot manne We include the open-source Phi-4-Multimodal (Abouelenin et al.| |2025),
Qwen2.5-Omni (Xu et al., 2025), Kimi-Audio (KimiTeam et al., |2025), Gemma-3n (Kamath
et al.,[2025)), Voxtral (Liu et al.,2025a), MiDashengL.M (Dinkel et al., 2025), Mimo-Audio (Xi-
aomi, [2025)), and the closed-source Gemini-2.5 (Comanici et al.,[2025) and GPT-40 (Hurst et al.}
2024). We use the plain prompt of Table[I]to instruct the model to pairwise score the naturalness
of two audios. We use their grading to determine the naturalness preference.

The performance of different models on SpeechJudge-Eval is presented in Table[2] A key observa-
tion is that speech naturalness judgment is a highly challenging task. The best-performing model,
Gemini-2.5-Flash, still only achieves less than 70% agreement with human preferences. When com-
paring different models, we find that: (1) common objective metrics and MOS predictors show only
a weak correlation with human preferences, often achieving less than 60% accuracy and sometimes

>We assume that our adopted AudioLLMs have not been directly trained on the speech naturalness judgment
task. Their performance on this benchmark is therefore considered a zero-shot capability.
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Chain-of-Thought Prompt Rationale-based Output
© We are comparing the naturalness of two text- Here's an analysis of the naturalness of Output A and Output B: Q
to-speech models' outputs. The models need to > < & SFT Dataset
speak the target text accurately and naturally. Output A:
o Target text: {77}, Output A: {ef,}, Output B: o Prosody and Intonation: The inonation generally follows the seatence structure wel, . (CoT Prompts + Outputs)
{af,}. Analyze the two output above, and o Pacing and Rhythm: The pacing is consistent and relatively fast, but
score them with number from 1 to 10. ©  Articulation and Clarity: Articulation is excellent. ..

o Overall Naturalness: Output A is clear and intelligible, demonstrating ...
© (1) Please evaluate the naturalness of both
() >

audio outputs based on the following Output B:

criteria: Prosody and Intonation, Pacing o Prosody and Intonation: The prosody and intonation are highly unnatural...

and Rhythm, Articulation and Clarity, o Pacing and Rhythm: The pacing is extremely inconsistent and eratic i . Human
and Overall Naturalness. o Articulation and Clarity: While some individual sounds are correctly pronounced, the . . 0
© (2) After conducting a detailed analysis of severe fragmentation of words, Verification RL Dataset
each criterion, using the following output o Overall Naturalness: Output B sounds highly artificial...
template to highlight your conclusion: (CoT Prompts)
Output A: X, Output B: X, Conclusion: Output A: 7.5, Output B: 2
SpeechJudge-Data ’ Gemini-2.5-Flash (a) SFT & RL Datasets
Human Preference as Verifiable Reward (b) RLVR

RL Dataset Here's an analysis of the naturalness of Here's an analysis of the naturalness of Here's an analysis of the naturalness of Here's an analysis of the naturalness of
Output A and Output B: Output A and Output B: Output A and Output B: Output A and Output B:
(CoT Prompts)
Output A: Output A: Output A: Output A:
o Prosody and Intonation: o Prosody and Intonation: o Prosody and Intonation: o Prosody and Intonation:
o Pacing and Rhythm: o Pacing and Rhythm: o Pacing and Rhythm: o Pacing and Rhythm:
Rollollts ©  Articulation and d ©  Articulation and C] ©  Articulation and Clarity: © Articulation and Clarity:
Pﬂllcy Model i_ Overall Naturalness: ?“ Overall Naturalness: ... 4.3" Overall Naturalness: i- Overall Naturalness: GRPO
Output B: Output B: Output B: Output B:
o Prosody and Intonation: o Prosody and Intonation: o Prosody and Intonation: o Prosody and Intonation:
o Pacing and Rhythm: ... o Pacing and Rhythm: o Pacing and Rhythm: o Pacing and Rhythm:
o Articulation and Clarity: o Articulation and Clarity: o Articulation and Clarity: o Articulation and Clarity:
o Overall Naturalness: o Overall Naturalness: ... o Overall Naturalness: o Overall Naturalness:
Human Preference |conciusion: Output A: 6, Output B: 4 | |Conclusion: Output A: 4, Output B: 5 | |Conclusion: Output A: 7, Output B: 3 | [Conclusion: Output A: 6, Output B: 8
: ‘ AudioA 3 i AudioA €3 AudioB €8  AudioA &8 AudioB ¢3 AudioA ¢ Audio B €8  Audio A €8 Audio B ¢
‘ i AudioB 68 i Accuracy Reward: +1 Accuracy Reward: -1 Accuracy Reward: +1 Accuracy Reward: -1

Figure 4: SpeechJudge-GRM: (a) We employ Gemini-2.5-Flash as a teacher model to generate
CoT rationales for SpeechJudge-Data. We use the samples where Gemini-2.5-Flash’s preference
aligns with human as the SFT dataset, while the remaining samples are reserved for the RL stage.
(b) We treat the human preference as a verifiable reward to train the GRM with GRPO.

performing at the level of a random guess (around 50%). (2) While deepfake detectors are highly
effective at distinguishing between machine-generated and human-recorded speech (Wang et al.,
2025a;; Jung et al., 2022)), their ability to do so is not well-aligned with the naturalness objective
when comparing two generated samples. (3) AudioLLMs demonstrate significant potential for this
task. While some models, such as Gemma-3n and GPT-40 mini Audio, perform at a chance level, a
number of others achieve an accuracy exceeding 60%. This promising performance motivates us to
further leverage these AudioLLMs for the design of a reward model for speech naturalness.

