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Abstract

Continuous diffusion models are commonly acknowledged to display a deter-
ministic probability flow, whereas discrete diffusion models do not. In this
paper, we aim to establish the fundamental theory for the probability flow of
discrete diffusion models. Specifically, we first prove that the continuous prob-
ability flow is the Monge optimal transport map under certain conditions, and
also present an equivalent evidence for discrete cases. In view of these find-
ings, we are then able to define the discrete probability flow in line with the
principles of optimal transport. Finally, drawing upon our newly established def-
initions, we propose a novel sampling method that surpasses previous discrete
diffusion models in its ability to generate more certain outcomes. Extensive ex-
periments on the synthetic toy dataset and the CIFAR-10 dataset have validated
the effectiveness of our proposed discrete probability flow. Code is released at:
https://github.com/PangzeCheung/Discrete-Probability-Flow.

1 Introduction

The emerging diffusion-based models [43, 20, 45, 46] have been proven to be an effective technique
for modeling data distribution, and generating high-quality texts [31, 14], images [34, 11, 40, 37,
38, 21] and videos [22, 19, 39, 51, 17]. Considering their generative capabilities have surpassed the
previous state-of-the-art results achieved by generative adversarial networks [11], there has been
a growing interest in exploring the potential of diffusion models in various advanced applications
[41, 33, 48, 55, 10, 32, 49, 52, 18, 53].

Diffusion models are widely recognized for generating samples in a stochastic manner [46], which
complicates the task of defining an encoder that translates a sample to a certain latent space. For
instance, by following the configuration proposed by [20], it has been observed that generated samples
from any given initial point have the potential to span the entire support of the data distribution.
To achieve a deterministic sampling process while preserving the generative capability, Song et
al.[46] proposed the probability flow, which provides a deterministic map between the data space
and the latent space for continuous diffusion models. Unfortunately, the situation differs when it
comes to discrete models. For instance, considering two binary distributions (P0 = 1

2 , P1 = 1
2 )

and (P0 = 1
3 , P1 = 2

3 ), there is no deterministic map that can transform the former distribution
to the latter one, as it would simply be a permutation. Although some previous research has been
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conducted on discrete diffusion models with discrete [24, 23, 4, 12, 9, 26, 16] and continuous [6, 47]
time configurations, these works primarily focus on improving the sampling quality and efficiency,
while sampling certainty has received less attention. More specifically, there is a conspicuous absence
of existing literature addressing the probability flow in discrete diffusion models.

The aim of this study is to establish the fundamental theory of the probability flow for discrete
diffusion models. Our paper contributes in the following ways. Firstly, we provide proof that under
some conditions the probability flow of continuous diffusion coincides with the Monge optimal
transport map during any finite time interval within the range of (0,∞). Secondly, we propose a
discrete analogue of the probability flow under the framework of optimal transport, which we have
defined as the discrete probability flow. Additionally, we identify several properties that are shared by
both the continuous and discrete probability flow. Lastly, we propose a novel sampling method based
on the aforementioned observations, and we demonstrate its effectiveness in significantly improving
the certainty of the sampling outcomes on both synthetic toy dataset and CIFAR-10 dataset.

Proofs for all Propositions are given in the Appendix. For consistency, the probability flow and
infinitesimal transport of a process Xt is signified by X̂t and X̃t respectively.

2 Background on Diffusion Models and Optimal Transport

First of all, we review some important concepts from the theory of diffusion models, optimal transport
and gradient flow.

2.1 Continuous state diffusion models

Diffusion models are generative models that consist of a forward process and a backward process.
The forward process transforms the data distribution pdata(x0) into a tractable reference distribution
pT (xT ). The backward process then generates samples from the initial points drawn from pT (xT ).
According to [28], the forward process is modeled as the (time-dependent) Ornstein-Uhlenbeck (OU)
process:

dXt = −θtXtdt+ σtdBt, (1)
where θt ≥ 0, σt > 0,∀t ≥ 0 and Bt is the Brownian Motion (BM). The backward process is the
reverse-time process of the forward process [2]:

dXt = [−θtXt − σ2
t∇Xt

log p(Xt, t)]dt+ σtdB̃t, (2)

where B̃t is the reverse-time Brownian motion and p(Xt, t) is the single-time marginal distribution
of the forward process, which also serves as the solution to the Fokker-Planck equation [35]:

∂

∂t
p(x, t) = θt∇x(xp(x, t)) +

1

2
σ2
t∆xp(x, t). (3)

In order to train a diffusion model, the primary objective is to minimize the discrepancy between the
model output sθ(xt, t) and the Stein score function s(xt, t) = ∇xt

log p(xt, t) [25]. Song et al. [45]
demonstrate that, it is equivalent to match sθ(xt, t) with the conditional score function:

θ∗ = argmin
θ

Et

{
λtEx0,xt

[
∥sθ(xt, t)−∇xt

log p(xt, t|x0, 0)∥2
]}

, (4)

where λt is a weighting function, t is uniformly sampled over [0, T ] and p(xt, t|x0, 0) is the forward
conditional distribution.

It is noted that every Ornstein-Uhlenbeck process has an associated probability flow, which is a
deterministic process that shares the same single-time marginal distribution [46]. The probability
flow is governed by the following Ordinary Differential Equation (ODE):

dX̂t = [−θtX̂t −
1

2
σ2
t s(X̂t, t)]dt. (5)

In accordance with the global version of Picard-Lindelöf theorem [1] and the adjoint method[36, 7],
the map

Ts,t : Rn −→ Rn,

X̂s 7−→ X̂t.
(6)

is a diffeomorphism ∀t ≥ s > 0. The diffeomorphism naturally gives a transport map.
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2.2 Discrete state diffusion models

In the realm of discrete state diffusion models, there are two primary classifications: the Discrete
Time Discrete State (DTDS) models and the Continuous Time Discrete State (CTDS) models,
which are founded on Discrete Time Markov Chains (DTMC) and Continuous Time Markov Chains
(CTMC), correspondingly. Campbell et al.[6] conducted a comparative analysis of these models
and determined that CTDS outperforms DTDS. The DTDS models construct the forward process
through the utilization of the conditional distribution qt+1|t(xt+1|xt) and employ a neural network to

approximate the reverse conditional distribution qt|t+1(xt|xt+1) =
qt+1|t(xt+1|xt)qt(xt)

qt+1(xt+1)
. In practical

applications, it is preferable to parameterize this model using pθ0|t+1 [24, 4] and obtain pθk|k+1 through

pθk|k+1(xk|xk+1) =
∑
x0

qk|k+1,0(xk|xk+1, x0)p
θ
0|k+1(x0|xk+1)

=
∑
x0

qk+1|k(xk+1|xk)
qk|0(xk|x0)

qk+1|0(xk+1|x0)
pθ0|k+1(x0|xk+1).

(7)

In contrast to DTDS models, a CTDS model is characterized by the (infinitesimal) generator [3], or
transition rate, Qt(x, y). The Kolmogorov forward equation [13] is:

∂

∂t
qt|s(xt|xs) =

∑
y

qt|s(y|xs)Qt(y, xt). (8)

The reverse process is:
∂

∂s
qs|t(xs|xt) =

∑
y

qs|t(y|xt)Rt(y, xs). (9)

The generator of the reverse process can be written by [6, 47]:

Rt(y, x) =
qt(x)

qt(y)
Qt(x, y) =

∑
y0

qt|0(x|y0)
qt|0(y|y0)

q0|t(y0|y)Qt(x, y). (10)

There are various approaches to train the model, such as the Evidence Lower Bound (ELBO)
technique [6], and the score-based approach [47]. It has been observed that the reverse generator
can be factorized over dimensions, allowing parallel sampling for each dimension during the reverse
process. However, it is important to note that this independence is only possible when the time
interval for each step is small.

2.3 Optimal transport

The optimal transport problem can be formulated in two primary ways, namely the Monge formulation
and the Kantorovich formulation [42]. Suppose there are two probability measures µ and ν on (Rn,B),
and a cost function c : Rn × Rn → [0,+∞]. The Monge problem is

(MP) inf
T

{∫
c(x,T(x)) dµ(x) : T#µ = ν

}
. (11)

The measure T#µ is defined through T#µ(A) = µ(T−1(A)) for every A ∈ B and is called the
pushforward of µ through T.