5 SPEECHJUDGE-GRM

Based on the proposed SpeechJudge-Data, we further explore how to train a reward model capable
of accurately capturing human preferences. Specifically, we propose SpeechJudge-GRM, where
we leverage the inherent audio understanding capabilities of AudioLLMs (specifically, Qwen2.5-
Omni-7B (Yang et al 2024))) to elicit their speech naturalness judgment capability. Compared to
the classic BTRM (Bradley & Terryl |{1952), the key strengths of GRM are its ability to enable
Chain-of-Thought (CoT) reasoning and its support for test-time computation via majority voting,
which ultimately leads to improved preference judgment performance (Zhang et al., 2025a)).

5.1 METHODOLOGY

We develop SpeechJudge-GRM based on Qwen2.5-Omni-7B (Thinker) (Xu et al.| [2025)). Inspired
by the powerful capabilities of RL with the verifiable reward (RLVR) (Shao et al., 2024; |DeepSeek-
Al et al.,[2025), our natural initial approach is to treat the human preference y4, for the pair (a1, az)
as a verifiable reward, and launch a RLVR training based on Qwen2.5-Omni. However, in practice,
we find that the instruction-following reasoning capabilities of Qwen2.5-Omni are very weak (more
detailed discussions can be found in Appendix [E)). Therefore, we adopt a two-stage post-training
process (“SFT + RL”) to develop SpeechJudge-GRM (Figure[d). We describe the details as follows.

SFT Stage We consider SFT as a “cold start” stage to improve the Qwen2.5-Omni’s instruction-
following, reasoning, and speech naturalness understanding capabilities. We select Gemini-2.5-
Flash (Comanici et al., 2025)—one of the best-performing closed-source models on SpeechJudge-
Eval (Table [2)—to serve as a teacher model, and instruct it to generate the CoT data. Specifically,
for each sample d = (¢, a1, as, y3 ) from SpeechJudge-Data, we use the CoT prompt from Table
(denoted as Ic,r) to instruct Gemini-2.5-Flash to generate a rationale-based output (denoted as
Oveacher)- We then extract the preference judgment (ya) from this output. For samples where
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Table 3: Accuracy of speech naturalness judgment

of SpeechJudge-GRM. Speechjudge-BTRM
Speechjudge-GRM .20% .00%

Model Regular Expressive Total 0% 20% 20% 60% 80%  100%

Qwen2.5-Omni-7B 62.0 59.7 60.6
Gemini-2.5-Flash 73.5 662 691  Figure 5: Subjective evaluation of us-
SpeechJudge-BTRM 77.5 69.5 727 ing SpeechJudge-GRM for high-naturalness
Speechudge-GRM (SFT) 778 37 53 sample selection. Human subjects com-
w/ Voting@10  77.4 77.6 71.6 X
SpeechJudge-GRM (SFT+RL)  79.0 76.0 772 pare a best-of-100 output of Qwen2.5-Omni-
w/ Voting@10  80.5 78.7 794 7B (Talker), chosen by either SpeechJudge-

* Our evaluation is conducted on SpeechJudge-Eval (like Table2]. w BTRM or SpeechJudge-GRM, against a ran-
Voting@10: For each prompt, the GRM generates 10 outputs, and we
use the majority voting from these 10 outputs as the final result. domly Outpln'

Gemini-2.5-Flash’s preference is consistent with the human (i.e., yo4 = y3), we concatenate the
CoT prompt and the model’s output, [Icor, Oteacher], to create a data point for our SFT dataset.
Conversely, we consider the sample d a challenging case and reserve the prompt I~,7 for the second-
stage RL dataset. During the SFT stage, for each training sample [Icor, Oteqcher), We perform the
next token prediction only on the segment Oyeqcher-

RL Stage We treat the annotated human preference as a verifiable reward, and, building on the
SFT model, we further trained it using the GRPO algorithm (Shao et al., 2024). Specifically, for
each sample d = (¢, a1, as,ys ) in the RL dataset, we adopt the CoT prompt to instruct the policy
model to conduct multiple rollouts during each iteration. For the ¢-th rollout, we parse the model’s
preference for (a1, as), denoted as yj\/l. Following (Liu et al.,|2025c|), we use an accuracy-based rule
to calculate the reward: the reward is 1 if y}\/[ = yy, and -1 otherwise. In other words, during the
RL stage, we only constrain the model’s final naturalness judgment to align with human preferences,
allowing the model to autonomously optimize its reasoning and rationale generation capabilities.

We denote the training dataset of SpeechJudge-GRM as SpeechJudge-Data (train). Its construction
process is as follows (see Appendix [B.2]for more details). Based on the raw SpeechJudge-Data, we
first filter out all samples at the Full Disagreement (FD) level. For the other samples—at the FA, WA,
and WD levels—we apply a majority voting principle among annotators to determine the final label
for each. We then further exclude samples with a “Tie” label, using only the remaining preference
data to form the SpeechJudge-Data (train). We use LoRA (Hu et al.| 2022) to fine-tune the GRM
during both the SFT and RL stages. Other experimental setup details are provided in Appendix [F]

5.2 EFFECTIVENESS OF SPEECHJUDGE-GRM ON NATURALNESS JUDGEMENT

To verify the effectiveness of SpeechJudge-GRM for naturalness judgment, we evaluate it on the
SpeechJudge-Eval benchmark. We develop SpeechJudge-BTRM as a baseline, which utilizes the
BTRM paradigm (Bradley & Terry, {19525 Rafailov et al.,|2023) by adding a linear layer on Qwen2.5-
Omni-7B (Thinker) to produce a single scalar reward prediction. SpeechJudge-BTRM also uses
LoRA fine-tuning and uses the same training data as SpeechJudge-GRM.

From the results of Table [3] we can observe that: (1) The SpeechJudge-BTRM achieves a 72.7%
agreement with human preferences on SpeechJudge-Eval, a level of performance comparable to the
initial development of BTRMs in the textual LLM RLHF field (Stiennon et al., [2020; |Bai et al.,
2022; |Ouyang et al.| 2022). (2) After conducting SFT training with the CoT data, the accuracy of
SpeechJudge-GRM (SFT) reaches 75.3%. Besides, further RLVR training improves the final model
SpeechJudge-GRM (SFT+RL) to an accuracy of 77.2%. (3) Due to the generative nature of the
GRM, we can further enhance the accuracy of SpeechJudge-GRM using inference-time scaling. For
example, by using majority voting across 10 outputs instead of just one, the accuracy is improved by
approximately 2 percentage points (75.3% — 77.6%; 77.2% — 79.4%). These results collectively
verify the effectiveness of our proposed SpeechJudge-GRM for judging speech naturalness.

5.3 HIGH-QUALITY SAMPLE SELECTION BASED ON SPEECHJUDGE-GRM

We investigate the effect of SpeechJudge-based reward models for high-quality sample selection. We
use the hard cases from SeedTTS-Eval (Anastassiou et al.,2024) and the code-switching cases from
Amphion-TTS-Eval (Zhang et al.| [2024) as target texts. For each text, we instruct the Qwen2.5-
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N Lose Tie . Win

Model T-ACC N-CMOS
Qwen2.5-0.5B-TTS 84.0%  0.00

w/INTP  87.0%  0.18 1oy

w/ SpeechJudge-Data ~ 91.0%  0.16 L4 i

w/ SpeechJudge-GRM (offline) ~ 91.0%  0.21 4, w/ Speechjudge-GRM (online) | ‘ : ‘ : ,
w/ SpeechJudge-GRM (online)  90.0%  0.25 Ly 0%  20% 40% 60% 80% 100%

w/ INTP EFELTA
w/ Speechjudge-Data

w/ Speechjudge-GRM (offline)

30.40%
25.00%

(a) Text Accuracy (T-ACC) and Naturalness
CMOS (N-CMOS).

Figure 6: Post-training of Qwen2.5-0.5B-TTS based on SpeechJudge. We display the objective
results (WER and SIM) in Table[6]of Appendix

(b) Win/Lose/Tie of speaker similarity after post-training.

Omni-7B (Talker) (Yang et al.l 2024) to generate 100 speeches. We then ask human subjects
to compare the best-of-100 output—as selected by either SpeechJudge-BTRM or SpeechJudge-
GRM—against a randomly sampled output. The evaluation measures the win/lose/tie ratios based
on speech naturalness. From Figure [5] we observe that the best-of-100 samples selected by both
SpeechJudge-BTRM and SpeechJudge-GRM are more likely to outperform a randomly selected
sample from the same set. This finding demonstrates the advantage of using the SpeechJudge-Data
corpus for training human-aligned reward model. Furthermore, SpeechJudge-GRM exhibits better
performance than SpeechJudge-BTRM, which highlights the superiority of the proposed GRM.

5.4 POST-TRAINING OF ZERO-SHOT TTS BASED ON SPEECHJUDGE-GRM

We investigate the effect of using SpeechJudge-GRM as a reward function for post-training of TTS
model. Specifically, we develop a new zero-shot TTS model, Qwen2.5-0.5B-TTS, to serve as the
base model, which was not involved in the construction of the SpeechJudge-Data. This model is
based on Qwen2.5-0.5B (Yang et al.,|2024), adopts the classic two-stage “AR+Diffusion” architec-
ture (Anastassiou et al.,|2024; Du et al.| |20244a)), uses the speech tokenizer from DualCodec (Li et al.}
2025)), and is pre-trained on the Emilia dataset (He et al.| 2025).