It is evident that the Monge Problem (MP) transports the entire mass from a particular point, denoted
as x, to a single point T(x). In contrast, Kantorovich provided a more general formulation, referred
to as the Kantorovich problem:

(KP) inf
γ

{∫
Rn×Rn

cdγ : γ ∈ Π(µ, ν)

}
, (12)

where Π(µ, ν) is the set of transport plans, i.e.,
Π(µ, ν) = {γ ∈ P(Rn × Rn) : (πx)#γ = µ, (πy)#γ = ν} , (13)

where πx and πy are the two projections of Rn × Rn onto Rn. For measures absolutely continuous
with respect to the Lebesgue measure, these two problems are equivalent [50]. However, when the
measures are discrete, they are entirely distinct as the constraint of the Monge Problem may never be
fulfilled.
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2.4 Fokker-Planck equation by gradient flow

According to [27], the Fokker-Planck equation represents the gradient flow of a functional in a metric
space. In particular, for Brownian motion, its Fokker-Planck equation, which is also known as the
heat diffusion equation, can be expressed as:

∂

∂t
p(x, t) =

1

2
∆p(x, t), (14)

and it represents the gradient flow of the Gibbs-Boltzmann entropy multiplied by − 1
2 :

−1

2
S(p) =

1

2

∫
Rn

p(x) log p(x) dx. (15)

It is worth noting that Eq. 15 is the gradient flow of Eq. 14 under the 2-wasserstein metric (W2).

Chow et al. [8] have developed an analogue in the discrete setting by introducing the discrete
Gibbs-Boltzmann entropy:

S(p) =
∑
i

pi log pi, (16)

and deriving the gradient flow using a newly defined metric (Definition 1 in [8]). Since the discrete
model is defined on graph G(V,E), where V = {a1, ..., aN} is the set of vertices, and E is the set of
edges, the discrete Fokker-Planck equation with a constant potential can be written as:

d

dt
pi =

∑
j∈N(i)

pj − pi, (17)

where N(i) = {j ∈ {1, 2, ..., N}|{ai, aj} ∈ E} represents the one-ring neighborhood.

3 Continuous probability flow

3.1 The equivalence of Ornstein-Uhlenbeck processes and Brownian motion

The diffusion models that are commonly utilized in machine learning are founded on Ornstein-
Uhlenbeck processes. First of all, we demonstrate that it is feasible to deterministically convert a
time-dependent Ornstein-Uhlenbeck process into a standard Brownian motion.

Proposition 1. Let Xt and Yt be a time-dependent Ornstein-Uhlenbeck process and a Brownian
motion respectively: dXt = −θtXtdt + σtdB

(1)
t , dYt = dB

(2)
t , where B

(1)
t and B

(2)
t are two

independent Brownian motions and θt ≥ 0, σt > 0,∀t ≥ 0. Let ϕt = exp(
∫ t

0
θτ dτ), βt =∫ t

0
(στϕτ )

2 dτ . Then Xt coincides in law with ϕ−1
t Yβt

.

Building upon the aforementioned proposition, the primary focus of this paper is centered around the
standard Brownian motion dYt = dBt.

3.2 Probability flow is a Monge map

Khrulkov et al. [29] have proposed a conjecture that the probability flow of Ornstein-Uhlenbeck
process is a Monge map. However, they only provided a proof for a simplified case. We demonstrate
that under some conditions, the conjecture is correct.

It is important to highlight that the continuous optimal transports presented in this paper are defined
exclusively with the cost function: c(x, y) = 1

2 |x− y|2.

Within the context of generative models, a collection of training samples denoted as {xi}Ni=1 is
typically provided, and these samples are intrinsically defined by a distribution:

p(x, 0) =
1

N

N∑
i=1

δ(x− xi), (18)
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where δ(x) represents the Dirac delta function. Given a Brownian motion with an initial distribution
in the form of Equation (18), the single-time marginal distribution is [35]

pB(x, t) =
1

N

N∑
i=1

(2πt)−
n
2 exp(−|x− xi|2

2t
). (19)

The probability flow is defined as [46]:

dŶt = −1

2
∇Ŷt

log pB(Ŷt, t)dt. (20)

According to [1, 36, 7], the solution exists for all t > 0 and the map Ŷt+s(Ŷt) is a diffeomorphism
for all t > 0, s ≥ 0. We have discovered that Ŷt+s(Ŷt) is the Monge map under some conditions and
the time does not reach 0 or +∞.