Based on this pre-trained model, we design four comparative methods: (1) w/ INTP: We use
the intelligibility preference dataset, INTP (Zhang et al.| 2025b), to perform offline DPO align-
ment (Rafailov et al.| [2023). (2) w/ SpeechJudge-Data: We use the SpeechJudge-Data (train) to
perform offline DPO alignment. (3) w/ SpeechJudge-GRM (offline): We use SpeechJudge-GRM
as an offline preference data annotator. We take all speech pairs from the INTP dataset and re-
annotate their preference labels using SpeechJudge-GRM, then perform offline DPO alignment on
the resulting data. (4) w/ SpeechJudge-GRM (online): We use SpeechJudge-GRM as a reward
function for the online DPO algorithm (Guo et al.| [2024). The training data consists of only the
prompts from INTP (i.e., the target texts and speech references for zero-shot TTS).

We use SeedTTS-Eval (Anastassiou et al., [2024) and Amphion-TTS-Eval (Zhang et al., 2025b)
20241 2025¢) as evaluation sets. We present the objective results (WER and SIM) in Table|6]and the
subjective results in Figure[6] We observe that both intelligibility and naturalness are enhanced for all
the four methods after post-training. Additionally, the post-training method based on SpeechJudge-
GRM achieves a greater improvement in naturalness (Figure [6a). Besides, the SpeechJudge-based
methods could match or lead to a slight improvement in speaker similarity (Figure [6b).

6 CONCLUSION

In this work, we address the challenge of aligning speech synthesis with human perception of nat-
uralness by introducing SpeechJudge, a suite including a large-scale dataset (SpeechJudge-Data), a
challenging benchmark (SpeechJudge-Eval), and a generative reward model (SpeechJudge-GRM).
Our benchmark reveals that even top AudioLLMs struggle with naturalness judgment, achieving less
than 70% human agreement. In contrast, our proposed SpeechJudge-GRM reaches 77.2% accuracy
(up to 79.4% with inference-time scaling @10), outperforming the classic Bradley-Terry reward
models (72.7%). We also demonstrate its practical utility as a reward function to effectively enhance
TTS model naturalness via post-training. While our primary focus is on naturalness, future work
could extend this framework to other subjective attributes like speaker similarity and emotional ex-
pressiveness, potentially through multi-objective reward modeling. By releasing our resources, we
aim to catalyze research in building more human-aligned speech generation systems.
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This research adheres to the ICLR Code of Ethics. Our dataset was constructed with feedback from
paid professional annotators under fair labor conditions, and the data itself consists of synthesized
speech from properly licensed corpora, safeguarding the privacy of all individuals. We acknowledge
that our models may reflect linguistic biases present in the English and Chinese source data and rec-
ognize that generative speech technology has dual-use potential. We do not condone any malicious
use of our work, such as the creation of misleading deepfakes.

REPRODUCIBILITY STATEMENT

To ensure full reproducibility, we will publicly release all key resources from this study. This in-
cludes the SpeechJudge-Data corpus, the SpeechJudge-Eval benchmark, the trained model check-
points for SpeechJudge-GRM, and the source code for both reward model training and downstream
experiments. The main paper and its appendices provide detailed descriptions of our methodology,
data construction protocols, and experimental setups to allow for the complete verification of our
findings. Audio samples are available on our project website.
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A THE USE OF LARGE LANGUAGE MODELS
We utilized Large Language Models (LLMs) for two assistive tasks: (1) to correct grammar and
polish the language of this manuscript, and (2) to generate and normalize the target texts for

SpeechJudge-Data during the dataset construction. All core scientific contributions, including
ideation, methodology, and analysis, are entirely those of the authors.

B DETAILS OF SPEECHJUDGE-DATA

B.1 DETAILS OF PROMPT CONSTRUCTION

For the target texts paired with the regular speech references, we use DeepSeek-V3 (DeepSeek-Al
et al.| 2024) to fix typos and normalize punctuations, the prompt used is listed below.
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ARS vs. ARS

ARS vs. CosyVoice2

ARS vs. F5-TTS

ARS vs. MaskGCT

CosyVoice2 vs. CosyVoice2
CosyVoice2 vs. F5-TTS
CosyVoice2 vs. MaskGCT
CosyVoice2-INTP vs. CosyVoice2-INTP
CosyVoice2-INTP vs. Ints-INTP
F5-TTS vs. F5-TTS

F5-TTS vs. MaskGCT

Ints-INTP vs. Ints-INTP
MaskGCT vs. MaskGCT

9.4%

9.5%

3.2%

15.2%

8.6%
7.8% 6.9%

Figure 7: Distribution of the speech pairs of SpeechJudge-Data. The chart illustrates the percentage
of both intra-model (e.g., ARS vs. ARS) and inter-model (e.g., ARS vs. CosyVoice2) pairs.

System Prompt:

I obtained a text from an audio file based on some ASR models. Please help me clean it up (e.g., correct
typos, add proper punctuation marks, and make the sentences semantically coherent). Note: (1) You can
modify, add, or replace words that better fit the context to ensure semantic coherence. (2) Please only
return the cleaned-up result without any explanation.

User Prompt (Example):
a panda eats shoes and leaves

System Output (Example):
A panda eats shoots and leaves.

For the target texts paired with the expressive speech references, we use DeepSeek-V3 to generate
several scripts in different writing styles based on the speech reference’s text, the prompt used is
listed below.

System Prompt:

EHRAFRIESHITEES (P BERY, B LERL) - K pa)F LAoFRE
INANFIREES (W3 il B0 KU« BHZIRUAS « EERXURE %, 3530: Formal, Informal,
Literary, Journalistic, Advertising, etc.) , BEELEGHIT, S5 BEAEERANE . BEEE X
IR S R 7 T B VE R 2N 10- 2000 22 45

TE SR DL R ISONAS ZUR B LGSR, AN AT frr oAb g mli o 1 -

{

“continue”: [

{”type”: ”KM%?{E”, ”Content”: ”é;@gqu?éi”},
{”type”: ”ngéﬂ”, ”content”: ”iglj\]@”},

. (F£10%%)

1,

“random”: ” M DL EEEE BN LE H—&EEE TN,

“translation”: ”Ffrandom N & 4253 F 8 B IF A H G B SCAR”,

codeSwitching”: ¥frandom [N 25 #1715 & 1 H Hecode-switching,  RI7EA] BG4 S BRI % #t
B X BOR”

}

User Prompt (Example):
A panda eats shoots and leaves.

System Output (Example):

“continue”: [

{"type”: “Formal”, “content”: “This behavior is characteristic of the species Ailuropoda melanoleuca,
which sustains itself primarily on a herbivorous diet consisting of various bamboo species. The consump-
tion of both young shoots and mature leaves is essential for meeting its nutritional requirements.”},
{"type”: “Informal”, “content”: ”And then, after chowing down on all that bamboo, it just kinda chills
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Figure 8: From the raw SpeechJudge-Data to its different subsets.

out, maybe takes a long nap or something. They’re pretty laid-back animals, you know? Not much else
going on when you’re full of leaves.”},

{”type”: “Fantasy”, "content”: “Legend says that with every shoot consumed, a little more of the forest’s
ancient magic is absorbed into its being. The leaves it leaves behind are not mere waste, but enchanted
tokens that can heal or curse, depending on the heart of the finder.”},

1,

“random”: “Legend says that with every shoot consumed, a little more of the forest’s ancient magic is

absorbed into its being. The leaves it leaves behind are not mere waste, but enchanted tokens that can heal
or curse, depending on the heart of the finder.”,

“translation”: " Ui, BT —RMTF, MW — SRS ZR Y - EHEE THHT
HAERMREFRY, MEWEREREY . "HAEIRHAE, 2RAMEROH . »,
”codeSwitching”: "Legend says that with every shoot consumed, a little more of the forest’s ancient magic
1% Winto its being. The leaves it leaves behind are not mere waste, but enchanted tokens that can heal
Blcurse, depending on the finder Aheart.”

}

B.2 SUBSETS OF SPEECHJUDGE-DATA

We construct several subsets based on SpeechJudge-Data (Figure [§). We begin with the
SpeechJudge-Data (raw) corpus, containing 99K pairs, where each pair is annotated by multi-
ple labelers as a five-scale naturalness CMOS. We aggregate these annotations via a majority vote
for each pair, and subsequently discard all “Tie” pairs, yielding the 79K-pair human preference data,
denoted as SpeechJudge-Data (pref).

During our preliminary analysis based on SpeechJudge-Data (pref), we observe that a significant
disparity in intelligibility between two speech samples can overshadow the subtler quality of natu-
ralness, biasing human preference toward the more comprehensible sample. To mitigate this con-
founding factor and create a more high-quality dataset focused specifically on naturalness, we fur-
ther refine the data. Specifically, we retain only pairs where the absolute WER gap of those is below
12%. This process results in the 44K-pair high-quality SpeechJudge-Data (hq) subset, ensuring
that its preference labels are more reflective of genuine differences in naturalness.

From SpeechJudge-Data (hq), we construct our benchmark, SpeechJudge-Eval, by applying strat-
ified sampling to FA-level pairs, resulting in 1,000 pairs; its composition is detailed in Table
Similarly, we use the same strategy to construct a validation set of the same size, SpeechJudge-
Data (dev). The remaining 42K pairs, SpeechJudge-Data (train), constitute the training set for our
reward models.
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Table 4: Distribution of the SpeechJudge-Eval benchmark.

Subset Source of Speech References Languages of Target Texts # Pairs
- en 200
Regular Emilia-Large h 200
. en 200
Expressive ParaSpeechCaps, L?—Arctlc, h 200
KeSpeech, Genshin, etc. N
mixed 200

C HUMAN ANNOTATION DETAILS

Annotator Demographics We recruited professional annotators from a specialized data annota-
tion firm of China. All annotators assigned to Chinese data were native speakers. For the English
and code-switching datasets, annotators were required to have a proficiency level equivalent to at
least CET-6.