Proposition 2. Given that Y0 follows the initial condition (18), and all xis lie on the same line, the
diffeomorphism Ŷt+s(Ŷt) is the Monge optimal transport map between pB(x, t) and pB(x, t + s),
∀ t > 0, s ≥ 0.

There is a counterexample [30] to demonstrate that the probability flow map does not necessarily
provide optimal transport. It is important to note that their case differs from our assumptions in
two ways. Firstly, they consider the limit case of Ŷ+∞(Ŷ0). Secondly, the initial distribution of
the counterexample does not conform to the form specified in Equation (18). Therefore, their
counterexample is not applicable to our situation.

It has been shown that the heat diffusion equation can be regarded as the gradient flow of the Gibbs-
Boltzmann entropy concerning the W2 metric [27]. As W2 is associated with optimal transport, it is
reasonable to anticipate that the "infinitesimal transport" Ŷt+dt(Ŷt) is optimal [29].

In order to interpret the concept of "infinitesimal transport", we utilize the generator of the process
Yt. Let C2

c (Rn) denote the set of twice continuously differentiable functions on Rn with compact
support. The generator At is defined as follows [35]:

Âtf = lim
∆t→0+

f(Ŷt+∆t)− f(Ŷt)

∆t
,∀f ∈ C2

c (Rn). (21)

It is straightforward to verify that

Ât = −1

2
∇x log pB(x, t)

T∇x. (22)

We define the "infinitesimal transport" to be the diffeomorphism Ỹt+s(Ỹt) where Ỹt+s evolves
according to the following equation

dỸt+s = −1

2
∇Ỹt

log pB(Ỹt(Ỹt+s), t)ds, (23)

with the initial condition Ỹt = Ŷt. The generator of Ỹt+s is

Ãt+s = −1

2
∇Ỹt

log pB(Ỹt(Ỹt+s), t)∇x. (24)

Proposition 3. Given any t > 0, there exists a δt > 0 s.t. ∀ 0 < s < δt, the diffeomorphism
Ỹt+s(Ỹt) with the initial condition Ỹt = Ŷt is the Monge optimal transport map.

Let us return to the original Ornstein-Uhlenbeck process Xt. As it is merely a deterministic transfor-
mation of the Brownian motion Yt, we can anticipate that the probability flow of Xt, denoted by X̂t,
will be a Monge map. In fact, this expectation holds true:

Proposition 4. Given that X0 follows the initial condition (18), and all xis lie on the same line, the
diffeomorphism X̂t+s(X̂t) is the Monge optimal transport map for all t > 0, s ≥ 0.
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4 Discrete probability flow

The continuous probability flow is deterministic, which means the "mass" at Ŷt is entirely transported
to Ŷt+s during the time interval [t, t+ s]. However, it is widely acknowledged that for discrete
distributions µ and ν, there may not exist a T such that T#µ = ν. As a result, discrete diffusions
cannot possess a deterministic probability flow. To establish the concept of the discrete probability
flow, we employ the methodology of optimal transport. First of all, a discrete diffusion model is
proposed as an analogue of Brownian motion. Secondly, we modified the forward process to create an
optimal transport map, which is used to define the discrete probability flow. Finally, a novel sampling
technique is introduced, which significantly improves the certainty of the sampling outcomes.

4.1 Constructing discrete probability flow

It is demonstrated that the process described by Equation (17) is a discrete equivalent of the heat
diffusion process (14) [8]. We adopt this process as our discrete diffusion model and represent it in a
more comprehensive notation.

The discrete diffusion model has K dimensions and S states. The states are denoted by i =
(i1, i2, . . . , iK), where ij ∈ {1, 2, . . . , S}. The Kolmogorov forward equation for this process is

d

dt
P i
j (t|s) =

∑
j′

P i
j′(t|s)QD

j′

j (t), (25)

where P i
j (t|s) means P (xt = j|xs = i) and QD is defined as:

QD
i
j =


1, dD(i, j) = 1,

−
∑

j′∈{k:dD(i,k)=1} QD
i
j′ , dD(i, j) = 0,

0, otherwise,

(26)

where dD(i, j) =
∑K

l=1 |il − jl|. If we let the solution of the Equation (25) be denoted by PD(t|s)
and assume an initial condition P0, the single-time marginal distribution can be computed as follows:

PDi(t) =
∑
j

P0jQD
j
i (t|0). (27)

It is noteworthy that the process defined by QD is not an optimal transport map, as there exist mutual
flows between the states (i.e., there exists two states i, j with Qi

j > 0 and Qj
i > 0). Therefore, we

propose a modified version that will be proved to be a solution to the Kantorovich problem, namely,
an optimal transport plan. The modified version is defined by the following Q:

Qi
j(t) =


ReLU(PDi(t)−PDj(t))

PDi(t)
, dD(i, j) = 1,

−
∑

j′∈{k:dD(i,k)=1} Q
i
j′(t), dD(i, j) = 0,

0, otherwise.

(28)

where

ReLU(x) =

{
x, x > 0,

0, x ≤ 0.
(29)

In order to avoid singular cases, We define Qi
j(t) to be 0 when PDi(t) = 0. In fact, it is easy to

verify that PDi(t) > 0 for all t > 0 , i ∈ {1, 2, . . . ,K}. We will show that the process defined by Q
is equivalent in distribution to the one generated by QD.

Proposition 5. The processes generated by QD and Q have the same single-time marginal distribu-
tion ∀t > 0.

Proposition 6. Given any t > 0, there exists a δt > 0 s.t. ∀ 0 < s < δt, the process generated by
Q provides an optimal transport map from PD(t) to PD(t+ s) under the cost dD.

6



Proposition 6 demonstrates that QD generates a Kantorovich plan between PD(t) and PD(t + s)
under a certain cost function. On the other hand, the continuous probability flow is the Monge map
between pB(x, t) and pB(x, t+ s). Therefore, it is reasonable to define the process defined by QD

as the discrete probability flow of the original process defined by Q.

Furthermore, the "infinitesimal transport" of the discrete process, which is defined by d
ds P̂ (t+ s) =

P̂ (t+ s)Q(t), also provides an optimal transport map.

Proposition 7. Given any t > 0, there exists a δt > 0 s.t. ∀ 0 < s < δt, the process above provides
an optimal transport map from P̂ (t) to P̂ (t+ s) under the cost dD.

4.2 Sampling by discrete probability flow

In order to train the modified model, we employ a score-based method described in the Score-based
Continuous-time Discrete Diffusion Model (SDDM) [47]. Specifically, we directly learn the condi-
tional probability P θ(il(t)| {i1, . . . , il−1, il+1, . . . , iK} (t)). According to proposition 5, it follows
that P θ = P θ

D, and consequently, the training process is identical to that of [47]. For the sake of
brevity, we will employ the notation P θ

il|i\il(t) to replace P θ(il(t)| {i1, . . . , il−1, il+1, . . . , iK} (t)).

The generator of the reverse process is

Ri
j(t) =


ReLU(

P θ
Djl|i\il

(t)

P θ
Dil|i\il

(t)
− 1), dD(i, j) = 1 and il ̸= jl,

−
∑

j′∈{k:dD(i,k)=1} R
i
j′(t), dD(i, j) = 0,

0, otherwise.

(30)

We use the Euler’s method to generate samples. Given the time step length ϵ, the transition probabili-
ties for dimension l is:

P θ(il(t− ϵ)|i(t)) =

{
ϵR

i(t)
i1(t),...,il(t−ϵ),...,ik(t)

(t), il(t− ϵ) ̸= il(t),

1 + ϵR
i(t)
i(t)(t), il(t− ϵ) = il(t).

(31)

When ϵ is small, the reverse conditional distribution has the factorized probability:

P θ(i(t− ϵ)|i(t)) = ΠK
l=1P

θ(il(t− ϵ)|i(t)) (32)

In this way, it becomes possible to generate samples by sequentially sampling from the reverse
conditional distribution 32.

Transition to higher probability states The reverse process of the continuous probability flow, as
described in Equation (20), causes particles to move towards areas with higher logarithmic probability
densities. As the logarithm function is monotonically increasing, this reverse flow pushes particles
to higher probability density states. This phenomenon is also observed in the discrete probability
flow. By examining the reverse generator, as shown in Equation (30), it can be determined that the
transition rate Ri

j(t) > 0 only when the destination state j has a higher probability than the source
state i. This implies that transitions only occur in higher probability states. In contrast, the original
continuous reverse process (2) and the discrete reverse process from (10) allow any transitions.