Training and Quality Control All personnel underwent standardized training based on a detailed
annotation manual. Initially, we conducted a pilot study among researchers to refine the guidelines
for clarity and unambiguity. To ensure annotation quality, each sample (¢, a1, a2) was independently
annotated by two individuals. A third annotator was introduced if any disagreements. The complete
annotation guidelines are attached below.

TASK INTRODCUTION
In each task, you are required to complete two evaluations:

1. Pronunciation Error Detection
For each audio clip, we provide the target text that is intended to be read aloud. You need to
determine if there are any pronunciation errors in the audio, such as omissions (missing words),
insertions (extra words), or substitutions (wrong words).

2. Naturalness Comparison
Compare two audio clips and determine which one sounds more natural and more like a real
human speaking.

Attention:
* Please use headphones for the evaluation to better capture audio details and improve judgment
accuracy.
ANNOTATION CRITERIA

A. PRONUNCIATION ERROR DETECTION
Pronunciation errors include the following three categories:

* Omission: Certain words from the target text are missed.
* Insertion: Extra words not in the target text are added, e.g., repeating words.

* Substitution: Certain words are misread, e.g., reading names, numbers, polyphonic characters,
or other words incorrectly, or making word order errors.

Attention: These pronunciation errors can occur at any point in the audio. For example:
* At the beginning of the audio, words are spoken that are not in the target text.
* At the end of the audio, some content from the target text is omitted.

¢ In the middle of the audio, omissions, insertions, or substitutions occur.

B. NATURALNESS COMPARISON
Natural speech should sound like a real person talking. Specific criteria include:

* The audio is clear, free from robotic/electronic tones or obvious noise (e.g., unnatural laughter,
shouting, or other irrelevant background voices).

* The intonation is natural and expressive, not flat or mechanical.
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» The speaking rhythm is reasonable, with moderate speed and appropriate pauses. (Note: In-
appropriate pauses affect the naturalness of the audio but are not classified as “’pronunciation
errors”).

» Word stress is placed correctly, conforms to normal linguistic sense, and does not sound abrupt.
The rating scale is as follows:

* A +2: Audio A is significantly more natural than B (large difference).

* A +1: Audio A is slightly more natural than B (slight difference).

* Tie: The naturalness of the two audio clips is similar and difficult to judge.

* B +1: Audio B is slightly more natural than A (slight difference).

* B +2: Audio B is significantly more natural than A (large difference).
Attention:

* If there are minor errors in individual words, please do not let them affect your overall judgment
of naturalness.

¢ However, if a large number of content errors are found that severely interfere with your listening
experience, this will affect the audio’s naturalness.

C.1 INDIVIDUAL ANNOTATOR RELIABILITY

To assess the reliability of individual annotators, we computed agreement rate for each participant.
This rate measures the extent to which an annotator’s judgments align with those of their peers on
the same sample (¢, a1, as).

For a given sample annotated by a group of M annotators, the agreement score for annotator ¢ is
calculated as the fraction of the other M — 1 annotators who assigned the exact same label. An
annotator’s final reliability score is the average of these scores across all samples they evaluated. We
excluded participants who annotated fewer than 10 samples from this analysis.

Formally, for an annotator ¢ who labeled IV; samples, the agreement rate r;; for sample j is defined
as:

1
i = 1 Zﬂ[yzj = ¥ij
TH#1
The overall agreement rate for annotator ¢, denoted as R;, is then:

1 &
Ri = FZHJ‘
ij:l

where y;; € {A, B, T} is the label assigned by annotator ¢ to sample j. The label T (i.e., Tie) is
treated as a distinct category, and it’s agreement is counted only on exact matches.

Figure Q] illustrates the distribution of these agreement rates for our 69 annotators for SpeechJudge-
Data (raw). The distribution is generally unimodal with a peak in the 60-70% rang which indi-
cates a consistent and reliable level of performance across the annotation pool.

C.2 INTELLIGIBILITY ANNOTATION ANALYSIS

We provide a detailed analysis of the relationship between the mostly common used objective intel-
ligibility metric, Word Error Rate (WER), and the subjective human judgments of intelligibility. Our
goal is to determine the extent to which WER can serve as a reliable proxy for human perception.

We use all the speech samples from SpeechJudge-Data (raw) for this analysis. We visualize the
relationship between WER and the subjective text accuracy in Figure [T0] For the regular speeches
(the orange curve), we observe a consistent negative correlation: as the WER increases, its perceived
text accuracy steadily declines. For the expressive speeches (the green curve), the similar trend holds

3We have noted that one annotator’s agreement with the others is less than 30%, so we ultimately removed
his data from SpeechJudge-Data.
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Figure 9: Distribution of individual annotator agreement rates. Most annotators fall between 50%
and 80%, typically peaking in the 60-70% range.

for expressive speech when WER is under about 12%. When WER is over the threshold, however,
the correlation between WER and the subjective text accuracy weakens significantly. We think this
divergence is sourced from that the greater stylistic variations in expressive speech pose a substantial
challenge to the robustness of ASR systems compared to the regular samples.
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Figure 10: The relationship between the human-annotated text accuracy and WER.

D DETAILS OF EVALUATION ON THE SPEECHJUDGE-EVAL BENCHMARK

During the evaluation on the SpeechJudge-Eval Benchmark of Table [2} we adopt the following
protocol for each model:

* WER (Radford et al., 2023} |Gao et al., [2023): We employ Whi sper—large—v3E| Radford
et al.[(2023)) for English texts, and Parafo rmer—zhﬂ Gao et al.[ (2022} [2023)) for Chinese and
code-switching texts.

e SIM (Chen et al., [2022): We compute the cosine similarity between the WavLM TDNNE| Chen
et al.| (2022) speaker embeddings of generated samples and the prompt samples.

* FAD (Kilgour et al., 2019): We use the officially released checkpoint, VGGish, to obtain the
FADs of audios.

DNSMOS (Reddy et al., [2022): We use the officially released scripﬂ to calculate the DNSMOS
of audios.

*https://huggingface.co/openai/whisper-large-v3
Shttps://huggingface.co/funasr/paraformer-zh
®https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_verification
"https://github.com/microsoft/DNS-Challenge/blob/master/DNSMOS/dnsmos_local.py
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* CE, CU, PC, and PQ (Tjandra et al} |[2025): We use the officially released toolkilﬂ to get the
predicted MOS for audios.

e AASIST (Jung et all [2022): It is a common baseline model for audio deepfake detection, em-
ploys a heterogeneity-aware approach to integrate spectral and temporal sub-graphs. We use a
large-scale in-house corpus to train the model.

* ADV (Wang et al.| 2025a)): It is a state-of-the-art (SOTA) deepfake detection model built upon
the pre-trained w2v-bert-2. Oﬂ It utilizes a multi-task training approach involving deepfake
source tracing to extract robust audio deepfake features. We use the same corpus of AASIST to
train the model.

* AudioLLMs: We use the plain prompt of Table [I|to instruct AudioLLMs to pairwise score the
naturalness of two audios. For the closed-source models, we use the official API released by
Googl for Gemini and OpenA for GPT. We use the model variants gemini-2.5-flash,
gemini-2.5-pro, gpt-4o-mini-audio-preview-2024-12-17, and
gpt-4o-audio-preview-2025-06-03 for Gemini-2.5-Flash, Gemini-2.5-Pro, GPT-40
mini Audio, and GPT-40 Audio.

E MORE EVALUATION RESULTS OF EXISTING AUDIOLLMS

Using AudioLLM as a judge models, prompt engineering strategies are usually believed crucial
for improving the performance (Zheng et al., [2023; [Manakul et al., |2025). Some common prompt
engineering strategies include using the CoT prompts to activate the model’s thinking and reason-
ing abilities (Zhang et al. 2025a; [Liu et al., 2025¢c; Manakul et al.l [2025), or employing few-shot
evaluation formats Zheng et al.| (2023); Xiaomi| (2025]).

In this study, we investigate whether using the CoT from Table |1 helps AudioLLMs better judge
speech naturalness. Interestingly, we find that some closed-source AudioLLMs, such as Gemini-
2.5-Flash, improve their performance on SpeechJudge-Eval through this thinking and reasoning
process. However, this strategy often does not work for existing open-source AudioLLMs. For
example, the results in Table [5] show that while Gemini-2.5-Flash consistently improves with the
CoT prompt, Kimi-Audio-7B-Instruct, which is already the best-performing open-source model on
SpeechJudge-Eval (Table[2), actually sees a decline in performance when using the CoT prompt.

Table 5: Performance of AudioLLMs on SpeechJudge-Eval when using CoT prompt.

Model Regular Expressive Total
Kimi-Audio-7B-Instruct 65.5 68.0 67.0

w/ CoT prompt 67.4 66.1 66.5
Gemini-2.5-Flash 73.5 66.2 69.1

w/ CoT prompt 75.0 67.5 70.5

Based on our preliminary qualitative analysis, we believe the reason why the open-source Audi-
oLLMs do not work well with the CoT prompt is that their foundational capabilities are relatively
weak. These weaknesses include instruction-following (such as format-following), multiple-audio
understanding, long-text generation, and reasoning abilities. This is also why, when we developed
SpeechJudge-GRM, we did not directly apply RLVR on top of Qwen2.5-Omni-7B. Instead, we used
an initial SFT stage as a cold start.

F TRAINING DETAILS OF SPEECHJUDGE-GRM

SFT Stage We use Gemini-2.5-Flash (Comanici et all [2025) to generate the CoT data for
SpeechJudge-Data (train). For the total 42K samples, Gemini-2.5-Flash’s judgments agree with

Shttps://github.com/facebookresearch/audiobox-aesthetics
“https://huggingface.co/facebook/w2v-bert-2.0
https://ai.google.dev/gemini-api/docs/models
https://platform.openai.com/docs/models
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Table 6: Post-training of Qwen2.5-0.5B-TTS based on SpeechJudge.