Reduction of Standard Deviation We measure the certainty of the sampling method by the
expectation of the Conditional Standard Deviation (CSD):

CSDs,t(X) = EXt
[Std(Xs|Xt)], (33)

where Std(Xs|Xt) = Var
1
2 (Xs|Xt) = E

1
2

Xs
[Xs − EXs [Xs|Xt]|Xt]. CSDs,t(X) is 0 when the

process is deterministic, such as the continuous probability flow. In the discrete situation, there
does not exist any deterministic map. However, our discrete probability flow significantly reduces
CSDs,t(X). Table 2 presents numerical evidence of this phenomenon. Therefore, we posit that the
discrete probability flow enhances the certainty of the sampling outcomes.

7



Table 1: Comparison of generation quality for SDDM and DPF, in terms of MMD with Laplace
kernel using bandwith=0.1. Lower values indicate superior quality.

2spirals 8gaussians checkerboard circles moons pinwheel swissroll
discrete dimension = 32, state size = 2

SDDM 2.18e-06 4.28e-06 1.33e-06 6.22e-06 5.62e-06 2.10e-06 4.27e-06
DPF (ours) 1.89e-05 1.09e-05 2.22e-05 3.27e-05 2.42e-05 1.60e-05 2.18e-05

discrete dimension = 16, state size = 5
SDDM 2.06e-4 1.01e-4 2.43e-4 1.74e-4 2.20e-4 3.37e-4 1.43e-4

DPF (ours) 3.87e-4 5.87e-4 4.93e-4 3.83e-4 3.43e-4 6.64e-4 3.20e-4
discrete dimension = 12, state size = 10

SDDM 5.52e-4 3.01e-4 4.39e-4 4.22e-4 2.71e-4 2.90e-4 3.39e-4
DPF (ours) 7.19e-4 3.49e-4 5.99e-4 6.65e-4 4.34e-4 4.14e-4 5.17e-4

Table 2: Comparison of certainty for SDDM and DPF, in terms of CSD on 4,000 initial points, each
of which has 10 generated samples. Lower values indicate superior certainty.

2spirals 8gaussians checkerboard circles moons pinwheel swissroll
discrete dimension = 32, state size = 2

SDDM 14.3053 14.1882 14.7433 14.4327 14.1739 14.0450 14.0548
DPF (ours) 2.1719 1.7945 2.0693 1.7210 2.0573 2.1834 1.8892

discrete dimension = 16, state size = 5
SDDM 14.4645 14.6143 14.6963 14.4807 14.2397 14.2466 14.2659

DPF (ours) 1.9711 1.9367 1.4172 1.7185 1.7668 1.9633 1.6665
discrete dimension = 12, state size = 10

SDDM 12.8463 12.7933 13.0158 12.9232 12.6665 12.7634 12.7880
DPF (ours) 1.8123 1.3178 1.1348 1.4625 1.4859 1.8435 1.5227

5 Related Work

The concept of probability flow was initially introduced in [46] as a deterministic alternative to the
Itô diffusion. In the work [44], they presented the Denoising Diffusion Implicit Model (DDIM) and
demonstrated its equivalence to the probability flow. Subsequently, [29] investigated the relationship
between the probability flow and optimal transport. They hypothesized that the probability flow could
be considered a Monge optimal transition map and provided a proof for a specific case. Additionally,
they conducted numerical experiments that supported their conjecture, showing negligible errors.
However, [30] has discovered an initial distribution that renders probability flow not optimal.

The discrete diffusion models were first introduced by [43], who considered a binary model. Following
the success of continuous diffusion models, discrete models have garnered more attention. The bulk
of research on discrete models has focused primarily on the design of the forward process [24, 23,
4, 5, 26, 16, 9]. Continuous time discrete state models were introduced by [6] and subsequently
developed by [47].

6 Experiments

We conduct numerical experiments using our novel sampling method by Discrete Probability Flow
(DPF) on synthetic data. The primary goal is to demonstrate that our method can generate samples of
comparable quality with higher certainty.