Model || Regular | Articulatory | Code-switching | Cross-lingual || Expressive || Avg
| WER SIM | WER SIM | WER  SIM | WER SIM | WER SIM || WER  SIM
Qwen2.5-0.5B-TTS || 263 0698 | 1053 0679 | 2387  0.666 | 10.51 0593 || 1110 0.706 || 11.73 0.668
w/ INTP 2.06 0.697 8.62 0.694 | 18.37 0.663 7.12 0.588 9.80 0.708 9.19 0.670
w/ SpeechJudge-Data 2.12  0.698 8.92 0.678 | 19.01 0.657 772 0.583 9.97 0.707 9.55 0.664
w/ SpeechJudge-GRM (offline) 231 0.698 7.83 0.681 | 15.36 0.662 7.84 0.593 9.72  0.709 8.51 0.668
w/ SpeechJudge-GRM (online) 235 0.696 8.45 0.674 | 15.87 0.653 7.82  0.580 9.79 0.702 8.85 0.661

human feedback on 25K samples, while they disagree on 17K samples. During the SFT stage, we
fine-tune Qwen2.5-Omni-7B (Thinker) (Xu et al., 2025) on the 25K CoT data using LoRA (Hu et al.}
2022) with a rank of 128. We use Adam (Kingma & Bal [2015} [Loshchilov & Hutter, 2019) as the
optimizer and set the learning rate to Se-5. The maximum number of tokens per batch is 4000. We
select the best checkpoint on SpeechJudge-Data (dev) as the SFT model, SpeechJudge-GRM (SFT).

RL Stage We use the 17K samples (as described above) to conduct DAPO (Yu et al.,[2025)), which
is an enhanced variant of GRPO (Shao et al., 2024). We utilize the ms—swi f toolkit to launch
the training process. We initialize the policy model with the SFT model and use LoRA training
with a rank of 64. The number of rollouts for each prompt is set to 8, and the batch size is 32.
The learning rate is 5e-6. We select the best checkpoint on SpeechJudge-Data (dev) as the final
SpeechJudge-GRM model, i.e., SpeechJudge-GRM (SFT+RL).

G SAMPLE SELECTION AND POST-TRAINING BASED ON
SPEECHJUDGE-GRM

G.1 DETAILS OF SUBJECTIVE EVALUATION

During the construction of SpeechJudge-Data, we hired human labelers from a data crowdsourcing
company. To verify the effectiveness of our training for them and to ensure the high quality of both
the dataset and the resulting SpeechJudge-GRM, the human subjects for the final sample selection
and TTS post-training experiments (Section [5.3] and [5.4) were all experienced speech generation
researchers. All these researchers had extensive audio backgrounds, with a minimum of two years
of experience in speech synthesis.

We randomly selected the subjective evaluation samples from both SeedTTS-Eval (Anastassiou
et al.| [2024)|'’|Jand Amphion-TTS-Eval (Zhang et al., 2025b,c The evaluation set for each system
in Figure [6] consists of 70 samples, while the set for each system in Figure [5] contains 100 samples.
Each audio sample in these evaluations received at least three independent ratings. These subjec-
tive evaluation results show that the annotation quality of SpeechJudge-Data largely aligns with the
judgments of professional researchers.

G.2 OBIECTIVE RESULTS

We present the objective results (WER and SIM) of the Qwen2.5-0.5B-TTS post-training in Table[6]
The results show that all four post-training methods significantly improve the WER. This trend is
similar to the subjective intelligibility results shown in Figure [6a]

Regarding the SIM metric, both w/ INTP and w/ SpeechJudge-GRM (offline) either match or slightly
outperform the baseline model, while the other two methods show a slight decline. However, the
objective SIM results appear to be in slight conflict with the subjective speaker similarity results in
Figure[6b] For instance, in the subjective evaluation, w/ INTP actually shows a decrease in speaker
similarity (Win: 24.30%, Lose: 32.90%).

Through follow-up interviews with the subjects who participated in our subjective evaluation, we
gathered additional qualitative insights. Participants consistently reported that the synthesized sam-

Zhttps://github.com/modelscope/ms-swift
Bhttps://github.com/BytedanceSpeech/seed-tts-eval
“https://huggingface.co/datasets/amphion/Amphion-TTS-Eval
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ples, both before and after post-training, demonstrated excellent speaker similarity, closely match-
ing the reference speaker’s timbre and style. In most cases, participants found it challenging to
distinguish any significant differences in similarity, leading them to prefer selecting “Tie”. For ex-
ample, in Figure [6b] all four methods have the highest “Tie” proportion, each exceeding 40%. This
demonstrates that post-training methods centered on naturalness (SpeechJudge-based) or intelligi-
bility (INTP-based) are not yet fully aligned with speaker similarity, which requires further research
into speaker similarity alignment.
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