Experiments are conducted on synthetic data using the same setup as SDDM [47], with the exception
that we replaced the generator Q with Equation (26). In addition to the binary situation (S = 2)
studied in [47], we also perform experiments on synthetic data with the state size S set to 5 and 10.
To evaluate the quality of the generated samples, we generated 40,000 / 4,000 samples for binary
data / other type of data using SDDM and DPF, and measured the Maximum Mean Discrepancy
(MMD) with the Laplace kernel [15]. The results are shown in Table 1. It can be seen that the MMD
value obtained using DPF is slightly higher than that of SDDM, which may be attributed to the
structure of the reverse generator 10. Specifically, DPF approximates an additional term, Qt(y, x),
with the neural network, which potentially introduces additional errors to the sampling process,
leading to a higher MMD value compared to SDDM. However, such difference is minimal and does
not significantly impact the quality of the generated samples. As evident from the visualization of the
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Figure 1: Visualization of the generation quality on generated binary samples for SDDM and DPF.
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Figure 2: Visualization of the generating certainty on generated binary samples for SDDM and DPF.
All the samples (in blue) are randomly generated from the single initial point (in red).
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Figure 3: Visualization of the generated binary samples from the given initial points xT . Different
colors distinguish the generated samples from different initial points xT .

distributions obtained from SDDM and DPF in Figure 1, it is clear that DPF can generate samples
that are comparable to those generated by SDDM.

In addition, we also compare the sampling certainty of DPF and SDDM by computing CSDs,t using
a Monte-Carlo based method. Specifically, we set s = 0 and t = T , and sample 4,000 xts with 10 xss
for each xt. We then estimate E(xs|xt) and Std(xs|xt) using the sample mean and sample standard
deviation, respectively. The results of certainty are presented in Table 2. Our findings indicate that
DPF significantly reduces the CSD, which suggests a higher certainty. Additionally, we visualize
the results of 4,000 generated samples (in blue) from a single initial point (in red) in the binary case
in Figure 2. It is apparent that the sampling of SDDM exhibits high uncertainty, as it can sample the
entire pattern from a single initial point. In contrast, our method reduces such uncertainty and is only
able to sample a limited number of states.

To provide a more intuitive representation of the generated samples originating from various initial
points, we select 20 × 20 initial points arranged in the grid, and distinguish them using different
colors. Subsequently, we visualize the results by sampling 10 outcomes from each initial point,
as shown in Figure 3. We observe that the visualization of SDDM samples appears disorganized,
indicating significant uncertainty. In contrast, the visualization of DPF samples exhibits clear
regularity, manifesting in two aspects: (1) the generated samples from the same initial point using
DPF are clustered by color, demonstrating the better sampling certainty of our DPF. (2) Both of the
generated samples and initial points are colored similarly at each position. For example, in the lower
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Figure 4: Image modeling on CIFAR-10 dataset. The figure is divided into three groups: initial points
xT , sampling results of τLDR-0, and sampling results of our DPF. For each row, the sampled images
are obtained from the same initial point.

right area, a majority of the generated samples are colored purple, which corresponds to the color
assigned to the initial points xT in that area. This observation demonstrates that most of the sampling
results obtained through DPF are closer to their respective initial points, aligning with our design
intention of optimal transport. It is worth noting that similar phenomena are observed across different
state sizes, and we have provided these results in the Appendix.

Finally, we extended our DPF to the CIFAR-10 dataset, and compare it with the τLDR-0 method
proposed in [6]. The visualization results are shown in Figure 4. It can be seen that our method
greatly reduces the uncertainty of generating images by sampling from the same initial xT . Detailed
experimental settings and more experimental results are presented in the Appendix.

7 Discussion

In this study, we introduce a discrete counterpart of the probability flow and established its connections
with the continuous formulations. We began by demonstrating that the continuous probability flow
corresponds to a Monge optimal transport map. Subsequently, we proposed a method to modify a
discrete diffusion model to achieve a Kantorovich plan, which naturally defines the discrete probability
flow. We also discovered shared properties between continuous and discrete probability flows. Finally,
we propose a novel sampling method that significantly reduces sampling uncertainty. However, there
are still remaining aspects to be explored in the context of the discrete probability flow. For instance,
to obtain more general conclusions under a general initial condition, the semi-group method [54]
could be employed. Additionally, while we have proven the existence of a Kantorovich plan in a
small time interval, it is possible to extend this to a global solution. Moreover, the definition of the
probability flow has been limited to a specific type of discrete diffusion model, which also could be
extended to a broader range of models. These topics remain open for future studies.
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